JP2010285420A - Method for producing optically active aromatic hydroxycarboxylic acid condensate and optically active compound - Google Patents

Method for producing optically active aromatic hydroxycarboxylic acid condensate and optically active compound Download PDF

Info

Publication number
JP2010285420A
JP2010285420A JP2010107438A JP2010107438A JP2010285420A JP 2010285420 A JP2010285420 A JP 2010285420A JP 2010107438 A JP2010107438 A JP 2010107438A JP 2010107438 A JP2010107438 A JP 2010107438A JP 2010285420 A JP2010285420 A JP 2010285420A
Authority
JP
Japan
Prior art keywords
group
optically active
protecting group
tbu
hydroxycarboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010107438A
Other languages
Japanese (ja)
Inventor
Akira Momose
陽 百瀬
Koichi Ute
浩一 右手
Tomohiro Hirano
朋広 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
University of Tokushima NUC
Original Assignee
Mitsubishi Rayon Co Ltd
University of Tokushima NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd, University of Tokushima NUC filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2010107438A priority Critical patent/JP2010285420A/en
Publication of JP2010285420A publication Critical patent/JP2010285420A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing optically active aromatic hydroxycarboxylic acid condensates highly regulated in optical activity, and the optically active aromatic hydroxycarboxylic acid condensates produced by the production method. <P>SOLUTION: The method for producing the optically active aromatic hydroxycarboxylic acid condensates comprises a condensation process for condensing a derivative (I) of formula (1) in which a carboxy group of the optically active aromatic hydroxycarboxylic acid is protected, with a derivative (II) in which a carboxy group of the optically active aromatic hydroxycarboxylic acid of formula (2) is protected. Optically active compounds produced by the production method are also provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光学活性芳香族ヒドロキシカルボン酸縮合体の製造方法及び光学活性化合物に関する。   The present invention relates to a method for producing an optically active aromatic hydroxycarboxylic acid condensate and an optically active compound.

光学活性芳香族ヒドロキシカルボン酸の光学活性を維持して縮合した、所望の光学活性を有する高分子量の光学活性芳香族ヒドロキシカルボン酸縮合体が得られれば、該縮合体における芳香族環同士が効率的に相互作用でき、耐熱性、力学特性、配向特性、光学特性等に優れた高機能性材料として有用であると考えられる。また、光学活性芳香族ヒドロキシカルボン酸はその構造が乳酸と類似(乳酸のメチル基が芳香族炭化水素基に置換された化合物。)していることから、得られる光学活性芳香族ヒドロキシカルボン酸縮合体は酸・アルカリ加水分解や生分解が行える高機能性材料として利用できる可能性がある。
光学活性芳香族ヒドロキシカルボン酸の代表例としては、D−マンデル酸あるいはL−マンデル酸が知られている。
If a high molecular weight optically active aromatic hydroxycarboxylic acid condensate having the desired optical activity is obtained by condensing while maintaining the optical activity of the optically active aromatic hydroxycarboxylic acid, the aromatic rings in the condensate are efficient. It is considered that it is useful as a highly functional material that can interact with each other and is excellent in heat resistance, mechanical properties, orientation properties, optical properties, and the like. The optically active aromatic hydroxycarboxylic acid has a structure similar to that of lactic acid (a compound in which the methyl group of lactic acid is substituted with an aromatic hydrocarbon group). The body may be used as a highly functional material capable of acid / alkali hydrolysis and biodegradation.
As representative examples of optically active aromatic hydroxycarboxylic acids, D-mandelic acid or L-mandelic acid is known.

しかし、マンデル酸を重縮合しようとすると、2分子が縮合して縮合度が2の環状化合物(マンデライド)が生成されるため、高分子量の縮合体を得ることができない(非特許文献1)。
そこで、高分子量のマンデル酸縮合体を得る方法として、環状化合物であるマンデライドの開環重縮合を行う方法が示されている(非特許文献2)。
However, when polycondensation of mandelic acid is attempted, two molecules are condensed and a cyclic compound (mandelide) having a condensation degree of 2 is produced, so that a high molecular weight condensate cannot be obtained (Non-patent Document 1).
Therefore, as a method for obtaining a high molecular weight mandelic acid condensate, a method of performing ring-opening polycondensation of a mandelide, which is a cyclic compound, has been shown (Non-patent Document 2).

J. Whitesell, J. Pojman, Chem. Mater., 2, 248 (1990)J. Whitesell, J. Pojman, Chem. Mater., 2, 248 (1990) T. Liu, T. L. Simmons, D. A. Bohnsack, M. E. Mackay, M. R. Smith, G. L. Baker, Macromolecules, 40, 6040 (2007)T. Liu, T. L. Simmons, D. A. Bohnsack, M. E. Mackay, M. R. Smith, G. L. Baker, Macromolecules, 40, 6040 (2007)

しかし、非特許文献2に記載の方法では、環状化合物(マンデライド)を開環する際に立体反転してラセミ化してしまい、用いるマンデル酸の光学活性をそのまま維持した芳香族ヒドロキシカルボン酸縮合体を得ることができない。
以上のように従来の方法では、芳香族環同士が効率的に相互作用でき、耐熱性等に優れた高機能性材料として利用できると考えられる、光学活性が高度に制御された光学活性芳香族ヒドロキシカルボン酸縮合体を得ることはできなかった。
However, in the method described in Non-Patent Document 2, an aromatic hydroxycarboxylic acid condensate that maintains the optical activity of the mandelic acid used is sterically inverted and racemized when the cyclic compound (mandelide) is opened. Can't get.
As described above, according to the conventional method, the aromatic rings can be efficiently interacted with each other, and can be used as a high-functional material excellent in heat resistance, etc. A hydroxycarboxylic acid condensate could not be obtained.

本発明は、光学活性が高度に制御された光学活性芳香族ヒドロキシカルボン酸縮合体の製造方法、及び光学活性芳香族ヒドロキシカルボン酸に由来する繰り返し単位を有する光学活性が高度に制御された光学活性化合物の提供を目的とする。   The present invention relates to a method for producing an optically active aromatic hydroxycarboxylic acid condensate having a highly controlled optical activity, and an optical activity having a highly controlled optical activity having a repeating unit derived from the optically active aromatic hydroxycarboxylic acid. The purpose is to provide compounds.

本発明は、前記課題を解決するために以下の構成を採用した。
[1]下記式(1)で表される光学活性芳香族ヒドロキシカルボン酸誘導体(I)と、下記式(2)で表される光学活性芳香族ヒドロキシカルボン酸誘導体(II)とを縮合する縮合工程を有する光学活性芳香族ヒドロキシカルボン酸縮合体の製造方法。
The present invention employs the following configuration in order to solve the above problems.
[1] Condensation for condensing an optically active aromatic hydroxycarboxylic acid derivative (I) represented by the following formula (1) and an optically active aromatic hydroxycarboxylic acid derivative (II) represented by the following formula (2) The manufacturing method of the optically active aromatic hydroxycarboxylic acid condensate which has a process.

Figure 2010285420
Figure 2010285420

Figure 2010285420
Figure 2010285420

(式(1)及び式(2)中、p及びqはそれぞれ独立に1以上の整数である。R11は、アラルキルエーテル型保護基、アルキルエーテル型保護基、シリル型保護基、エステル型保護基又はオキシカルボニル型保護基のいずれかであり、R21は、アラルキルエーテル型保護基、アルキルエーテル型保護基又はシリル型保護基のいずれかである。p個のR31は、それぞれ独立に炭素数6〜14の芳香族炭化水素基である。q個のR32は、それぞれ独立に炭素数6〜14の芳香族炭化水素基である。*で示した炭素原子は不斉炭素原子を意味する。)
[2]前記R11とR21とがオルトゴナルな保護基であり、前記光学活性芳香族ヒドロキシカルボン酸誘導体(I)と前記光学活性芳香族ヒドロキシカルボン酸誘導体(II)とを縮合して得られる、下記式(3)で表される光学活性芳香族ヒドロキシカルボン酸縮合体(III)のR11又はR21のいずれか一方を脱保護する脱保護工程を更に有し、該R11又はR21のいずれか一方を脱保護した縮合体を、前記縮合工程における前記光学活性芳香族ヒドロキシカルボン酸誘導体(I)及び/又は前記光学活性芳香族ヒドロキシカルボン酸誘導体(II)として用いる、前記[1]に記載の光学活性芳香族ヒドロキシカルボン酸縮合体の製造方法。
(In Formula (1) and Formula (2), p and q are each independently an integer of 1 or more. R 11 is an aralkyl ether type protecting group, an alkyl ether type protecting group, a silyl type protecting group, or an ester type protecting group. is either group or an oxycarbonyl-type protecting group, R 21 is .p number of R 31 is either aralkyl ether type protecting group, alkyl ether-type protecting group or a silyl-type protecting groups, the carbon independently It is an aromatic hydrocarbon group having a number of 6 to 14. Each q R 32 is independently an aromatic hydrocarbon group having a carbon number of 6 to 14. The carbon atom indicated by * means an asymmetric carbon atom. To do.)
[2] R 11 and R 21 are ortho-protecting groups, and are obtained by condensing the optically active aromatic hydroxycarboxylic acid derivative (I) and the optically active aromatic hydroxycarboxylic acid derivative (II). And a deprotecting step of deprotecting either R 11 or R 21 of the optically active aromatic hydroxycarboxylic acid condensate (III) represented by the following formula (3), wherein R 11 or R 21 [1], wherein the condensate obtained by deprotecting any one of the above is used as the optically active aromatic hydroxycarboxylic acid derivative (I) and / or the optically active aromatic hydroxycarboxylic acid derivative (II) in the condensation step. The manufacturing method of the optically active aromatic hydroxycarboxylic acid condensate of description.

Figure 2010285420
Figure 2010285420

(式(3)中、nは2以上の整数であり、pとqの和である。n個のRは、それぞれ独立に炭素数6〜14の芳香族炭化水素基である。) (In the formula (3), n is an integer of 2 or more, .n number of R 3 is the sum of p and q are each independently an aromatic hydrocarbon group having 6 to 14 carbon atoms.)

[3]下記式(4)で表される光学活性化合物。 [3] An optically active compound represented by the following formula (4).

Figure 2010285420
Figure 2010285420

(式(4)中、nは2以上の整数である。Rは、水素原子、アラルキルエーテル型保護基、アルキルエーテル型保護基、シリル型保護基、エステル型保護基又はオキシカルボニル型保護基のいずれかであり、Rは、水素原子、アラルキルエーテル型保護基、アルキルエーテル型保護基又はシリル型保護基のいずれかであり、R及びRの少なくとも一方は前記いずれかの保護基である。n個のRは、それぞれ独立に炭素数6〜14の芳香族炭化水素基である。)
[4]前記Rがフェニル基である前記[3]に記載の光学活性化合物。
(In the formula (4), .R 1 n is an integer of 2 or greater, a hydrogen atom, an aralkyl ether type protecting group, alkyl ether-type protecting group, a silyl-type protecting group, ester type protecting group or an oxycarbonyl-type protecting group R 2 is any one of a hydrogen atom, an aralkyl ether protecting group, an alkyl ether protecting group, or a silyl protecting group, and at least one of R 1 and R 2 is any one of the protecting groups described above N R 3 s are each independently an aromatic hydrocarbon group having 6 to 14 carbon atoms.)
[4] The optically active compound according to [3], wherein R 3 is a phenyl group.

本発明の製造方法によれば、光学活性が高度に制御された光学活性芳香族ヒドロキシカルボン酸縮合体が得られる。
また、本発明の光学活性化合物は、光学活性芳香族ヒドロキシカルボン酸に由来する繰り返し単位を有し、光学活性が高度に制御されている。
According to the production method of the present invention, an optically active aromatic hydroxycarboxylic acid condensate having a highly controlled optical activity can be obtained.
The optically active compound of the present invention has a repeating unit derived from an optically active aromatic hydroxycarboxylic acid, and the optical activity is highly controlled.

合成例1で得られたO−t−ブチル−D−マンデル酸(tBu−MDA)のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of Ot-butyl-D-mandelic acid (tBu-MDA) obtained in Synthesis Example 1. 合成例2で得られたO−t−ブチル−D−マンデル酸ベンジル(tBu−MDA−Bn)のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of benzyl Ot-butyl-D-mandelate (tBu-MDA-Bn) obtained in Synthesis Example 2. 合成例3で得られたD−マンデル酸ベンジル(MDA−Bn)のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of benzyl D-mandelate (MDA-Bn) obtained in Synthesis Example 3. 実施例1で得られたO−t−ブチル−D−マンデル酸2量体ベンジル(tBu−MDA2−Bn)のH−NMRスペクトルである。1 is a 1 H-NMR spectrum of Ot-butyl-D-mandelic acid dimer benzyl (tBu-MDA2-Bn) obtained in Example 1. FIG. 実施例1で得られたO−t−ブチル−D−マンデル酸2量体ベンジル(tBu−MDA2−Bn)の13C−NMRスペクトルである。2 is a 13 C-NMR spectrum of Ot-butyl-D-mandelic acid dimer benzyl (tBu-MDA2-Bn) obtained in Example 1. FIG. 実施例2で得られたO−t−ブチル−D−マンデル酸2量体(tBu−MDA2)のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of an Ot-butyl-D-mandelic acid dimer (tBu-MDA2) obtained in Example 2. FIG. 実施例3で得られたD−マンデル酸2量体ベンジル(MDA2−Bn)のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of D-mandelic acid dimer benzyl (MDA2-Bn) obtained in Example 3. FIG. 実施例4で得られたO−t−ブチル−D−マンデル酸4量体ベンジル(tBu−MDA4−Bn)のHMBCスペクトルである。4 is an HMBC spectrum of Ot-butyl-D-mandelic acid tetramer benzyl (tBu-MDA4-Bn) obtained in Example 4. 図8のHMBCスペクトルにおけるH:4.8〜6.2ppm、C:165〜175ppmの拡大図である。It is an enlarged view of H: 4.8-6.2 ppm and C: 165-175 ppm in the HMBC spectrum of FIG. 実施例4で得られたO−t−ブチル−D−マンデル酸4量体ベンジル(tBu−MDA4−Bn)のHMQCスペクトルである。4 is an HMQC spectrum of Ot-butyl-D-mandelic acid tetramer benzyl (tBu-MDA4-Bn) obtained in Example 4. 図10のHMQCスペクトルにおけるH:4.8〜6.2ppm、C:65〜80ppmの拡大図である。FIG. 11 is an enlarged view of H: 4.8 to 6.2 ppm and C: 65 to 80 ppm in the HMQC spectrum of FIG. 10. 実施例4で得られたO−t−ブチル−D−マンデル酸4量体ベンジル(tBu−MDA4−Bn)のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of Ot-butyl-D-mandelic acid tetramer benzyl (tBu-MDA4-Bn) obtained in Example 4. 実施例4で得られたO−t−ブチル−D−マンデル酸4量体ベンジル(tBu−MDA4−Bn)の13C−NMRスペクトルである。4 is a 13 C-NMR spectrum of Ot-butyl-D-mandelic acid tetramer benzyl (tBu-MDA4-Bn) obtained in Example 4. FIG. 実施例4で得られたO−t−ブチル−D−マンデル酸4量体ベンジル(tBu−MDA4−Bn)のMALDI−TOF−MSスペクトルである。2 is a MALDI-TOF-MS spectrum of Ot-butyl-D-mandelic acid tetramer benzyl (tBu-MDA4-Bn) obtained in Example 4. FIG. 実施例5で得られたO−t−ブチル−D−マンデル酸4量体(tBu−MDA4)のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of Ot-butyl-D-mandelic acid tetramer (tBu-MDA4) obtained in Example 5. FIG. 実施例6で得られたD−マンデル酸4量体ベンジル(MDA4−Bn)のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of D-mandelic acid tetramer benzyl (MDA4-Bn) obtained in Example 6. 実施例7で得られたO−t−ブチル−D−マンデル酸8量体ベンジル(tBu−MDA8−Bn)のHMBCスペクトルである。4 is an HMBC spectrum of Ot-butyl-D-mandelic acid octamer benzyl (tBu-MDA8-Bn) obtained in Example 7. 実施例7で得られたO−t−ブチル−D−マンデル酸8量体ベンジル(tBu−MDA8−Bn)のHMQCスペクトルである。4 is an HMQC spectrum of Ot-butyl-D-mandelic acid octamer benzyl (tBu-MDA8-Bn) obtained in Example 7. 実施例7で得られたO−t−ブチル−D−マンデル酸8量体ベンジル(tBu−MDA8−Bn)のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of Ot-butyl-D-mandelic acid octamer benzyl (tBu-MDA8-Bn) obtained in Example 7. 実施例7で得られたO−t−ブチル−D−マンデル酸8量体ベンジル(tBu−MDA8−Bn)の13C−NMRスペクトルである。2 is a 13 C-NMR spectrum of Ot-butyl-D-mandelic acid octamer benzyl (tBu-MDA8-Bn) obtained in Example 7. FIG. 実施例7で得られたO−t−ブチル−D−マンデル酸8量体ベンジル(tBu−MDA8−Bn)のMALDI−TOF−MSスペクトルである。2 is a MALDI-TOF-MS spectrum of Ot-butyl-D-mandelic acid octamer benzyl (tBu-MDA8-Bn) obtained in Example 7. FIG. 合成例4で得られたD−マンデル酸フェナシル(MDA−Pac)のH−NMRスペクトルである。6 is a 1 H-NMR spectrum of phenacyl D-mandelate (MDA-Pac) obtained in Synthesis Example 4. 実施例8で得られたO−t−ブチル−D−マンデル酸2量体フェナシル(tBu−MDA2−Pac)のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of Ot-butyl-D-mandelic acid dimer phenacyl (tBu-MDA2-Pac) obtained in Example 8. 実施例8で得られたO−t−ブチル−D−マンデル酸2量体フェナシル(tBu−MDA2−Pac)のMALDI−TOF−MSスペクトルである。2 is a MALDI-TOF-MS spectrum of Ot-butyl-D-mandelic acid dimer phenacyl (tBu-MDA2-Pac) obtained in Example 8. FIG. 実施例9で得られたO−t−ブチル−D−マンデル酸2量体(tBu−MDA2)のH−NMRスペクトルである。4 is a 1 H-NMR spectrum of an Ot-butyl-D-mandelic acid dimer (tBu-MDA2) obtained in Example 9. 実施例11で得られたO−t−ブチル−D−マンデル酸4量体フェナシル(tBu−MDA4−Pac)のHMBCスペクトルである。2 is an HMBC spectrum of Ot-butyl-D-mandelic acid tetramer phenacyl (tBu-MDA4-Pac) obtained in Example 11. 図26のHMBCスペクトルにおけるH:5.0〜6.6ppm、C:150.0〜200.0ppmの拡大図である。It is an enlarged view of H: 5.0-6.6 ppm and C: 150.0-200.0 ppm in the HMBC spectrum of FIG. 実施例11で得られたO−t−ブチル−D−マンデル酸4量体フェナシル(tBu−MDA4−Pac)のHMBCスペクトルである。2 is an HMBC spectrum of Ot-butyl-D-mandelic acid tetramer phenacyl (tBu-MDA4-Pac) obtained in Example 11. 図28のHMBCスペクトルにおけるH:5.0〜6.5ppm、C:65.0〜80.0ppmの拡大図である。It is an enlarged view of H: 5.0-6.5 ppm and C: 65.0-80.0 ppm in the HMBC spectrum of FIG. 実施例11で得られたO−t−ブチル−D−マンデル酸4量体フェナシル(tBu−MDA4−Pac)のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of Ot-butyl-D-mandelic acid tetramer phenacyl (tBu-MDA4-Pac) obtained in Example 11. 実施例11で得られたO−t−ブチル−D−マンデル酸4量体フェナシル(tBu−MDA4−Pac)の13C−NMRスペクトルである。2 is a 13 C-NMR spectrum of Ot-butyl-D-mandelic acid tetramer phenacyl (tBu-MDA4-Pac) obtained in Example 11. FIG. 実施例11で得られたO−t−ブチル−D−マンデル酸4量体フェナシル(tBu−MDA4−Pac)のMALDI−TOF−MSスペクトルである。2 is a MALDI-TOF-MS spectrum of Ot-butyl-D-mandelic acid tetramer phenacyl (tBu-MDA4-Pac) obtained in Example 11. 合成例5で得られたO−t−ブチル−D−マンデル酸2量体ニトロベンジル(tBu−MDA2−NBn)のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of Ot-butyl-D-mandelic acid dimer nitrobenzyl (tBu-MDA2-NBn) obtained in Synthesis Example 5. FIG.

