JPS5998033A - Preparation of mandelic acid - Google Patents

Preparation of mandelic acid

Info

Publication number
JPS5998033A
JPS5998033A JP57208255A JP20825582A JPS5998033A JP S5998033 A JPS5998033 A JP S5998033A JP 57208255 A JP57208255 A JP 57208255A JP 20825582 A JP20825582 A JP 20825582A JP S5998033 A JPS5998033 A JP S5998033A
Authority
JP
Japan
Prior art keywords
acid
cation exchange
exchange resin
mandelic acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57208255A
Other languages
Japanese (ja)
Other versions
JPH0224263B2 (en
Inventor
Takehiko Kakimoto
柿本 武彦
Tetsuo Yonezawa
米沢 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP57208255A priority Critical patent/JPS5998033A/en
Publication of JPS5998033A publication Critical patent/JPS5998033A/en
Publication of JPH0224263B2 publication Critical patent/JPH0224263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To prepare the titled compound useful as an intermediate of agricultural chemicals and pharmaceuticals, without using harmful raw material, in high yield, by reacting glyoxylic acid with benzene in essentially anhydrous state in the presence of a cation exchange resin, and hydrolyzing the reaction product. CONSTITUTION:Glyoxylic acid is made to react with benzen in an essentially anhydrous state in the presence of a cation exchange resin, at 50-80 deg.C, preferably using acetic acid as a cocatalyst. The objective compound can be prepared by hydrolyzing the resultant mandelic acid benzyl ester derivative. The cation exchange resin is preferably a strong acidic cation exchange resin of sulfonic acid type, e.g. Amberlite IR-120B, etc., and its amount is preferably about 50-300wt%, based on glyoxylic acid. The amount of acetic acid used as a cocatalyst is preferably 2-5mol per 1mol of glyoxylic acid.

Description

【発明の詳細な説明】 マンデル酸は農薬あるいは医薬の中間体として有用な化
学物質である。しかして該酸の製造法として古くよりベ
ンズアルデヒドと青酸を反応させて得られるマンデル酸
ニトリルを酸で加水分解する方法が知られている。
DETAILED DESCRIPTION OF THE INVENTION Mandelic acid is a chemical substance useful as an intermediate for agricultural chemicals or medicines. However, as a method for producing the acid, a method has long been known in which mandelic acid nitrile, which is obtained by reacting benzaldehyde with hydrocyanic acid, is hydrolyzed with an acid.

しかし青酸という猛毒な化合物を取シ扱わねばならない
ことは作業衛生面、廃水処理面等で多大の注意が必要で
あシ工業的方法としては好ましいとは言えない。
However, the necessity of handling hydrocyanic acid, a highly poisonous compound, requires great care in terms of work hygiene and wastewater treatment, and is therefore not desirable as an industrial method.

そこで本出願人は先にかかる有害な原料を使用せず工業
的有利にマンデル酸を製造する方法としてグリオキシル
酸1モルに対して硫酸0.1モル以上1モル未満、疎び
酢酸0.5〜10モルの共存下でグリオキシル酸とベン
ゼンを反応させる方法を提案した。該方法においてマン
デル酸の収率はグリオキシル酸に対し6096程度であ
る。
Therefore, the present applicant proposed a method for industrially advantageous production of mandelic acid without using such harmful raw materials. We proposed a method of reacting glyoxylic acid and benzene in the coexistence of 10 moles. In this method, the yield of mandelic acid is about 6,096 times the yield of glyoxylic acid.

ところが今回、本出願人は更に収率良くマンデル酸を製
造出来る方法を見出し本発明を完成した。
However, the present applicant has now discovered a method for producing mandelic acid with even higher yield and has completed the present invention.

即ち、本発明は実質的に無水状態で陽イオン交換樹脂の
存在下、グリオキシル酸とベンゼンを反応させてマンデ
ル酸ベンジル誘導体を得、次いで該誘導体を加水分解し
てマンデル酸を製造するもので、マンデル酸の収率はグ
リオキシル酸に対し最高で90%にも達し極めて効率良
くマンデル酸が得られるのである。
That is, the present invention involves reacting glyoxylic acid and benzene in the presence of a cation exchange resin in a substantially anhydrous state to obtain a benzyl mandelic acid derivative, and then hydrolyzing the derivative to produce mandelic acid. The yield of mandelic acid reaches a maximum of 90% based on glyoxylic acid, and mandelic acid can be obtained extremely efficiently.

本発明の方法を化学式で示せば次の通シである。The method of the present invention can be expressed as a chemical formula as follows.

