JP5305321B2 - Method for producing fluoro compound - Google Patents

Method for producing fluoro compound Download PDF

Info

Publication number
JP5305321B2
JP5305321B2 JP2008034626A JP2008034626A JP5305321B2 JP 5305321 B2 JP5305321 B2 JP 5305321B2 JP 2008034626 A JP2008034626 A JP 2008034626A JP 2008034626 A JP2008034626 A JP 2008034626A JP 5305321 B2 JP5305321 B2 JP 5305321B2
Authority
JP
Japan
Prior art keywords
group
compound
reaction
solvent
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008034626A
Other languages
Japanese (ja)
Other versions
JP2009191031A (en
Inventor
正治 原
正紀 澤口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Hokkaido University NUC filed Critical Asahi Glass Co Ltd
Priority to JP2008034626A priority Critical patent/JP5305321B2/en
Priority to PCT/JP2009/052434 priority patent/WO2009102034A1/en
Publication of JP2009191031A publication Critical patent/JP2009191031A/en
Application granted granted Critical
Publication of JP5305321B2 publication Critical patent/JP5305321B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B39/00Halogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/63Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/307Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)

Abstract

Disclosed is a commercially suitable method for efficiently producing fluoro-compounds having various molecular structures, in which two fluorine atoms are bonded to a carbon atom, in a single-step reaction. Specifically disclosed is a method for producing a fluoro-compound represented by formula (B), which is characterized in that a compound represented by formula (A) is reacted with IF5.

Description

本発明はフルオロ化合物の製造方法に関する。さらに詳しくは、2つのフッ素原子が結合した炭素原子を有するフルオロ化合物の製造方法に関する。   The present invention relates to a method for producing a fluoro compound. More specifically, the present invention relates to a method for producing a fluoro compound having a carbon atom to which two fluorine atoms are bonded.

一般に、有機化合物をフッ素化してフルオロ化合物を製造する際には、フッ素化剤が用いられている。例えば、カルボニル基を有する化合物を、SFまたはDAST(ジエチルアミノサルファートリフルオライド)を用いてフッ素化する方法が知られている。しかし、これらのフッ素化剤の取り扱いは容易でなく、値段も高価で、工業的な製造方法に用いるフッ素化剤としては有利ではない問題があった。
そこで、取り扱いが容易なフッ素化剤として、IFを用いるフッ素化方法が提案されている(特許文献1)。
特許文献1では、2つのフッ素原子が結合した炭素原子を有するフルオロ化合物をIFを用いて製造する方法として、以下の式(a)〜(c)の式で示される具体例が挙げられている。
Generally, when producing a fluoro compound by fluorinating an organic compound, a fluorinating agent is used. For example, a method is known in which a compound having a carbonyl group is fluorinated using SF 4 or DAST (diethylaminosulfur trifluoride). However, the handling of these fluorinating agents is not easy and the price is expensive, and there is a problem that is not advantageous as a fluorinating agent used in an industrial production method.
Therefore, a fluorination method using IF 5 has been proposed as a fluorinating agent that is easy to handle (Patent Document 1).
In Patent Document 1, specific examples represented by the following formulas (a) to (c) are given as methods for producing a fluoro compound having a carbon atom to which two fluorine atoms are bonded using IF 5. Yes.

Figure 0005305321
Figure 0005305321

ただし、式(a)〜(c)で使用した記号Etはエチル基を示し、Meはメチル基を示し、r.t.は室温(23℃)で反応させたことを示し、hrは反応時間を示す。また、hexaneは反応溶媒としてヘキサンを、CHClは反応溶媒としてCHClを使用したことを示す。
また、IF/EtN−3HF(1:1モル比)とは、IFに対するEtN量が等倍モルとなるように、IFと、EtNとHFとの混合試薬(EtN:HF=1:3モル比)とを混合したフッ素化剤を用いて反応させたことを示す。
国際公開第01/96263号パンフレット
However, the symbol Et used in the formulas (a) to (c) represents an ethyl group, Me represents a methyl group, rt represents a reaction at room temperature (23 ° C.), and hr represents a reaction time. Further, Hexane is hexane as the reaction solvent, CH 2 Cl 2 indicates that using CH 2 Cl 2 as the reaction solvent.
In addition, IF 5 / Et 3 N-3HF (1: 1 molar ratio) is a mixed reagent of IF 5 and Et 3 N and HF so that the amount of Et 3 N relative to IF 5 is an equimolar mole ( It shows that the reaction was carried out using a fluorinating agent mixed with Et 3 N: HF = 1: 3 molar ratio.
International Publication No. 01/96263 Pamphlet

しかし、式(a)、(b)で得られるフルオロ化合物は、分子内にスルフィド基を有しており、このスルフィド基を除いた化合物を入手するためには、さらなる反応工程が必要である。
また、式(c)の反応では、原料が、2個のイオウ原子を含むヘテロ環を備えた特殊な構造のものである。そのため、式(c)の反応における特定の原料以外には入手が困難であり、得られるフルオロ化合物の構造が限定されていた。また、式(c)の原料を合成するには、臭気の強いHS-CH2CH2-SHを使う必要があった。
本発明は、かかる従来技術の問題点に鑑みてなされたものであり、2つのフッ素原子が結合した炭素原子を有する様々な分子構造のフルオロ化合物を、一段階の反応によって効率的に製造し、しかも、工業化にも適した製造方法を提供することを課題とする。
However, the fluoro compound obtained by the formulas (a) and (b) has a sulfide group in the molecule, and a further reaction step is required to obtain a compound excluding this sulfide group.
In the reaction of formula (c), the raw material has a special structure with a heterocycle containing two sulfur atoms. Therefore, it is difficult to obtain other than the specific raw material in the reaction of the formula (c), and the structure of the resulting fluoro compound is limited. Moreover, in order to synthesize the raw material of the formula (c), it was necessary to use HS-CH 2 CH 2 -SH having a strong odor.
The present invention has been made in view of such problems of the prior art, and efficiently produces fluoro compounds having various molecular structures having carbon atoms to which two fluorine atoms are bonded by a one-step reaction, Moreover, it is an object to provide a manufacturing method suitable for industrialization.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、モノスルフィド類をIFと反応させると、スルフィド基とスルフィド基のα位の炭素原子に結合する水素原子とを一段階の反応でフッ素原子に置換できることを見出だした。すなわち、本発明の要旨は以下のとおりである。 As a result of intensive studies to solve the above-described problems, the present inventors have reacted monosulfides with IF 5 to form a one-step reaction between a sulfide group and a hydrogen atom bonded to the α-position carbon atom of the sulfide group. It was found that a fluorine atom can be substituted in the reaction. That is, the gist of the present invention is as follows.

[1]下式(A)で表される化合物をIFと反応させることを特徴とする下式(B)で表されるフルオロ化合物の製造方法。
ただし、Xはアリール基、1価ヘテロ環基、およびハロゲン化アリール基から選ばれる基を表し、Yはシアノ基、アルコキシカルボニル基、アシル基、ハロゲン化アルキル基、およびハロゲン化アシル基から選ばれる基を表し、Rはアルキル基およびハロゲン化アリール基から選ばれる基を表す。
[1] A method for producing a fluoro compound represented by the following formula (B), comprising reacting a compound represented by the following formula (A) with IF 5 .
X represents a group selected from an aryl group, a monovalent heterocyclic group, and a halogenated aryl group, and Y represents a cyano group, an alkoxycarbonyl group, an acyl group, a halogenated alkyl group, and an acyl halide group. represents a group, R represents a group selected from alkyl groups and halogenated aryl groups.

Figure 0005305321
Figure 0005305321

[2]反応温度が−50〜100℃である[1に記載の製造方法。 [2] The production method according to the anti応温degree of -50 to 100 ° C. [1].