[光学活性芳香族ヒドロキシカルボン酸縮合体の製造方法]
本発明の光学活性芳香族ヒドロキシカルボン酸縮合体(以下、「本縮合体」という。)の製造方法は、光学活性芳香族ヒドロキシカルボン酸のカルボキシ基が保護された光学活性芳香族ヒドロキシカルボン酸誘導体(I)(以下、「誘導体(I)」という。)と、光学活性芳香族ヒドロキシカルボン酸のヒドロキシ基が保護された光学活性芳香族ヒドロキシカルボン酸誘導体(II)(以下、「誘導体(II)」という。)とを縮合する縮合工程を有する方法である。
[Method for producing optically active aromatic hydroxycarboxylic acid condensate]
The method for producing the optically active aromatic hydroxycarboxylic acid condensate of the present invention (hereinafter referred to as “the present condensate”) is an optically active aromatic hydroxycarboxylic acid derivative in which the carboxy group of the optically active aromatic hydroxycarboxylic acid is protected. (I) (hereinafter referred to as “derivative (I)”) and an optically active aromatic hydroxycarboxylic acid derivative (II) in which the hydroxy group of the optically active aromatic hydroxycarboxylic acid is protected (hereinafter referred to as “derivative (II)”) And a condensing step of condensing the gas.

誘導体(I)は、下記式(1)で表される、光学活性芳香族ヒドロキシカルボン酸の誘導体である。誘導体(I)は、光学活性芳香族ヒドロキシカルボン酸のカルボキシ基が保護基R21により保護されている。 The derivative (I) is a derivative of an optically active aromatic hydroxycarboxylic acid represented by the following formula (1). Derivative (I) the carboxy group of the optically active aromatic hydroxycarboxylic acid is protected by a protecting group R 21.

Figure 2010285420
Figure 2010285420

式(1)中、*で示した炭素原子は不斉炭素原子を意味する。
pは1以上の整数である。pは、目的の本縮合体の縮合度により適宜選定すればよく、縮合反応の効率の点から、10000以下が好ましい。
In formula (1), the carbon atom indicated by * means an asymmetric carbon atom.
p is an integer of 1 or more. p may be appropriately selected depending on the degree of condensation of the intended condensate, and is preferably 10,000 or less from the viewpoint of the efficiency of the condensation reaction.

21は、アラルキルエーテル型保護基、アルキルエーテル型保護基又はシリル型保護基のいずれかの保護基である。
アラルキルエーテル型保護基としては、例えば、ベンジル基、1−フェニルエチル基、1−フェニルプロピル基、1−フェニルブチル基、2−メチル−1−フェニルプロピル基、1−フェニルペンチル基、2−メチル−1−フェニルブチル基、3−メチル−1−フェニルブチル基、ジフェニルメチル基、1,1−ジフェニルエチル基、ナフチルメチル基、1−ナフチルエチル基が挙げられる。前記保護基は置換基を有していてもよい。置換基としては、例えば、炭素数1〜6の直鎖状もしくは分岐鎖状のアルキル基、炭素数1〜6の直鎖状もしくは分岐鎖状のアルコキシ基、ニトロ基、アシル基、ハロゲン原子が挙げられる。置換基を有する保護基の具体例としては、フェナシル基、ニトロベンジル基等が挙げられる。
アラルキルエーテル型保護基としては、前記したものの中でも、脱保護反応時の主鎖エステル結合の切断が抑制できる点から、フェナシル基、ニトロベンジル基が好ましい。
アルキルエーテル型保護基としては、例えば、メチル基、tert−ブチル基、1−エトキシエチル基、3,4,5,6−テトラヒドロ−2H−ピラン−2−イル基、1−メトキシ−1−メチルエチル基、メトキシメチル基、2−メトキシエトキシメチル基が挙げられる。前記保護基は置換基を有していてもよい。置換基としては、炭素数1〜6の直鎖状もしくは分岐鎖状のアルキル基、炭素数1〜6の直鎖状もしくは分岐鎖状のアルコキシ基、ニトロ基、ハロゲン原子が挙げられる。
シリル型保護基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、トリブチルシリル基、tert−ブチルジメチルシリル基、tert−ブチルジフェニルシリル基が挙げられる。
R 21 is any one of an aralkyl ether protecting group, an alkyl ether protecting group, and a silyl protecting group.
Examples of the aralkyl ether type protecting group include benzyl group, 1-phenylethyl group, 1-phenylpropyl group, 1-phenylbutyl group, 2-methyl-1-phenylpropyl group, 1-phenylpentyl group, and 2-methyl. Examples include -1-phenylbutyl group, 3-methyl-1-phenylbutyl group, diphenylmethyl group, 1,1-diphenylethyl group, naphthylmethyl group, and 1-naphthylethyl group. The protecting group may have a substituent. Examples of the substituent include a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxy group having 1 to 6 carbon atoms, a nitro group, an acyl group, and a halogen atom. Can be mentioned. Specific examples of the protecting group having a substituent include a phenacyl group and a nitrobenzyl group.
Among the above-mentioned aralkyl ether type protecting groups, a phenacyl group and a nitrobenzyl group are preferable because the cleavage of the main chain ester bond during the deprotection reaction can be suppressed.
Examples of the alkyl ether type protecting group include a methyl group, a tert-butyl group, a 1-ethoxyethyl group, a 3,4,5,6-tetrahydro-2H-pyran-2-yl group, and a 1-methoxy-1-methyl group. Examples include an ethyl group, a methoxymethyl group, and a 2-methoxyethoxymethyl group. The protecting group may have a substituent. Examples of the substituent include a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxy group having 1 to 6 carbon atoms, a nitro group, and a halogen atom.
Examples of the silyl type protecting group include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, tributylsilyl group, tert-butyldimethylsilyl group, and tert-butyldiphenylsilyl group.

31は、炭素数6〜14の芳香族炭化水素基である。また、p個のR31は、全て同一であってもよく、2種以上であってもよいが、全て同一であることが好ましい。
31の具体例としては、例えば、フェニル基、ベンジル基、キシリル基、トルイル基、クメニル基、ナフチル基、アントラセニル基、フルオレニル基が挙げられる。
31の芳香族炭化水素基は、置換基及び/又はヘテロ原子を有していてもよい。置換基としては、例えば、炭素数1〜6の直鎖状もしくは分岐鎖状のアルキル基、炭素数1〜6の直鎖状もしくは分岐鎖状のアルコキシ基、ニトロ基、ハロゲン原子が挙げられる。ヘテロ原子としては、例えば、酸素原子、硫黄原子、窒素原子が挙げられる。
31は、原料入手の容易さと、得られた重合体の溶剤溶解性が良好な点から、フェニル基であることが好ましい。
R 31 is an aromatic hydrocarbon group having 6 to 14 carbon atoms. Further, the p R 31 s may all be the same or two or more, but it is preferable that they are all the same.
Specific examples of R 31 include phenyl group, benzyl group, xylyl group, toluyl group, cumenyl group, naphthyl group, anthracenyl group, and fluorenyl group.
The aromatic hydrocarbon group for R 31 may have a substituent and / or a hetero atom. Examples of the substituent include a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxy group having 1 to 6 carbon atoms, a nitro group, and a halogen atom. Examples of the hetero atom include an oxygen atom, a sulfur atom, and a nitrogen atom.
R 31 is preferably a phenyl group from the viewpoint of easy availability of raw materials and good solvent solubility of the obtained polymer.

誘導体(II)は、下記式(2)で表される光学活性芳香族ヒドロキシカルボン酸の誘導体である。誘導体(II)は、光学活性芳香族ヒドロキシカルボン酸のヒドロキシ基が保護基R11により保護されている。 The derivative (II) is a derivative of an optically active aromatic hydroxycarboxylic acid represented by the following formula (2). In the derivative (II), the hydroxy group of the optically active aromatic hydroxycarboxylic acid is protected by the protecting group R 11 .

Figure 2010285420
Figure 2010285420

式(2)中、*で示した炭素原子は不斉炭素原子を意味する。
qは1以上の整数である。qは、目的の本縮合体の縮合度により適宜選定すればよく、縮合反応の効率の点から、10000以下が好ましい。
In formula (2), the carbon atom indicated by * means an asymmetric carbon atom.
q is an integer of 1 or more. q may be appropriately selected depending on the degree of condensation of the target condensate, and is preferably 10,000 or less from the viewpoint of the efficiency of the condensation reaction.

11は、アラルキルエーテル型保護基、アルキルエーテル型保護基、シリル型保護基、エステル型保護基、又はオキシカルボニル型保護基のいずれかの保護基である。
アラルキルエーテル型保護基、アルキルエーテル型保護基、シリル型保護基は、R21で挙げたものと同じ保護基が挙げられる。
エステル型保護基としては、例えば、アセチル基、プロパノイル基、ブタノイル基、イソプロパノイル基、ピバロイル基、ベンゾイル基、4−ニトロベンゾイル基、4−メトキシベンゾイル基、4−メチルベンゾイル基、4−tert−ブチルベンゾイル基、4−フルオロベンゾイル基、4−クロロベンゾイル基、4−ブロモベンゾイル基、4−フェニルベンゾイル基、4−メトキシカルボニルベンゾイル基が挙げられる。
オキシカルボニル型保護基としては、例えば、tert−ブトキシカルボニルオキシ基、ベンジルオキシカルボニル基が挙げられる。
R 11 is a protecting group selected from an aralkyl ether protecting group, an alkyl ether protecting group, a silyl protecting group, an ester protecting group, and an oxycarbonyl protecting group.
Examples of the aralkyl ether-type protecting group, alkyl ether-type protecting group, and silyl-type protecting group include the same protecting groups as those described for R 21 .
Examples of ester-type protecting groups include acetyl group, propanoyl group, butanoyl group, isopropanoyl group, pivaloyl group, benzoyl group, 4-nitrobenzoyl group, 4-methoxybenzoyl group, 4-methylbenzoyl group, 4-tert -Butylbenzoyl group, 4-fluorobenzoyl group, 4-chlorobenzoyl group, 4-bromobenzoyl group, 4-phenylbenzoyl group, 4-methoxycarbonylbenzoyl group are mentioned.
Examples of the oxycarbonyl-type protecting group include a tert-butoxycarbonyloxy group and a benzyloxycarbonyl group.

32は、炭素数6〜14の芳香族炭化水素基である。また、q個のR32は、全て同一であってもよく、2種以上であってもよいが、全て同一であることが好ましい。
32の具体例としては、例えば、フェニル基、ベンジル基、キシリル基、トルイル基、クメニル基、ナフチル基、アントラセニル基、フルオレニル基が挙げられる。
32の芳香族炭化水素基は、置換基及び/又はヘテロ原子を有していてもよい。置換基としては、例えば、炭素数1〜6の直鎖状もしくは分岐鎖状のアルキル基、炭素数1〜6の直鎖状もしくは分岐鎖状のアルコキシ基、ニトロ基、ハロゲン原子が挙げられる。ヘテロ原子としては、例えば、酸素原子、硫黄原子、窒素原子が挙げられる。
32は、原料入手の容易さと、得られた重合体の溶剤溶解性が良好な点から、フェニル基であることが好ましい。
また、耐熱性、力学特性、配向特性、光学特性等に優れた本縮合体が得られやすい点から、全てのR31及びR32が同一の芳香族炭化水素基であることが好ましい。
R 32 is an aromatic hydrocarbon group having 6 to 14 carbon atoms. Further, q R 32 s may all be the same or two or more, but are preferably all the same.
Specific examples of R 32 include a phenyl group, a benzyl group, a xylyl group, a toluyl group, a cumenyl group, a naphthyl group, an anthracenyl group, and a fluorenyl group.
The aromatic hydrocarbon group for R 32 may have a substituent and / or a hetero atom. Examples of the substituent include a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxy group having 1 to 6 carbon atoms, a nitro group, and a halogen atom. Examples of the hetero atom include an oxygen atom, a sulfur atom, and a nitrogen atom.
R 32 is preferably a phenyl group from the viewpoint of easy availability of raw materials and good solvent solubility of the polymer obtained.
Moreover, it is preferable that all R31 and R32 are the same aromatic hydrocarbon groups from the point that this condensate excellent in heat resistance, mechanical properties, orientation properties, optical properties and the like is easily obtained.

誘導体(I)及び誘導体(II)の製造方法としては、ヒドロキシ基、カルボキシ基を保護基で保護する際に通常使用される保護方法が使用できる。
また、縮合工程の原料となる誘導体(I)及び誘導体(II)は、ナトリウム塩、カルシウム塩、アルミニウム塩、亜鉛塩等の金属塩、水和物、溶媒和物、結晶多形等の様々な形態で使用できる。
As a manufacturing method of derivative (I) and derivative (II), the protection method normally used when protecting a hydroxyl group and a carboxy group with a protecting group can be used.
In addition, derivatives (I) and derivatives (II) that are raw materials for the condensation step are various metal salts such as sodium salts, calcium salts, aluminum salts, zinc salts, hydrates, solvates, crystal polymorphs, etc. Can be used in form.

縮合工程では、前述した誘導体(I)と誘導体(II)を縮合する。該縮合は、縮合反応を促進する点から、溶媒中で行うことが好ましい。縮合反応に用いる溶媒は、水、メタノール等のアルコール類、N−メチルアミン等の1級アミン類、N,N−ジメチルアミン等の2級アミン類、酢酸等のカルボン酸類、無水酢酸等のカルボン酸無水物、塩酸等の鉱酸類等の縮合反応に活性な溶媒を用いない限りは特に限定されない。縮合反応に用いる溶媒の具体例としては、例えば、酢酸エチル等のエステル類、アセトン等のケトン類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、N,N,N−トリメチルアミン、ピリジン等の3級アミン類、トルエン等の芳香族化合物類、N,N−ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類が挙げられる。   In the condensation step, the aforementioned derivative (I) and derivative (II) are condensed. The condensation is preferably performed in a solvent from the viewpoint of promoting the condensation reaction. Solvents used in the condensation reaction include water, alcohols such as methanol, primary amines such as N-methylamine, secondary amines such as N, N-dimethylamine, carboxylic acids such as acetic acid, and carboxylic acids such as acetic anhydride. The solvent is not particularly limited as long as an active solvent is not used for the condensation reaction of mineral acids such as acid anhydride and hydrochloric acid. Specific examples of the solvent used in the condensation reaction include, for example, esters such as ethyl acetate, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, and tertiary amines such as N, N, N-trimethylamine and pyridine. And aromatic compounds such as toluene, amides such as N, N-dimethylformamide, and sulfoxides such as dimethyl sulfoxide.

縮合反応における誘導体(I)の濃度は、縮合反応が充分に進行する濃度であればよく、0.01〜10mol/Lが好ましい。誘導体(I)の濃度が0.01mol/L以上であれば、縮合反応が進行しやすい。また、誘導体(I)の濃度が10mol/L以下であれば、安定して縮合反応を進行させやすい。
縮合反応における誘導体(II)の濃度は、誘導体(I)と同じ濃度とすることが好ましい。
The concentration of the derivative (I) in the condensation reaction may be a concentration at which the condensation reaction proceeds sufficiently, and is preferably 0.01 to 10 mol / L. If the concentration of the derivative (I) is 0.01 mol / L or more, the condensation reaction tends to proceed. Moreover, if the density | concentration of derivative (I) is 10 mol / L or less, it will be easy to advance a condensation reaction stably.
The concentration of the derivative (II) in the condensation reaction is preferably the same as that of the derivative (I).

誘導体(I)と誘導体(II)の縮合は、縮合反応の進行を促進させるために縮合剤を添加して行ってもよい。
縮合剤としては、反応系中で活性カルボン酸誘導体を生成するものであればよく、例えば、N,N’−ジシクロヘキシルカルボジイミド(以下、「DCC」という。)、1−ヒドロキシベンゾトリアゾール、1−エチル−3−(3’−ジメチルアミノプロピル)カルボジイミド(別名、水溶性カルボジイミドともいう。以下、「WSCI」という。)、ジフェニルリン酸アジド、ベンゾトリアゾール−1−イルオキシ−トリスジメチルアミノホスホニウム塩等のBOP試薬が挙げられる。
The condensation of the derivative (I) and the derivative (II) may be performed by adding a condensing agent in order to promote the progress of the condensation reaction.
Any condensing agent may be used as long as it generates an active carboxylic acid derivative in the reaction system. For example, N, N′-dicyclohexylcarbodiimide (hereinafter referred to as “DCC”), 1-hydroxybenzotriazole, 1-ethyl BOPs such as -3- (3′-dimethylaminopropyl) carbodiimide (also referred to as water-soluble carbodiimide; hereinafter referred to as “WSCI”), diphenyl phosphate azide, benzotriazol-1-yloxy-trisdimethylaminophosphonium salt, etc. A reagent.

縮合剤の添加量は、縮合反応を促進できる量であればよく、誘導体(I)と誘導体(II)の少ない方の仕込み量に対して、等モル量〜5倍モル量が好ましく、1.1〜3倍モル量がより好ましい。縮合剤の前記添加量が等モル量以上であれば、縮合反応を完結させやすい。また、縮合剤の前記添加量が5倍モル量以下であれば、精製工程が簡素化できる。   The addition amount of the condensing agent may be an amount that can promote the condensation reaction, and is preferably equimolar amount to 5 times molar amount with respect to the charged amount of derivative (I) and derivative (II). A molar amount of 1 to 3 is more preferable. When the addition amount of the condensing agent is equal to or more than an equimolar amount, the condensation reaction is easily completed. Moreover, if the said addition amount of a condensing agent is 5 times mole amount or less, a refinement | purification process can be simplified.

また、誘導体(I)と誘導体(II)の縮合は、縮合反応の進行をさらに促進させるために、縮合剤とともに触媒を添加して行ってもよい。
触媒としては、縮合反応を促進できるものであればよく、例えば、N,N−ジメチル−4−アミノピリジン(以下、「DMAP」という。)が挙げられる。
Further, the condensation of the derivative (I) and the derivative (II) may be performed by adding a catalyst together with a condensing agent in order to further promote the progress of the condensation reaction.
The catalyst may be any catalyst that can promote the condensation reaction, and examples thereof include N, N-dimethyl-4-aminopyridine (hereinafter referred to as “DMAP”).