Of(C0OHOH まず本発明を実施するに際して触媒として陽イオン交換
樹脂を使用する。
Of(C0OHOH) First, in carrying out the present invention, a cation exchange resin is used as a catalyst.

該樹脂としてはスルホン酸型の強酸性陽イオン交換樹脂
が最も有利に用いられるが、カルボン酸型、リン酸型等
の弱酸性陽イオン交換樹脂の使用も可能である。強酸性
陽イオン交換樹脂の具体例としては、アンバ−ライト1
5、アンバーリス)XN−10f34.7 ン)< −
ライトI’ R−120B1アンバーライトIR−12
2、アンバーライトIR−124、アンバーライトIR
C−84(いずれもローム・アンド・ハース化!R)、
ドクライトC20、ドクライトcio、  ドクライト
cc6(いずれもケミカル・プロセス社製)、ダウエッ
クス50WX8、ダウエックスMSC−1、ダウエック
スCC,R−2(いずれもダウ・ケミカル社製)、その
他レバチット(バイエル社製)、ナルサイト(ナショナ
ルアメリカン社製)、パームチット(バームチット社製
)、クオルファナット(ファルベニンド社製)、′ダイ
ヤイオン(三菱化成社製)等がある。上記陽イオン交換
樹脂はその平均孔径が50〜1oooX程度のものが特
に有利に使用される。
As the resin, a sulfonic acid type strongly acidic cation exchange resin is most advantageously used, but it is also possible to use a weakly acidic cation exchange resin such as a carboxylic acid type or a phosphoric acid type. A specific example of a strongly acidic cation exchange resin is Amberlite 1.
5, Amberlis) XN-10f34.7 n) < -
Light I' R-120B1 Amber Light IR-12
2. Amberlight IR-124, Amberlight IR
C-84 (both Rohm and Haas versions! R),
Dokurite C20, Dokurite Cio, Dokurite CC6 (all manufactured by Chemical Process Co.), Dowex 50WX8, Dowex MSC-1, Dowex CC, R-2 (all made by Dow Chemical Co.), and other Revachit (Bayer Co., Ltd.) (manufactured by National American Corporation), narcite (manufactured by National American Corporation), palmchit (manufactured by Balmchit Corporation), qualphanut (manufactured by Falbenindo Corporation), and 'Diaion (manufactured by Mitsubishi Kasei Corporation). The above-mentioned cation exchange resin having an average pore diameter of about 50 to 100X is particularly advantageously used.

これらはグリオキシル酸に対して50〜600重量%程
度の量で用いられる。
These are used in an amount of about 50 to 600% by weight based on glyoxylic acid.

反応は実質的に無水状態で行わなければならない。グリ
オキシル酸は通常4096程度の水溶液として販売され
ているので、予めこれを脱水濃縮してグリオキシル酸1
水和物、グリオキシル酸無水物とした後、過剰のベンゼ
ンと混合して反応を行なえば良い。ベンゼンは原料と反
応溶媒を兼ねる。
The reaction must be conducted in substantially anhydrous conditions. Glyoxylic acid is usually sold as an aqueous solution of about 4096 glyoxylic acid, so it is dehydrated and concentrated in advance to obtain glyoxylic acid 1
After forming a hydrate or glyoxylic anhydride, the reaction may be carried out by mixing with excess benzene. Benzene serves both as a raw material and as a reaction solvent.

又、グリオキシル酸水溶液をそのまま使用する場合はベ
ンゼンと該液を混合し、一旦ベンゼンと水とを共沸脱水
してから反応を開始すれば良い。
In addition, when using the aqueous glyoxylic acid solution as it is, it is sufficient to mix the liquid with benzene and once azeotropically dehydrate the benzene and water before starting the reaction.

いずれにしても反応を効率良く進行させるためには系中
の水の量を5重量%以下に減少させなければならない。
In any case, in order for the reaction to proceed efficiently, the amount of water in the system must be reduced to 5% by weight or less.

反応時にかかる量よシ以上の水が存在するとマンデル酸
の収率は著しく低下する。
If water is present in an amount greater than the amount required during the reaction, the yield of mandelic acid will be significantly reduced.

ベンゼンはグリオキシル酸に対して3倍〜2゜倍モル程
度の範囲で使用される。反応温度は5゜〜80℃、反応
時間は5〜50時間が好ましい。
Benzene is used in an amount of about 3 to 2 times the molar amount of glyoxylic acid. The reaction temperature is preferably 5° to 80°C and the reaction time is preferably 5 to 50 hours.

反応の進行につれて水が副生ずるので好ましくは反応は
脱水下に実施される。
Since water is produced as a by-product as the reaction progresses, the reaction is preferably carried out under dehydration.