本発明の原料化合物であるモノスルフィド類は製造が容易である。また、スルフィド基に結合する基の構造に殆ど制限がない。そのため、様々な分子構造を有するフルオロ化合物を容易に得ることができる。
また、フッ素化剤であるIFは爆発性等の取り扱い上の問題がなく、かつ価格も安価である。そのため、本発明の製造方法は工業化に適している。
また、本発明の製造方法は、1つの炭素原子に対して、一段階で2つのフッ素原子を導入することが可能である。したがって、本発明によれば、2つのフッ素原子が結合した炭素原子を有するフルオロ化合物を、効率的に製造することができる。
Monosulfides which are the raw material compounds of the present invention are easy to produce. Moreover, there is almost no restriction on the structure of the group bonded to the sulfide group. Therefore, fluoro compounds having various molecular structures can be easily obtained.
In addition, IF 5 which is a fluorinating agent has no problem in handling such as explosiveness and is inexpensive. Therefore, the production method of the present invention is suitable for industrialization.
Moreover, the production method of the present invention can introduce two fluorine atoms in one step with respect to one carbon atom. Therefore, according to this invention, the fluoro compound which has a carbon atom which two fluorine atoms couple | bonded can be manufactured efficiently.

本明細書においては、式(A)で表される化合物を「化合物(A)」のようにも記す。他の式で表される化合物についても同様に記す。
本発明の製造方法は、下記に示すように、化合物(A)をIFと反応させることにより、化合物(B)を製造する方法である。
In the present specification, the compound represented by the formula (A) is also referred to as “compound (A)”. The same applies to compounds represented by other formulas.
The production method of the present invention is a method for producing compound (B) by reacting compound (A) with IF 5 as shown below.

Figure 0005305321
Figure 0005305321

ただし、Xは、アリール基、1価ヘテロ環基、およびアルキル基から選ばれる基、または該選ばれる基中の水素原子の1個以上が置換された基を表し、Yはアリール基、1価ヘテロ環基、アルキル基、アシル基、およびアリールオキシ基から選ばれる基、または該選ばれる基中の水素原子の1個以上が置換された基、シアノ基、またはアルコキシカルボニル基を表し、Rはアリール基およびアルキル基から選ばれる基、または該選ばれる基の水素原子の1個以上が置換された基を表す。   X represents a group selected from an aryl group, a monovalent heterocyclic group, and an alkyl group, or a group in which one or more hydrogen atoms in the selected group are substituted, and Y represents an aryl group, a monovalent group, or a monovalent group. R represents a group selected from a heterocyclic group, an alkyl group, an acyl group, and an aryloxy group, or a group in which one or more of hydrogen atoms in the selected group are substituted, a cyano group, or an alkoxycarbonyl group. A group selected from an aryl group and an alkyl group, or a group in which one or more hydrogen atoms of the selected group are substituted.

[化合物(A)]
化合物(A)は、スルフィド基のα位の炭素原子に、水素原子が1つ結合し、かつ、XおよびYで表される2つの置換基が結合した化合物である。
化合物(A)におけるXは、アリール基、1価ヘテロ環基、およびアルキル基から選ばれる基、または該選ばれる基中の水素原子の1個以上が置換された基である。
[Compound (A)]
Compound (A) is a compound in which one hydrogen atom is bonded to the α-position carbon atom of the sulfide group and two substituents represented by X and Y are bonded.
X in the compound (A) is a group selected from an aryl group, a monovalent heterocyclic group, and an alkyl group, or a group in which one or more hydrogen atoms in the selected group are substituted.

Xを構成するアリール基としては、フェニル基、ナフチル基等が挙げられる。
Xを構成する1価ヘテロ環基としては、チエニル基、フラニル基が挙げられる。
Xを構成するアルキル基としては、直鎖構造、分岐構造、環構造、または、部分的に分岐構造を有する基および/または部分的に環構造を有する基であってもよい。アルキル基は、炭素数1〜10のアルキル基が好ましく、炭素数1〜6のアルキル基が特に好ましい。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
Examples of the aryl group constituting X include a phenyl group and a naphthyl group.
Examples of the monovalent heterocyclic group constituting X include a thienyl group and a furanyl group.
The alkyl group constituting X may be a linear structure, a branched structure, a ring structure, a group having a partially branched structure, and / or a group having a partially ring structure. The alkyl group is preferably an alkyl group having 1 to 10 carbon atoms, and particularly preferably an alkyl group having 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-pentyl group, n-hexyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like. Is mentioned.

また、Xは、上記の基の基中の水素原子の1個以上が置換された基であってもよい。
該基中の水素原子と置換する置換基としては、IFを用いたフッ素化反応において不活性な基から選択されることが好ましい。フッ素化反応において不活性な基としては、ハロゲン原子、ニトロ基、シアノ基等が挙げられる。ハロゲン原子としては、塩素原子、フッ素原子、または臭素原子が好ましい。
X may be a group in which one or more hydrogen atoms in the above group are substituted.
The substituent that substitutes a hydrogen atom in the group is preferably selected from groups that are inactive in the fluorination reaction using IF 5 . Examples of the inert group in the fluorination reaction include a halogen atom, a nitro group, and a cyano group. As a halogen atom, a chlorine atom, a fluorine atom, or a bromine atom is preferable.

Xを構成する置換アリール基(アリール基中の水素原子の1個以上が置換された基)としては、ハロゲン化アリール基が好ましく、クロロフェニル基、ブロモフェニル基、2,3−ジフルオロフェニル基が挙げられる。
Xを構成する置換1価ヘテロ環基(1価ヘテロ環基中の水素原子の1個以上が置換された基)としては、5−メチル−2−チエニル基、4−メチル−2−チエニル基等が挙げられる。
Xを構成する置換アルキル基(アルキル基中の水素原子の1個以上が置換された基)としては、フッ素原子に置換されたアルキル基が好ましく、フッ素原子を1個以上有するフルオロアルキル基がより好ましく、トリフルオロメチル基が特に好ましい。
The substituted aryl group constituting X (a group in which one or more hydrogen atoms in the aryl group are substituted) is preferably a halogenated aryl group, and examples thereof include a chlorophenyl group, a bromophenyl group, and a 2,3-difluorophenyl group. It is done.
Examples of the substituted monovalent heterocyclic group constituting X (a group in which one or more hydrogen atoms in the monovalent heterocyclic group are substituted) include a 5-methyl-2-thienyl group and a 4-methyl-2-thienyl group Etc.
The substituted alkyl group constituting X (a group in which one or more hydrogen atoms in the alkyl group are substituted) is preferably an alkyl group substituted with a fluorine atom, more preferably a fluoroalkyl group having one or more fluorine atoms. Preferred is a trifluoromethyl group.

化合物(A)におけるYはアリール基、1価ヘテロ環基、アルキル基、アシル基、およびアリールオキシ基から選ばれる基、または該選ばれる基中の水素原子の1個以上が置換された基、シアノ基、またはアルコキシカルボニル基である。   Y in the compound (A) is a group selected from an aryl group, a monovalent heterocyclic group, an alkyl group, an acyl group, and an aryloxy group, or a group in which one or more hydrogen atoms in the selected group are substituted, A cyano group or an alkoxycarbonyl group.

Yを構成するアリール基、1価ヘテロ環基、およびアルキル基は、何れもXとして選択できるこれらの基と同じものから選択できる。また、これらの基の基中の水素原子の1個以上が置換された置換アリール基、置換1価ヘテロ環基、および置換アルキル基も、Xとして選択できるものと同じである。
Yとして選択できるこれらの基の中で、好ましい基もXにおける好ましい基と同じである。
The aryl group, monovalent heterocyclic group and alkyl group constituting Y can be selected from the same groups as those which can be selected as X. In addition, a substituted aryl group, a substituted monovalent heterocyclic group, and a substituted alkyl group in which one or more hydrogen atoms in the groups of these groups are substituted are the same as those that can be selected as X.
Among these groups that can be selected as Y, preferred groups are the same as the preferred groups for X.