触媒の添加量は、縮合反応を促進できる量であればよく、誘導体(I)と誘導体(II)の少ない方の仕込み量に対して、0.01〜0.7倍モル量が好ましく、0.05〜0.5倍モル量がより好ましい。触媒の前記添加量が0.01倍モル量以上であれば、縮合反応が完結しやすい。また、触媒の前記添加量が0.7倍モル量以下であれば、精製工程が簡素化できる。   The addition amount of the catalyst may be an amount that can accelerate the condensation reaction, and is preferably 0.01 to 0.7 times the molar amount relative to the less charged amount of the derivative (I) and the derivative (II). A molar amount of 0.05 to 0.5 times is more preferable. If the addition amount of the catalyst is 0.01 times the molar amount or more, the condensation reaction is easily completed. Moreover, if the said addition amount of a catalyst is 0.7 times mole amount or less, a refinement | purification process can be simplified.

誘導体(I)と誘導体(II)の縮合反応における反応容器内の雰囲気は、縮合反応に不活性な雰囲気であればよく、窒素又はアルゴンの雰囲気が好ましい。
また、縮合反応における反応温度は、−100〜100℃が好ましく、0〜80℃がより好ましい。反応温度が−100℃以上であれば、縮合反応が進行しやすい。また、反応温度が100℃以下であれば、得られる本縮合体の熱劣化を抑制しやすい。また、前記縮合剤を用いる場合、縮合剤を添加すると激しく発熱することから、反応開始時には冷媒等で反応容器を冷却しておいてもよい。
誘導体(I)と誘導体(II)の縮合反応における反応時間は、10分〜50時間が好ましく、2〜30時間がより好ましい。反応時間が10分以上であれば、縮合反応が充分に進行しやすい。また、反応時間が50時間以下であれば、生産性が向上する。
The atmosphere in the reaction vessel in the condensation reaction of the derivative (I) and the derivative (II) may be an atmosphere inert to the condensation reaction, and an atmosphere of nitrogen or argon is preferable.
Moreover, -100-100 degreeC is preferable and, as for the reaction temperature in a condensation reaction, 0-80 degreeC is more preferable. When the reaction temperature is −100 ° C. or higher, the condensation reaction tends to proceed. Moreover, if reaction temperature is 100 degrees C or less, it will be easy to suppress the thermal deterioration of this condensate obtained. In addition, when the condensing agent is used, when the condensing agent is added, it generates a lot of heat. Therefore, the reaction vessel may be cooled with a refrigerant or the like at the start of the reaction.
The reaction time in the condensation reaction of the derivative (I) and the derivative (II) is preferably 10 minutes to 50 hours, more preferably 2 to 30 hours. If the reaction time is 10 minutes or more, the condensation reaction is likely to proceed sufficiently. Moreover, if reaction time is 50 hours or less, productivity will improve.

本発明の製造方法では、以上のように誘導体(I)と誘導体(II)を縮合することにより、ヒドロキシ基及びカルボキシ基の両方が保護基で保護された本縮合体が得られる。
また、本発明の製造方法では、誘導体(I)及び誘導体(II)におけるR11とR21がオルトゴナルな保護基であることが好ましい。これにより、誘導体(I)と誘導体(II)を縮合して得られる、下記式(3)で表される光学活性芳香族ヒドロキシカルボン酸縮合体(III)(以下、「縮合体(III)」という。)におけるR11又はR21のいずれか一方のみを脱保護する脱保護工程を行うことが可能となる。該脱保護工程によりR11又はR21のいずれか一方のみが脱保護された縮合体は、前述した誘導体(I)及び/又は誘導体(II)として再度縮合工程に用いることができる。
In the production method of the present invention, by condensing the derivative (I) and the derivative (II) as described above, the present condensate in which both the hydroxy group and the carboxy group are protected with a protecting group is obtained.
In the production method of the present invention, it is preferable that R 11 and R 21 in the derivative (I) and the derivative (II) are ortho-protecting groups. Thus, the optically active aromatic hydroxycarboxylic acid condensate (III) represented by the following formula (3) obtained by condensing the derivative (I) and the derivative (II) (hereinafter referred to as “condensate (III)”) It is possible to perform a deprotection step in which only one of R 11 and R 21 in the above is deprotected. The condensate in which only one of R 11 and R 21 is deprotected by the deprotection step can be used again in the condensation step as the aforementioned derivative (I) and / or derivative (II).

Figure 2010285420
Figure 2010285420

縮合体(III)におけるnは、2以上の整数であり、pとqの和である。
は、炭素数6〜14の芳香族炭化水素基であり、縮合する誘導体(I)及び誘導体(II)のR31、R32によって決まる。n個のRは、全て同一あってもよく、2種以上であってもよいが、全て同一であることが好ましい。すなわち、誘導体(I)のR31と誘導体(II)のR32が全て同じ芳香族炭化水素基であることが好ましい。
N in the condensate (III) is an integer of 2 or more, and is the sum of p and q.
R 3 is an aromatic hydrocarbon group having 6 to 14 carbon atoms, and is determined by R 31 and R 32 of the derivative (I) and the derivative (II) to be condensed. The n R 3 s may all be the same or two or more, but are preferably all the same. That is, it is preferable that R 31 of the derivative (I) and R 32 of the derivative (II) are all the same aromatic hydrocarbon group.

11とR21がオルトゴナルな保護基となる組み合わせとしては、特定の反応条件で一方の保護基のみが脱保護される組み合わせであればよく、例えば、R11がtert−ブチル基、R21がベンジル基の組み合わせ、R11がtert−ブチル基、R21がトリエチルシリル基の組み合わせ、R11がtert−ブチル基、R21がアリル基の組み合わせ、R11がメトキシメチル基、R21がトリエチルシリル基の組み合わせ、R11がトリエチルシリル基、R21がtert−ブチル基の組み合わせ、R11がアリル基、R21がtert−ブチル基の組み合わせ、R11がtert−ブチル基、R21がフェナシル基の組み合わせ、R11がtert−ブチル基、R21がニトロベンジル基の組み合わせが挙げられる。 The combination in which R 11 and R 21 are ortho-protecting groups may be a combination in which only one protecting group is deprotected under specific reaction conditions. For example, R 11 is a tert-butyl group, and R 21 is Combination of benzyl group, R 11 is tert-butyl group, R 21 is triethylsilyl group combination, R 11 is tert-butyl group, R 21 is allyl group combination, R 11 is methoxymethyl group, R 21 is triethylsilyl group R 11 is a triethylsilyl group, R 21 is a tert-butyl group, R 11 is an allyl group, R 21 is a tert-butyl group, R 11 is a tert-butyl group, and R 21 is a phenacyl group. combination, R 11 is tert- butyl group, R 21 can be mentioned a combination of nitrobenzyl group .

脱保護工程を行ったものを再度縮合工程に用いる場合の具体例としては、例えば、以下に示すものが挙げられる。
下記式に示すように、D−マンデル酸のカルボキシ基をR21で保護した誘導体(I−A)(p=1、Rがフェニル基の誘導体(I))と、D−マンデル酸のヒドロキシ基を前記R21とはオルトゴナルな関係のR11で保護した誘導体(II−A)(q=1、Rがフェニル基の誘導体(II))とを縮合することにより、縮合度2で直鎖状のD−マンデル酸の縮合体(III−A)(n=2、Rがフェニル基の縮合体(III))が得られる。
Specific examples of the case where the product subjected to the deprotection step is used again in the condensation step include the following.
As shown in the following formula, a derivative (IA) in which the carboxy group of D-mandelic acid is protected with R 21 (p = 1, a derivative (I) in which R 3 is a phenyl group), and hydroxy of D-mandelic acid By condensing a derivative (II-A) (q = 1, R 3 is a phenyl group derivative (II)) wherein the group is protected by R 11 having an ortho relationship with R 21 , the degree of condensation is 2 A chain D-mandelic acid condensate (III-A) (n = 2, R 3 is a phenyl group condensate (III)) is obtained.

Figure 2010285420
Figure 2010285420

そして、得られた縮合体(III−A)におけるR21及びR11の一方をそれぞれ脱保護することにより、下記式で表される誘導体(I−B)(p=2、Rがフェニル基の誘導体(I))及び誘導体(II−B)(q=2、Rがフェニル基の誘導体(II))が得られる。これら誘導体(I−B)及び誘導体(II−B)は、さらに縮合工程にて縮合することにより、縮合度4で直鎖状のD−マンデル酸の縮合体(III−B)(n=4、Rがフェニル基の縮合体(III))が得られる。
また、縮合体(III−B)を脱保護した縮合体は、さらに縮合工程における誘導体(I)及び誘導体(II)として用いることができる。つまり、前記と同様に脱保護工程及び縮合工程を行うことでn=8のD−マンデル酸の縮合体を得ることができる。このように、オルトゴナルな保護基R11及びR21を用いて縮合工程と脱保護工程繰り返すことにより、高分子量の本縮合体を高い効率で製造できる。
Then, by deprotecting one of R 21 and R 11 in the obtained condensate (III-A), a derivative (IB) represented by the following formula (p = 2, R 3 is a phenyl group) Derivative (I)) and derivative (II-B) (q = 2, R 3 is a phenyl group derivative (II)). These derivatives (IB) and (II-B) are further condensed in a condensation step to give a condensate (III-B) (n = 4) of linear D-mandelic acid having a condensation degree of 4. , R 3 is a phenyl group condensate (III)).
Further, the condensate obtained by deprotecting the condensate (III-B) can be used as the derivative (I) and the derivative (II) in the condensation step. That is, by performing the deprotection step and the condensation step in the same manner as described above, a condensate of D-mandelic acid with n = 8 can be obtained. Thus, by repeating the condensation step and the deprotection step using the orthologous protecting groups R 11 and R 21 , the high molecular weight main condensate can be produced with high efficiency.

Figure 2010285420
Figure 2010285420

また、脱保護工程後の縮合体は、誘導体(I)又は誘導体(II)のいずれか一方のみとして用いてもよい。例えば、前記誘導体(I−B)と前記誘導体(II−A)とを縮合してn=3のD−マンデル酸の縮合体を得る方法としてもよい。   Moreover, you may use the condensate after a deprotection process only as either one of derivative | guide_body (I) or derivative | guide_body (II). For example, the derivative (IB) and the derivative (II-A) may be condensed to obtain a condensate of D = mandelic acid with n = 3.

縮合体(III)の脱保護は、脱保護反応の進行を促進する点から、溶媒中で行うことが好ましい。
脱保護に用いる溶媒としては、脱保護反応に不活性な溶媒であればよく、例えば、水、メタノール等のアルコール類、N−メチルアミン等の1級アミン類、N,N−ジメチルアミン等の2級アミン類、酢酸等のカルボン酸類、無水酢酸等のカルボン酸無水物、塩酸等の鉱酸類、酢酸エチル等のエステル類、アセトン等のケトン類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、N,N,N−トリメチルアミン、ピリジン等の3級アミン類、トルエン等の芳香族化合物類、N,N−ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類が挙げられる。
The deprotection of the condensate (III) is preferably performed in a solvent from the viewpoint of promoting the progress of the deprotection reaction.
The solvent used for deprotection may be any solvent inert to the deprotection reaction, such as water, alcohols such as methanol, primary amines such as N-methylamine, N, N-dimethylamine and the like. Secondary amines, carboxylic acids such as acetic acid, carboxylic acid anhydrides such as acetic anhydride, mineral acids such as hydrochloric acid, esters such as ethyl acetate, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, N, Examples thereof include tertiary amines such as N, N-trimethylamine and pyridine, aromatic compounds such as toluene, amides such as N, N-dimethylformamide, and sulfoxides such as dimethyl sulfoxide.

また、縮合体(III)の脱保護は脱保護剤を用いて行う。
脱保護剤としては、ヒドロキシ基又はカルボキシル基のいずれか一方の保護基、すなわちR11又はR21を選択的に脱保護できるものであればよく、例えば、トリフルオロ酢酸(以下、「TFA」という。)、酢酸等の有機酸;前記有機酸の亜鉛、マグネシウム等の金属塩;塩酸等の鉱酸;水酸化ナトリウム、テトラブチルアンモニウムフッ化物(以下、「TBAF」という。)等のアルカリ;パラジウム−炭素と水素の混合物;テトラキス(トリフェニルホスフィン)パラジウム;リンドラー触媒が挙げられる。
The deprotection of the condensate (III) is performed using a deprotecting agent.
Any deprotecting agent may be used as long as it can selectively deprotect either hydroxy group or carboxyl group, that is, R 11 or R 21. For example, trifluoroacetic acid (hereinafter referred to as “TFA”). ), Organic acids such as acetic acid; metal salts such as zinc and magnesium of the organic acids; mineral acids such as hydrochloric acid; alkalis such as sodium hydroxide and tetrabutylammonium fluoride (hereinafter referred to as “TBAF”); palladium A mixture of carbon and hydrogen; tetrakis (triphenylphosphine) palladium; a Lindlar catalyst.

例えば、ヒドロキシ基の保護基R11がtert−ブチル基、カルボキシル基の保護基R21がベンジル基であれば、R11の脱保護反応にTFA、R21の脱保護反応にパラジウム−炭素と水素の混合物、またはリンドラー触媒の組み合わせが使用できる。R11がtert−ブチル基、R21がトリエチルシリル基であれば、R11の脱保護反応にTFA、R21の脱保護反応にTBAFの組み合わせが使用できる。R11がtert−ブチル基、R21がアリル基であれば、R11の脱保護反応にTFA、R21の脱保護反応にテトラキス(トリフェニルホスフィン)パラジウムの組み合わせが使用できる。R11がメトキシメチル基、R21がトリエチルシリル基であれば、R11の脱保護反応にTFA、R21の脱保護反応にTBAFの組み合わせが使用できる。R11がトリエチルシリル基、R21がtert−ブチル基であれば、R11の脱保護反応にTBAF、R21の脱保護反応にTFAの組み合わせが使用できる。R11がアリル基、R21がtert−ブチル基であれば、R11の脱保護反応にテトラキス(トリフェニルホスフィン)パラジウム、R21の脱保護反応にTFAの組み合わせが使用できる。R11がtert−ブチル基、R21がフェナシル基であれば、R11の脱保護反応にTFA、R21の脱保護反応にTBAFの組み合わせが使用できる。R11がtert−ブチル基、R21がニトロベンジル基であれば、R11の脱保護反応にTFA、R21の脱保護反応にTBAF、酢酸亜鉛、あるいは酢酸マグネシウムの組み合わせが使用できる。
前記脱保護剤は、反応溶媒として兼用してもよく、前記溶媒と組み合わせて用いてもよい。
For example, if the protecting group R 11 for the hydroxy group is a tert-butyl group and the protecting group R 21 for the carboxyl group is a benzyl group, TFA for the deprotection reaction of R 11 and palladium-carbon and hydrogen for the deprotection reaction of R 21 Or a combination of Lindlar catalysts can be used. When R 11 is a tert-butyl group and R 21 is a triethylsilyl group, a combination of TFA for the deprotection reaction of R 11 and TBAF for the deprotection reaction of R 21 can be used. When R 11 is a tert-butyl group and R 21 is an allyl group, a combination of TFA for the deprotection reaction of R 11 and tetrakis (triphenylphosphine) palladium for the deprotection reaction of R 21 can be used. When R 11 is a methoxymethyl group and R 21 is a triethylsilyl group, a combination of TFA for the deprotection reaction of R 11 and TBAF for the deprotection reaction of R 21 can be used. When R 11 is a triethylsilyl group and R 21 is a tert-butyl group, a combination of TBAF can be used for the deprotection reaction of R 11 and TFA can be used for the deprotection reaction of R 21 . When R 11 is an allyl group and R 21 is a tert-butyl group, a combination of tetrakis (triphenylphosphine) palladium for the deprotection reaction of R 11 and TFA for the deprotection reaction of R 21 can be used. When R 11 is a tert-butyl group and R 21 is a phenacyl group, a combination of TFA can be used for the deprotection reaction of R 11 and TBAF can be used for the deprotection reaction of R 21 . When R 11 is a tert-butyl group and R 21 is a nitrobenzyl group, a combination of TFA for the deprotection reaction of R 11 and TBAF, zinc acetate, or magnesium acetate for the deprotection reaction of R 21 can be used.
The deprotecting agent may be used as a reaction solvent, or may be used in combination with the solvent.

脱保護剤の添加量は、脱保護反応が充分に進行できる量であればよく、縮合体(III)の全質量に対して、0.01〜30倍モル量が好ましく、0.05〜20倍モル量がより好ましい。脱保護剤の前記添加量が0.01倍モル量以上であれば、脱保護反応を完結させやすい。また、脱保護剤の前記添加量が30倍モル量以下であれば、精製工程が簡素化できる。   The addition amount of the deprotecting agent may be an amount that allows the deprotection reaction to proceed sufficiently, and is preferably 0.01 to 30 times the molar amount relative to the total mass of the condensate (III), and 0.05 to 20 A double molar amount is more preferred. When the addition amount of the deprotecting agent is 0.01 times the molar amount or more, the deprotection reaction is easily completed. Moreover, if the said addition amount of a deprotecting agent is 30 times mole amount or less, a refinement | purification process can be simplified.

脱保護反応における縮合体(III)の濃度は、脱保護反応が充分に進行する濃度であればよく、0.01〜10mol/Lが好ましい。縮合体(III)の濃度が0.01mol/L以上であれば、本縮合体の生産性が向上する。また、縮合体(III)の濃度が10mol/L以下であれば、脱保護反応が進行しやすい。   The concentration of the condensate (III) in the deprotection reaction may be a concentration at which the deprotection reaction proceeds sufficiently, and is preferably 0.01 to 10 mol / L. When the concentration of the condensate (III) is 0.01 mol / L or more, the productivity of the condensate is improved. Moreover, if the density | concentration of condensate (III) is 10 mol / L or less, a deprotection reaction will advance easily.

縮合体(III)の脱保護反応における反応容器内の雰囲気は、脱保護反応に不活性な雰囲気であればよく、窒素又はアルゴンの雰囲気とすることが好ましい。また、脱保護反応に必要な元素を供給するためには水素を用いる必要があるため、窒素やアルゴンを用いずに水素雰囲気とすることも好ましい。
縮合体(III)の脱保護反応における反応温度は、−100〜100℃が好ましく、0〜80℃がより好ましい。反応温度が−100℃以上であれば、脱保護反応が進行しやすい。また、反応温度が100℃以下であれば、得られる本縮合体の熱劣化を抑制しやすい。
縮合体(III)の脱保護反応における反応時間は、10分〜50時間が好ましく、2〜30時間がより好ましい。反応時間が10分以上であれば、縮合反応が充分に進行しやすい。また、反応時間が50時間以下であれば、生産性が向上する。
The atmosphere in the reaction vessel in the deprotection reaction of the condensate (III) may be an atmosphere inert to the deprotection reaction, and is preferably an atmosphere of nitrogen or argon. In addition, since it is necessary to use hydrogen in order to supply an element necessary for the deprotection reaction, a hydrogen atmosphere is preferably used without using nitrogen or argon.
The reaction temperature in the deprotection reaction of the condensate (III) is preferably -100 to 100 ° C, more preferably 0 to 80 ° C. When the reaction temperature is −100 ° C. or higher, the deprotection reaction easily proceeds. Moreover, if reaction temperature is 100 degrees C or less, it will be easy to suppress the thermal deterioration of this condensate obtained.
The reaction time in the deprotection reaction of the condensate (III) is preferably 10 minutes to 50 hours, more preferably 2 to 30 hours. If the reaction time is 10 minutes or more, the condensation reaction is likely to proceed sufficiently. Moreover, if reaction time is 50 hours or less, productivity will improve.