反応時に酢酸を助触媒ヱして使用すると効果的である。It is effective to use acetic acid as a promoter during the reaction.

その使用量はグリオキシル酸1モルに対し10モル以下
、好ましくは2〜5モルである。
The amount used is 10 mol or less, preferably 2 to 5 mol, per 1 mol of glyoxylic acid.

特に無水酢酸の使用は系内あ水の補促剤としての作用を
も発揮するので有利である。10モル以上の酢酸の使用
は反応速度が低下し又、ハルツの副生が顕著となる。
Particularly, the use of acetic anhydride is advantageous because it also acts as a supplement for aqueous water in the system. If 10 moles or more of acetic acid is used, the reaction rate will decrease and the by-product of Harz will become noticeable.

かかる反応によって中間体としてマンデル酸べ次いで該
誘導体を加水分解してマンデル酸とする。前記反応にお
いてはマンデル酸ベンジル誘導\/ B OOH C20 OH3 c=。
This reaction produces mandelic acid as an intermediate, and then the derivative is hydrolyzed to give mandelic acid. In the above reaction, benzyl mandelate derivative\/B OOH C20 OH3 c=.

OH3 れも加水分解によってマンデル酸に転換され得る。OH3 Both can be converted to mandelic acid by hydrolysis.

加水分解は次の様に実施される。Hydrolysis is carried out as follows.

加水分解はアルカリでも酸(特に陽イオン交換樹脂)で
も可能である。
Hydrolysis is possible with either alkaline or acidic (especially cation exchange resins).

アルカリによる加水分解はまず前記反応で得られだマン
デル酸ベンジル誘導体含有反応生成液から陽イオン交換
樹脂を戸別する。p液に水を加え次いで水酸化アルカリ
を水層のPHが11程度になるまで添加し、約1時間程
度加熱撹拌するとマンデル酸(アルカリ塩)が生成する
。該層は水層中に含有されているので該層をベンゼン層
ト分離し、水層に塩酸、硫酸等の酸を添加してPHを5
〜6程度にコントロールするとマンデル酸の結晶が析出
する。析出しだマンデル酸はp過、遠心分離等常法に従
って系から分離され少量の冷水で洗浄、乾燥して最終製
品を得る。必要があれば適宜再結晶等の精製操作が実施
される。
In the hydrolysis with an alkali, the cation exchange resin is first separated from the reaction product solution containing the benzyl mandelate derivative obtained in the above reaction. Water is added to the p-liquid, and then alkali hydroxide is added until the pH of the aqueous layer reaches about 11, and when the mixture is heated and stirred for about 1 hour, mandelic acid (alkali salt) is produced. Since this layer is contained in the aqueous layer, the benzene layer is separated from the layer, and an acid such as hydrochloric acid or sulfuric acid is added to the aqueous layer to adjust the pH to 5.
If the temperature is controlled to about ~6, mandelic acid crystals will precipitate. The precipitated mandelic acid is separated from the system by conventional methods such as p-filtration and centrifugation, washed with a small amount of cold water, and dried to obtain a final product. If necessary, purification operations such as recrystallization are carried out as appropriate.

一方、酸による加水分解としては硫酸、塩酸等の鉱酸を
用いても出来るが、ベンゼンとグリオキシル酸との反応
触媒がそのまま加水分解の触媒として使用出来る点、触
媒の回収が容易である等の点で陽イオン交換樹脂の使用
が有利である。陽イオン交換樹脂を用いて加水分解を行
なうにはマンデル酸誘導体含有反応生成液からベンゼン
を留去した後糸に水を加えて加熱すれば良い。ベンゼン
留去の際、陽イオン交換樹脂の劣化等の恐れがある時は
反応生成液から一旦、触媒を戸別したあとでベンゼンを
留去し次いで水及び陽イオン交換樹脂を添加して加水分
解しても良い。
On the other hand, acid hydrolysis can also be carried out using mineral acids such as sulfuric acid and hydrochloric acid, but the catalyst for the reaction between benzene and glyoxylic acid can be used as it is as a catalyst for hydrolysis, and the catalyst can be easily recovered. In this respect, the use of cation exchange resins is advantageous. To carry out hydrolysis using a cation exchange resin, benzene may be distilled off from the reaction product solution containing the mandelic acid derivative, and then water may be added to the thread and heated. When removing benzene, if there is a risk of deterioration of the cation exchange resin, first remove the catalyst from the reaction product liquid, distill off the benzene, then add water and the cation exchange resin to hydrolyze it. It's okay.