Yを構成するアシル基としては、アルカノイル基またはベンゾイル基が好ましい。アルカノイル基としては、炭素数が1〜10の基が好ましく、炭素数1〜6の基が特に好ましい。アルカノイル基の具体例としては、アセチル基、プロピオニル基、n−ブチリル基等の基が挙げられる。
Yを構成するアリールオキシ基としては、フェノキシ基、ナフトキシ基等が挙げられる。
As the acyl group constituting Y, an alkanoyl group or a benzoyl group is preferable. As the alkanoyl group, a group having 1 to 10 carbon atoms is preferable, and a group having 1 to 6 carbon atoms is particularly preferable. Specific examples of the alkanoyl group include groups such as an acetyl group, a propionyl group, and an n-butyryl group.
Examples of the aryloxy group constituting Y include a phenoxy group and a naphthoxy group.

Yを構成する置換アシル基(アシル基中の水素原子の1個以上が置換された基)としては、クロロアセチル基、ブロモアセチル基、トリフルオロアセチル基等が挙げられる。
Yを構成する置換アリールオキシ基(アリールオキシ基の水素原子の1個以上が置換された基)としては、4−ニトロフェノキシ基、4−シアノフェノキシ基、4−ブロモフェノキシ基、4−クロロフェノキシ基、4−フルオロフェノキシ基、4−メチルフェノキシ基、4−tert−ブチルフェノキシ基等が挙げられる。
Examples of the substituted acyl group constituting Y (a group in which one or more hydrogen atoms in the acyl group are substituted) include a chloroacetyl group, a bromoacetyl group, and a trifluoroacetyl group.
Examples of the substituted aryloxy group constituting Y (a group in which one or more hydrogen atoms of the aryloxy group are substituted) include 4-nitrophenoxy group, 4-cyanophenoxy group, 4-bromophenoxy group, 4-chlorophenoxy group Group, 4-fluorophenoxy group, 4-methylphenoxy group, 4-tert-butylphenoxy group and the like.

Yを構成するアルコキシカルボニル基としては、アルキル基部分の炭素数が1〜9である基が好ましく、炭素数1〜5である基が好ましい。アルキル基部分の構造は直鎖構造であっても分岐構造であってもよい。アルコキシカルボニル基の例としては、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、i−プロポキシカルボニル基、n−ブトキシカルボニル基等が挙げられる。   As the alkoxycarbonyl group constituting Y, a group having 1 to 9 carbon atoms in the alkyl group portion is preferable, and a group having 1 to 5 carbon atoms is preferable. The structure of the alkyl group moiety may be a linear structure or a branched structure. Examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an i-propoxycarbonyl group, and an n-butoxycarbonyl group.

本発明の製造方法では、化合物(A)中のXおよびYは、その構造が保持されたまま、化合物(B)中のXおよびYとなる。したがって、化合物(A)中のXおよびYは、目的とする化合物(B)のXおよびYを選択すればよい。
ただし、フッ素化反応の反応性の観点からは、Xとしては電子吸引性を持たない、または電子吸引性が弱い基を採用し、Yとして電子吸引性の基を選択することが好ましい。
その理由は、本発明の製造方法における反応メカニズムに基づき以下のように考えられる。
In the production method of the present invention, X and Y in the compound (A) become X and Y in the compound (B) while maintaining the structure. Therefore, X and Y in the compound (A) may be selected from those of the target compound (B).
However, from the viewpoint of the reactivity of the fluorination reaction, it is preferable to adopt a group having no electron withdrawing property or weak electron withdrawing property as X and selecting an electron withdrawing group as Y.
The reason is considered as follows based on the reaction mechanism in the production method of the present invention.

まず、本発明の製造方法における反応は、以下のようなメカニズムで進行すると考えられる。なお、以下の説明は、Xがフェニル基、Yがエトキシカルボニル基である場合を例に挙げて行う。
まず、下式に示すように、IFは、平衡反応により、IF とFとを生成させる。
First, the reaction in the production method of the present invention is considered to proceed by the following mechanism. In the following description, the case where X is a phenyl group and Y is an ethoxycarbonyl group is taken as an example.
First, as shown in the following formula, IF 5 generates IF 4 + and F by an equilibrium reaction.

Figure 0005305321
Figure 0005305321

下式(I)に示すように、Xがフェニル基、Yがエトキシカルボニル基である化合物(A)は、イオウ原子に非共有電子対を有している。反応は、この非共有電子対をイオウ原子とIF とが共有することにより開始する。
次に、下式(II)に示すように、IFから生成したFは、ベンジル位の炭素原子に結合した水素原子を引きぬき、下式(III)に示す安定なカチオンを生成させると共に、このカチオンに再びFが反応し、まずフッ素原子1個がベンジル位の炭素原子に結合する。
次いで、下式(IV)に示すように、イオウ原子の非共有電子対をイオウ原子とIF とが共有する。最後に、下式(V)に示すようにFが反応してIFおよびRS−Fが脱離することにより、目的とするジフルオロ体(VI)が生成すると考えられる。
As shown in the following formula (I), the compound (A) in which X is a phenyl group and Y is an ethoxycarbonyl group has an unshared electron pair on a sulfur atom. The reaction is initiated by the sharing of this unshared electron pair by the sulfur atom and IF 4 + .
Next, as shown in the following formula (II), F generated from IF 5 pulls out a hydrogen atom bonded to the carbon atom at the benzyl position, thereby generating a stable cation shown in the following formula (III). F reacts again with this cation, and first, one fluorine atom is bonded to the carbon atom at the benzyl position.
Next, as shown in the following formula (IV), the sulfur atom and IF 4 + share the unshared electron pair of the sulfur atom. Finally, F as shown in the following equation (V) - by IF 3 and RS-F is released by the reaction is considered to difluoro body of interest (VI) is produced.

Figure 0005305321
Figure 0005305321

上記メカニズムにおける反応の開始には、化合物(A)のイオウ原子に非共有電子対が存在することが必要とされる。もし、XおよびYの双方が電子吸引性の基である場合には、イオウ原子の非共有電子対の電子密度が低くなり、反応が開始しづらくなる。そのため、Xとしては電子吸引性を持たない、または電子吸引性が弱い基を採用することが好ましいと考えられる。
一方、Yとして電子吸引性の基を選択することが好ましい。Yが電子供与性の基R’である場合には、下式(VII)に示すように、イオウ原子の非共有電子対をIF と共有することはできる。しかし、その後、式(VIII)に示すカチオンの安定性が高くなり、該カチオンがFと反応して式(IX)に示すモノフルオロ体を生成するする副反応が同時に進行してしまう。そのため、目的とするジフルオロ体(VI)の収率が低くなると考えられる。
Yが「電子吸引性の基」であれば、反応の中間物質である式(III)に示すカチオンが、式(VIII)に示すカチオンと同様のカチオンよりも安定性が高くなることから、(II)→(III)→(VI)の反応が優先的に起こり、上記副反応が抑えられると考えられる。
Initiation of the reaction in the above mechanism requires the presence of an unshared electron pair on the sulfur atom of compound (A). If both X and Y are electron-withdrawing groups, the electron density of the unshared electron pair of the sulfur atom is lowered and the reaction is difficult to start. Therefore, it is considered preferable to employ a group having no electron withdrawing property or weak electron withdrawing property as X.
On the other hand, it is preferable to select an electron-withdrawing group as Y. When Y is an electron donating group R ′, the unshared electron pair of the sulfur atom can be shared with IF 4 + as shown in the following formula (VII). However, after that, the stability of the cation represented by the formula (VIII) becomes high, and the side reaction in which the cation reacts with F to form the monofluoro compound represented by the formula (IX) proceeds at the same time. Therefore, the yield of the target difluoro compound (VI) is considered to be low.
If Y is an “electron-withdrawing group”, the cation represented by the formula (III), which is an intermediate substance of the reaction, is more stable than the cation similar to the cation represented by the formula (VIII). It is considered that the reaction of II) → (III) → (VI) occurs preferentially and the side reaction is suppressed.