また、縮合工程や脱保護工程の後には、精製工程を行うことが好ましい。精製工程を行うことにより、縮合工程及び脱保護工程を繰り返し行う際、各工程の反応効率が向上する。精製方法は、縮合工程、脱保護工程の各工程における目的生成物を精製できる方法であれば特に限定されず、例えば、再結晶法が挙げられる。   Moreover, it is preferable to perform a refinement | purification process after a condensation process and a deprotection process. By performing the purification step, the reaction efficiency of each step is improved when the condensation step and the deprotection step are repeated. The purification method is not particularly limited as long as it can purify the target product in each step of the condensation step and the deprotection step, and examples thereof include a recrystallization method.

本発明の製造方法は、少ない工程数で光学活性が高度に制御された高分子量の本縮合体が得られる点から、前述のようにオルトゴナルな保護基を用いて縮合工程と脱保護工程を繰り返して、nが2、4、8、16等と順次構成単位が長くなるように縮合体(III)を製造していく方法(以下、「方法(X)」という。)が好ましい。
方法(X)は、前記誘導体(I−B)と前記誘導体(II−A)を縮合して縮合度が3(n=3)の縮合体(III)とし、その縮合体(III)を基にnが6、12、24等のように順次構成単位が長くなるように縮合体(III)を製造する方法であってもよい。
ただし、本発明の製造方法は方法(X)には限定されず、例えば、誘導体(II−A)に対して、誘導体(I−A)を加えて縮合した後、R21を脱保護することを繰り返して、誘導体(I−A)を1つずつ縮合していく方法であってもよい。
The production method of the present invention repeats the condensation step and the deprotection step by using an ortho-protecting group as described above from the point that a high molecular weight main condensate having a highly controlled optical activity can be obtained with a small number of steps. Thus, a method of producing the condensate (III) such that n is 2, 4, 8, 16, etc., and the structural units are sequentially increased (hereinafter referred to as “method (X)”) is preferable.
In the method (X), the derivative (IB) and the derivative (II-A) are condensed to form a condensate (III) having a degree of condensation of 3 (n = 3). Alternatively, the condensate (III) may be produced so that the structural units become longer sequentially such that n is 6, 12, 24, or the like.
However, the production method of the present invention is not limited to the method (X), and for example, the derivative (II-A) is added to the derivative (II-A) and condensed, and then R 21 is deprotected. May be used to condense the derivatives (IA) one by one.

従来のマンデル酸の重縮合方法では、D−マンデル酸やL−マンデル酸を重縮合しようとしても、縮合度が2の環状化合物であるマンデライドが生成してしまうために高分子量の縮合体を得ることができなかった。また、非特許文献2に記載のようにマンデライドの開環重縮合によれば高分子量の縮合体を得ることは可能であるが、立体反転によりラセミ化してしまうため光学活性を高度に制御した縮合体を得ることはできなかった。   In the conventional polycondensation method of mandelic acid, even when trying to polycondense D-mandelic acid or L-mandelic acid, mandelide which is a cyclic compound having a condensation degree of 2 is produced, so that a high molecular weight condensate is obtained. I couldn't. Further, as described in Non-Patent Document 2, it is possible to obtain a high molecular weight condensate by ring-opening polycondensation of mandelide, but since it is racemized by steric inversion, the optical activity is highly controlled. I couldn't get a body.

これに対し、本発明の製造方法では、誘導体(I)及び誘導体(II)をそれらの光学活性を維持したまま縮合できるため、光学活性が高度に制御された、光学的に純粋な本縮合体が得られる。
例えば、D−マンデル酸のカルボキシ基を保護した誘導体(I)と、D−マンデル酸のヒドロキシ基を保護した誘導体(II)を用い、方法(X)により縮合工程と脱保護工程を繰り返していくことにより、D−マンデル酸の光学活性が全ての構成単位において維持された、鏡像体過剰率が100%eeの高分子量の縮合体(III)を得ることができる。
また、D−マンデル酸及びL−マンデル酸のカルボキシ基又はヒドロキシ基を保護した誘導体(I)、誘導体(II)を適宜用いることで、D−マンデル酸とL−マンデル酸とが所望の順に縮合した縮合体(III)を得ることもできる。
On the other hand, in the production method of the present invention, the derivative (I) and the derivative (II) can be condensed while maintaining their optical activity. Therefore, the optically pure present condensate having a highly controlled optical activity. Is obtained.
For example, using the derivative (I) in which the carboxy group of D-mandelic acid is protected and the derivative (II) in which the hydroxy group of D-mandelic acid is protected, the condensation step and the deprotection step are repeated by the method (X). As a result, a high molecular weight condensate (III) having an enantiomeric excess of 100% ee in which the optical activity of D-mandelic acid is maintained in all the structural units can be obtained.
Moreover, D-mandelic acid and L-mandelic acid are condensed in the desired order by appropriately using derivatives (I) and derivatives (II) in which the carboxy group or hydroxy group of D-mandelic acid and L-mandelic acid are protected. The condensed product (III) can also be obtained.

[光学活性化合物]
本発明の光学活性化合物(以下、「本化合物」という。)は、下記式(4)で表される化合物である。
[Optically active compound]
The optically active compound of the present invention (hereinafter referred to as “the present compound”) is a compound represented by the following formula (4).

Figure 2010285420
Figure 2010285420

式(4)中のnは2以上の整数である。nは特に制限されないが、本化合物が効率良く得られる点から10000以下が好ましい。
は、水素原子、アラルキルエーテル型保護基、アルキルエーテル型保護基、シリル型保護基、エステル型保護基、又はオキシカルボニル型保護基のいずれかである。
は、水素原子、アラルキルエーテル型保護基、アルキルエーテル型保護基、又はシリル型保護基のいずれかである。
とRは、少なくとも一方が前記いずれかの保護基である。RとRにおける前記各保護基は、前述のR11とR21で挙げたものと同じ保護基が挙げられる。RとRの両方が水素原子でない場合、化学的に安定である点から、RとRはオルトゴナルな保護基であることが好ましい。オルトゴナルな保護基の組み合わせは、R11とR21の場合と同様である。
N in Formula (4) is an integer of 2 or more. n is not particularly limited, but is preferably 10,000 or less from the viewpoint that the present compound can be obtained efficiently.
R 1 is any one of a hydrogen atom, an aralkyl ether protecting group, an alkyl ether protecting group, a silyl protecting group, an ester protecting group, or an oxycarbonyl protecting group.
R 2 is any one of a hydrogen atom, an aralkyl ether protecting group, an alkyl ether protecting group, or a silyl protecting group.
At least one of R 1 and R 2 is any one of the above protecting groups. Examples of the respective protecting groups for R 1 and R 2 include the same protecting groups as those described above for R 11 and R 21 . When both R 1 and R 2 are not hydrogen atoms, R 1 and R 2 are preferably ortho-protecting groups from the viewpoint of chemical stability. The combination of ortho-protecting groups is the same as in R 11 and R 21 .

は、それぞれ独立に炭素数6〜14の芳香族炭化水素基である。n個のRは、全て同一あってもよく、2種以上であってもよいが、全て同一であることが好ましい。
は、フェニル基が特に好ましい。すなわち、下記式(5)で表される本縮合体であることが好ましい。
R 3 is each independently an aromatic hydrocarbon group having 6 to 14 carbon atoms. The n R 3 s may all be the same or two or more, but are preferably all the same.
R 3 is particularly preferably a phenyl group. That is, the present condensate represented by the following formula (5) is preferable.

Figure 2010285420
Figure 2010285420

本化合物の鏡像体過剰率は、耐熱性、力学特性、配向特性、光学特性等に優れる点から、70〜100%eeであることが好ましく、80〜100%eeがより好ましく、90〜100%eeがさらに好ましい。   The enantiomeric excess of this compound is preferably 70 to 100% ee, more preferably 80 to 100% ee, and more preferably 90 to 100% from the viewpoint of excellent heat resistance, mechanical properties, orientation properties, optical properties, and the like. ee is more preferable.

また、本化合物の形態は特に限定されず、例えば、ナトリウム塩、カルシウム塩、アルミニウム塩、亜鉛塩等の金属塩、水和物、溶媒和物、結晶多形等の様々な形態とすることができる。   Further, the form of the present compound is not particularly limited, and various forms such as metal salts such as sodium salts, calcium salts, aluminum salts, zinc salts, hydrates, solvates, and crystal polymorphs may be used. it can.

本化合物の製造方法としては、前述の製造方法を用いることが好ましい。前述の製造方法を用いることにより、光学活性が高度に制御された本化合物を得ることができる。すなわち、本化合物は、前述の製造方法により誘導体(I)と誘導体(II)を縮合して得られるヒドロキシ基及びカルボキシ基の両方が保護された縮合体、又はオルトゴナルな保護基R11、R21で保護された縮合体(III)のR11又はR21のいずれか一方を脱保護した縮合体からなる群から選ばれる化合物であることが好ましい。この場合、本化合物は、Rが水素原子又はR11であり、Rが水素原子又はR21であり、RとRのいずれか一方が保護基である。
前記式(5)で表わされる本化合物の製造方法としては、D−マンデル酸、L−マンデル酸のヒドロキシ基又はカルボキシ基を保護した誘導体(I−A)及び誘導体(II−A)を縮合する方法、又は該方法により得られた縮合体(III−A)におけるR11又はR21のいずれか一方を脱保護する方法が好ましい。
As a method for producing this compound, the above-described production method is preferably used. By using the above-described production method, the present compound with highly controlled optical activity can be obtained. That is, this compound is a condensate obtained by condensing the derivative (I) and the derivative (II) by the above-described production method, in which both the hydroxy group and the carboxy group are protected, or ortho-protecting groups R 11 and R 21. It is preferably a compound selected from the group consisting of condensates obtained by deprotecting either R 11 or R 21 of the condensate (III) protected with. In this case, in this compound, R 1 is a hydrogen atom or R 11 , R 2 is a hydrogen atom or R 21 , and one of R 1 and R 2 is a protecting group.
As a manufacturing method of this compound represented by said Formula (5), the derivative | guide_body (IA) and the derivative | guide_body (II-A) which protected the hydroxy group or carboxy group of D-mandelic acid and L-mandelic acid are condensed. A method or a method of deprotecting either R 11 or R 21 in the condensate (III-A) obtained by the method is preferred.

以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
[NMR分析]
本実施例で得られた縮合体及び誘導体の化学構造は、H−NMR、13C−NMR(日本電子株式会社製、JNM−ECX400)により確認した。測定条件は、測定溶媒を重水素化クロロホルム、試料濃度2質量/容量%、測定温度を室温とした。積算回数は、観測核がHのときは16回、観測核が13Cのときは5000回とした。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description.
[NMR analysis]
The chemical structures of the condensates and derivatives obtained in this example were confirmed by 1 H-NMR and 13 C-NMR (manufactured by JEOL Ltd., JNM-ECX400). The measurement conditions were deuterated chloroform as the measurement solvent, sample concentration of 2 mass / volume%, and measurement temperature at room temperature. The number of integrations was 16 times when the observation nucleus was 1 H and 5000 times when the observation nucleus was 13 C.

[質量分析]
縮合体の質量は、窒素レーザーを備えたマトリックス支援レーザー脱離イオン化時間飛行型質量分析計(以下、「MALDI−TOF−MS」という。)(株式会社島津製作所製、AXIMA−CFRplus)により確認した。
MALDI−TOF−MS測定試料は、以下の手順で準備した。
まず、カチオン化剤としてヨウ化ナトリウム1mgを1mLのテトラヒドロフラン(以下、「THF」という。)に溶解した溶液を調製し、該溶液を試料プレートに1μL滴下し、自然乾燥させた。次に、実施例で合成した縮合体1mgを1mLの塩化メチレンに溶解した溶液を、前記試料プレートのヨウ化ナトリウムが析出した部分に1μL滴下し、自然乾燥させた。そして、マトリクス剤としてトランス−2−[3−(4−t−ブチルフェニル)−2−メチル−2−プロペニルインデン]マロノニトリル10mgを1mLのTHFに溶解した溶液を、前記試料プレートのヨウ化ナトリウムと化合物が析出した部分に1μL滴下し、自然乾燥させた。
また、質量のキャリブレーションは、Triton X−100(商品名、和光純薬工業株式会社製)を用いて外部標準法で行った。キャリブレーションに用いたTriton X−100の質量は、10量体の669.4172、11量体の713.4433、12量体の757.4694(いずれも、ナトリウムイオン付加体。)であった。
[Mass spectrometry]
The mass of the condensate was confirmed by a matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (hereinafter referred to as “MALDI-TOF-MS”) equipped with a nitrogen laser (manufactured by Shimadzu Corporation, AXIMA-CFRplus). .
A MALDI-TOF-MS measurement sample was prepared by the following procedure.
First, a solution in which 1 mg of sodium iodide as a cationizing agent was dissolved in 1 mL of tetrahydrofuran (hereinafter referred to as “THF”) was prepared, and 1 μL of the solution was dropped on a sample plate and allowed to dry naturally. Next, 1 μL of a solution prepared by dissolving 1 mg of the condensate synthesized in the Examples in 1 mL of methylene chloride was dropped on the portion of the sample plate where sodium iodide had been deposited, and was naturally dried. Then, a solution in which 10 mg of trans-2- [3- (4-t-butylphenyl) -2-methyl-2-propenylindene] malononitrile as a matrix agent was dissolved in 1 mL of THF was mixed with sodium iodide of the sample plate. 1 μL was dropped on the portion where the compound was deposited and allowed to dry naturally.
The mass calibration was performed by an external standard method using Triton X-100 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.). The masses of Triton X-100 used for calibration were a 10-mer 6699.4172, an 11-mer 7133.4433, and a 12-mer 7577.4694 (both are sodium ion adducts).

[比旋光度]
縮合体及び誘導体の比旋光度は、クロロホルム10mLに試料0.1gを溶解させた溶液について、旋光計(日本分光株式会社製、DIP−360)を用いて室温にて測定した。
[Specific rotation]
The specific rotation of the condensate and the derivative was measured at room temperature using a polarimeter (manufactured by JASCO Corporation, DIP-360) for a solution obtained by dissolving 0.1 g of a sample in 10 mL of chloroform.

[融点]
縮合体及び誘導体の融点は、微量融点測定装置(ヤナコ株式会社製、MP−S2)を用いて測定した。
[Melting point]
The melting points of the condensate and the derivative were measured using a trace melting point measuring device (manufactured by Yanaco Corporation, MP-S2).

[合成例1]D−マンデル酸ベンジル(MDA−Bn)の合成
あらかじめ攪拌子を入れた500mLのナスフラスコに、下記式(6)で表されるD−マンデル酸30.4g(200mmol)、炭酸カリウム15.2g(110mmol)、N,N−ジメチルホルムアミド100mL、及び臭化ベンジル34.2g(200mmol)を加え、内容物を溶解した後、室温にてスターラーで2時間攪拌し、カルボキシ基の保護反応を行った。反応終了後、反応液を分液漏斗に移した。また、反応液が入っていたフラスコを酢酸エチル200mLで洗浄し、該洗浄液も分液漏斗に移した。分液漏斗に移した溶液を、蒸留水300mLで3回洗浄した。
洗浄後の有機相を500mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(7)で表される白色固体のD−マンデル酸ベンジルの粗体(粗MDA−Bn)を42.2g(収率87%)得た。
[Synthesis Example 1] Synthesis of benzyl D-mandelate (MDA-Bn) 30.4 g (200 mmol) of D-mandelic acid represented by the following formula (6), carbonic acid was added to a 500 mL eggplant flask containing a stirrer in advance. 15.2 g (110 mmol) of potassium, 100 mL of N, N-dimethylformamide, and 34.2 g (200 mmol) of benzyl bromide were added to dissolve the contents, and the mixture was stirred at room temperature with a stirrer for 2 hours to protect the carboxy group. Reaction was performed. After completion of the reaction, the reaction solution was transferred to a separatory funnel. The flask containing the reaction solution was washed with 200 mL of ethyl acetate, and the washing solution was also transferred to a separatory funnel. The solution transferred to the separatory funnel was washed three times with 300 mL of distilled water.
The washed organic phase was transferred to a 500 mL eggplant flask, concentrated with an evaporator, dried under reduced pressure with a vacuum pump, and a white solid crude benzyl D-mandelate (crude MDA-Bn) represented by the following formula (7): 42.2 g (87% yield) was obtained.

Figure 2010285420
Figure 2010285420

粗MDA−Bnの入った500mLナスフラスコに、室温にて粗MDA−Bnが完全に溶解するまで酢酸エチルを加えた後、−30℃の冷暗所に24時間保持し、再結晶により精製した。
得られた結晶を5Cろ紙を用いてろ別し、真空ポンプで減圧乾燥し、精製した白色固体のD−マンデル酸ベンジル(MDA−Bn、誘導体(I))を35.4g(収率73%)得た。
得られたMDA−Bnの化学構造はH−NMRにより確認した。H−NMRスペクトルを図1に示す。また、MDA−Bnの比旋光度[α]は−56°であり、融点は106.0〜106.5℃であった。
Ethyl acetate was added to a 500 mL eggplant flask containing crude MDA-Bn at room temperature until the crude MDA-Bn was completely dissolved, and then kept in a cool dark place at −30 ° C. for 24 hours, and purified by recrystallization.
The obtained crystals were filtered off using 5C filter paper, dried under reduced pressure with a vacuum pump, and 35.4 g (yield 73%) of purified white solid benzyl D-mandelate (MDA-Bn, derivative (I)). Obtained.
The chemical structure of the obtained MDA-Bn was confirmed by 1 H-NMR. The 1 H-NMR spectrum is shown in FIG. Moreover, the specific rotation [α] D of MDA-Bn was −56 °, and the melting point was 106.0 to 106.5 ° C.