加水分解終了後は陽イオン交換樹脂を戸別しp液を冷却
すればマンデル酸が析出するので常法に従って単離する
After the hydrolysis is completed, the cation exchange resin is separated and the p solution is cooled. Mandelic acid precipitates out and is isolated according to a conventional method.

かくして得られたマンデル酸は医薬、農薬の中間体とし
て有用である。
The mandelic acid thus obtained is useful as an intermediate for pharmaceuticals and agricultural chemicals.

次に実例を挙げて木亮明の方法を更に具体的に説明する
Next, Ryoaki Ki's method will be explained in more detail using an example.

実例1 撹拌器、温度計、デカンタ−1冷却管を付設した5 0
0 meの4つロフラスコにグリオキシル酸1水和物0
.1モル、ベンゼン2モル、酢酸1モル及ヒレバチット
5PC118BG(バイエル社製、陽イオン交換樹脂)
100pを仕込み撹拌しながら80℃で24時間、脱水
下に反応を行ないマンC−〇 H3 生成液を得た。
Example 1 50 with stirrer, thermometer and decanter 1 cooling pipe
0 me glyoxylic acid monohydrate in a four-loaf flask.
.. 1 mole, 2 moles of benzene, 1 mole of acetic acid, and Hirebatit 5PC118BG (manufactured by Bayer, cation exchange resin)
100p was charged and the reaction was carried out at 80° C. for 24 hours with stirring and dehydration to obtain a Man C-〇H3 product solution.

陽イオン交換樹脂を戸別しベンゼンでよく洗浄した後、
洗浄液とp液を混合した。
After washing the cation exchange resin door-to-door with benzene,
The cleaning solution and p solution were mixed.

該混合液に水500−を加え、撹拌下に40%水酸化ナ
トリクム水溶液を水層のPHが11になるまで添加した
。その後、室温で約60分間加水分解反応を行った。
500 g of water was added to the mixture, and a 40% aqueous sodium hydroxide solution was added while stirring until the pH of the aqueous layer reached 11. Thereafter, a hydrolysis reaction was carried out at room temperature for about 60 minutes.

水層とベンゼン層を分離し水層に塩酸をPHが1以下と
なるまで添加しマンデル酸の結晶を析出させた。グリオ
キシル酸に対するマンデル酸の収率は80%であった。
The aqueous layer and benzene layer were separated, and hydrochloric acid was added to the aqueous layer until the pH became 1 or less to precipitate crystals of mandelic acid. The yield of mandelic acid based on glyoxylic acid was 80%.

尚、得られたマンデル酸は再結晶後、融点及びIRスペ
クトルを標品と比較し両者が一致したことによシ確認し
た。
After recrystallization, the melting point and IR spectrum of the obtained mandelic acid were compared with those of the standard product, and it was confirmed that they matched.

実例2 グリオキシル酸無水物0.4モル及びベンゼン2モル、
無水酢酸0.2モル及びレバチット5PC118BG5
0yを実例1と同一のフラスコに仕込み、75℃で24
時間反応を行った。
Example 2 0.4 mol of glyoxylic anhydride and 2 mol of benzene,
0.2 mol of acetic anhydride and Revatit 5PC118BG5
0y was placed in the same flask as in Example 1 and heated at 75℃ for 24 hours.
A time reaction was performed.

その後は実例1と同一の方法で加水分解を行ない80%
の収率でマンデル酸を得た。
After that, hydrolysis was performed in the same manner as in Example 1 to 80%
Mandelic acid was obtained in a yield of .

実例6 実例1と同一のフラスコにグリオキシル酸1モル、酢酸
3’、5モル、ベンゼン10モル及びレバチット5PC
I 18G150yを仕込み、24時間共沸脱水反応を
行った。
Example 6 In the same flask as in Example 1, 1 mol of glyoxylic acid, 5 mol of acetic acid, 10 mol of benzene, and 5 PC of levacit.
I18G150y was charged and azeotropic dehydration reaction was carried out for 24 hours.

反応終了液から陽イオン交換樹脂を戸別し、P液を減圧
蒸留して酢酸及びベンゼンを留去した。
The cation exchange resin was separated from the reaction-completed solution, and the P solution was distilled under reduced pressure to remove acetic acid and benzene.

得られた濃縮液120yに水100yを添加、更にダイ
ヤイオン5K−IBH(三菱化成社製、陽イオン交換樹
脂)100yを混合し、80℃で8時間加水分解反応を
行った。反応終了後、陽イオン交換樹脂を戸別しP液を
15℃まで冷却した。
100 y of water was added to 120 y of the obtained concentrated solution, and 100 y of Diaion 5K-IBH (cation exchange resin, manufactured by Mitsubishi Kasei Corporation) was added thereto, and a hydrolysis reaction was carried out at 80° C. for 8 hours. After the reaction was completed, the cation exchange resin was removed from door to door and the P solution was cooled to 15°C.