Figure 0005305321
Figure 0005305321

以上のことから、Xとして「電子吸引性を持たない、または電子吸引性が弱い基」、Yとして「電子吸引性の基」を選択した場合には、反応の開始がしやすく、かつ副反応の進行を抑えられるので、より収率良く目的とするジフルオロ体(VI)が生成するものと考えられる。   From the above, when “group having no electron withdrawing property or weak electron withdrawing property” is selected as X and “electron withdrawing group” is selected as Y, the reaction is easy to start and side reaction Therefore, it is considered that the target difluoro compound (VI) is produced with higher yield.

したがって、反応性の観点から好ましいXとしては、アリール基、および1価ヘテロ環基から選ばれる基、または該選ばれる基中の水素原子の1個以上が置換された基が挙げられる。ここで「水素原子の1個以上が置換された基」における水素原子と置換する置換基は、炭素数1〜6個のアルキル基、炭素数1〜6個のアルコキシ基、ハロゲン原子、シアノ基、ニトロ基から選択される1以上であることが好ましい。
反応性の観点からより好ましいXは、アリール基、またはハロゲン化アリール基であり、アルキル置換されたアリール基またはアルコキシ置換されたアリール基であることが特に好ましい。
また、反応性の観点から好ましいYとしては、シアノ基、アルコキシカルボニル基、アシル基、ハロゲン化アルキル基、及びハロゲン化アシル基が挙げられる。反応性の観点からより好ましいYは、アルコキシカルボニル基、またはアシル基であり、シアノ基、またはハロゲン化アルキル基であることが特に好ましい。
Therefore, X preferable from the viewpoint of reactivity includes a group selected from an aryl group and a monovalent heterocyclic group, or a group in which one or more hydrogen atoms in the selected group are substituted. Here, the substituent that is substituted for the hydrogen atom in the “group in which one or more hydrogen atoms are substituted” is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a halogen atom, or a cyano group 1 or more selected from nitro groups.
From the viewpoint of reactivity, X is more preferably an aryl group or a halogenated aryl group, and particularly preferably an alkyl-substituted aryl group or an alkoxy-substituted aryl group.
In addition, Y preferable from the viewpoint of reactivity includes a cyano group, an alkoxycarbonyl group, an acyl group, a halogenated alkyl group, and a halogenated acyl group. More preferable Y from the viewpoint of reactivity is an alkoxycarbonyl group or an acyl group, and particularly preferably a cyano group or a halogenated alkyl group.

化合物(A)中のRはアリール基およびアルキル基から選ばれる基、または該選ばれる基の水素原子の1個以上が置換された基である。
Rを構成するアリール基およびアルキル基は、何れもXとして選択できるこれらの基と同じものから選択できる。また、これらの基の基中の水素原子の1個以上が置換された置換アリール基および置換アルキル基も、Xとして選択できるものと同じである。
本発明の製造方法では、化合物(A)中のRは化合物(B)中に残らない。そのため、Rは、化合物(A)の入手の容易性及びIFとの反応性の観点から選択することができる。
IFとの反応性の観点から好ましいRとしては、アリール基、アルキル基またはハロゲン化アリール基、ハロゲン化アルキル基が挙げられる。反応性の観点からより好ましいRは、アリール基、アルキル基、またはハロゲン化アリール基であり、アルキル基またはハロゲン化アリール基であることが特に好ましい。ハロゲン化アリール基におけるハロゲン原子としては、フッ素原子、または塩素原子が好ましい。
Rがアルキル基、またはハロゲン化アリール基であれば硫黄原子上の電子密度を極度に低下させることが無いので、フッ素化反応の進行に好ましいと考えられる。
また、化合物(A)の入手の容易性の観点から好ましいRとしては、アリール基、アルキル基またはハロゲン化アリール基が挙げられる。化合物(A)の入手の容易性の観点からより好ましいRは、アリール基またはアルキル基であり、アルキル基であることが特に好ましい。
特に好ましいRはメチル基である。Rがメチル基である化合物(A)は、入手や合成が容易である。また、Rがメチル基である化合物(A)は、IFとの反応性も良好である。
なお、化合物(A)の製造方法については後述するが、市販品として入手することもできる。
R in the compound (A) is a group selected from an aryl group and an alkyl group, or a group in which one or more hydrogen atoms of the selected group are substituted.
The aryl group and alkyl group constituting R can be selected from the same groups as those selected as X. In addition, a substituted aryl group and a substituted alkyl group in which one or more hydrogen atoms in these groups are substituted are the same as those which can be selected as X.
In the production method of the present invention, R in compound (A) does not remain in compound (B). Therefore, R can be selected from the viewpoint of availability of compound (A) and reactivity with IF 5 .
Preferable R from the viewpoint of reactivity with IF 5 includes an aryl group, an alkyl group, a halogenated aryl group, and a halogenated alkyl group. R more preferable from the viewpoint of reactivity is an aryl group, an alkyl group, or a halogenated aryl group, and particularly preferably an alkyl group or a halogenated aryl group. The halogen atom in the halogenated aryl group is preferably a fluorine atom or a chlorine atom.
If R is an alkyl group or an aryl halide group, the electron density on the sulfur atom will not be extremely reduced, and it is considered preferable for the progress of the fluorination reaction.
Moreover, as a preferable R from a viewpoint of the availability of a compound (A), an aryl group, an alkyl group, or a halogenated aryl group is mentioned. From the viewpoint of easy availability of the compound (A), R is more preferably an aryl group or an alkyl group, and particularly preferably an alkyl group.
Particularly preferred R is a methyl group. The compound (A) in which R is a methyl group is easy to obtain and synthesize. In addition, the compound (A) in which R is a methyl group has good reactivity with IF 5 .
In addition, although the manufacturing method of a compound (A) is mentioned later, it can also obtain as a commercial item.

[フッ素化反応]
本発明の反応は、化合物(A)とIFとを反応させて、スルフィド基とスルフィド基のα位の炭素原子に結合する水素原子を一段の反応でフッ素化して、2つのフッ素原子が結合した炭素原子を有するフルオロ化合物を得る反応である。
[Fluorination reaction]
In the reaction of the present invention, the compound (A) is reacted with IF 5 to fluorinate the hydrogen atom bonded to the α-position carbon atom of the sulfide group and the sulfide group in a one-step reaction, thereby bonding the two fluorine atoms. Reaction for obtaining a fluoro compound having a carbon atom.

IFの量は、化合物(A)に対して1〜10倍モル量が好ましく、1.5〜2.0倍モル量が特に好ましい。
IFはあらかじめ溶媒に溶解させておいたものを反応系中に添加するのが取り扱いの容易さの観点から好ましい。該溶媒は、後述のフッ素化反応に用い得る溶媒と同一であっても異なっていてもよい。
IFの溶解に使用する溶媒は、後述のフッ素化反応に用い得る溶媒と同一のものから選択できる。中でも、溶解性の観点から塩化メチレン(CHCl)が特に好ましい。該溶媒の量は、IFに対して1〜10倍モル量が好ましく、3〜5倍モル量がより好ましい。
The amount of IF 5 is preferably 1 to 10-fold mol amount, particularly preferably 1.5 to 2.0-fold mol amount based on Compound (A).
From the viewpoint of ease of handling, it is preferable to add IF 5 previously dissolved in a solvent to the reaction system. The solvent may be the same as or different from the solvent that can be used in the fluorination reaction described below.
The solvent used for dissolving IF 5 can be selected from the same solvents that can be used for the fluorination reaction described below. Among these, methylene chloride (CH 2 Cl 2 ) is particularly preferable from the viewpoint of solubility. The amount of the solvent is preferably 1 to 10 times by mole, more preferably 3 to 5 times by mole with respect to IF 5 .