[合成例2]O−t−ブチル−D−マンデル酸ベンジル(tBu−MDA−Bn)の合成
あらかじめ攪拌子を入れた500mLのナスフラスコに、合成例1と同様の方法で得られた前記式(7)で表されるMDA−Bnを48.5g(200mmol)、塩化メチレンを300mL加え、内容物を溶解した後、ドライアイス/メタノール浴にて、溶液を−78℃に冷却した。
一方、ドライアイス/メタノール浴にてあらかじめ冷却したデュワー冷却器付きの密閉した200mLナスフラスコに、ボンベ充填されたイソブテン(沸点−6.9℃)を導入し、液化したイソブテン100mLを捕集した。
前述の−78℃に冷却したMDA−Bn/塩化メチレン溶液の入ったフラスコに液化イソブテン100mLを移した後、濃硫酸9.2gを加えた。このフラスコに三方コックを取り付けて密封した状態で、−78℃にてスターラーで3時間攪拌し、さらに、氷水浴(0℃)にて21時間攪拌し、ヒドロキシ基の保護反応を行った。
反応終了後、反応液を分液漏斗に移した。また、反応液の入っていたフラスコを塩化メチレン200mLで洗浄し、その洗浄液も分液漏斗に移した。分液漏斗に移した溶液を、炭酸水素ナトリウム飽和水溶液100mLで1回、蒸留水300mLで2回、10質量%塩化ナトリウム水溶液100mLで1回洗浄した。
洗浄後の有機相を500mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(8)で表されるクリーム色の液体のD−マンデル酸t−ブチルエーテル−ベンジルエステル(tBu−MDA−Bn)を56.7g(収率95%)得た。
得られたtBu−MDA−Bnの化学構造はH−NMRで確認した。tBu−MDA−BnのH−NMRスペクトルを図2に示す。
[Synthesis Example 2] Synthesis of benzyl ot-butyl-D-mandelate (tBu-MDA-Bn) The above formula obtained in the same manner as in Synthesis Example 1 in a 500 mL eggplant flask containing a stir bar in advance. 48.5 g (200 mmol) of MDA-Bn represented by (7) and 300 mL of methylene chloride were added to dissolve the contents, and then the solution was cooled to −78 ° C. in a dry ice / methanol bath.
On the other hand, bomb-filled isobutene (boiling point -6.9 ° C.) was introduced into a sealed 200 mL eggplant flask equipped with a Dewar cooler that had been cooled beforehand in a dry ice / methanol bath, and 100 mL of liquefied isobutene was collected.
After transferring 100 mL of liquefied isobutene to the flask containing the MDA-Bn / methylene chloride solution cooled to −78 ° C., 9.2 g of concentrated sulfuric acid was added. With this flask attached with a three-way cock and sealed, the mixture was stirred with a stirrer at −78 ° C. for 3 hours, and further stirred in an ice-water bath (0 ° C.) for 21 hours to carry out a hydroxy group protection reaction.
After completion of the reaction, the reaction solution was transferred to a separatory funnel. The flask containing the reaction solution was washed with 200 mL of methylene chloride, and the washing solution was also transferred to a separatory funnel. The solution transferred to the separatory funnel was washed once with 100 mL of a saturated aqueous solution of sodium bicarbonate, twice with 300 mL of distilled water, and once with 100 mL of a 10 mass% sodium chloride aqueous solution.
The organic phase after washing was transferred to a 500 mL eggplant flask, concentrated with an evaporator, dried under reduced pressure with a vacuum pump, and a cream-colored liquid D-mandelic acid t-butyl ether-benzyl ester represented by the following formula (8) ( 56.7 g (yield 95%) of tBu-MDA-Bn) was obtained.
The chemical structure of the obtained tBu-MDA-Bn was confirmed by 1 H-NMR. A 1 H-NMR spectrum of tBu-MDA-Bn is shown in FIG.

Figure 2010285420
Figure 2010285420

[合成例3]O−t−ブチル−D−マンデル酸(tBu−MDA)の合成
あらかじめ攪拌子を入れた500mLのナスフラスコに、合成例2で得られた前記式(8)のtBu−MDA−Bnを56.7g(190mmol)、約55%の水で湿潤されたパラジウム/炭素混合物(パラジウム含有量5質量%)を5.0g加え、三方コックを取り付けた。次いで、フラスコ内を真空ポンプで減圧した後、乾燥窒素を導入して常圧に戻す窒素置換操作を合計3回繰り返した。その後、さらにフラスコ内を真空ポンプで減圧した後、水素ガスを導入して常圧に戻す水素置換操作を合計3回繰り返した。
フラスコ内を水素雰囲気で保持したまま、安定剤無添加のTHF200mLをフラスコに加え、内容物を溶解した後、室温にてスターラーで24時間攪拌し、脱保護反応を行った。
パラジウムに吸着した水素を脱離させるため、フラスコ内を真空ポンプで減圧した後、乾燥窒素を導入して常圧に戻した。フラスコ内の反応液を30分間スターラーで攪拌した後、反応液中の固形物を5Cろ紙でろ別した。また、フラスコと固形物を安定剤無添加のTHF100mLで洗浄した。
ろ液を500mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、式(9)で表される淡黄色〜白色固体のO−t−ブチル−D−マンデル酸(tBu−MDA、誘導体(II))を39.2g(収率99%)得た。
得られたMDA−Bnの化学構造はH−NMRで確認した。MDA−BnのH−NMRスペクトルを図3に示す。また、MDA−Bnの比旋光度[α]は−112°であり、融点は87.5〜88.5℃であった。
[Synthesis Example 3] Synthesis of Ot-Butyl-D-mandelic acid (tBu-MDA) In a 500 mL eggplant flask containing a stirrer in advance, tBu-MDA of the above formula (8) obtained in Synthesis Example 2 was used. -56.7 g (190 mmol) of -Bn, 5.0 g of a palladium / carbon mixture wet with about 55% water (palladium content 5 mass%) was added, and a three-way cock was attached. Then, after reducing the pressure in the flask with a vacuum pump, a nitrogen replacement operation for introducing dry nitrogen and returning to normal pressure was repeated a total of three times. Thereafter, the inside of the flask was further depressurized with a vacuum pump, and the hydrogen replacement operation for returning to normal pressure by introducing hydrogen gas was repeated a total of three times.
While maintaining the inside of the flask in a hydrogen atmosphere, 200 mL of stabilizer-free THF was added to the flask to dissolve the contents, followed by stirring with a stirrer at room temperature for 24 hours to perform a deprotection reaction.
In order to desorb hydrogen adsorbed on palladium, the inside of the flask was depressurized with a vacuum pump, and then dry nitrogen was introduced to return to normal pressure. The reaction liquid in the flask was stirred with a stirrer for 30 minutes, and then solids in the reaction liquid were filtered off with 5C filter paper. Further, the flask and the solid were washed with 100 mL of THF without addition of a stabilizer.
The filtrate was transferred to a 500 mL eggplant flask, concentrated with an evaporator, and then dried under reduced pressure with a vacuum pump, and a pale yellow to white solid Ot-butyl-D-mandelic acid (tBu-MDA) represented by the formula (9) Derivative (II)) was obtained 39.2 g (99% yield).
The chemical structure of the obtained MDA-Bn was confirmed by 1 H-NMR. The 1 H-NMR spectrum of MDA-Bn is shown in FIG. Moreover, the specific rotation [α] D of MDA-Bn was −112 °, and the melting point was 87.5 to 88.5 ° C.

Figure 2010285420
Figure 2010285420

[実施例1]O−t−ブチル−D−マンデル酸2量体ベンジル(tBu−MDA2−Bn)の合成
あらかじめ攪拌子を入れた100mLのナスフラスコに、合成例1で得られた前記式(7)のMDA−Bnを2.4g(10mmol)、合成例3で得られた前記式(9)のtBu−MDAを2.1g(10mmol)、縮合剤としてDCCを2.5g(12mmol)、触媒としてDMAPを0.24g(2mmol)加え、三方コックを取り付けた。その後、フラスコ内を真空ポンプで減圧した後、乾燥窒素を導入して常圧に戻す窒素置換操作を合計3回繰り返した。
フラスコ内を窒素雰囲気で保持したまま、脱水塩化メチレン20mLをフラスコに加え、内容物を溶解した後、室温にてスターラーで24時間攪拌し、縮合反応を行った。
[Example 1] Synthesis of Ot-butyl-D-mandelic acid dimer benzyl (tBu-MDA2-Bn) The above formula (1) obtained in Synthesis Example 1 was added to a 100 mL eggplant flask with a stir bar in advance. 7) MDA-Bn of 2.4 g (10 mmol), tBu-MDA of the formula (9) obtained in Synthesis Example 3 was 2.1 g (10 mmol), DCC was 2.5 g (12 mmol) as a condensing agent, 0.24 g (2 mmol) of DMAP was added as a catalyst, and a three-way cock was attached. Thereafter, the pressure inside the flask was reduced with a vacuum pump, and the nitrogen substitution operation for returning to normal pressure by introducing dry nitrogen was repeated a total of three times.
While keeping the inside of the flask in a nitrogen atmosphere, 20 mL of dehydrated methylene chloride was added to the flask to dissolve the contents, followed by stirring with a stirrer at room temperature for 24 hours to perform a condensation reaction.

反応終了後、反応液中の固形物を5Cろ紙でろ別した。また、フラスコと固形物を塩化メチレン80mLで洗浄した。ろ液を分液漏斗に移し、炭酸水素ナトリウム飽和水溶液100mLで2回、10質量%塩化ナトリウム水溶液100mLで1回洗浄した。
洗浄後の有機相を200mLビーカーに移した後、硫酸ナトリウム10gを加えて12時間保持して脱水し、5Cろ紙で硫酸ナトリウムをろ別した。ろ液を200mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(10)で表される無色〜白色固体のO−t−ブチル−D−マンデル酸2量体ベンジルの粗体(粗tBu−MDA2−Bn)を3.7g(収率98%)得た。
500mLナスフラスコに粗tBu−MDA2−Bnを全量移し、メタノール10mLを加え、粗tBu−MDA2−Bnが完全に溶解するまでジエチルエーテルを加えた後、−30℃の冷暗所に24時間保持し、再結晶で精製した。
得られた結晶を5Cろ紙でろ別し、真空ポンプで減圧乾燥し、精製した無色〜白色固体のO−t−ブチル−D−マンデル酸2量体ベンジル(tBu−MDA2−Bn)を2.8g(収率75%)得た。
得られたtBu−MDA2−Bnの化学構造はH−NMR及び13C−NMRで確認した。tBu−MDA2−BnのH−NMRスペクトルを図4、13C−NMRスペクトルを図5に示す。また、tBu−MDA2−Bnの比旋光度[α]は−57°であり、融点は92.0〜93.0℃であった。
After completion of the reaction, the solid matter in the reaction solution was filtered off with 5C filter paper. The flask and solids were washed with 80 mL of methylene chloride. The filtrate was transferred to a separatory funnel and washed twice with 100 mL of a saturated aqueous solution of sodium bicarbonate and once with 100 mL of a 10 mass% aqueous sodium chloride solution.
After the organic phase after washing was transferred to a 200 mL beaker, 10 g of sodium sulfate was added and retained for 12 hours for dehydration, and the sodium sulfate was filtered off with 5C filter paper. The filtrate was transferred to a 200 mL eggplant flask, concentrated with an evaporator, dried under reduced pressure with a vacuum pump, and a colorless to white solid Ot-butyl-D-mandelic acid dimer benzyl represented by the following formula (10). Of 3.7g (crude tBu-MDA2-Bn) was obtained (98% yield).
Transfer the entire amount of crude tBu-MDA2-Bn to a 500 mL eggplant flask, add 10 mL of methanol, add diethyl ether until the crude tBu-MDA2-Bn is completely dissolved, then hold in a cool dark place at −30 ° C. for 24 hours. Purified with crystals.
The obtained crystals were filtered off with 5C filter paper, dried under reduced pressure with a vacuum pump, and 2.8 g of purified colorless to white solid Ot-butyl-D-mandelic acid dimer benzyl (tBu-MDA2-Bn). (Yield 75%).
The chemical structure of the obtained tBu-MDA2-Bn was confirmed by 1 H-NMR and 13 C-NMR. The 1 H-NMR spectrum of tBu-MDA2-Bn is shown in FIG. 4, and the 13 C-NMR spectrum is shown in FIG. The specific rotation [α] D of tBu-MDA2-Bn was −57 °, and the melting point was 92.0 to 93.0 ° C.

Figure 2010285420
Figure 2010285420

[実施例2]O−t−ブチル−D−マンデル酸2量体(tBu−MDA2)の合成
あらかじめ攪拌子を入れた100mLのナスフラスコに、実施例1で得られた前記式(10)のtBu−MDA2−Bnを5.2g(12mmol)、約55%の水で湿潤されたパラジウム/炭素混合物(パラジウム含有量5質量%)を0.5g加え、三方コックを取り付けた。その後、フラスコ内を真空ポンプで減圧した後、乾燥窒素を導入して常圧に戻す窒素置換操作を合計3回繰り返した。さらに、フラスコ内を真空ポンプで減圧した後、水素ガスを導入して常圧に戻す水素置換操作を合計3回繰り返した。
フラスコ内を水素雰囲気で保持したまま、安定剤無添加のTHF20mLをフラスコに加え、内容物を溶解した後、室温にてスターラーで1時間攪拌し、脱保護反応を行った。
[Example 2] Synthesis of Ot-butyl-D-mandelic acid dimer (tBu-MDA2) In a 100 mL eggplant flask containing a stirrer in advance, the above formula (10) obtained in Example 1 was obtained. 5.2 g (12 mmol) of tBu-MDA2-Bn, 0.5 g of a palladium / carbon mixture (palladium content 5 mass%) wetted with about 55% water was added, and a three-way cock was attached. Thereafter, the pressure inside the flask was reduced with a vacuum pump, and the nitrogen substitution operation for returning to normal pressure by introducing dry nitrogen was repeated a total of three times. Further, the pressure inside the flask was reduced with a vacuum pump, and then the hydrogen replacement operation for returning to normal pressure by introducing hydrogen gas was repeated a total of three times.
While keeping the inside of the flask in a hydrogen atmosphere, 20 mL of THF without addition of a stabilizer was added to the flask to dissolve the contents, followed by stirring with a stirrer at room temperature for 1 hour to perform a deprotection reaction.

反応液を薄層クロマトグラフィーで展開して原料スポットの消失を確認した後に、パラジウムに吸着した水素を脱離させるためにフラスコ内を真空ポンプで減圧し、その後乾燥窒素を導入して常圧に戻した。なお、展開液はn−ヘキサン/酢酸エチル=1/4(容量比)を用いた。下記式(10)で表される原料のRf値は0.34、下記式(11)で表される生成物のRf値は0.11であった。
フラスコ内の反応液を30分間スターラーで攪拌した後、反応液中の固形物を5Cろ紙でろ別した。また、フラスコと固形物を安定剤無添加のTHF80mLで洗浄した。
ろ液を200mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(11)で表される無色〜白色固体のO−t−ブチル−D−マンデル酸2量体の粗体(粗tBu−MDA2)を4.1g(収率99%)得た。
500mLナスフラスコに粗tBu−MDA2を全量移し、n−ヘキサン10mLを加え、粗tBu−MDA2が完全に溶解するまでジエチルエーテルを加えた後、−30℃の冷暗所に24時間保持し、再結晶により精製した。
得られた結晶を5Cろ紙でろ別し、真空ポンプで減圧乾燥し、精製した針状で無色〜白色固体のO−t−ブチル−D−マンデル酸2量体(tBu−MDA2)を3.3g(収率80%)得た。
得られたtBu−MDA2の化学構造はH−NMRで確認した。tBu−MDA2のH−NMRスペクトルを図6に示す。また、tBu−MDA2の比旋光度[α]は−94°であり、融点は145.5〜146.5℃であった。
After developing the reaction solution by thin layer chromatography and confirming the disappearance of the raw material spots, the flask was depressurized with a vacuum pump to desorb the hydrogen adsorbed on the palladium, and then dry nitrogen was introduced to normal pressure. Returned. The developing solution used was n-hexane / ethyl acetate = 1/4 (volume ratio). The Rf value of the raw material represented by the following formula (10) was 0.34, and the Rf value of the product represented by the following formula (11) was 0.11.
The reaction liquid in the flask was stirred with a stirrer for 30 minutes, and then solids in the reaction liquid were filtered off with 5C filter paper. Further, the flask and the solid were washed with 80 mL of THF without addition of a stabilizer.
The filtrate was transferred to a 200 mL eggplant flask, concentrated with an evaporator, dried under reduced pressure with a vacuum pump, and a colorless to white solid Ot-butyl-D-mandelic acid dimer represented by the following formula (11). 4.1 g (yield 99%) of a crude product (crude tBu-MDA2) was obtained.
Transfer the entire amount of crude tBu-MDA2 to a 500 mL eggplant flask, add 10 mL of n-hexane, add diethyl ether until the crude tBu-MDA2 is completely dissolved, and then keep in a cool dark place at −30 ° C. for 24 hours. Purified.
The obtained crystals were filtered off with 5C filter paper, dried under reduced pressure with a vacuum pump, and purified needle-like colorless to white solid Ot-butyl-D-mandelic acid dimer (tBu-MDA2) 3.3 g. (Yield 80%).
The chemical structure of the obtained tBu-MDA2 was confirmed by 1 H-NMR. The 1 H-NMR spectrum of tBu-MDA2 is shown in FIG. Moreover, the specific rotation [α] D of tBu-MDA2 was −94 °, and the melting point was 145.5 to 146.5 ° C.

Figure 2010285420
Figure 2010285420

[実施例3]D−マンデル酸2量体ベンジル(MDA2−Bn)の合成
あらかじめ攪拌子を入れた100mLのナスフラスコに、実施例1で得られた前記式(10)のtBu−MDA2−Bnを6.5g(15mmol)、TFAを62mL加え、内容物を溶解した後、室温にてスターラーで3時間攪拌し、脱保護反応を行った。
フラスコ内の反応液をエバポレーターで濃縮した後、ジエチルエーテルを20mL加え、残留物を溶解した後、分液漏斗に移した。また、フラスコを80mLのジエチルエーテルで洗浄し、前記分液漏斗に移した。分液漏斗内の溶液を、炭酸水素ナトリウム飽和水溶液100mLで3回、10質量%塩化ナトリウム水溶液100mLで1回洗浄した。
洗浄後の有機相を200mLビーカーに移した後、硫酸ナトリウム10gを加えて12時間保持して脱水し、その後に5Cろ紙で硫酸ナトリウムをろ別した。ろ液を200mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(12)で表される無色〜白色固体のD−マンデル酸2量体ベンジルの粗体(粗MDA2−Bn)を5.5g(収率98%)得た。
500mLナスフラスコに粗MDA2−Bnを全量移し、n−ヘキサン10mLを加え、粗MDA2−Bnが完全に溶解するまでジエチルエーテルを加えた後、−30℃の冷暗所に24時間保持し、再結晶により精製した。
得られた結晶を5Cろ紙でろ別し、真空ポンプで減圧乾燥し、精製した無色〜白色固体のD−マンデル酸2量体ベンジル(MDA2−Bn)を4.6g(収率82%)得た。
得られたMDA2−Bnの化学構造はH−NMRで確認した。MDA2−BnのH−NMRスペクトルを図7に示す。また、MDA2−Bnの比旋光度[α]は−79°であり、融点は82.5〜83.0℃であった。
[Example 3] Synthesis of D-mandelic acid dimer benzyl (MDA2-Bn) In a 100 mL eggplant flask with a stirrer placed in advance, tBu-MDA2-Bn of the above formula (10) obtained in Example 1 was used. 6.5 g (15 mmol) and 62 mL of TFA were added to dissolve the contents, and the mixture was stirred at room temperature with a stirrer for 3 hours to carry out a deprotection reaction.
After concentrating the reaction liquid in the flask with an evaporator, 20 mL of diethyl ether was added to dissolve the residue, and then transferred to a separatory funnel. The flask was washed with 80 mL of diethyl ether and transferred to the separatory funnel. The solution in the separatory funnel was washed three times with 100 mL of a saturated aqueous solution of sodium bicarbonate and once with 100 mL of a 10 mass% sodium chloride solution.
After the washed organic phase was transferred to a 200 mL beaker, 10 g of sodium sulfate was added and the mixture was dehydrated by holding for 12 hours, and then sodium sulfate was filtered off with 5C filter paper. The filtrate was transferred to a 200 mL eggplant flask, concentrated with an evaporator, and then dried under reduced pressure with a vacuum pump. A colorless to white solid D-mandelic acid dimer benzyl crude product (crude MDA2) represented by the following formula (12) -Bn) was obtained 5.5g (yield 98%).
Transfer the entire amount of crude MDA2-Bn to a 500 mL eggplant flask, add 10 mL of n-hexane, add diethyl ether until the crude MDA2-Bn is completely dissolved, then hold in a cool dark place at −30 ° C. for 24 hours, and recrystallize. Purified.
The obtained crystals were filtered off with 5C filter paper and dried under reduced pressure with a vacuum pump to obtain 4.6 g (yield 82%) of purified colorless to white solid D-mandelic acid dimer benzyl (MDA2-Bn). .
The chemical structure of the obtained MDA2-Bn was confirmed by 1 H-NMR. The 1 H-NMR spectrum of MDA2-Bn is shown in FIG. Moreover, the specific rotation [α] D of MDA2-Bn was −79 °, and the melting point was 82.5 to 83.0 ° C.