析出したジフェニル酢酸を分離したp液を濃縮後、再度
15℃まで冷却するとマンデル酸の結晶が析出した。収
率は90%であった。
After concentrating the p solution from which the precipitated diphenylacetic acid had been separated, it was cooled again to 15° C., and mandelic acid crystals were precipitated. The yield was 90%.

Claims (1)

【特許請求の範囲】[Claims] 実質的に無水状態で陽イオン交換樹脂の存在下、グリオ
キシル酸とベンゼンを反応させてマンデル酸ベンジル誘
導体を得、次いで該誘導体を加水分解することを特徴と
するマンデル酸の製造方法。
1. A method for producing mandelic acid, which comprises reacting glyoxylic acid and benzene in the presence of a cation exchange resin in a substantially anhydrous state to obtain a benzyl mandelic acid derivative, and then hydrolyzing the derivative.
JP57208255A 1982-11-26 1982-11-26 Preparation of mandelic acid Granted JPS5998033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57208255A JPS5998033A (en) 1982-11-26 1982-11-26 Preparation of mandelic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57208255A JPS5998033A (en) 1982-11-26 1982-11-26 Preparation of mandelic acid

Publications (2)

Publication Number Publication Date
JPS5998033A true JPS5998033A (en) 1984-06-06
JPH0224263B2 JPH0224263B2 (en) 1990-05-29

Family

ID=16553210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57208255A Granted JPS5998033A (en) 1982-11-26 1982-11-26 Preparation of mandelic acid

Country Status (1)

Country Link
JP (1) JPS5998033A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285420A (en) * 2009-05-11 2010-12-24 Mitsubishi Rayon Co Ltd Method for producing optically active aromatic hydroxycarboxylic acid condensate and optically active compound
JP2016538285A (en) * 2013-11-15 2016-12-08 ローディア オペレーションズ Mandelic acid aromatic compound and method for producing aromatic aldehyde compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285420A (en) * 2009-05-11 2010-12-24 Mitsubishi Rayon Co Ltd Method for producing optically active aromatic hydroxycarboxylic acid condensate and optically active compound
JP2016538285A (en) * 2013-11-15 2016-12-08 ローディア オペレーションズ Mandelic acid aromatic compound and method for producing aromatic aldehyde compound
US10544081B2 (en) 2013-11-15 2020-01-28 Rhodia Operations Process for preparing mandelic aromatic compounds and aromatic aldehyde compounds

Also Published As

Publication number Publication date
JPH0224263B2 (en) 1990-05-29

Similar Documents

Publication Publication Date Title
HU218820B (en) Process for producing creatine and creatine-monohydrate
US4230869A (en) Process for preparing 5-(4-hydroxyphenyl)hydantoin
JPS5998033A (en) Preparation of mandelic acid
JP3339106B2 (en) Method for producing cis epoxy succinate
JP2870183B2 (en) Process for producing 1,3-phenylenedioxydiacetic acid
JPS5917104B2 (en) Method for producing hydroxyphenylglycine compounds
JP3219256B2 (en) Method for producing bis (p-hydroxyphenyl) acetic acid
CN111689881B (en) Synthetic method of azosemide intermediate
JPH0276836A (en) Production of metal ether carboxylate
KR800001550B1 (en) Preparing process for 5-(4-hyroxy phenyl)hydantoins
JP3229658B2 (en) Method for producing N-acetyl-DL-tryptophan
US3717673A (en) Process for the preparation of l-dopa
JPS60185752A (en) Production of alpha-acetamidocinnamic acid
JPH01193245A (en) Production of s-carboxymethyl-l-cysteine
JPH01283259A (en) Production of carnitine
JPH03275644A (en) Production of alpha-hydroxyisobutyric acid
US4621154A (en) Process for preparing 4-(4-biphenylyl)-4-oxo-butanoic acid
JP3927835B2 (en) Process for producing iodinated aromatic compound diacetate
JPS58120507A (en) Continuous manufacture of hydrazine
JPS6120539B2 (en)
SU1648943A1 (en) Method for producing difluoro-maleic acid
JPH0451550B2 (en)
FI66836B (en) FOERFARANDE FOER FRAMSTAELLNING AV FAST SODIUM- ELLER POTASSIUM P-HYDROXIMANDELATMONOHYDRAT
JPH0114213B2 (en)
JPS6067465A (en) Production of imidazole