フッ素化反応の反応温度は−50〜100℃が好ましく、−20〜30℃が特に好ましい。反応温度が100℃以下であれば、IFの沸点(100.5℃)以下となることによりIFの損失を防ぐことができ好ましい。また、30℃以下であれば、目的外の反応(たとえば、他のフッ素化反応等の副反応)が抑制されるので好ましい。一方、反応温度が−50℃以上であれば、液相で反応を実施できるため好ましい。また、−20℃以上であれば大部分の原料の析出を防ぐことができるのでより好ましい。
反応時間は特に限定されず、原料が消失するまで、または、反応が進行しなくなるまでの時間であることが好ましい。
The reaction temperature of the fluorination reaction is preferably -50 to 100 ° C, particularly preferably -20 to 30 ° C. If the reaction temperature is 100 ° C. or lower, loss of IF 5 can be prevented by lowering the boiling point of IF 5 (100.5 ° C.) or lower. Moreover, if it is 30 degrees C or less, since reaction other than the objective (for example, side reactions, such as another fluorination reaction), is suppressed, it is preferable. On the other hand, a reaction temperature of −50 ° C. or higher is preferable because the reaction can be carried out in a liquid phase. Moreover, if it is -20 degreeC or more, since precipitation of most raw materials can be prevented, it is more preferable.
The reaction time is not particularly limited, and is preferably the time until the raw material disappears or the reaction does not proceed.

フッ素化反応は無溶媒で行っても溶媒の存在下に行ってもよく、溶媒の存在下で行うのが好ましい。化合物(A)が液状である場合には、化合物(A)が溶媒としての役目を果たすため、溶媒を用いずとも反応を実施できる。
溶媒の存在下で反応させる場合、溶媒としては、塩化メチレン、クロロホルムなどの塩素系溶媒、トルエン、ヘキサン、ペンタンなどの炭化水素系溶媒、テトラヒドロフランなどのフッ素系溶剤、ジエチルエーテル、t−ブチルエチルエーテルなどのエーテル系溶剤、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル等が挙げられる。中でもヘキサン、塩化メチレンが好ましい。
The fluorination reaction may be performed in the absence of a solvent or in the presence of a solvent, and is preferably performed in the presence of a solvent. When the compound (A) is in a liquid state, the compound (A) serves as a solvent, so that the reaction can be carried out without using a solvent.
When the reaction is performed in the presence of a solvent, examples of the solvent include chlorinated solvents such as methylene chloride and chloroform, hydrocarbon solvents such as toluene, hexane, and pentane, fluorine-based solvents such as tetrahydrofuran, diethyl ether, and t-butyl ethyl ether. And ether solvents such as dimethylformamide, dimethyl sulfoxide, and acetonitrile. Of these, hexane and methylene chloride are preferred.

フッ素化反応で得た化合物(B)を含む反応粗生成物は、通常の後処理として、水を加え希釈し、その後、中和操作、抽出、乾燥等を行う。中和操作に用いる中和剤としては、炭酸水素ナトリウム、炭酸ナトリウム、水酸化ナトリウムなどの水溶液などが挙げられ、取り扱いの点から炭酸水素ナトリウムを用いることが好ましい。抽出する為の溶媒は、反応に用いるものと同じ溶媒を使用できるが、ジエチルエーテル、塩化メチレンが好ましい。乾燥に用いる乾燥剤としては、無水硫酸マグネシウム、無水硫酸ナトリウムなどが挙げられる。
また、中和操作、抽出、乾燥等の後に、目的に応じた純度にするための精製処理を行ってもよい。精製処理としては、カラムクロマトグラフィー、蒸留、再結晶等の方法が挙げられる。
The reaction crude product containing the compound (B) obtained by the fluorination reaction is diluted by adding water as a normal post-treatment, and then neutralized, extracted, dried, and the like. Examples of the neutralizing agent used for the neutralization operation include aqueous solutions of sodium hydrogen carbonate, sodium carbonate, sodium hydroxide, and the like, and sodium hydrogen carbonate is preferably used from the viewpoint of handling. As the solvent for extraction, the same solvent as used for the reaction can be used, but diethyl ether and methylene chloride are preferable. Examples of the desiccant used for drying include anhydrous magnesium sulfate and anhydrous sodium sulfate.
Moreover, you may perform the refinement | purification process for obtaining the purity according to the objective after neutralization operation, extraction, drying, etc. Examples of the purification treatment include methods such as column chromatography, distillation, and recrystallization.

[化合物(A)の製造方法]
本発明の反応の出発物質である化合物(A)は、公知の化合物にY. Tamura et al. Tetrahedron Lett., 1980, 21, 2547-2548.等に記載される方法を適用することにより製造できる。
化合物(A)の製造方法としては、つぎの方法1〜3の何れかによるのが好ましい。
[Production Method of Compound (A)]
Compound (A) which is a starting material for the reaction of the present invention can be produced by applying a method described in Y. Tamura et al. Tetrahedron Lett., 1980, 21, 2547-2548. .
As a manufacturing method of a compound (A), it is preferable to depend on either of the following methods 1-3.

[方法1]
下式(1)で表される化合物を塩素化剤と反応させて下式(2)で表される化合物とし、該式(2)で表される化合物を式(3)で表される化合物と反応させて化合物(A)を得る方法。ただし、式中のR、Y、およびXは前記と同じ意味を表す。
R−S−CH−Y (1)
R−S−CHCl−Y (2)
H−X (3)
[Method 1]
A compound represented by the following formula (1) is reacted with a chlorinating agent to form a compound represented by the following formula (2), and the compound represented by the formula (2) is represented by the formula (3): To obtain a compound (A). However, R, Y, and X in a formula represent the same meaning as the above.
R—S—CH 2 —Y (1)
R-S-CHCl-Y (2)
H-X (3)

塩素化剤としては、N−クロロスクシンイミド、塩化スルフリル等が挙げられ、化合物(1)に対して1〜1.5倍モル量を用いるのが好ましい。
塩素化剤との反応は四塩化炭素、クロロホルム、塩化メチレンなどの溶媒存在下に行うのが好ましい。化合物(1)と塩素化剤との反応温度は0〜100℃で行うのが好ましく、10〜30℃で行うのがより好ましい。
化合物(2)と化合物(3)の反応は、塩化メチレンなどの溶媒の存在下に行うのが好ましい。なお、化合物(3)が液状の場合は、無溶媒で行うこともできる。化合物(2)と化合物(3)の反応温度は0〜100℃で行うのが好ましく、0〜20℃で行うのがより好ましい。
Examples of the chlorinating agent include N-chlorosuccinimide, sulfuryl chloride, and the like, and it is preferable to use 1 to 1.5 times the molar amount of the compound (1).
The reaction with the chlorinating agent is preferably carried out in the presence of a solvent such as carbon tetrachloride, chloroform or methylene chloride. The reaction temperature between the compound (1) and the chlorinating agent is preferably 0-100 ° C, more preferably 10-30 ° C.
The reaction between compound (2) and compound (3) is preferably carried out in the presence of a solvent such as methylene chloride. In addition, when a compound (3) is liquid, it can also carry out without a solvent. The reaction temperature of the compound (2) and the compound (3) is preferably 0 to 100 ° C, more preferably 0 to 20 ° C.

[方法2]
下式(4)で表される化合物を式(5)で表される化合物と反応させて化合物(A)を得る方法。ただし、式中のR、Y、およびXは前記と同じ意味を表す。
X−CHCl−Y (4)
RSNa (5)
反応は化合物(5)の水溶液と化合物(4)を反応させることが好ましく、反応温度は0〜100℃で行うのが好ましく、0〜20℃で行うのがより好ましい。
[Method 2]
A method of obtaining a compound (A) by reacting a compound represented by the following formula (4) with a compound represented by the formula (5). However, R, Y, and X in a formula represent the same meaning as the above.
X-CHCl-Y (4)
RSNa (5)
The reaction is preferably performed by reacting an aqueous solution of compound (5) with compound (4), and the reaction temperature is preferably 0 to 100 ° C, more preferably 0 to 20 ° C.