Figure 2010285420
Figure 2010285420

[実施例4]O−t−ブチル−D−マンデル酸4量体ベンジル(tBu−MDA4−Bn)の合成
あらかじめ攪拌子を入れた100mLのナスフラスコに、実施例2で得られた前記式(11)のtBu−MDA2を0.58g(1.7mmol)、実施例3で得られた前記式(12)のMDA2−Bnを0.64g(1.7mmol)、縮合剤としてWSCIを0.31g(2.0mmol)、触媒としてDMAPを0.05g(0.4mmol)加え、三方コックを取り付けた。その後、フラスコ内を真空ポンプで減圧した後、乾燥窒素を導入して常圧に戻す窒素置換操作を合計3回繰り返した。
フラスコ内を窒素雰囲気で保持したまま、脱水塩化メチレン10mLをフラスコに加え、内容物を溶解した後、室温にてスターラーで24時間攪拌し、縮合反応を行った。
反応終了後、反応液中の固形物を5Cろ紙でろ別した。また、フラスコと固形物を塩化メチレン140mLで洗浄した。ろ液を分液漏斗に移し、炭酸水素ナトリウム飽和水溶液150mLで2回、10質量%塩化ナトリウム水溶液100mLで1回洗浄した。
洗浄後の有機相を200mLビーカーに移した後、硫酸ナトリウム10gを加えて12時間保持して脱水し、その後に5Cろ紙で硫酸ナトリウムをろ別した。ろ液を200mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(13)で表される薄い黄褐色固体のO−t−ブチル−D−マンデル酸4量体ベンジルの粗体(粗tBu−MDA4−Bn)を2.3g(収率95%)得た。
500mLナスフラスコに粗tBu−MDA4−Bnを全量移し、メタノール10mLを加え、粗tBu−MDA4−Bnが完全に溶解するまでジエチルエーテルを加えた後、−30℃の冷暗所に24時間保持し、再結晶により精製した。
得られた結晶を5Cろ紙でろ別し、真空ポンプで減圧乾燥し、精製した白色固体のO−t−ブチル−D−マンデル酸4量体ベンジル(tBu−MDA4−Bn、本縮合体)を2.1g(収率87%)得た。
[Example 4] Synthesis of Ot-butyl-D-mandelic acid tetramer benzyl (tBu-MDA4-Bn) The above formula (2) obtained in Example 2 was added to a 100 mL eggplant flask containing a stir bar in advance. 11) tBu-MDA2 of 0.58 g (1.7 mmol), MDA2-Bn of the formula (12) obtained in Example 3 was 0.64 g (1.7 mmol), and WSCI as a condensing agent was 0.31 g. (2.0 mmol), 0.05 g (0.4 mmol) of DMAP was added as a catalyst, and a three-way cock was attached. Thereafter, the pressure inside the flask was reduced with a vacuum pump, and the nitrogen substitution operation for returning to normal pressure by introducing dry nitrogen was repeated a total of three times.
While maintaining the inside of the flask in a nitrogen atmosphere, 10 mL of dehydrated methylene chloride was added to the flask to dissolve the contents, followed by stirring with a stirrer at room temperature for 24 hours to perform a condensation reaction.
After completion of the reaction, the solid matter in the reaction solution was filtered off with 5C filter paper. The flask and solids were washed with 140 mL of methylene chloride. The filtrate was transferred to a separatory funnel and washed twice with 150 mL of a saturated aqueous solution of sodium bicarbonate and once with 100 mL of a 10 mass% aqueous sodium chloride solution.
After the washed organic phase was transferred to a 200 mL beaker, 10 g of sodium sulfate was added and the mixture was dehydrated by holding for 12 hours, and then sodium sulfate was filtered off with 5C filter paper. The filtrate was transferred to a 200 mL eggplant flask, concentrated with an evaporator, dried under reduced pressure with a vacuum pump, and a light tan solid Ot-butyl-D-mandelic acid tetramer benzyl represented by the following formula (13). 2.3 g (yield 95%) of a crude product (crude tBu-MDA4-Bn) was obtained.
Transfer the entire amount of crude tBu-MDA4-Bn to a 500 mL eggplant flask, add 10 mL of methanol, add diethyl ether until the crude tBu-MDA4-Bn is completely dissolved, and then keep it in a cool dark place at -30 ° C for 24 hours. Purified by crystals.
The obtained crystals were filtered off with 5C filter paper, dried under reduced pressure with a vacuum pump, and purified white solid Ot-butyl-D-mandelic acid tetramer benzyl (tBu-MDA4-Bn, this condensate) 2 0.1 g (yield 87%) was obtained.

Figure 2010285420
Figure 2010285420

得られたtBu−MDA4−Bnの化学構造はH−NMR、13C−NMR、MALDI−TOF−MSで確認した。tBu−MDA4−BnのHMBCスペクトルを図8及び図9、HMQCスペクトルを図10及び図11、H−NMRスペクトルを図12、13C−NMRスペクトルを図13、MALDI−TOF−MSスペクトルを図14に示す。
HMBCスペクトルにてプロトンのアサインを行った後、HMQCスペクトルにてカーボンのアサインを行なった。図9に示すように、得られたtBu−MDA4−BnではHMBCスペクトルにおいて領域αに相関ピークが見られない。これは、得られたtBu−MDA4−Bnにおいて、D−マンデル酸の光学活性を維持したまま縮合して分子鎖が伸張し、結合角が固定されているためである。ラセミ体のtBu−MDA4−Bnであれば領域αに相関ピークが見られるはずであり、この結果からD−マンデル酸の光学活性を維持したn=4の縮合体(4量体)が得られたことが確認できた。
また、tBu−MDA4−Bnの比旋光度[α]は−84°であり、融点は109.0〜110.0℃であった。
The chemical structure of the obtained tBu-MDA4-Bn was confirmed by 1 H-NMR, 13 C-NMR, and MALDI-TOF-MS. FIGS. 8 and 9 show the HMBC spectrum of tBu-MDA4-Bn, FIGS. 10 and 11 show the HMQC spectrum, FIG. 12 shows the 1 H-NMR spectrum, FIG. 13 shows the 13 C-NMR spectrum, and FIG. 13 shows the MALDI-TOF-MS spectrum. 14 shows.
After assigning protons in the HMBC spectrum, carbon was assigned in the HMQC spectrum. As shown in FIG. 9, in the obtained tBu-MDA4-Bn, no correlation peak is observed in the region α in the HMBC spectrum. This is because the obtained tBu-MDA4-Bn is condensed while maintaining the optical activity of D-mandelic acid, the molecular chain is elongated, and the bond angle is fixed. In the case of racemic tBu-MDA4-Bn, a correlation peak should be observed in the region α, and from this result, an n = 4 condensate (tetramer) maintaining the optical activity of D-mandelic acid is obtained. I was able to confirm.
Moreover, the specific rotation [α] D of tBu-MDA4-Bn was −84 °, and the melting point was 109.0 to 110.0 ° C.

[実施例5]O−t−ブチル−D−マンデル酸4量体(tBu−MDA4)の合成
あらかじめ攪拌子を入れた100mLのナスフラスコに、実施例4で得られた前記式(13)のtBu−MDA4−Bnを1.00g(1.4mmol)、リンドラー触媒を0.1g加え、三方コックを取り付けた。その後、フラスコ内を真空ポンプで減圧した後、乾燥窒素を導入して常圧に戻す窒素置換操作を合計3回繰り返した。さらに、フラスコ内を真空ポンプで減圧した後、水素ガスを導入して常圧に戻す水素置換操作を合計3回繰り返した。
フラスコ内を水素雰囲気で保持したまま、安定剤無添加のTHF20mLをフラスコに加え、内容物を溶解した後、室温にてスターラーで2時間攪拌し、脱保護反応を行った。
[Example 5] Synthesis of Ot-butyl-D-mandelic acid tetramer (tBu-MDA4) In a 100 mL eggplant flask with a stirrer previously added, the compound of the above formula (13) obtained in Example 4 was used. 1.00 g (1.4 mmol) of tBu-MDA4-Bn and 0.1 g of Lindlar catalyst were added, and a three-way cock was attached. Thereafter, the pressure inside the flask was reduced with a vacuum pump, and the nitrogen substitution operation for returning to normal pressure by introducing dry nitrogen was repeated a total of three times. Further, the pressure inside the flask was reduced with a vacuum pump, and then the hydrogen replacement operation for returning to normal pressure by introducing hydrogen gas was repeated a total of three times.
While keeping the inside of the flask in a hydrogen atmosphere, 20 mL of THF without addition of a stabilizer was added to the flask to dissolve the contents, followed by stirring with a stirrer at room temperature for 2 hours to perform a deprotection reaction.

反応液を薄層クロマトグラフィーで展開して原料スポットの消失を確認した後に、リンドラー触媒に吸着した水素を脱離させるためにフラスコ内を真空ポンプで減圧し、その後に乾燥窒素を導入して常圧に戻す窒素置換操作を合計3回繰り返した。なお、展開液はn−ヘキサン/酢酸エチル=1/4(容量比)を用いた。下記式(13)で表される原料のRf値は0.278、下記式(14)で表される生成物のRf値は0.00であった。
フラスコ内の反応液を30分間スターラーで攪拌した後、反応液中の固形物を5Cろ紙でろ別した。また、フラスコと固形物を安定剤無添加のTHF80mLで洗浄した。
ろ液を200mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(14)で表される無色〜白色固体のO−t−ブチル−D−マンデル酸4量体の粗体(粗tBu−MDA4)を0.90g(収率99%)得た。
得られた粗tBu−MDA4の化学構造はH−NMRで確認した。tBu−MDA4のH−NMRスペクトルを図15に示す。
After developing the reaction solution by thin layer chromatography and confirming the disappearance of the raw material spot, the inside of the flask was decompressed with a vacuum pump to desorb the hydrogen adsorbed on the Lindlar catalyst, and then dry nitrogen was introduced to constantly The nitrogen replacement operation for returning to the pressure was repeated a total of 3 times. The developing solution used was n-hexane / ethyl acetate = 1/4 (volume ratio). The Rf value of the raw material represented by the following formula (13) was 0.278, and the Rf value of the product represented by the following formula (14) was 0.00.
The reaction liquid in the flask was stirred with a stirrer for 30 minutes, and then solids in the reaction liquid were filtered off with 5C filter paper. Further, the flask and the solid were washed with 80 mL of THF without addition of a stabilizer.
The filtrate was transferred to a 200 mL eggplant flask, concentrated with an evaporator, dried under reduced pressure with a vacuum pump, and a colorless to white solid Ot-butyl-D-mandelic acid tetramer represented by the following formula (14). 0.90 g (99% yield) of a crude product (crude tBu-MDA4) was obtained.
The chemical structure of the obtained crude tBu-MDA4 was confirmed by 1 H-NMR. The 1 H-NMR spectrum of tBu-MDA4 is shown in FIG.

Figure 2010285420
Figure 2010285420

[実施例6]D−マンデル酸4量体ベンジル(MDA4−Bn)の合成
あらかじめ攪拌子を入れた100mLのナスフラスコに、実施例4で得られた前記式(13)のtBu−MDA4−Bnを1.00g(1.4mmol)、TFAを5mL加え、内容物を溶解した後、室温にてスターラーで3時間攪拌し、脱保護反応を行った。
フラスコ内の反応液をエバポレーターで濃縮した後、塩化メチレンを20mL加え、残留物を溶解した後、分液漏斗に移した。また、フラスコを60mLの塩化メチレンで洗浄し、前記分液漏斗に移した。分液漏斗内の溶液を、炭酸水素ナトリウム飽和水溶液100mLで3回、10質量%塩化ナトリウム水溶液100mLで1回洗浄した。
洗浄後の有機相を200mLビーカーに移した後、硫酸ナトリウム10gを加えて12時間保持して脱水し、その後に5Cろ紙で硫酸ナトリウムをろ別した。ろ液を200mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(15)で表される無色〜白色固体のD−マンデル酸4量体ベンジルの粗体(粗MDA4−Bn)を0.88g(収率96%)得た。
得られた粗MDA4−Bnの化学構造はH−NMRで確認した。MDA4−BnのH−NMRスペクトルを図16に示す。
[Example 6] Synthesis of D-mandelic acid tetramer benzyl (MDA4-Bn) In a 100 mL eggplant-shaped flask containing a stirrer in advance, tBu-MDA4-Bn of the formula (13) obtained in Example 4 was used. 1.00 g (1.4 mmol) and 5 mL of TFA were added to dissolve the contents, followed by stirring with a stirrer at room temperature for 3 hours to carry out a deprotection reaction.
After concentrating the reaction liquid in the flask with an evaporator, 20 mL of methylene chloride was added to dissolve the residue, and then transferred to a separatory funnel. The flask was washed with 60 mL of methylene chloride and transferred to the separatory funnel. The solution in the separatory funnel was washed three times with 100 mL of a saturated aqueous solution of sodium bicarbonate and once with 100 mL of a 10 mass% sodium chloride solution.
After the washed organic phase was transferred to a 200 mL beaker, 10 g of sodium sulfate was added and the mixture was dehydrated by holding for 12 hours, and then sodium sulfate was filtered off with 5C filter paper. The filtrate was transferred to a 200 mL eggplant flask, concentrated with an evaporator, and then dried under reduced pressure with a vacuum pump. A colorless to white solid D-mandelic acid tetramer benzyl crude product (crude MDA4 represented by the following formula (15): 0.88 g (yield 96%) of -Bn) was obtained.
The chemical structure of the obtained crude MDA4-Bn was confirmed by 1 H-NMR. The 1 H-NMR spectrum of MDA4-Bn is shown in FIG.

Figure 2010285420
Figure 2010285420

[実施例7]O−t−ブチル−D−マンデル酸8量体ベンジル(tBu−MDA8−Bn)の合成
あらかじめ攪拌子を入れた100mLのナスフラスコに、実施例5で得られた前記式(14)の粗tBu−MDA4を0.88g、実施例6で得られた前記式(15)の粗MDA4−Bnを0.95g、縮合剤としてEDCを0.33g(1.73mmol)、触媒としてDMAPを0.035g(0.288mmol)加え、三方コックを取り付けた。その後、フラスコ内を真空ポンプで減圧した後、乾燥窒素を導入して常圧に戻す窒素置換操作を合計3回繰り返した。
フラスコ内を窒素雰囲気で保持したまま、フラスコを0℃の氷浴へ浸漬した。その後、脱水塩化メチレン10mLをフラスコに加え、内容物を溶解し、0℃にてスターラーで2時間攪拌した。その後、フラスコを室温へ移し、さらに22時間撹拌し、縮合反応を行った。
反応終了後、反応液中の固形物を5Cろ紙でろ別した。また、フラスコと固形物を塩化メチレン80mLで洗浄した。ろ液を分液漏斗に移し、炭酸水素ナトリウム飽和水溶液100mLで2回、10質量%塩化ナトリウム水溶液100mLで1回洗浄した。
洗浄後の有機相を200mLビーカーに移した後、硫酸ナトリウム10gを加えて12時間保持して脱水し、その後に5Cろ紙で硫酸ナトリウムをろ別した。ろ液を200mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(16)で表される薄い黄褐色固体のO−t−ブチル−D−マンデル酸8量体ベンジルの粗体(粗tBu−MDA8−Bn)を1.67g(収率94%)得た。
[Example 7] Synthesis of Ot-butyl-D-mandelic acid octamer benzyl (tBu-MDA8-Bn) The above formula (5) obtained in Example 5 was added to a 100 mL eggplant flask containing a stir bar in advance. 14) 0.88 g of crude tBu-MDA4, 0.95 g of crude MDA4-Bn of the formula (15) obtained in Example 6, 0.33 g (1.73 mmol) of EDC as a condensing agent, and catalyst 0.035 g (0.288 mmol) of DMAP was added, and a three-way cock was attached. Thereafter, the pressure inside the flask was reduced with a vacuum pump, and the nitrogen substitution operation for returning to normal pressure by introducing dry nitrogen was repeated a total of three times.
The flask was immersed in an ice bath at 0 ° C. while maintaining the inside of the flask in a nitrogen atmosphere. Thereafter, 10 mL of dehydrated methylene chloride was added to the flask to dissolve the contents, and the mixture was stirred at 0 ° C. with a stirrer for 2 hours. Thereafter, the flask was moved to room temperature and further stirred for 22 hours to conduct a condensation reaction.
After completion of the reaction, the solid matter in the reaction solution was filtered off with 5C filter paper. The flask and solids were washed with 80 mL of methylene chloride. The filtrate was transferred to a separatory funnel and washed twice with 100 mL of a saturated aqueous solution of sodium bicarbonate and once with 100 mL of a 10 mass% aqueous sodium chloride solution.
After the washed organic phase was transferred to a 200 mL beaker, 10 g of sodium sulfate was added and the mixture was dehydrated by holding for 12 hours, and then sodium sulfate was filtered off with 5C filter paper. The filtrate was transferred to a 200 mL eggplant flask, concentrated with an evaporator, dried under reduced pressure with a vacuum pump, and a light tan solid Ot-butyl-D-mandelic acid octamer benzyl represented by the following formula (16). 1.67 g (yield 94%) of a crude product (crude tBu-MDA8-Bn) was obtained.