[方法3]
下式(6)で表される化合物と下式(7)で表される化合物と下式(8)で表される化合物をルイス酸存在下に反応させて化合物(A)を得る方法。ただし、式中のR、Y、およびXは前記と同じ意味を表す。
H−X (6)
R−S−H (7)
Y-CH(OH)2 (8)
反応は塩化メチレンなどの溶媒存在下で行うのが好ましく、反応温度は、反応温度は0〜100℃で行うのが好ましく、0〜20℃で行うのがより好ましい。用いるルイス酸としては、三ふっ化ほう素―ジエチルエーテルなどが挙げられる。
[Method 3]
A method of obtaining a compound (A) by reacting a compound represented by the following formula (6), a compound represented by the following formula (7) and a compound represented by the following formula (8) in the presence of a Lewis acid. However, R, Y, and X in a formula represent the same meaning as the above.
H-X (6)
RSH (7)
Y-CH (OH) 2 (8)
The reaction is preferably carried out in the presence of a solvent such as methylene chloride, and the reaction temperature is preferably 0-100 ° C, more preferably 0-20 ° C. Examples of the Lewis acid used include boron trifluoride-diethyl ether.

以下本発明の実施例を説明するが、本発明の範囲はこれらの実施例に限定されない。なお、製造した化合物の構造は公知のNMRのデータと比較することにより決定した。化合物の収率は用いた原料と生成物の質量を定量することにより求めた。
実施例中で使用した記号の意味は、Phはフェニル基を示し、Etはエチル基を示し、Buはブチル基を示し、t-Buはターシャリーブチル基を示し、r.t.は室温(23℃)で反応させたことを示す。
Examples of the present invention will be described below, but the scope of the present invention is not limited to these examples. The structure of the produced compound was determined by comparison with known NMR data. The yield of the compound was determined by quantifying the raw materials used and the mass of the product.
The meanings of symbols used in the examples are as follows: Ph represents a phenyl group, Et represents an ethyl group, Bu represents a butyl group, t-Bu represents a tertiary butyl group, and rt represents room temperature (23 ° C.). It shows that it was made to react.

[例1]化合物(A)の調製例
[例1−1]化合物(A−1)の合成例
メチルチオ酢酸エチルの3.9g(29mmol)を四塩化炭素(100ml)に溶解した溶液に、0℃で、N−クロロスクシンイミドの4.0g(30mmol)を少しずつ加えた。加え終わった後、室温(23℃)で6時間攪拌し。固体を濾別したのち、濾液を10mmHgの減圧下で、91℃にて蒸留し、メチルチオクロル酢酸エチルの4.3g(25.6 mmol)を得た。
得られたメチルチオクロル酢酸エチルの内、1.68g(10mmol)をベンゼンに溶解してベンゼン溶液の5mlとし、この溶液に、0℃でSnClの2.6g(10mmol)をゆっくり滴下した。30分攪拌後、水を加えてジエチルエーテル抽出した後、無水硫酸マグネシウムで乾燥し、ロータリーエバポレーターで濃縮後シリカゲルカラムクロマトグラフィー(シリカゲル、ヘキサン−ジエチルエーテル)により精製して、メチルチオフェニル酢酸エチル(A−1)の1.89g(9mmol)を得た。収率は80%であった。
[Example 1] Preparation Example of Compound (A) [Example 1-1] Synthesis Example of Compound (A-1) To a solution of 3.9 g (29 mmol) of ethyl methylthioacetate in carbon tetrachloride (100 ml), 0 At 0 ° C., 4.0 g (30 mmol) of N-chlorosuccinimide was added little by little. After the addition was completed, the mixture was stirred at room temperature (23 ° C.) for 6 hours. After filtering off the solid, the filtrate was distilled at 91 ° C. under a reduced pressure of 10 mmHg to obtain 4.3 g (25.6 mmol) of ethyl methylthiochloroacetate.
Of the obtained ethyl methylthiochloroacetate, 1.68 g (10 mmol) was dissolved in benzene to make 5 ml of the benzene solution, and 2.6 g (10 mmol) of SnCl 4 was slowly added dropwise to this solution at 0 ° C. After stirring for 30 minutes, water was added and the mixture was extracted with diethyl ether, dried over anhydrous magnesium sulfate, concentrated on a rotary evaporator, and purified by silica gel column chromatography (silica gel, hexane-diethyl ether) to obtain ethyl methylthiophenyl acetate (A -1) 1.89 g (9 mmol) was obtained. The yield was 80%.

[例1−2〜例1−7]
出発物質を変更する以外は例1−1の方法と同じ方法を用いて、下記化合物(A−2)、(A−3)、(A−5)〜(A−7)を合成した。出発物質、生成した化合物(A)の関係を表1に示す。また、出発物質を変更する以外は例1−1の方法と同じ方法を用いて、下記化合物(A−4)を合成する。出発物質、生成する化合物(A)の関係を表1に示す。
[Example 1-2 to Example 1-7]
The following compounds (A-2), (A-3) and (A-5) to (A-7) were synthesized using the same method as in Example 1-1 except that the starting material was changed. Table 1 shows the relationship between the starting material and the produced compound (A). Moreover, the following compound (A-4) is synthesize | combined using the same method as the method of Example 1-1 except changing a starting material. Table 1 shows the relationship between the starting material and the resulting compound (A).

[例1−8]
2−クロロ−1,2−ジフェニルエタノンの5g(22mmol)をシクロヘキサン(40ml)に溶解した溶液に、メチルチオナトリウム15%水溶液の20mlを加え、室温(23℃)で14時間攪拌した。ジエチルエーテル抽出した後、無水硫酸マグネシウムで乾燥し、ロータリーエバポレーターで濃縮後シリカゲルカラムクロマトグラフィー(シリカゲル、ヘキサン−ジエチルエーテル)により精製して、1,2−ジフェニル−2−メチルチオエタノン(A−8)の4.8g(20mmol)を得た。収率は91%であった。
[Example 1-8]
To a solution of 5 g (22 mmol) of 2-chloro-1,2-diphenylethanone dissolved in cyclohexane (40 ml), 20 ml of a 15% aqueous solution of methylthiosodium was added and stirred at room temperature (23 ° C.) for 14 hours. After extraction with diethyl ether, drying over anhydrous magnesium sulfate, concentration with a rotary evaporator and purification by silica gel column chromatography (silica gel, hexane-diethyl ether), 1,2-diphenyl-2-methylthioethanone (A-8) 4.8 g (20 mmol) was obtained. The yield was 91%.

[例1−9]
出発物質を変更する以外は例1−8の方法と同じ方法を用いて、下記化合物(A−9)を合成した。出発物質、生成した化合物(A)の関係を表1に示す。
[Example 1-9]
The following compound (A-9) was synthesized using the same method as in Example 1-8 except that the starting material was changed. Table 1 shows the relationship between the starting material and the produced compound (A).

[例1−10]
トリフルオロアセトアルデヒド水和物の1.5g(8.1mmol)、ブタンチオールの0.74g(8.2mmol)およびtert−ブチルベンゼンの2.25g(16.8mmol)を塩化メチレンの25mlに溶解した。この塩化メチレン溶液にBF−HO(BFとHOとの1:1(モル比)の混合物。1.5ml)を室温(23℃)で加え、同温度で2時間攪拌した。水を加えて塩化メチレンで抽出し、有機層を水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥し、ロータリーエバポレーターで濃縮後シリカゲルカラムクロマトグラフィー(シリカゲル、ヘキサン−ジエチルエーテル)により精製して、ブチル−2,2,2−トリフルオロ―1−(tert−ブチルフェニル)エチルスルフィド(A−10)の0.76g(2.5mmol)を得た。収率は31%であった。
[Example 1-10]
1.5 g (8.1 mmol) of trifluoroacetaldehyde hydrate, 0.74 g (8.2 mmol) of butanethiol and 2.25 g (16.8 mmol) of tert-butylbenzene were dissolved in 25 ml of methylene chloride. BF 3 —H 2 O (1: 1 (molar ratio) mixture of BF 3 and H 2 O. 1.5 ml) was added to the methylene chloride solution at room temperature (23 ° C.), and the mixture was stirred at the same temperature for 2 hours. . Water was added and the mixture was extracted with methylene chloride. The organic layer was washed with water, saturated aqueous sodium hydrogen carbonate solution and saturated brine. Dried over anhydrous magnesium sulfate, concentrated on a rotary evaporator and purified by silica gel column chromatography (silica gel, hexane-diethyl ether) to obtain butyl-2,2,2-trifluoro-1- (tert-butylphenyl) ethyl sulfide 0.76 g (2.5 mmol) of (A-10) was obtained. The yield was 31%.

Figure 0005305321
Figure 0005305321

[例2]
IFと、IFの5倍モル量の塩化メチレンを混合してIFのCHCl溶液(以下「IF/5CHCl」と記載する。)とした。
テトラフルオロエチレン製の容器にIF/5CHClの1g、IFとして1.5mmol)、ヘキサンの2mlを入れ、これに0℃でメチルチオフェニル酢酸エチル(A−1)の210mg(1mmol)を加え、室温で2時間攪拌した。得られた混合物をテトラフルオロエチレン製のビーカーに入れた水20mlに投入し、炭酸水素ナトリウム水溶液で中和し、ジエチルエーテルで抽出した後、有機層をチオ硫酸ナトリウム水で洗浄した。無水硫酸マグネシウムで乾燥し、ロータリーエバポレーターで濃縮後シリカゲルカラムクロマトグラフィーにより精製して、2,2−ジフルオロフェニル酢酸エチル(B−1)の146mg(0.73mmol)を得た。収率は73%であった。
[Example 2]
And IF 5, was a CH 2 Cl 2 solution of the IF 5 by mixing 5-fold molar amount of methylene chloride IF 5 (hereinafter referred to as "IF 5 / 5CH 2 Cl 2".).
In a tetrafluoroethylene container, 1 g of IF 5 / 5CH 2 Cl 2 (1.5 mmol as IF 5 ) and 2 ml of hexane were added, and 210 mg (1 mmol) of ethyl methylthiophenylacetate (A-1) at 0 ° C. And stirred at room temperature for 2 hours. The obtained mixture was poured into 20 ml of water placed in a tetrafluoroethylene beaker, neutralized with an aqueous sodium hydrogen carbonate solution, extracted with diethyl ether, and the organic layer was washed with aqueous sodium thiosulfate. The extract was dried over anhydrous magnesium sulfate, concentrated by a rotary evaporator, and purified by silica gel column chromatography to obtain 146 mg (0.73 mmol) of ethyl 2,2-difluorophenylacetate (B-1). The yield was 73%.

[例3〜11]
原料として表2に記載した化合物(A)を用い。反応条件を表2に記載したものに変更すること以外は、例2の方法と同じ方法で反応を実施した。得られた化合物(B)と収率を表2に示す。
[Examples 3 to 11]
The compound (A) described in Table 2 was used as a raw material. The reaction was carried out in the same manner as in Example 2 except that the reaction conditions were changed to those described in Table 2. The obtained compound (B) and yield are shown in Table 2.

Figure 0005305321
Figure 0005305321

実施例で製造した化合物の同定資料を以下に示す。
化合物(B−1):H−NMR(400MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.31(t、3H、7.2Hz)、4.3(q、2H、7.2Hz)、7.44〜7.52(m、3H)、7.60〜7.62(m、2H)。19F−NMR(376MHz、溶媒CDCl、基準:CFCl)δ(ppm):−104.5(s、2F).
The identification material of the compound manufactured in the Example is shown below.
Compound (B-1): 1 H-NMR (400 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.31 (t, 3H, 7.2 Hz), 4.3 (q, 2H, 7 .2 Hz), 7.44-7.52 (m, 3H), 7.60-7.62 (m, 2H). 19 F-NMR (376 MHz, solvent CDCl 3 , standard: CFCl 3 ) δ (ppm): −104.5 (s, 2F).

化合物(B−2):H−NMR(400MHz、溶媒:CDCl、基準:TMS)δ(ppm):2.3(t、3H、1.5Hz)、7.45〜7.56(m、5H)。19F−NMR(376MHz、溶媒CDCl、基準:CFCl)δ(ppm):−107.4(s、2F)。 Compound (B-2): 1 H-NMR (400 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 2.3 (t, 3 H, 1.5 Hz), 7.45 to 7.56 (m 5H). 19 F-NMR (376 MHz, solvent CDCl 3 , standard: CFCl 3 ) δ (ppm): −107.4 (s, 2F).

化合物(B−3):H−NMR(400MHz、溶媒:CDCl、基準:TMS)δ(ppm):7.53〜7.69(m、5H)。19F−NMR(376MHz、溶媒CDCl、基準:CFCl)δ(ppm):−83.8(s、2F)。 Compound (B-3): 1 H-NMR (400 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 7.53 to 7.69 (m, 5H). 19 F-NMR (376 MHz, solvent CDCl 3 , standard: CFCl 3 ) δ (ppm): −83.8 (s, 2F).

化合物(B−4):H−NMR(400MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.23(t、3H、7.3Hz)、4.3(q、2H、7.3Hz)、7.5〜7.6(m、3H)、7.85〜7.98(m、3H)、8.2(d、1H、8.4Hz)。19F−NMR(376MHz、溶媒CDCl、基準:CFCl)δ(ppm):−100.7(s、2F)。 Compound (B-4): 1 H-NMR (400 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.23 (t, 3H, 7.3 Hz), 4.3 (q, 2H, 7 .3 Hz), 7.5 to 7.6 (m, 3H), 7.85 to 7.98 (m, 3H), 8.2 (d, 1H, 8.4 Hz). 19 F-NMR (376 MHz, solvent CDCl 3 , standard: CFCl 3 ) δ (ppm): −100.7 (s, 2F).

化合物(B−5):H−NMR(400MHz、溶媒:CDCl、基準:TMS)δ(ppm):6.8〜7.0(m、2H)、7.46―7.61(m、5H)、7.79―7.85(m、1H)。19F−NMR(376MHz、溶媒CDCl、基準:CFCl)δ(ppm):−102.7〜−102.6(m、1F)、−100.6(s、1F)、−100.6(s、1F)、−100.1〜−100.2(m、1F)。 Compound (B-5): 1 H-NMR (400 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 6.8 to 7.0 (m, 2H), 7.46-7.61 (m 5H), 7.79-7.85 (m, 1H). 19 F-NMR (376 MHz, solvent CDCl 3 , standard: CFCl 3 ) δ (ppm): −102.7 to −102.6 (m, 1F), −100.6 (s, 1F), −100.6 (S, 1F), -100.1 to -100.2 (m, 1F).

化合物(B−6):H−NMR(オルト体)(400MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.33(t、3H、7.4Hz)、4.36(q、2H、7.2Hz)、7.34―7.65(m、3H)、7.74(d、1H、7.8Hz)。19F−NMR(オルト体)(376MHz、溶媒CDCl、基準:CFCl)δ(ppm):−102.51(s、2F)。H−NMR(パラ体)(400MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.31(t、3H、7.3Hz)、4.36(q、2H、7.2Hz)、7.48(d、2H、8.4Hz)、7.60(d、2H、8.5Hz)。19F−NMR(パラ体)(376MHz、溶媒CDCl、基準:CFCl)δ(ppm):−104.73(s、2F) Compound (B-6): 1 H-NMR (ortho form) (400 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.33 (t, 3H, 7.4 Hz), 4.36 (q 2H, 7.2 Hz), 7.34-7.65 (m, 3H), 7.74 (d, 1H, 7.8 Hz). 19 F-NMR (ortho form) (376 MHz, solvent CDCl 3 , standard: CFCl 3 ) δ (ppm): −102.51 (s, 2F). 1 H-NMR (para form) (400 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.31 (t, 3 H, 7.3 Hz), 4.36 (q, 2 H, 7.2 Hz) 7.48 (d, 2H, 8.4 Hz), 7.60 (d, 2H, 8.5 Hz). 19 F-NMR (para form) (376 MHz, solvent CDCl 3 , standard: CFCl 3 ) δ (ppm): −104.73 (s, 2F)

化合物(B−7):H−NMR(400MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.36(t、3H、7.3Hz)、4.37(q、2H、7.1Hz)、7.07(t、1H、4.3Hz)、7.40(s、1H)、7.49(d、1H、5.0Hz)。19F−NMR(376MHz、溶媒CDCl、基準:CFCl)δ(ppm):−93.45(s、2F)。 Compound (B-7): 1 H-NMR (400 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.36 (t, 3H, 7.3 Hz), 4.37 (q, 2H, 7 .1 Hz), 7.07 (t, 1 H, 4.3 Hz), 7.40 (s, 1 H), 7.49 (d, 1 H, 5.0 Hz). 19 F-NMR (376 MHz, solvent CDCl 3 , standard: CFCl 3 ) δ (ppm): −93.45 (s, 2F).