Figure 2010285420
Figure 2010285420

得られた粗tBu−MDA8−Bnの化学構造はH−NMR、13C−NMR、MALDI−TOF−MSで確認した。tBu−MDA8−BnのHMBCスペクトルを図17、HMQCスペクトルを図18、H−NMRスペクトルを図19、13C−NMRスペクトルを図20、MALDI−TOF−MSスペクトルを図21に示す。
MALDI−TOF−MSスペクトルにて、質量/電荷比(m/z)=1259.54の信号が最も強く観測された。このm/zは、tBu−MDA8−Bnのナトリウムイオン付加体のモノアイソトープ質量(1259.40Da)と誤差範囲で一致した。
また、実施例4と同様に、HMBCスペクトル及びHMQCスペクトルから、D−マンデル酸の光学活性を維持したn=8の縮合体(8量体)が得られたことが確認できた。
The chemical structure of the obtained crude tBu-MDA8-Bn was confirmed by 1 H-NMR, 13 C-NMR, and MALDI-TOF-MS. FIG. 17 shows the HMBC spectrum of tBu-MDA8-Bn, FIG. 18 shows the HMQC spectrum, FIG. 19 shows the 1 H-NMR spectrum, FIG. 20 shows the 13 C-NMR spectrum, and FIG. 21 shows the MALDI-TOF-MS spectrum.
In the MALDI-TOF-MS spectrum, a signal having a mass / charge ratio (m / z) = 1259.54 was observed most strongly. This m / z agreed with the monoisotope mass (1259.40 Da) of the sodium ion adduct of tBu-MDA8-Bn within an error range.
Further, as in Example 4, it was confirmed from the HMBC spectrum and HMQC spectrum that an n = 8 condensate (octamer) maintaining the optical activity of D-mandelic acid was obtained.

[合成例4]D−マンデル酸フェナシル(MDA−Pac)の合成
あらかじめ攪拌子を入れた300mLのナスフラスコに、下記式(6)で表されるD−マンデル酸16.74g(110mmol)、炭酸カリウム8.36g(60mmol)、N,N−ジメチルホルムアミド55mL、及び2−ブロモアセトフェノン21.89g(110mmol)を加え、内容物を溶解した後、室温にてスターラーで2時間攪拌し、カルボキシ基の保護反応を行った。なお、前記保護反応は、暗所にて行った。反応終了後、反応液を分液漏斗に移した。また、反応液が入っていたフラスコを酢酸エチル200mLで洗浄し、該洗浄液も分液漏斗に移した。分液漏斗に移した溶液を、蒸留水300mLで3回洗浄した。
洗浄後の有機相を500mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(17)で表される白色固体のD−マンデル酸フェナシルの粗体(粗MDA−Pac)を25.75g(収率99%)得た。
[Synthesis Example 4] Synthesis of phenacyl D-mandelate (MDA-Pac) In a 300 mL eggplant flask containing a stirrer in advance, 16.74 g (110 mmol) of D-mandelic acid represented by the following formula (6), carbonic acid 8.36 g (60 mmol) of potassium, 55 mL of N, N-dimethylformamide, and 21.89 g (110 mmol) of 2-bromoacetophenone were added to dissolve the contents, and the mixture was stirred at room temperature with a stirrer for 2 hours. A protective reaction was performed. The protection reaction was performed in a dark place. After completion of the reaction, the reaction solution was transferred to a separatory funnel. The flask containing the reaction solution was washed with 200 mL of ethyl acetate, and the washing solution was also transferred to a separatory funnel. The solution transferred to the separatory funnel was washed three times with 300 mL of distilled water.
The washed organic phase was transferred to a 500 mL eggplant flask, concentrated with an evaporator, dried under reduced pressure with a vacuum pump, and a white solid crude phenacyl D-mandelate represented by the following formula (17) (crude MDA-Pac ) Was obtained 25.75 g (99% yield).

Figure 2010285420
Figure 2010285420

粗MDA−Pacの入った500mLナスフラスコに、40℃にて粗MDA−Pacが完全に溶解するまで酢酸エチルを加えた後、5℃の冷暗所に48時間保持し、再結晶により精製した。
得られた結晶を5Cろ紙を用いてろ別し、真空ポンプで減圧乾燥し、精製した白色固体のD−マンデル酸フェナシル(MDA−Pac、誘導体(I))を25.8g(収率87%)得た。
得られたMDA−Pacの化学構造はH−NMRにより確認した。H−NMRスペクトルを図22に示す。また、MDA−Pacの比旋光度[α]は110°であり、融点は97.0〜99.0℃であった。
Ethyl acetate was added to a 500 mL eggplant flask containing the crude MDA-Pac at 40 ° C. until the crude MDA-Pac was completely dissolved, then kept in a cool dark place at 5 ° C. for 48 hours, and purified by recrystallization.
The obtained crystals were filtered off using 5C filter paper, dried under reduced pressure with a vacuum pump, and purified white solid phenacyl D-mandelate (MDA-Pac, derivative (I)) 25.8 g (yield 87%). Obtained.
The chemical structure of the obtained MDA-Pac was confirmed by 1 H-NMR. The 1 H-NMR spectrum is shown in FIG. Further, the specific rotation [α] D of MDA-Pac was 110 °, and the melting point was 97.0 to 99.0 ° C.

[実施例8]O−t−ブチル−D−マンデル酸2量体フェナシル(tBu−MDA2−Pac)の合成
まず、縮合剤である31.6g(153mmol)のDCCと、触媒である3.7g(30.6mmol)のDMAPを、脱水塩化メチレン100mLに溶解し、この溶液を200mLの滴下漏斗へ移した。
あらかじめ攪拌子を入れ、前記滴下漏斗を接続した1000mLの三ツ口フラスコに、合成例4で得られた前記式(17)のMDA−Pacを33.1g(122.5mmol)、合成例3で得られた前記式(9)のtBu−MDAを27.5g(122.5mmol)加え、三方コックを取り付けた。その後、フラスコ内を真空ポンプで減圧した後、乾燥窒素を導入して常圧に戻す窒素置換操作を合計3回繰り返した。
フラスコ内を窒素雰囲気で保持したまま、脱水塩化メチレン300mLをフラスコに加え、内容物を溶解した。
三ツ口フラスコを0℃の氷浴へ浸漬した後、滴下漏斗内の溶液を、三ツ口フラスコへ1時間かけて滴下し、さらに0℃、2時間スターラーで攪拌した後、三ツ口フラスコを室温へ移し、さらに22時間撹拌し、縮合反応を行った。
Example 8 Synthesis of Ot-butyl-D-mandelic acid dimer phenacyl (tBu-MDA2-Pac) First, 31.6 g (153 mmol) of DCC as a condensing agent and 3.7 g of a catalyst. (30.6 mmol) of DMAP was dissolved in 100 mL of dehydrated methylene chloride and this solution was transferred to a 200 mL addition funnel.
In a 1000 mL three-necked flask with a stir bar in advance and connected to the dropping funnel, 33.1 g (122.5 mmol) of MDA-Pac of the formula (17) obtained in Synthesis Example 4 was obtained in Synthesis Example 3. Further, 27.5 g (122.5 mmol) of tBu-MDA of the formula (9) was added, and a three-way cock was attached. Thereafter, the pressure inside the flask was reduced with a vacuum pump, and the nitrogen substitution operation for returning to normal pressure by introducing dry nitrogen was repeated a total of three times.
While keeping the inside of the flask in a nitrogen atmosphere, 300 mL of dehydrated methylene chloride was added to the flask to dissolve the contents.
After immersing the three-necked flask in an ice bath at 0 ° C., the solution in the dropping funnel was dropped into the three-necked flask over 1 hour, and further stirred with a stirrer at 0 ° C. for 2 hours, and then the three-necked flask was moved to room temperature. The mixture was stirred for 22 hours to conduct a condensation reaction.

反応終了後、反応液中の固形物を5Cろ紙でろ別した。また、フラスコと固形物を塩化メチレン150mLで洗浄した。ろ液を分液漏斗に移し、炭酸水素ナトリウム飽和水溶液200mLで2回、10質量%塩化ナトリウム水溶液200mLで1回洗浄した。
洗浄後の有機相を200mLビーカーに移した後、硫酸ナトリウム20gを加えて12時間保持して脱水し、5Cろ紙で硫酸ナトリウムをろ別した。ろ液を1000mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(18)で表される無色〜白色固体のO−t−ブチル−D−マンデル酸2量体フェナシルの粗体(粗tBu−MDA2−Pac)を70.6g(収率125%)得た。
70.6gの粗tBu−MDA2−Pacを、展開溶媒を酢酸エチル/n−ヘキサン=2/3(容積比)としたカラムクロマトグラフィーを用いて精製した。
得られた溶液を500mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、精製した白色固体のtBu−MDA2−Bnを56.6g(収率94%)得た。
得られたtBu−MDA2−Pacの化学構造はH−NMR、MALDI−TOF−MSで確認した。tBu−MDA2−PacのH−NMRスペクトルを図23、MALDI−TOF−MSスペクトルを図24に示す。
MALDI−TOF−MSスペクトルにて、質量/電荷比(m/z)=483.15の信号が最も強く観測された。このm/zは、tBu−MDA2−Pacのナトリウムイオン付加体のモノアイソトープ質量(483.19Da)と誤差範囲内で一致した。
また、tBu−MDA2−Pacの比旋光度[α]は58.9°であり、融点は100.0〜101.0℃であった。
After completion of the reaction, the solid matter in the reaction solution was filtered off with 5C filter paper. The flask and solids were washed with 150 mL of methylene chloride. The filtrate was transferred to a separatory funnel and washed twice with 200 mL of a saturated aqueous solution of sodium bicarbonate and once with 200 mL of a 10% by mass aqueous sodium chloride solution.
After the washed organic phase was transferred to a 200 mL beaker, 20 g of sodium sulfate was added and the mixture was dehydrated by holding for 12 hours, and the sodium sulfate was filtered off with 5C filter paper. The filtrate was transferred to a 1000 mL eggplant flask, concentrated with an evaporator, dried under reduced pressure with a vacuum pump, and a colorless to white solid Ot-butyl-D-mandelic acid dimer phenacyl represented by the following formula (18). 70.6 g (yield 125%) of the crude product (crude tBu-MDA2-Pac) was obtained.
70.6 g of crude tBu-MDA2-Pac was purified by column chromatography using a developing solvent of ethyl acetate / n-hexane = 2/3 (volume ratio).
The obtained solution was transferred to a 500 mL eggplant flask, concentrated with an evaporator, and then dried under reduced pressure with a vacuum pump to obtain 56.6 g (yield 94%) of purified white solid tBu-MDA2-Bn.
The chemical structure of the obtained tBu-MDA2-Pac was confirmed by 1 H-NMR and MALDI-TOF-MS. FIG. 23 shows a 1 H-NMR spectrum of tBu-MDA2-Pac, and FIG. 24 shows a MALDI-TOF-MS spectrum.
In the MALDI-TOF-MS spectrum, a signal having a mass / charge ratio (m / z) = 483.15 was observed most strongly. This m / z agreed with the monoisotope mass (483.19 Da) of the sodium ion adduct of tBu-MDA2-Pac within an error range.
The specific rotation [α] D of tBu-MDA2-Pac was 58.9 °, and the melting point was 100.0-101.0 ° C.

Figure 2010285420
Figure 2010285420

[実施例9]tBu−MDA2−Pacのフェナシル基脱保護によるO−t−ブチル−D−マンデル酸2量体(tBu−MDA2)の合成
あらかじめ攪拌子を入れた100mLのナスフラスコに、実施例8で得られた前記式(18)のtBu−MDA2−Pacを0.10g(0.217mmol)、1mol/Lのテトラブチルアンモニウムフルオリド/THF溶液を1.00mL、蒸留水を0.06g、THFを2mL加え、内容物を溶解した後、室温にてスターラーで30分間攪拌し、脱保護反応を行った。
[Example 9] Synthesis of Ot-butyl-D-mandelic acid dimer (tBu-MDA2) by phenacyl group deprotection of tBu-MDA2-Pac In a 100 mL eggplant flask containing a stir bar in advance, Example 0.10 g (0.217 mmol) of tBu-MDA2-Pac of the formula (18) obtained in 8 above, 1.00 mL of 1 mol / L tetrabutylammonium fluoride / THF solution, 0.06 g of distilled water, After adding 2 mL of THF to dissolve the contents, the mixture was stirred at room temperature with a stirrer for 30 minutes to perform a deprotection reaction.

フラスコ内の反応液をエバポレーターで濃縮した後、塩化メチレンを20mL加え、残留物を溶解した後、分液漏斗に移した。また、フラスコを60mLの塩化メチレンで洗浄し、前記分液漏斗に移した。分液漏斗内の溶液を、水酸化ナトリウム飽和水溶液100mLで3回、クエン酸飽和水溶液100mLで1回洗浄した。
洗浄後の有機相を200mLビーカーに移した後、硫酸ナトリウム10gを加えて12時間保持して脱水し、その後に5Cろ紙で硫酸ナトリウムをろ別した。ろ液を200mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(11)で表される薄い黄色固体のO−t−ブチル−D−マンデル酸2量体の粗体(粗tBu−MDA2)を得た。
得られた粗tBu−MDA2の化学構造はH−NMRで確認した。tBu−MDA2のH−NMRスペクトルを図25に示す。
After concentrating the reaction liquid in the flask with an evaporator, 20 mL of methylene chloride was added to dissolve the residue, and then transferred to a separatory funnel. The flask was washed with 60 mL of methylene chloride and transferred to the separatory funnel. The solution in the separatory funnel was washed three times with 100 mL of saturated aqueous sodium hydroxide solution and once with 100 mL of saturated aqueous citric acid solution.
After the washed organic phase was transferred to a 200 mL beaker, 10 g of sodium sulfate was added and the mixture was dehydrated by holding for 12 hours, and then sodium sulfate was filtered off with 5C filter paper. The filtrate was transferred to a 200 mL eggplant flask, concentrated with an evaporator, dried under reduced pressure with a vacuum pump, and a crude yellow solid Ot-butyl-D-mandelic acid dimer represented by the following formula (11). A body (crude tBu-MDA2) was obtained.
The chemical structure of the obtained crude tBu-MDA2 was confirmed by 1 H-NMR. The 1 H-NMR spectrum of tBu-MDA2 is shown in FIG.

Figure 2010285420
Figure 2010285420

[実施例10]D−マンデル酸2量体フェナシル(MDA2−Pac)の合成
あらかじめ攪拌子を入れた300mLのナスフラスコに、実施例8で得られた前記式(18)のtBu−MDA2−Pacを21.9g(47.6mmol)、TFAを48mL加え、内容物を溶解した後、室温にてスターラーで3時間攪拌し、脱保護反応を行った。
フラスコ内の反応液をエバポレーターで濃縮した後、塩化メチレンを50mL加え、残留物を溶解した後、分液漏斗に移した。また、フラスコを100mLの塩化メチレンで洗浄し、前記分液漏斗に移した。分液漏斗内の溶液を、炭酸水素ナトリウム飽和水溶液200mLで2回、10質量%塩化ナトリウム水溶液200mLで1回洗浄した。
洗浄後の有機相を200mLビーカーに移した後、硫酸ナトリウム20gを加えて12時間保持して脱水し、その後に5Cろ紙で硫酸ナトリウムをろ別した。ろ液を500mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(19)で表される淡黄色固体のD−マンデル酸2量体フェナシルの粗体(粗MDA2−Pac)を19.5g(収率98%)得た。
[Example 10] Synthesis of D-mandelic acid dimer phenacyl (MDA2-Pac) In a 300 mL eggplant flask containing a stirrer in advance, tBu-MDA2-Pac of the above formula (18) obtained in Example 8 was used. 21.9 g (47.6 mmol) and 48 mL of TFA were added to dissolve the contents, and the mixture was stirred at room temperature with a stirrer for 3 hours to carry out a deprotection reaction.
After concentrating the reaction liquid in the flask with an evaporator, 50 mL of methylene chloride was added to dissolve the residue, and then transferred to a separatory funnel. The flask was washed with 100 mL of methylene chloride and transferred to the separatory funnel. The solution in the separatory funnel was washed twice with 200 mL of a saturated aqueous solution of sodium bicarbonate and once with 200 mL of a 10% by mass aqueous sodium chloride solution.
After the washed organic phase was transferred to a 200 mL beaker, 20 g of sodium sulfate was added, and the mixture was dehydrated by holding for 12 hours. Thereafter, sodium sulfate was filtered off with 5C filter paper. The filtrate was transferred to a 500 mL eggplant flask, concentrated with an evaporator, dried under reduced pressure with a vacuum pump, and a pale yellow solid D-mandelic acid dimer phenacyl represented by the following formula (19) (crude MDA2- 19.5 g (98% yield) of Pac) was obtained.

Figure 2010285420
Figure 2010285420

[実施例11]O−t−ブチル−D−マンデル酸4量体フェナシル(tBu−MDA4−Pac)の合成
まず、縮合剤である12.8g(60mmol)のDCCと、触媒である1.5g(12mmol)のDMAPを、脱水塩化メチレン100mLに溶解し、この溶液を200mLの滴下漏斗へ移した。
あらかじめ攪拌子を入れた1000mLの三ツ口フラスコに、実施例9で得られた前記式(11)のtBu−MDA2を16.6g、実施例10で得られた前記式(19)の粗MDA2−Pacを19.5g加え、三方コックを取り付けた。その後、フラスコ内を真空ポンプで減圧した後、乾燥窒素を導入して常圧に戻す窒素置換操作を合計3回繰り返した。
フラスコ内を窒素雰囲気で保持したまま、脱水塩化メチレン150mLをフラスコに加え、内容物を溶解した。
三ツ口フラスコを0℃の氷浴へ浸漬した後、滴下漏斗内の溶液を、三ツ口フラスコへ1時間かけて滴下し、さらに0℃、2時間スターラーで攪拌した後、三ツ口フラスコを室温へ移し、さらに22時間撹拌し、縮合反応を行った。
Example 11 Synthesis of Ot-butyl-D-mandelic acid tetramer phenacyl (tBu-MDA4-Pac) First, 12.8 g (60 mmol) of DCC as a condensing agent and 1.5 g as a catalyst. (12 mmol) of DMAP was dissolved in 100 mL of dehydrated methylene chloride and the solution was transferred to a 200 mL addition funnel.
In a 1000 mL three-necked flask containing a stirrer in advance, 16.6 g of tBu-MDA2 of the formula (11) obtained in Example 9 and crude MDA2-Pac of the formula (19) obtained in Example 10 were used. 19.5g was added and a three-way cock was attached. Thereafter, the pressure inside the flask was reduced with a vacuum pump, and the nitrogen substitution operation for returning to normal pressure by introducing dry nitrogen was repeated a total of three times.
While keeping the inside of the flask in a nitrogen atmosphere, 150 mL of dehydrated methylene chloride was added to the flask to dissolve the contents.
After immersing the three-necked flask in an ice bath at 0 ° C., the solution in the dropping funnel was dropped into the three-necked flask over 1 hour, and further stirred with a stirrer at 0 ° C. for 2 hours, and then the three-necked flask was moved to room temperature. The mixture was stirred for 22 hours to conduct a condensation reaction.

反応終了後、反応液中の固形物を5Cろ紙でろ別した。また、フラスコと固形物を塩化メチレン100mLで洗浄した。ろ液を分液漏斗に移し、炭酸水素ナトリウム飽和水溶液200mLで2回、10質量%塩化ナトリウム水溶液200mLで1回洗浄した。
洗浄後の有機相を500mLビーカーに移した後、硫酸ナトリウム10gを加えて12時間保持して脱水し、その後に5Cろ紙で硫酸ナトリウムをろ別した。ろ液を500mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(20)で表される薄い黄褐色固体のO−t−ブチル−D−マンデル酸4量体フェナシルの粗体(粗tBu−MDA4−Pac)を37.3g(収率106%)得た。
37.3gの粗tBu−MDA4−Pacを、展開溶媒を酢酸エチル/n−ヘキサン=1/2(容積比)としたカラムクロマトグラフィーを用いて精製した。
得られた溶液を500mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、精製した薄い黄褐色固体のtBu−MDA4−Pacを34.0g(収率97%)得た。
After completion of the reaction, the solid matter in the reaction solution was filtered off with 5C filter paper. The flask and solids were washed with 100 mL of methylene chloride. The filtrate was transferred to a separatory funnel and washed twice with 200 mL of a saturated aqueous solution of sodium bicarbonate and once with 200 mL of a 10% by mass aqueous sodium chloride solution.
After the organic phase after washing was transferred to a 500 mL beaker, 10 g of sodium sulfate was added and the mixture was dehydrated by holding for 12 hours, and then sodium sulfate was filtered off with 5C filter paper. The filtrate was transferred to a 500 mL eggplant flask, concentrated with an evaporator, dried under reduced pressure with a vacuum pump, and a light tan solid Ot-butyl-D-mandelic acid tetramer phenacyl represented by the following formula (20). 37.3 g (yield 106%) of a crude product (crude tBu-MDA4-Pac) was obtained.
37.3 g of crude tBu-MDA4-Pac was purified by column chromatography using a developing solvent of ethyl acetate / n-hexane = 1/2 (volume ratio).
The obtained solution was transferred to a 500 mL eggplant flask, concentrated with an evaporator, and then dried under reduced pressure with a vacuum pump to obtain 34.0 g (yield 97%) of purified light tan solid tBu-MDA4-Pac.

Figure 2010285420
Figure 2010285420

得られた粗tBu−MDA4−Pacの化学構造はH−NMR、13C−NMR、MALDI−TOF−MSで確認した。tBu−MDA4−PacのHMBCスペクトルを図26及び図27、HMQCスペクトルを図28及び図29、H−NMRスペクトルを図30、13C−NMRスペクトルを図31、MALDI−TOF−MSスペクトルを図32に示す。
MALDI−TOF−MSスペクトルにて、質量/電荷比(m/z)=751.30の信号が最も強く観測された。このm/zは、tBu−MDA4−Pacのナトリウムイオン付加体のモノアイソトープ質量(751.25Da)と誤差範囲内で一致した。
また、実施例4と同様に、HMBCスペクトル及びHMQCスペクトルから、D−マンデル酸の光学活性を維持したn=4の縮合体(4量体)が得られたことが確認できた。
The chemical structure of the obtained crude tBu-MDA4-Pac was confirmed by 1 H-NMR, 13 C-NMR, and MALDI-TOF-MS. FIGS. 26 and 27 show the HMBC spectrum of tBu-MDA4-Pac, FIGS. 28 and 29 show the HMQC spectrum, FIG. 30 shows the 1 H-NMR spectrum, FIG. 31 shows the 13 C-NMR spectrum, and FIG. 31 shows the MALDI-TOF-MS spectrum. 32.
In the MALDI-TOF-MS spectrum, a signal having a mass / charge ratio (m / z) = 751.30 was observed most strongly. This m / z agreed with the monoisotope mass (751.25 Da) of the sodium ion adduct of tBu-MDA4-Pac within an error range.
Further, as in Example 4, it was confirmed from the HMBC spectrum and HMQC spectrum that an n = 4 condensate (tetramer) maintaining the optical activity of D-mandelic acid was obtained.

[合成例5]O−t−ブチル−D−マンデル酸2量体ニトロベンジル(tBu−MDA2−NBn)の合成
あらかじめ攪拌子を入れた100mLのナスフラスコに、実施例2で得られた前記式(11)のtBu−MDA2を1.00g(2.9mmol)、炭酸カリウムを0.24g(1.74mmol)、N,N−ジメチルホルムアミドを7mL、及び4−ニトロベンジルブロミドを0.94g(2.9mmol)加え、内容物を溶解した後、室温にてスターラーで2時間攪拌し、カルボキシ基の保護反応を行った。反応終了後、反応液を分液漏斗に移した。また、反応液が入っていたフラスコを酢酸エチル80mLで洗浄し、該洗浄液も分液漏斗に移した。分液漏斗に移した溶液を、蒸留水120mLで3回洗浄した。
[Synthesis Example 5] Synthesis of Ot-butyl-D-mandelic acid dimer nitrobenzyl (tBu-MDA2-NBn) The above formula obtained in Example 2 was added to a 100 mL eggplant flask containing a stir bar in advance. 1.00 g (2.9 mmol) of tBu-MDA2 of (11), 0.24 g (1.74 mmol) of potassium carbonate, 7 mL of N, N-dimethylformamide, and 0.94 g of 2-nitrobenzyl bromide (2 0.9 mmol), and the contents were dissolved, and then stirred for 2 hours at room temperature with a stirrer to carry out a carboxy group protection reaction. After completion of the reaction, the reaction solution was transferred to a separatory funnel. The flask containing the reaction solution was washed with 80 mL of ethyl acetate, and the washing solution was also transferred to a separatory funnel. The solution transferred to the separatory funnel was washed three times with 120 mL of distilled water.

洗浄後の有機相を200mLビーカーに移した後、硫酸ナトリウム5gを加えて12時間保持して脱水し、その後に5Cろ紙で硫酸ナトリウムをろ別した。ろ液を200mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、下記式(21)で表される白色固体のO−t−ブチル−D−マンデル酸2量体ニトロベンジルの粗体(粗tBu−MDA2−NBn)を1.33g(収率96%)得た。
1.33gの粗tBu−MDA2−NBnを、展開溶媒を酢酸エチル/n−ヘキサン=1/2(容積比)としたカラムクロマトグラフィーを用いて精製した。
得られた溶液を500mLナスフラスコに移し、エバポレーターで濃縮した後、真空ポンプで減圧乾燥し、精製した白色固体のtBu−MDA2−NBnを1.03g(収率74%)得た。
得られたtBu−MDA2−NBnの化学構造はH−NMRで確認した。tBu−MDA2−PacのH−NMRスペクトルを図33に示す。
After the organic phase after washing was transferred to a 200 mL beaker, 5 g of sodium sulfate was added and retained for 12 hours for dehydration, and then the sodium sulfate was filtered off with 5C filter paper. The filtrate was transferred to a 200 mL eggplant flask, concentrated with an evaporator, dried under reduced pressure with a vacuum pump, and a white solid of Ot-butyl-D-mandelic acid dimer nitrobenzyl represented by the following formula (21). 1.33 g (yield 96%) of a crude product (crude tBu-MDA2-NBn) was obtained.
1.33 g of crude tBu-MDA2-NBn was purified by column chromatography using a developing solvent of ethyl acetate / n-hexane = 1/2 (volume ratio).
The obtained solution was transferred to a 500 mL eggplant flask, concentrated with an evaporator, and then dried under reduced pressure with a vacuum pump to obtain 1.03 g (yield 74%) of purified white solid tBu-MDA2-NBn.
The chemical structure of the obtained tBu-MDA2-NBn was confirmed by 1 H-NMR. A 1 H-NMR spectrum of tBu-MDA2-Pac is shown in FIG.

Figure 2010285420
Figure 2010285420

実施例1〜11のように、オルトゴナルな保護基でD−マンデル酸のヒドロキシ基又はカルボキシ基を保護した誘導体(I)及び誘導体(II)を用いて、縮合工程と脱保護工程を繰り返すことにより、D−マンデル酸の光学活性を維持した縮合度が2、4、及び8の縮合体が得られた。さらに、同様の脱保護工程及び縮合工程を繰り返すことで、さらに高分子量の縮合体も得ることができると考えられる。
また、合成例5のように、R21の保護基がニトロベンジル基である前記式(21)で表される化合物も得られた。該化合物からは、tert−ブチル基を脱保護すれば、R21の保護基がニトロベンジル基である誘導体(I)を得ることができ、該誘導体(I)によっても高分子量の縮合体を得ることができると考えられる。
By repeating the condensation step and the deprotection step using derivatives (I) and derivatives (II) in which the hydroxy group or carboxy group of D-mandelic acid is protected with an ortho-protective group as in Examples 1 to 11 Thus, condensates having condensation degrees of 2, 4, and 8 maintaining the optical activity of D-mandelic acid were obtained. Furthermore, it is considered that a higher molecular weight condensate can be obtained by repeating the same deprotection step and condensation step.
Also, as in the Synthesis Example 5, the protecting group of R 21 were obtained compound represented by the formula is a nitrobenzyl group (21). From this compound, if the tert-butyl group is deprotected, a derivative (I) in which the protecting group for R 21 is a nitrobenzyl group can be obtained, and a high molecular weight condensate can also be obtained from the derivative (I). It is considered possible.

本発明の製造方法は、光学活性が高度に制御された光学活性芳香族ヒドロキシカルボン酸縮合体が得られるため、極めて有用である。また、本発明の光学活性化合物は、光学活性が高度に制御されているため、耐熱性、力学特性、配向特性、光学特性等に優れた高機能性材料として、ディスプレイ配向フィルム、環境調和材料、構造/建築材料等に好適に利用できると考えられる。   The production method of the present invention is extremely useful because an optically active aromatic hydroxycarboxylic acid condensate having highly controlled optical activity can be obtained. Further, since the optical activity of the optically active compound of the present invention is highly controlled, as a highly functional material excellent in heat resistance, mechanical properties, orientation properties, optical properties, etc., a display orientation film, an environmentally friendly material, It is considered that it can be suitably used for structures / building materials and the like.

Claims (4)

下記式(1)で表される光学活性芳香族ヒドロキシカルボン酸誘導体(I)と、下記式(2)で表される光学活性芳香族ヒドロキシカルボン酸誘導体(II)とを縮合する縮合工程を有する光学活性芳香族ヒドロキシカルボン酸縮合体の製造方法。
Figure 2010285420
Figure 2010285420
(式(1)及び式(2)中、p及びqはそれぞれ独立に1以上の整数である。R11は、アラルキルエーテル型保護基、アルキルエーテル型保護基、シリル型保護基、エステル型保護基又はオキシカルボニル型保護基のいずれかであり、R21は、アラルキルエーテル型保護基、アルキルエーテル型保護基又はシリル型保護基のいずれかである。p個のR31は、それぞれ独立に炭素数6〜14の芳香族炭化水素基である。q個のR32は、それぞれ独立に炭素数6〜14の芳香族炭化水素基である。*で示した炭素原子は不斉炭素原子を意味する。)
A condensation step of condensing an optically active aromatic hydroxycarboxylic acid derivative (I) represented by the following formula (1) and an optically active aromatic hydroxycarboxylic acid derivative (II) represented by the following formula (2): A method for producing an optically active aromatic hydroxycarboxylic acid condensate.
Figure 2010285420
Figure 2010285420
(In Formula (1) and Formula (2), p and q are each independently an integer of 1 or more. R 11 is an aralkyl ether type protecting group, an alkyl ether type protecting group, a silyl type protecting group, or an ester type protecting group. is either group or an oxycarbonyl-type protecting group, R 21 is .p number of R 31 is either aralkyl ether type protecting group, alkyl ether-type protecting group or a silyl-type protecting groups, the carbon independently It is an aromatic hydrocarbon group having a number of 6 to 14. Each q R 32 is independently an aromatic hydrocarbon group having a carbon number of 6 to 14. The carbon atom indicated by * means an asymmetric carbon atom. To do.)
前記R11とR21とがオルトゴナルな保護基であり、
前記光学活性芳香族ヒドロキシカルボン酸誘導体(I)と前記光学活性芳香族ヒドロキシカルボン酸誘導体(II)とを縮合して得られる、下記式(3)で表される光学活性芳香族ヒドロキシカルボン酸縮合体(III)のR11又はR21のいずれか一方を脱保護する脱保護工程を更に有し、
該R11又はR21のいずれか一方を脱保護した縮合体を、前記縮合工程における前記光学活性芳香族ヒドロキシカルボン酸誘導体(I)及び/又は前記光学活性芳香族ヒドロキシカルボン酸誘導体(II)として用いる、請求項1に記載の光学活性芳香族ヒドロキシカルボン酸縮合体の製造方法。
Figure 2010285420
(式(3)中、nは2以上の整数であり、pとqの和である。n個のRは、それぞれ独立に炭素数6〜14の芳香族炭化水素基である。)
R 11 and R 21 are orthogonal protecting groups,
Optically active aromatic hydroxycarboxylic acid condensation represented by the following formula (3) obtained by condensing the optically active aromatic hydroxycarboxylic acid derivative (I) and the optically active aromatic hydroxycarboxylic acid derivative (II) A deprotection step of deprotecting either R 11 or R 21 of the body (III);
The condensate obtained by deprotecting either R 11 or R 21 is used as the optically active aromatic hydroxycarboxylic acid derivative (I) and / or the optically active aromatic hydroxycarboxylic acid derivative (II) in the condensation step. The manufacturing method of the optically active aromatic hydroxycarboxylic acid condensate of Claim 1 to be used.
Figure 2010285420
(In the formula (3), n is an integer of 2 or more, .n number of R 3 is the sum of p and q are each independently an aromatic hydrocarbon group having 6 to 14 carbon atoms.)
下記式(4)で表される光学活性化合物。
Figure 2010285420
(式(4)中、nは2以上の整数である。Rは、水素原子、アラルキルエーテル型保護基、アルキルエーテル型保護基、シリル型保護基、エステル型保護基又はオキシカルボニル型保護基のいずれかであり、Rは、水素原子、アラルキルエーテル型保護基、アルキルエーテル型保護基又はシリル型保護基のいずれかであり、R及びRの少なくとも一方は前記いずれかの保護基である。n個のRは、それぞれ独立に炭素数6〜14の芳香族炭化水素基である。)
An optically active compound represented by the following formula (4).
Figure 2010285420
(In the formula (4), .R 1 n is an integer of 2 or greater, a hydrogen atom, an aralkyl ether type protecting group, alkyl ether-type protecting group, a silyl-type protecting group, ester type protecting group or an oxycarbonyl-type protecting group R 2 is any one of a hydrogen atom, an aralkyl ether protecting group, an alkyl ether protecting group, or a silyl protecting group, and at least one of R 1 and R 2 is any one of the protecting groups described above N R 3 s are each independently an aromatic hydrocarbon group having 6 to 14 carbon atoms.)
前記Rがフェニル基である請求項3に記載の光学活性化合物。 The optically active compound according to claim 3, wherein R 3 is a phenyl group.
JP2010107438A 2009-05-11 2010-05-07 Method for producing optically active aromatic hydroxycarboxylic acid condensate and optically active compound Pending JP2010285420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010107438A JP2010285420A (en) 2009-05-11 2010-05-07 Method for producing optically active aromatic hydroxycarboxylic acid condensate and optically active compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009114852 2009-05-11
JP2010107438A JP2010285420A (en) 2009-05-11 2010-05-07 Method for producing optically active aromatic hydroxycarboxylic acid condensate and optically active compound

Publications (1)

Publication Number Publication Date
JP2010285420A true JP2010285420A (en) 2010-12-24

Family

ID=43541403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010107438A Pending JP2010285420A (en) 2009-05-11 2010-05-07 Method for producing optically active aromatic hydroxycarboxylic acid condensate and optically active compound

Country Status (1)

Country Link
JP (1) JP2010285420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156527A (en) * 2013-02-15 2014-08-28 Mitsui Chemicals Inc Polymandelic acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998033A (en) * 1982-11-26 1984-06-06 Nippon Synthetic Chem Ind Co Ltd:The Preparation of mandelic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998033A (en) * 1982-11-26 1984-06-06 Nippon Synthetic Chem Ind Co Ltd:The Preparation of mandelic acid

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6014019130; Kuisle, Oliver; Quinoa, Emilio; Riguera, Ricardo: 'A General Methodology for Automated Solid-Phase Synthesis of Depsides and Depsipeptides. Preparation' Journal of Organic Chemistry 64(22), 1999, 8063-8075 *
JPN6014019131; Garcia, Rosa et al.: 'Absolute Configuration of Secondary Alcohols by 1H NMR: In Situ Complexation of alpha-Methoxyphenylacet' Journal of Organic Chemistry 67(13), 2002, 4579-4589 *
JPN6014019132; Ferreiro, Maria J.; Latypov, Shamil K.; Quinoa, Emilio; Riguera, Ricardo: 'Assignment of the Absolute Configuration of alpha-Chiral Carboxylic Acids by 1H NMR Spectroscopy' Journal of Organic Chemistry 65(9), 2000, 2658-2666 *
JPN6014019133; Seco, Jose M.; Latypov, Shamyl K.; Quinoa, Emilio; Riguera, Ricardo: 'Determining factors in the assignment of the absolute configuration of alcohols by NMR. The use of a' Tetrahedron 53(25), 1997, 8541-8564 *
JPN6014019134; Whitesell, James K.; Pojman, John A.: 'Homochiral and heterochiral polyesters: polymers derived from mandelic acid' Chemistry of Materials 2(3), 1990, 248-54 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156527A (en) * 2013-02-15 2014-08-28 Mitsui Chemicals Inc Polymandelic acid

Similar Documents

Publication Publication Date Title
ES2784881T3 (en) Process for the production of cannabidiol and delta-9-tetrahydrocannabinol
JP2008514695A (en) Method for producing pyruvic acid
JP5596258B2 (en) Calixarene dimer compound and method for producing the same
JP2010285420A (en) Method for producing optically active aromatic hydroxycarboxylic acid condensate and optically active compound
BRPI0616188A2 (en) Methods for preparing a compound, and for preparing (-) - halofenate, compound, and, composition
CN106661065B (en) Crystal of cyclic phosphonic acid sodium salt and method for producing same
JP6787331B2 (en) Method for producing acid halide solution, mixed solution, and method for producing monoester compound
BR112021002523A2 (en) method for preparing a compost
JP2009518380A (en) Preparation of 2-chloroethoxy-acetic acid-N, N-dimethylamide
JP6912143B2 (en) 4-Pentafluorothiophenol compounds and preparation method and preparation method of pentafluorosulfur-substituted benzopyran compound
BRPI0613293A2 (en) method of manufacture of aromatic dihydroxy diacid dihalide, precipitate and composition of purified aromatic dihydroxy diacid dihalide
KR101030639B1 (en) Method for producing trisperfluoroalkanesulfonylmethide acid salt
JP2003335735A (en) Method for producing perfluoroisopropylanilines
JP2013530178A (en) Method for producing nateglinide
JP2005502651A (en) Method for producing high purity cefuroxime axetil
JP5357559B2 (en) Compound having dimethoxynaphthalene skeleton and process for producing the same
JP3979743B2 (en) Method for producing optically active vinyl phosphine oxide
Hanai et al. Vibrational and NMR spectra and structures of lithium pyruvate monohydrate
JP5305321B2 (en) Method for producing fluoro compound
KR100974140B1 (en) Quaternary trifluoromethylcyclohexane derivatives for liquid crystals
JP2003026685A (en) Method for producing spiroacetal derivative
ES2362004T3 (en) PROCEDURE FOR THE PRODUCTION OF (Z) -1-PHENYL-1- (N, N-DIETILAMINOCARBONIL) -2-FTALIMIDOMETILCICLOPROPANO.
JP2022135241A (en) Method of producing tetra acyl gluconolactone derivative
RU2443672C1 (en) Method of producing 1-phenoxy-2,2-dichlorocyclopropane
JP4019125B2 (en) Highly fluorinated carboxylic acids and processes and intermediates therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141021