化合物(B−8):H−NMR(400MHz、溶媒:CDCl、基準:TMS)δ(ppm):7.42〜7.48(m、5H)、7.57〜7.63(m、3H)、8.03(d、2H、8.0Hz)。19F−NMR(376MHz、溶媒CDCl、基準:CFCl)δ(ppm):−98.2(s、2F)。 Compound (B-8): 1 H-NMR (400 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 7.42-7.48 (m, 5H), 7.57-7.63 (m 3H), 8.03 (d, 2H, 8.0 Hz). 19 F-NMR (376 MHz, solvent CDCl 3 , standard: CFCl 3 ) δ (ppm): -98.2 (s, 2F).

化合物(B−9):H−NMR(オルト体)(400MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.35(s、9H、)、7.40―7.60(m、4H)。19F−NMR(オルト体)(376MHz、溶媒CDCl、基準:CFCl)δ(ppm):−85.41(t、3F、2.2Hz)、−115.29(q、2F、2.1Hz)。H−NMR(パラ体)(400MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.35(s、9H、)、7.52(s、4H)。19F−NMR(パラ体)(376MHz、溶媒CDCl、基準:CFCl)δ(ppm):−85.43(t、3F、2.1Hz)、−115.18(t、2F、1.8Hz)。 Compound (B-9): 1 H-NMR (ortho form) (400 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.35 (s, 9H,), 7.40-7.60 ( m, 4H). 19 F-NMR (ortho form) (376 MHz, solvent CDCl 3 , standard: CFCl 3 ) δ (ppm): −85.41 (t, 3F, 2.2 Hz), −115.29 (q, 2F, 2. 1 Hz). 1 H-NMR (para form) (400 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.35 (s, 9H,), 7.52 (s, 4H). 19 F-NMR (para form) (376 MHz, solvent CDCl 3 , standard: CFCl 3 ) δ (ppm): −85.43 (t, 3F, 2.1 Hz), −115.18 (t, 2F, 1. 8 Hz).

本発明の製造方法によって得られる2つのフッ素原子が結合した炭素原子を有するフルオロ化合物は、例えば医薬や農薬などの合成中間体として有用である。   The fluoro compound having a carbon atom to which two fluorine atoms are bonded, obtained by the production method of the present invention, is useful as a synthetic intermediate for pharmaceuticals, agricultural chemicals and the like.

Claims (2)

下式(A)で表される化合物をIFと反応させることを特徴とする下式(B)で表されるフルオロ化合物の製造方法
ただし、Xはアリール基、1価ヘテロ環基、およびハロゲン化アリール基から選ばれる基を表し、Yはシアノ基、アルコキシカルボニル基、アシル基、ハロゲン化アルキル基、およびハロゲン化アシル基から選ばれる基を表し、Rはアルキル基およびハロゲン化アリール基から選ばれる基を表す。
Figure 0005305321
A method for producing a fluoro compound represented by the following formula (B), wherein the compound represented by the following formula (A) is reacted with IF 5 wherein X is an aryl group, a monovalent heterocyclic group, and a halogen Y represents a group selected from a halogenated aryl group , Y represents a group selected from a cyano group, an alkoxycarbonyl group, an acyl group, a halogenated alkyl group, and a halogenated acyl group, and R represents a group selected from an alkyl group and a halogenated aryl group. Represents a group .
Figure 0005305321
反応温度が−50〜100℃である請求項1に記載の製造方法。 The production method according to claim 1, wherein the reaction temperature is -50 to 100 ° C.
JP2008034626A 2008-02-15 2008-02-15 Method for producing fluoro compound Expired - Fee Related JP5305321B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008034626A JP5305321B2 (en) 2008-02-15 2008-02-15 Method for producing fluoro compound
PCT/JP2009/052434 WO2009102034A1 (en) 2008-02-15 2009-02-13 Method for producing fluoro-compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008034626A JP5305321B2 (en) 2008-02-15 2008-02-15 Method for producing fluoro compound

Publications (2)

Publication Number Publication Date
JP2009191031A JP2009191031A (en) 2009-08-27
JP5305321B2 true JP5305321B2 (en) 2013-10-02

Family

ID=40957064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008034626A Expired - Fee Related JP5305321B2 (en) 2008-02-15 2008-02-15 Method for producing fluoro compound

Country Status (2)

Country Link
JP (1) JP5305321B2 (en)
WO (1) WO2009102034A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102466415B1 (en) 2016-01-20 2022-11-15 삼성전자주식회사 Image sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1304316B1 (en) * 2000-06-13 2011-08-10 Daikin Industries, Ltd. Processes for the production of fluorinated organic compounds and fluorinating agents
JP2002338517A (en) * 2001-05-18 2002-11-27 Asahi Glass Co Ltd METHOD OF PRODUCTION FOR gem-DIFLUORO COMPOUND

Also Published As

Publication number Publication date
JP2009191031A (en) 2009-08-27
WO2009102034A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
Kim et al. The first Cu (I)-mediated nucleophilic trifluoromethylation reactions using (trifluoromethyl) trimethylsilane in ionic liquids
JP4025313B2 (en) Method for preparing aryl pentafluoride
JP6740192B2 (en) Method for producing fluorinated organic compound and fluorinated reagent
JP2011518765A (en) Process and composition for preparing difluoromethylene- and trifluoromethyl-containing compounds
Xu et al. One-pot synthesis of (ethoxycarbonyl) difluoromethylthioethers from thiocyanate sodium and ethyl 2-(trimethylsilyl)-2, 2-difluoroacetate (TMS-CF2CO2Et)
CN107540598B (en) Method for preparing N-difluoromethylthio phthalimide compound
CN110621658B (en) Process for producing pentafluorosulfanyl aromatic compound
US20070185355A1 (en) Method for producing fluorine-containing halide
JP5305321B2 (en) Method for producing fluoro compound
CN111807938A (en) (E) -1-chloro-2-iodoethylene compound and preparation method thereof
JP4173278B2 (en) Process for producing 1-aryl-3-cyclopropyl-1,3-propanedione
CN113880737B (en) Application of novel persulfate reagent in synthesis of asymmetric polysulfide
JP2003335735A (en) Method for producing perfluoroisopropylanilines
EP0258160A2 (en) 2,3-Dihydrofuran derivatives, process for their preparation, their use as intermediate in the preparation of tetrahydrofuran
JP4269902B2 (en) Method for producing aromatic unsaturated compound
US9334241B2 (en) Process for the preparation of N-substituted pyrazole compounds
JP4547898B2 (en) Electrophilic perfluoroalkylating agent and method for producing perfluoroalkylated organic compound
AU2010100310A4 (en) A process for manufacturing 5-amino-1-(2, 6-dichloro-4-trifluoromethyl phenyl) - 3-cyano-4-trifluoromethyl sulphinyl pyrazole
JP4951957B2 (en) Method for producing furfurals
CN106748935A (en) A kind of method for synthesizing S- substituted benzoic acid thioes derivatives by Bunte salt
JP5573079B2 (en) Method for producing 3-mercapto-1-propanol
CN105585554B (en) A kind of method of copper catalysis water phase end alkene and sulphur powder reaction generation thiphene ring
Dix Development of Methods and Reagents for the Trifluoromethylchalcogenation of Organic Compounds
US20240228435A1 (en) Method for producing tetrafluorosulfanyl group-containing aryl compound
JP4475901B2 (en) Method for producing 3-acetylthiophenes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees