JP2010283904A - Power conversion apparatus, power conversion system and method for controlling the power conversion apparatus - Google Patents

Power conversion apparatus, power conversion system and method for controlling the power conversion apparatus Download PDF

Info

Publication number
JP2010283904A
JP2010283904A JP2009132658A JP2009132658A JP2010283904A JP 2010283904 A JP2010283904 A JP 2010283904A JP 2009132658 A JP2009132658 A JP 2009132658A JP 2009132658 A JP2009132658 A JP 2009132658A JP 2010283904 A JP2010283904 A JP 2010283904A
Authority
JP
Japan
Prior art keywords
power
response
generator
power conversion
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009132658A
Other languages
Japanese (ja)
Other versions
JP5486847B2 (en
Inventor
Yoshitoshi Akita
佳稔 秋田
Masahiro Tobise
飛世  正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009132658A priority Critical patent/JP5486847B2/en
Publication of JP2010283904A publication Critical patent/JP2010283904A/en
Application granted granted Critical
Publication of JP5486847B2 publication Critical patent/JP5486847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power conversion apparatus or the like, capable of driving a motor without causing axial twisting vibration between a turbine and a generator. <P>SOLUTION: The power conversion apparatus includes a variation amount calculator 114 for detecting a variation in rotation speed of the generator as a variation in frequency or amplitude of an input voltage of the power conversion apparatus, a power calculator 115 for calculating the power of the power conversion apparatus, and a power adjustor 116 for reducing a disturbance response to the variation in power supply of the power conversion apparatus so that a power calculation value can change in accordance with the variation amount. The variation amount from the variation amount calculator 114 and a power calculation value from the power calculator 115 are input into the power adjustor 116, and the power adjustor 116 inputs a response reducing amount for reducing the disturbance response of a current controller of the power conversion apparatus into a motor vector controller 112 so that the power calculation value can change in accordance with the variation amount. In this case, the power adjustor 116 outputs a response reducing amount in which a ratio of power variation to the variation in rotation speed of the generator is the same as a ratio at an operation point (ΔP/Δω=P0/ω0) or larger than the ratio at the operation point. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電力変換装置,電力変換システム及び電力変換装置の制御方法に係り、特に電源側に発電機を有する系統に接続された場合において、タービンと発電機間に生じる軸ねじれ振動を抑制するのに最適な電力変換装置,電力変換システム及び電力変換装置の制御方法に関する。   The present invention relates to a power conversion device, a power conversion system, and a method for controlling the power conversion device, and particularly suppresses shaft torsional vibration generated between a turbine and a generator when connected to a system having a generator on the power supply side. The present invention relates to a power conversion device, a power conversion system, and a method for controlling the power conversion device that are optimal for the above.

タービン発電機間の軸ねじれ振動に関しては、直流送電系統において多数検討されており、例えば特開2000−224896号公報に、タービン発電機が直流送電系統の直流変換所近辺に連系されている場合、直流変換所で行われる電力制御の条件によっては、直流送電系統とタービン発電機とが干渉して、タービン発電機の軸が振動することが示されている。また、軸ねじれ振動は発電機の回転子に作用するトルクの状態に関係し、振動現象を直流送電系統の直流変換所の母線電圧の周波数変動から検出し、制御角を変化させて軸ねじれ振動を抑制する技術が示されている。   A large number of studies on shaft torsional vibration between turbine generators have been made in a DC power transmission system. For example, Japanese Patent Application Laid-Open No. 2000-224896 discloses a case where a turbine generator is linked to the vicinity of a DC converter station of a DC power transmission system. It has been shown that depending on the conditions of power control performed at the DC converter station, the shaft of the turbine generator vibrates due to interference between the DC power transmission system and the turbine generator. Also, shaft torsional vibration is related to the state of torque acting on the generator rotor, and the vibration phenomenon is detected from the frequency fluctuation of the bus voltage of the DC converter station of the DC power transmission system, and the control angle is changed to change the shaft torsional vibration. Technology to suppress this is shown.

また、直流送電系統以外でも、例えば特開平11−27993号公報に、エンジンと発電機の組合せ等で構成される発電装置を電源とする電力変換装置および電源システムにおいて、発電装置の共振周波数成分を検出し、共振周波数除去回路により発電装置の振動成分を打ち消すことで、発電装置の機械系の共振周波数と干渉して振動が持続・増加するのを抑制する電力変換装置の制御技術が示されている。   In addition to the DC power transmission system, for example, in Japanese Patent Application Laid-Open No. 11-27993, in a power conversion device and a power supply system using a power generation device constituted by a combination of an engine and a generator as a power source, the resonance frequency component of the power generation device is set. A control technology for a power converter that detects and suppresses vibration persistence and increase by interfering with the resonance frequency of the mechanical system of the power generator by detecting and canceling the vibration component of the power generator by the resonance frequency elimination circuit is shown. Yes.

特開2000−224896号公報JP 2000-224896 A 特開平11−27993号公報JP-A-11-27993

ここで、省エネルギーの観点から、タービン発電機の発電電力を電力変換器で可変周波数に変換して応用する技術が多く用いられるようになってきた。例えば、これまで機械で直接駆動していたシステムを電動機と電力変換装置で可変速する電動化が行われてきており、システムによっては、電源設備としてタービン発電機を設置し、ここで得られた電気エネルギーを電力変換装置と電動機で再び調整可能な機械エネルギーに変換して可変速駆動する場合がある。   Here, from the viewpoint of energy saving, a technique for converting the generated power of a turbine generator into a variable frequency by a power converter and applying it has come to be used. For example, a system that has been directly driven by a machine until now has been electrified with a motor and a power converter to be variable speed, and depending on the system, a turbine generator was installed as a power supply facility, which was obtained here There are cases where electric energy is converted into mechanical energy that can be adjusted again by a power converter and an electric motor and driven at a variable speed.

この時、タービン発電機の軸ねじれ振動が発生する可能性がある。本発明の目的は、タービンと発電機の軸ねじれ振動を抑制可能な電力変換装置,電力変換システム及び電力変換装置の制御方法を提供することにある。   At this time, the torsional vibration of the turbine generator may occur. The objective of this invention is providing the control method of the power converter device, power conversion system, and power converter device which can suppress the axial torsional vibration of a turbine and a generator.

上記目的を達成するために、本発明では、電気的な物理量である指令値を演算し、発電機の回転速度変動に応じた電力となるように応答値を演算し、演算された応答値に基づいて発電機を有する系統に接続された電力変換装置を制御するように構成した。   In order to achieve the above object, in the present invention, a command value, which is an electrical physical quantity, is calculated, a response value is calculated so as to obtain electric power according to fluctuations in the rotational speed of the generator, and the calculated response value is calculated. Based on this, the power converter connected to the system having the generator was controlled.

あるいは、電気的な物理量である指令値を演算し、発電機の回転速度変動に応じた電力となるように応答値を演算し、負荷側の振動現象等を検出して応答を補正し、補正された応答値に基づいて発電機を有する系統に接続された電力変換装置を制御するように構成した。   Alternatively, the command value, which is an electrical physical quantity, is calculated, the response value is calculated so that the electric power corresponds to the rotational speed fluctuation of the generator, the response is corrected by detecting the vibration phenomenon on the load side, etc. The power converter connected to the system having the generator is controlled based on the response value.

あるいは、系統に共通的に接続されている複数の電力変換装置の各々に対して、電気的な物理量である各々の電力変換装置の指令値を演算し、発電機の回転速度変動に応じて、各々の応答値を演算し、所定の応答で指令値に近づくように各々の電力変換装置の変換動作を制御するように構成した。   Alternatively, for each of a plurality of power converters commonly connected to the system, the command value of each power converter that is an electrical physical quantity is calculated, and according to the rotational speed fluctuation of the generator, Each response value is calculated, and the conversion operation of each power converter is controlled so as to approach the command value with a predetermined response.

本発明によれば、電源設備としてタービン発電機を設置し、ここで得られた電気エネルギーを電力変換装置で変換し、例えば、電動機で再び調整可能な機械エネルギーに変換するものにおいて、タービンと発電機間の軸ねじれ振動を抑制して、電動機等を駆動することが可能となる。   According to the present invention, a turbine generator is installed as a power supply facility, and the electric energy obtained here is converted by a power converter, for example, converted into mechanical energy that can be adjusted again by an electric motor. It becomes possible to drive the electric motor and the like while suppressing the torsional vibration between the machines.

本発明の第1の実施形態を示す電力変換装置の構成図。The block diagram of the power converter device which shows the 1st Embodiment of this invention. 本発明の第2の実施形態を示す電力変換装置の構成図。The block diagram of the power converter device which shows the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す電力変換装置の構成図。The block diagram of the power converter device which shows the 3rd Embodiment of this invention. 本発明の第4の実施形態を示す電力変換装置の構成図。The block diagram of the power converter device which shows the 4th Embodiment of this invention. タービン発電機の振動系を示す2マスモデルブロック図。The 2 mass model block diagram which shows the vibration system of a turbine generator. トータルダンピング係数へのΔP/Δωの影響度を示す特性図。The characteristic view which shows the influence degree of (DELTA) P / (DELTA) omega to a total damping coefficient.

以下図面を用いて発明を実施するための最良の形態を説明する。   The best mode for carrying out the invention will be described below with reference to the drawings.

図1は、本発明の全体構成図である。1はガスタービン、2は前記ガスタービン1の機械エネルギーを電気エネルギーに変換する発電機でガスタービン1と発電機2は機械軸3で結合される。4は前記発電機2の出力電圧を系統電圧へ変換する変圧器、5は系統電圧を電力変換器の入力電圧に変換する変圧器で変圧器4と変圧器5は系統6を介して接続される。7は前記変圧器5から出力される電力を所望の電力に変換する電力変換器、8は前記電力変換器が出力する電力で駆動される電動機、9は前記電動機で駆動される被駆動装置で電動機8と被駆動装置9は機械軸10で結合される。ここで、電力変換器制御装置11の構成として、速度指令発生器111,ベクトル制御器112のように、〜器と記載するが、これらの各構成は電子回路に限定されるものではなく、電力変換器制御装置11の全体或いは一部を電子計算機で構成し、速度指令発生器111,ベクトル制御器112のように〜器と記載した構成要素の各機能をプログラムとして用いることができる。   FIG. 1 is an overall configuration diagram of the present invention. 1 is a gas turbine, 2 is a generator for converting mechanical energy of the gas turbine 1 into electric energy, and the gas turbine 1 and the generator 2 are coupled by a mechanical shaft 3. 4 is a transformer for converting the output voltage of the generator 2 into a system voltage, 5 is a transformer for converting the system voltage into an input voltage of the power converter, and the transformer 4 and the transformer 5 are connected via the system 6. The 7 is a power converter that converts the power output from the transformer 5 into desired power, 8 is a motor driven by the power output from the power converter, and 9 is a driven device driven by the motor. The electric motor 8 and the driven device 9 are coupled by a mechanical shaft 10. Here, the configuration of the power converter control device 11 is described as a device such as a speed command generator 111 and a vector controller 112, but each of these configurations is not limited to an electronic circuit. The whole or a part of the converter control device 11 can be constituted by an electronic computer, and each function of the constituent elements described as “device” such as the speed command generator 111 and the vector controller 112 can be used as a program.

そして、11は前記電動機8の出力トルクや速度が所望の特性を満たすように前記電力変換器7を操作する電力変換器制御装置である。12は電力変換器出力電流検出器(以下、電流検出器と記す)で前記電力変換器7の出力電流を検出し出力する。13は電力変換器出力電圧検出器(以下、電圧検出器と記す)で前記電力変換器7の出力電圧を検出する。前記電流検出器12,電圧検出器13の出力信号は、電力変換器制御装置11に入力され、電力変換器制御装置11は、各種演算処理を行い、前記電力変換器7を操作する信号を出力する。   Reference numeral 11 denotes a power converter control device that operates the power converter 7 so that the output torque and speed of the motor 8 satisfy desired characteristics. A power converter output current detector 12 (hereinafter referred to as a current detector) detects and outputs the output current of the power converter 7. Reference numeral 13 denotes a power converter output voltage detector (hereinafter referred to as a voltage detector) that detects the output voltage of the power converter 7. Output signals of the current detector 12 and the voltage detector 13 are input to a power converter control device 11, which performs various arithmetic processes and outputs a signal for operating the power converter 7. To do.

次に電力変換器制御装置の主要動作について説明する。先ず、電力変換器制御装置11では、速度指令発生器111から出力される速度指令値と電流検出器12から出力される電流検出値が電動機ベクトル制御器112に入力され、電動機ベクトル制御器112では電動機8の出力トルクや速度が所望の特性となるように電力変換器7の電圧指令値を演算し出力する。具体的には、速度指令発生器111から出力される速度指令値と速度推定演算器151から出力される速度推定値との偏差が速度制御器152に入力され、速度制御器152では速度推定値が速度指令値に一致するように電流指令値を演算し出力する。ここで、速度推定演算器151には速度指令値,電流検出値及び電圧指令値が入力され、速度推定演算器151では、速度指令値から演算される電動機の誘起電圧成分,電流制御器が演算する電圧指令値,電流検出値を用いて電動機8の回転速度の推定値を演算する。尚、速度推定値を用いず、電動機8の回転速度を速度検出器で直接検出する場合もある。次に、速度制御器152で演算された電流指令値と電流検出器12から出力される電流検出値との偏差が電流制御器153に入力され、電流制御器153では電流検出値が電流指令値に一致するように電圧指令値を演算し出力する。そして、前記電圧指令値はパルス生成器113に入力され、パルス生成器113では、電力変換器7の出力電圧が出力電圧指令値に一致するように電力変換器7のスイッチング素子をオン・オフするパルス信号を演算し出力する。   Next, main operations of the power converter control device will be described. First, in the power converter control device 11, the speed command value output from the speed command generator 111 and the current detection value output from the current detector 12 are input to the electric motor vector controller 112, and the electric motor vector controller 112 The voltage command value of the power converter 7 is calculated and output so that the output torque and speed of the electric motor 8 have desired characteristics. Specifically, the deviation between the speed command value output from the speed command generator 111 and the speed estimated value output from the speed estimation calculator 151 is input to the speed controller 152, and the speed controller 152 The current command value is calculated and output so that is equal to the speed command value. Here, a speed command value, a current detection value, and a voltage command value are input to the speed estimation calculator 151. In the speed estimation calculator 151, an induced voltage component of the motor calculated from the speed command value and a current controller are calculated. The estimated value of the rotational speed of the electric motor 8 is calculated using the voltage command value and the current detection value. In some cases, the rotational speed of the electric motor 8 is directly detected by a speed detector without using the estimated speed value. Next, a deviation between the current command value calculated by the speed controller 152 and the current detection value output from the current detector 12 is input to the current controller 153, and the current controller 153 detects the current detection value as the current command value. The voltage command value is calculated and output so as to match. The voltage command value is input to the pulse generator 113. The pulse generator 113 turns on / off the switching element of the power converter 7 so that the output voltage of the power converter 7 matches the output voltage command value. Calculate and output the pulse signal.

ここで、電源側振動に関する関係式について説明する。図5はタービン発電機間の軸ねじり振動を2マス系で表現したものであり、Kはバネ定数、Dmは機械系のダンピング係数、J1はタービンのイナーシャ、J2は発電機のイナーシャで、JはJ1とJ2の合算で表されるトータルイナーシャ、nはJ1とJ2のイナーシャ比である。Deは電気系のダンピング係数で、発電機に接続される負荷(制御装置含む)により、発電機の速度変動が減少するようなトルクが電気的に生じることを表している。図5から得られる2次振動系の状態方程式より、系の特性方程式は(1)式となる。   Here, the relational expression regarding the power source side vibration will be described. FIG. 5 shows the torsional vibration between the turbine generators in a two-mass system, where K is the spring constant, Dm is the mechanical damping coefficient, J1 is the turbine inertia, J2 is the generator inertia, Is the total inertia represented by the sum of J1 and J2, and n is the inertia ratio of J1 and J2. De is a damping coefficient of the electric system and represents that a torque that reduces the speed fluctuation of the generator is electrically generated by a load (including a control device) connected to the generator. From the state equation of the secondary vibration system obtained from FIG. 5, the characteristic equation of the system is expressed by equation (1).

Figure 2010283904
Figure 2010283904

この時の振動特性は(1)式より、近似することで(2),(3)式となる。   The vibration characteristics at this time are approximated from the expression (1) to become the expressions (2) and (3).

Figure 2010283904
Figure 2010283904

Figure 2010283904
Figure 2010283904

ここで、ζは減衰係数、ωnは固有振動数、nはイナーシャ比である。トータルのダンピング係数Ds,バネ定数Ksは、(2),(3)式より(4),(5)式となり、電気系ダンピング係数によりシステムの振動特性(ζ,ωn)が変化する。   Here, ζ is a damping coefficient, ωn is a natural frequency, and n is an inertia ratio. The total damping coefficient Ds and the spring constant Ks are changed to the expressions (4) and (5) from the expressions (2) and (3), and the vibration characteristics (ζ, ωn) of the system change depending on the electric damping coefficient.

Figure 2010283904
Figure 2010283904

Figure 2010283904
Figure 2010283904

次に、電気系ダンピング係数について説明する。発電機の出力Pは発電機の回転速度ωと発電機のトルクτよりP=ω・τで表され、動作点近傍での出力式P0=ω0・τ0に変化分を考慮すると(6)式が得られる。(6)式より電気系ダンピング係数De(=Δτ/Δω)を求めると(7)式となる。   Next, the electrical damping coefficient will be described. The output P of the generator is expressed by P = ω · τ from the rotational speed ω of the generator and the torque τ of the generator, and considering the change in the output equation P0 = ω0 · τ0 in the vicinity of the operating point, Equation (6) Is obtained. When the electrical damping coefficient De (= Δτ / Δω) is obtained from the equation (6), the equation (7) is obtained.

Figure 2010283904
Figure 2010283904

Figure 2010283904
Figure 2010283904

(7)式より、電気系ダンピング係数Deは、定電力制御を行う場合(ΔP=0)ではDe=−1/ω・P0/ω0とネガティブダンピングとなり、機械系のダンピング値によっては、トータルダンピング係数が負となり不安定現象が生じる。電力変動の発電機回転速度変動に対する比率が動作点での比率と同じ場合(ΔP/Δω=P0/ω0)ではDe=0とトータルダンピング係数は機械系のダンピング値のみとなり、振動現象は機械系のダンピング係数で減衰する。そして、電力変動の発電機回転速度変動に対する比率が動作点での比率より大きい場合では、De>0とトータルダンピング係数は機械系のダンピング値と電気系のダンピング係数の合計となり、より大きい減衰力が得られる。   From equation (7), the electric system damping coefficient De is negative damping with De = −1 / ω · P0 / ω0 when constant power control is performed (ΔP = 0), and depending on the damping value of the mechanical system, the total damping The coefficient becomes negative and unstable phenomenon occurs. When the ratio of the power fluctuation to the generator rotational speed fluctuation is the same as the ratio at the operating point (ΔP / Δω = P0 / ω0), De = 0 and the total damping coefficient is only the damping value of the mechanical system, and the vibration phenomenon is the mechanical system. Attenuates with the damping coefficient. When the ratio of the power fluctuation to the generator rotational speed fluctuation is larger than the ratio at the operating point, De> 0 and the total damping coefficient is the sum of the mechanical damping value and the electrical damping coefficient, and the greater damping force. Is obtained.

以上の関係に着目し、次に本発明における制御動作について説明する。(7)式より電気系ダンピングDeを正にするには、電力を発電機回転速度の変動に応じて変化させればよい。ここで、発電機回転速度の変動分が、電力変換装置の入力電圧の振幅変動となる場合、電力変換装置の出力電流もこの電圧変動の影響を受け変動し、発電機側から見るとほぼ2乗の関係で電力が変動する負荷とみなせる。一方、電流制御器153は、負荷側が要求する電力を電力変換器7が出力するために、電流検出器12で検出される電力変換器7の出力電流が電流指令に一致するように動作する。そして、前記電流制御器153の応答が高い場合は、前記電圧変動の影響を電流制御器が補正し、出力電流を指令に一致させる電圧指令が出力されるため、発電機側の変動に関係なく例えば一定電力に制御されると、電気系ダンピングが負になる。そこで、発電機回転速度の変動分は、電力変換装置の入力電圧の周波数変動または振幅変動として現れるため、電圧検出器14で電圧を検出し、その検出値を変動量演算器114に入力する。変動量演算器114は変動量を演算し、出力する。また、電流検出器12で検出される電力変換器の出力電流と電圧検出器13で検出される電力変換器7の出力電圧が電力演算器115に入力され、電力演算器115では電力変換器7の出力電力を演算し出力する。そして、変動量演算器114からの変動量と電力演算器115からの電力演算値を電力調整器116に入力し、電力調整器116では、電力演算値が変動量に応じて変化するように、例えば入力電圧の変動周波数に対する応答ゲインが低下するまで電力変換装置の電流制御器153の応答(制御ゲイン)を低減するようにした。   Focusing on the above relationship, the control operation in the present invention will be described next. In order to make the electric damping De positive from the equation (7), the electric power may be changed according to the fluctuation of the generator rotational speed. Here, when the fluctuation of the generator rotational speed is the fluctuation of the amplitude of the input voltage of the power converter, the output current of the power converter also fluctuates due to the voltage fluctuation, and is almost 2 when viewed from the generator side. It can be regarded as a load whose power fluctuates due to the power. On the other hand, the current controller 153 operates so that the output current of the power converter 7 detected by the current detector 12 matches the current command in order for the power converter 7 to output the power required by the load. When the response of the current controller 153 is high, the current controller corrects the influence of the voltage fluctuation and outputs a voltage command that matches the output current with the command. For example, when the electric power is controlled to a constant level, the electrical damping becomes negative. Therefore, since the fluctuation of the generator rotational speed appears as frequency fluctuation or amplitude fluctuation of the input voltage of the power converter, the voltage is detected by the voltage detector 14 and the detected value is input to the fluctuation calculator 114. The fluctuation amount calculator 114 calculates and outputs the fluctuation amount. In addition, the output current of the power converter detected by the current detector 12 and the output voltage of the power converter 7 detected by the voltage detector 13 are input to the power calculator 115, and the power calculator 115 The output power is calculated and output. Then, the fluctuation amount from the fluctuation amount calculator 114 and the power calculation value from the power calculator 115 are input to the power regulator 116, and the power regulator 116 changes the power calculation value according to the fluctuation amount. For example, the response (control gain) of the current controller 153 of the power converter is reduced until the response gain with respect to the fluctuation frequency of the input voltage decreases.

ここで、電力調整器116において、電力変動ΔPが発電機回転速度変動Δωに比例するよう、すなわち、電力変動ΔP/発電機回転速度変動Δω=動作点の電力P0/動作点の発電機回転速度ω0の関係(ΔP/Δω=P0/ω0:動作点での比と同じ)を満たすように外乱応答を低減すれば、電気系ダンピングは0となりタービン発電機の振動特性は機械系ダンピングのみの特性にできる。さらには、電力変動ΔPと発電機回転速度変動Δωの関係を上記で規定した比例関係より大きくする(ΔP/Δω>P0/ω0:動作点での比よりも大きい)ように、好ましくは2乗に比例するように、外乱応答を低減すれば、電気系ダンピングは正となり、タービン発電機の振動特性は機械系ダンピングと電気系ダンピングの合計の特性となり、振動現象に対してより大きな減衰力が得られ振動抑制ができる。   Here, in the power regulator 116, the power fluctuation ΔP is proportional to the generator rotational speed fluctuation Δω, that is, power fluctuation ΔP / generator rotational speed fluctuation Δω = power P0 at the operating point / generator rotational speed at the operating point. If the disturbance response is reduced so as to satisfy the relationship of ω0 (ΔP / Δω = P0 / ω0: same as the ratio at the operating point), the electrical damping becomes 0 and the vibration characteristics of the turbine generator are the characteristics of only mechanical damping. Can be. Furthermore, the square of the power fluctuation ΔP and the generator rotational speed fluctuation Δω is preferably squared so as to be larger than the proportionality defined above (ΔP / Δω> P0 / ω0: larger than the ratio at the operating point). If the disturbance response is reduced, the damping of the electric system becomes positive, and the vibration characteristics of the turbine generator are the sum of the mechanical damping and the electrical damping. The obtained vibration can be suppressed.

外乱応答を低減の動作をより具体的に説明する。ここで、外乱応答、すなわち電流制御器153の応答(制御ゲイン)は、変動周波数に対して電流制御系が応答するゲインを指すものである。通常、電流制御が電源変動の周波数に対して反応できるように、いわゆる電流制御系のボード線図で、電流制御系の応答を設定した応答周波数まではゲインを0dBとすると、電流が一定となるよう、電源変動を相殺するような電圧指令を電流制御系が演算し、電力変換器の出力電圧が一定となり、また、電流も一定になるように制御する。   The operation of reducing the disturbance response will be described more specifically. Here, the disturbance response, that is, the response (control gain) of the current controller 153 indicates a gain at which the current control system responds to the fluctuation frequency. Normally, the current is constant when the gain is set to 0 dB up to the response frequency in which the response of the current control system is set in the so-called Bode diagram of the current control system so that the current control can respond to the frequency of the power supply fluctuation. As described above, the current control system calculates a voltage command that cancels the power supply fluctuation, and controls the output voltage of the power converter to be constant and the current to be constant.

一方、ガスタービン1と発電機2を結合する機械軸3の振動を抑制するためには、電流制御器153の応答(制御ゲイン)について、発電機の回転速度変動を入力電圧の変動周波数として検出し、変動周波数に対するゲインが低下するように、電流制御系の応答を低減(制御ゲインを低減)する。すなわち、電流制御系は反応を抑制し、電源変動を相殺する電圧指令も出さなくなり、出力電圧は電源変動に応じて変動し、電流も電圧変動に応じて変動する。位相がずれるため力率に影響されるが、実質的には電力=電圧×電流なので、電力が電源に応じて変動する。このように外乱応答を低減するに従い、電源変動に応じて電力が変動するようになることから、電力変動ΔP/発電機回転速度変動Δω=動作点の電力P0/動作点の発電機回転速度ω0の関係(ΔP/Δω=P0/ω0:動作点での比と同じ)を満たすように応答を低減させる。応答低減で、応答による電力変動量が変えられるので比例の関係(ΔP/Δω=P0/ω0:動作点での比と同じ)になるまで応答を低減するのである。   On the other hand, in order to suppress the vibration of the mechanical shaft 3 that couples the gas turbine 1 and the generator 2, the rotational speed fluctuation of the generator is detected as the fluctuation frequency of the input voltage with respect to the response (control gain) of the current controller 153. Then, the response of the current control system is reduced (the control gain is reduced) so that the gain with respect to the fluctuation frequency is lowered. That is, the current control system suppresses the reaction and does not issue a voltage command for canceling the power supply fluctuation, the output voltage fluctuates according to the power fluctuation, and the current also fluctuates according to the voltage fluctuation. Although the phase is shifted, it is influenced by the power factor. However, since power is actually equal to voltage × current, the power varies depending on the power source. As the disturbance response is reduced in this way, the power fluctuates according to the power supply fluctuation. Therefore, power fluctuation ΔP / generator rotational speed fluctuation Δω = operating point power P0 / operating point generator rotational speed ω0. The response is reduced so as to satisfy the relationship (ΔP / Δω = P0 / ω0: the same as the ratio at the operating point). Since the amount of power fluctuation due to the response can be changed by reducing the response, the response is reduced until a proportional relationship (ΔP / Δω = P0 / ω0: same as the ratio at the operating point) is obtained.

なお、応答低減でΔP/Δω=P0/ω0とする場合を例に説明したが、この場合に限らず、電気系ダンピングを正とするようあるいは増加するよう、タービン発電機の機械系ダンピングと電気系ダンピングの合計を増加するような、振動現象に対してより大きな減衰力が得られるための他の実施例記載に代えらえるのはもちろんである。   Although the case where ΔP / Δω = P0 / ω0 is set as an example in response reduction has been described, the present invention is not limited to this case, and mechanical damping and electrical damping of the turbine generator are increased so that the electrical damping is positive or increased. Of course, it can be replaced with the description of another embodiment in order to obtain a larger damping force against the vibration phenomenon that increases the total system damping.

また、図1では電流制御器153を用いて、電源変動に対する外乱応答を低減する実施例を示したが、電源変動の影響を直接電圧指令に反映する電圧変動補正機能を用いて電源変動に対する外乱応答を高めている場合がある。この場合は、電圧変動補正機能にフィルタ遅れ要素を付加し、このフィルタ時定数を長くすることで電源変動に対する外乱応答を低減でき、同様の効果を得ることができる。   Although FIG. 1 shows an embodiment in which the current controller 153 is used to reduce the disturbance response to the power supply fluctuation, the disturbance to the power supply fluctuation using the voltage fluctuation correction function that directly reflects the influence of the power supply fluctuation in the voltage command is shown. May increase response. In this case, a filter delay element is added to the voltage fluctuation correction function, and by increasing the filter time constant, the disturbance response to the power fluctuation can be reduced, and the same effect can be obtained.

また、図1では電力調整器116により電流制御器153の応答を可変しているが、電源変動に対する外乱応答を高める必要がない場合は、電力演算値が変動量に応じて変化する低応答なゲインに固定してもよい。
以上、制御ゲインの低減により振動抑制する例を記載したが、例えば、積極的に指令電流値を変更するなどによっても実現できる。制御対象を電流制御における制御ゲインとしたが、これらの電流制御のみならず、回路を工夫すれば、制御対象を電圧にしても同様な効果が得られる。
Further, in FIG. 1, the response of the current controller 153 is varied by the power regulator 116. However, when there is no need to increase the disturbance response to the power supply fluctuation, the power calculation value is a low response that varies depending on the fluctuation amount. The gain may be fixed.
As described above, the example in which the vibration is suppressed by reducing the control gain has been described. However, for example, it can be realized by positively changing the command current value. Although the control target is the control gain in the current control, the same effect can be obtained even if the control target is a voltage if the circuit is devised in addition to the current control.

図2は、本発明装置の他の実施例であって、トータルダンピング係数Dsに対する電気系のダンピング係数Deの効果がタービン発電機の機械条件によって変化することに着目し、機械条件によって電力調整器116が出力する応答低減量を演算する際に用いる電力演算値と変動量(発電機の回転速度変動量)の関係(ΔP/Δω)を可変する点が図1と異なる。なお、実施例1と異なる部分のみ説明し、同様な部分は説明を省略する。なお、他の実施例においても同様である。先ず、(2)式よりDe=0の場合の関係式より機械系のダンピング係数は(8)式となる。ここでζ0,ωn0はタービン発電機の機械条件で決まる減衰係数と固有振動数である。(4)式と(7),(8)式からDs/Dmを導出すると(9)式となる。   FIG. 2 shows another embodiment of the apparatus according to the present invention, and pays attention to the fact that the effect of the electrical damping coefficient De on the total damping coefficient Ds varies depending on the mechanical conditions of the turbine generator. 1 is different from FIG. 1 in that the relationship (ΔP / Δω) between the power calculation value used when calculating the response reduction amount output by 116 and the fluctuation amount (rotation speed fluctuation amount of the generator) is varied. Only parts different from the first embodiment will be described, and description of similar parts will be omitted. The same applies to other embodiments. First, from the equation (2), the damping coefficient of the mechanical system is represented by equation (8) from the relational expression when De = 0. Here, ζ0 and ωn0 are a damping coefficient and a natural frequency determined by mechanical conditions of the turbine generator. When Ds / Dm is derived from the equations (4) and (7) and (8), the equation (9) is obtained.

Figure 2010283904
Figure 2010283904

Figure 2010283904
Figure 2010283904

(9)式より、ΔP/Δωをパラメータとし、例えば減衰係数ζ0と固有振動数ωn0をある数値に固定し、イナーシャ比nを横軸にΔP/Δω・P0/ω0を入力した時のDs/Dmの変化を計算したものを図6に示す。図6は、イナーシャ比が小さい場合にΔP/Δωにより振動特性が大きく変化することを示している。同様に(9)式が示すように減衰係数ζ0,固有振動数ωn0、トータルイナーシャが小さいほどΔP/Δωにより振動特性が大きく変化する。一方、電力変換装置は負荷側から要求される所望の電力を出力することが目的であるため、発電機側の軸ねじれ振動を抑制するための電力調整手段は外乱となり、そのための応答低減量は可能な限り小さいことが望ましい。そこで、タービン発電機の機械条件を設定するタービン発電機条件設定器117により、少なくともトータルダンピング係数が負とならない範囲で応答低減量を演算するためのΔP/Δωの関係を電力調整器116において可変できるようにした。   From equation (9), ΔP / Δω is used as a parameter, for example, the damping coefficient ζ0 and the natural frequency ωn0 are fixed to certain numerical values, and Ds / when the inertia ratio n is input to the horizontal axis as ΔP / Δω · P0 / ω0. FIG. 6 shows the calculated change in Dm. FIG. 6 shows that the vibration characteristics greatly change due to ΔP / Δω when the inertia ratio is small. Similarly, as shown in the equation (9), the vibration characteristics greatly change depending on ΔP / Δω as the damping coefficient ζ0, the natural frequency ωn0, and the total inertia are smaller. On the other hand, since the power converter is intended to output the desired power required from the load side, the power adjustment means for suppressing the torsional vibration on the generator side is a disturbance, and the response reduction amount for that is It is desirable to be as small as possible. Therefore, the power generator 116 can change the relationship of ΔP / Δω for calculating the response reduction amount at least within a range where the total damping coefficient is not negative by the turbine generator condition setting unit 117 that sets the mechanical conditions of the turbine generator. I was able to do it.

すなわち、電力調整器116では、少なくともトータルダンピング係数が負とならない範囲となるΔP/Δωを演算し、変動周波数Δωに対して電力変動ΔPを求め、この電力変動ΔPを実現する応答を演算するのである。   That is, the power regulator 116 calculates ΔP / Δω that is at least a range in which the total damping coefficient is not negative, calculates the power fluctuation ΔP with respect to the fluctuation frequency Δω, and calculates a response that realizes the power fluctuation ΔP. is there.

このようにすることで、電源側の機械条件より、負荷側の制御性能への影響を最小限に抑え、可能な限り小さい応答低減量で電源側の振動抑制を行うことができる。   By doing so, the influence on the control performance on the load side can be minimized due to the machine condition on the power source side, and the vibration on the power source side can be suppressed with the smallest possible response reduction amount.

図3は、本発明装置の他の実施例であって、負荷側の振動抑制または瞬停などによる電源急変の条件により、電力調整器116が出力する応答低減量を増減する点が図1と異なる。負荷側に電動機により駆動される被駆動装置が接続された電力変換装置においては、電動機と被駆動装置の軸共振周波数で軸ねじり振動が発生する場合があり、電動機と被駆動装置間の軸ねじれ振動を抑制する軸振動抑制機能が付加されることがある。例えば、負荷側の軸ねじれ振動を電動機8の速度変動として、速度推定演算器151から出力される速度推定値の変動量より検出し、その振動を抑制するような電流指令値を出力する負荷側振動抑制器154を設置し、負荷側振動抑制器154の出力を速度制御器152の出力に加算する。この時、負荷側の共振振動周波数の電流指令値に電流検出値が一致するために電流制御応答が必要となる。また、瞬停などによる電源急変により電流が大きく変動することを防止するには電源変動に対する外乱応答を高める必要がある。   FIG. 3 shows another embodiment of the device of the present invention, which is different from FIG. 1 in that the response reduction amount output from the power regulator 116 is increased or decreased depending on the condition of sudden power change due to vibration suppression on the load side or instantaneous power failure. Different. In a power converter in which a driven device driven by an electric motor is connected to the load side, shaft torsional vibration may occur at the axial resonance frequency of the electric motor and the driven device, and the shaft torsion between the motor and the driven device may occur. A shaft vibration suppression function for suppressing vibration may be added. For example, the load-side shaft torsional vibration is detected as the speed fluctuation of the electric motor 8 from the fluctuation amount of the speed estimation value output from the speed estimation computing unit 151, and the current side command value that suppresses the vibration is output. A vibration suppressor 154 is installed, and the output of the load side vibration suppressor 154 is added to the output of the speed controller 152. At this time, a current control response is required because the detected current value matches the current command value of the resonant vibration frequency on the load side. Further, in order to prevent the current from fluctuating greatly due to a sudden change in the power supply due to a momentary power interruption or the like, it is necessary to increase the disturbance response to the power supply fluctuation.

そこで、電力調整器116が出力する応答低減量を増減する、例えば可変ゲインなどの機能による応答低減量調整器118と、負荷側振動抑制器154の出力電流指令に含まれる振動成分から得られる負荷側の振動現象(大きさ,周波数)と電圧検出器14により検出される電源側の変動現象(大きさ,周波数)に応じて、前記応答低減量調整器118への制限量を演算する応答低減制限演算器119を設置し、負荷側と電源側の状況に応じて応答低減量調整器118により電力調整器116による応答低減量を増減できるようにした。尚、発電機側の共振周波数、負荷側の共振周波数は機械定数より把握できることが多いので、発電機側の振動現象と負荷側の振動現象や瞬停などの非周期的な変動を判別することは可能であり、負荷側の振動抑制動作や瞬停などの非周期的な変動が生じた場合は、少なくともトータルダンピング係数が負とならない範囲で応答低減量に制限を加える。   Therefore, the load obtained from the vibration component included in the output current command of the load side vibration suppressor 154 and the response reduction amount adjuster 118 by a function such as a variable gain that increases or decreases the response decrease amount output from the power adjuster 116. Response reduction that calculates a limit amount to the response reduction amount adjuster 118 according to the vibration phenomenon (magnitude, frequency) on the power source side and the fluctuation phenomenon (magnitude, frequency) on the power source side detected by the voltage detector 14 A limit computing unit 119 is installed so that the response reduction amount by the power regulator 116 can be increased or decreased by the response reduction amount regulator 118 according to the situation on the load side and the power source side. Since the resonance frequency on the generator side and the resonance frequency on the load side can often be grasped from the machine constant, it is necessary to discriminate non-periodic fluctuations such as the vibration phenomenon on the generator side and the vibration phenomenon on the load side or instantaneous interruption. When non-periodic fluctuations such as load-side vibration suppression operation or instantaneous power failure occur, the response reduction amount is limited at least within a range where the total damping coefficient is not negative.

例えば、応答低減量調整器118は、予め負荷側の振動現象(大きさ,周波数)と電源側の変動現象(大きさ,周波数)に対応した応答低減量マップを記憶しておき、検出された振動現象と電源側変動現象に応じて該マップから応答低減量を読み出し、電力調整器116で決定される制御ゲインを補正することにより、応答を演算する。この場合、少なくともトータルダンピング係数が負とならない範囲となるように応答低減量は制限される。   For example, the response reduction amount adjuster 118 stores in advance a response reduction amount map corresponding to the vibration phenomenon (size, frequency) on the load side and the fluctuation phenomenon (size, frequency) on the power supply side, and is detected. The response reduction amount is read from the map according to the vibration phenomenon and the power supply side fluctuation phenomenon, and the response is calculated by correcting the control gain determined by the power regulator 116. In this case, the response reduction amount is limited so that at least the total damping coefficient is in a range that is not negative.

このようにすることで、負荷側の振動抑制や瞬停などの電源急変時は外乱応答を高くでき、電源側の振動抑制を可能な範囲内で同時併用できる。   By doing in this way, the disturbance response can be enhanced at the time of sudden power change such as suppression of vibration on the load side or momentary power interruption, and simultaneous use within a range capable of suppressing vibration on the power source side.

また、図3では軸ねじれ振動を電動機8の速度変動として検出しているが、負荷側の軸ねじれ振動を電流検出器12が出力する電流検出値の変動量として検出し、その振動を抑制するような電圧指令値を出力し負荷側振動抑制を行う場合がある。この場合でも負荷側振動抑制による電圧指令に含まれる振動成分から得られる負荷側の振動現象(大きさ,周波数)に応じて応答低減量を増減することで同等の効果を得ることができる。   Further, in FIG. 3, the shaft torsional vibration is detected as the speed fluctuation of the electric motor 8, but the load side shaft torsional vibration is detected as the fluctuation amount of the current detection value output from the current detector 12, and the vibration is suppressed. Such a voltage command value may be output to suppress load side vibration. Even in this case, an equivalent effect can be obtained by increasing or decreasing the response reduction amount in accordance with the vibration phenomenon (magnitude, frequency) on the load side obtained from the vibration component included in the voltage command by load side vibration suppression.

図4は、本発明装置の他の実施例であって、複数の電力変換装置でタービン発電機の振動抑制を行う点が図3と異なる。図4において5から13をサフィックスa,bで区別しているが同じ機能を持つものである。同じ系統に複数の電力変換装置が接続されている場合、複数の電力調整手段の合計で電源側の振動抑制を行うことができる。そこで、電源側振動抑制条件配分器20を設置し、電力変換器の入力電圧を検出する電圧検出器14からの電圧検出値と各々の電力変換装置11a,11b,・・・から、応答低減制限演算器119からの制限値と電力演算器115からの電力演算値を、電源側振動抑制条件配分器20に入力し、電源側振動抑制条件配分器20からは、各電力変換装置における電源側振動抑制条件(応答低減配分値)が出力される。次に、電源側振動抑制条件配分器20の制御動作について説明する。(7)式より電気系ダンピングDeを正にするには、電力を発電機回転速度の変動に応じて変化させればよい。発電機回転速度の変動分は、電力変換装置の入力電圧の周波数変動または振幅変動として現れるため、電圧検出器14で電圧を検出し、その検出値を変動量演算器201に入力する。変動量演算器201は変動量を演算し、出力する。また、各電力変換器制御装置11a,11b,・・・からの電力演算値は総合電力演算器202に入力され、総合電力演算器202では複数の電力変換器の出力電力の合計を演算し出力する。そして、変動量演算器201からの変動量と総合電力演算器115からの電力演算値を総合電力調整器203に入力し、総合電力調整器203では、総合電力演算値が変動量に応じて変化するように、電力変換器の電源変動に対する外乱応答を低減するための応答低減量を応答低減量配分器204に出力する。   FIG. 4 shows another embodiment of the device of the present invention, which is different from FIG. 3 in that the vibration of the turbine generator is suppressed by a plurality of power conversion devices. In FIG. 4, although 5 to 13 are distinguished by suffixes a and b, they have the same function. When a plurality of power conversion devices are connected to the same system, vibration on the power source side can be suppressed by the total of the plurality of power adjustment means. Therefore, a power-supply-side vibration suppression condition distribution unit 20 is installed, and the response reduction restriction is determined from the voltage detection value from the voltage detector 14 that detects the input voltage of the power converter and each of the power converters 11a, 11b,. The limit value from the calculator 119 and the calculated power value from the power calculator 115 are input to the power supply side vibration suppression condition distribution unit 20, and the power supply side vibration suppression condition distribution unit 20 supplies the power supply side vibration in each power converter. The suppression condition (response reduction distribution value) is output. Next, the control operation of the power supply side vibration suppression condition distributor 20 will be described. In order to make the electric damping De positive from the equation (7), the electric power may be changed according to the fluctuation of the generator rotational speed. Since the fluctuation of the generator rotational speed appears as frequency fluctuation or amplitude fluctuation of the input voltage of the power converter, the voltage is detected by the voltage detector 14 and the detected value is input to the fluctuation calculator 201. The fluctuation amount calculator 201 calculates and outputs the fluctuation amount. Moreover, the power calculation value from each power converter control apparatus 11a, 11b, ... is input into the total power calculator 202, and the total power calculator 202 calculates and outputs the total output power of a plurality of power converters. To do. Then, the fluctuation amount from the fluctuation amount calculator 201 and the power calculation value from the total power calculator 115 are input to the total power adjuster 203. In the total power adjuster 203, the total power calculation value changes according to the fluctuation amount. Thus, the response reduction amount for reducing the disturbance response to the power supply fluctuation of the power converter is output to the response reduction amount distributor 204.

ここで、応答低減により電力変換装置の出力電流も電圧変動の影響を受け変動し、発電機側から見るとほぼ2乗の関係で電力が変動する負荷とみなせるため、電気系ダンピングが正となり振動現象に対してより大きな減衰力が得られ振動抑制ができる。応答低減量配分器204には、総合電力調整器203からの応答低減量と各電力変換器制御装置11a,11b,・・・からの応答低減制限演算器119からの制限値と総合電力演算器202で演算された各電力変換器出力の総合電力に対する電力比率が入力され、応答低減量配分器204では、入力された電力比率と制限値から各電力変換装置に配分される応答低減量を演算する。例えば、制限値が大きい電力変換器による応答低減量の不足分を他の電力変換器の低減量の比率を増加することで補充し、総合電力として調整ができるようにした。
応答低減量配分器204で演算された各電力変換装置の応答低減量は、各電力変換器制御装置11a,11b,・・・に送られ、各電力変換器制御装置では、送られた応答低減量に従って、応答低減量調整器118で調整する。
Here, the output current of the power conversion device fluctuates due to the voltage fluctuation due to the response reduction, and it can be regarded as a load in which the power fluctuates in a nearly square relationship when viewed from the generator side. Greater damping force can be obtained for the phenomenon and vibration can be suppressed. The response reduction amount distributor 204 includes a response reduction amount from the total power adjuster 203, a limit value from the response reduction limit calculator 119 from each power converter controller 11a, 11b,. The power ratio with respect to the total power of each power converter output calculated in 202 is input, and the response reduction amount distributor 204 calculates the response reduction amount distributed to each power converter from the input power ratio and the limit value. To do. For example, the shortage of the response reduction amount due to the power converter having a large limit value is supplemented by increasing the ratio of the reduction amount of the other power converters so that the total power can be adjusted.
The response reduction amount of each power converter calculated by the response reduction amount distributor 204 is sent to each power converter control device 11a, 11b,..., And each power converter control device sends the response reduction sent. The response reduction amount adjuster 118 adjusts according to the amount.

すなわち、電力変換器制御装置が2台(電力変換器制御装置11a,11b)の場合を仮定すると、動作点における各々の電力はPa,Pbであり、各々の電力変動ΔP0a,ΔP0bであるので、各々の電力P0a,P0bの和(P0a+P0b)が系全体の電力Pになり、各々の電力変動ΔPa,ΔPbの和(ΔPa+ΔPb)が系全体の電力変動量ΔPになる。よって、振動現象に対してより減衰力が得られように系全体の電気ダンピング係数を低減するためには、電力変動(ΔPa+ΔPb)/発電機回転速度変動Δω=動作点の電力(P0a+P0b)/動作点の発電機回転速度ω0の関係(ΔP/Δω=P0/ω0:動作点での比と同じ)となるように、各々の電力変換器制御装置11a,11bの応答を低減させるのである。   That is, assuming that there are two power converter control devices (power converter control devices 11a and 11b), the power at the operating point is Pa and Pb, and the power fluctuations ΔP0a and ΔP0b. The sum (P0a + P0b) of the powers P0a and P0b becomes the power P of the entire system, and the sum of the power fluctuations ΔPa and ΔPb (ΔPa + ΔPb) becomes the power fluctuation amount ΔP of the whole system. Therefore, in order to reduce the electrical damping coefficient of the entire system so that more damping force can be obtained with respect to the vibration phenomenon, power fluctuation (ΔPa + ΔPb) / generator rotational speed fluctuation Δω = power at operating point (P0a + P0b) / operation The response of each of the power converter control devices 11a and 11b is reduced so that the relationship of the generator rotational speed ω0 at the point is satisfied (ΔP / Δω = P0 / ω0: the same as the ratio at the operating point).

ここで、一方の電力変換器制御装置11aの応答低減量が抑制され、その低減量に応じた電力変動がΔPaであれば、他方の電力変換器制御装置11bの応答低減量は、系全体の電力低減量から電力変動ΔPaを除した値(ΔP−ΔPa)を実現できる値として演算される。   Here, if the response reduction amount of one power converter control device 11a is suppressed and the power fluctuation according to the reduction amount is ΔPa, the response reduction amount of the other power converter control device 11b is It is calculated as a value that can realize a value (ΔP−ΔPa) obtained by dividing the power fluctuation ΔPa from the power reduction amount.

もちろん、電力変換器制御装置が3台(電力変換器制御装置11a,11b,11c)の場合、或いは、それ以上の場合にも上記に準じて、応答低減量が求められることはもちろんであり、また、(ΔP/Δω=P0/ω0:動作点での比と同じ)以外の電気ダンピング係数を増加、あるいは、トータルダンピング係数の増加を実現する関係を用いて、応答(制御ゲイン)を演算しても良いことはもちろんである。   Of course, when there are three power converter control devices (power converter control devices 11a, 11b, and 11c), or more than that, the response reduction amount is obtained according to the above. Also, the response (control gain) is calculated using a relationship that increases the electrical damping coefficient other than (ΔP / Δω = P0 / ω0: same as the ratio at the operating point) or increases the total damping coefficient. Of course.

このようにすることで、負荷側の振動抑制や瞬停などの電源急変時は外乱応答を高くでき、複数の電力変換装置の応答低減量の配分を行い、総合電力として調整を行うことで電源側の振動抑制を行うことができる。   In this way, the disturbance response can be increased during sudden changes in the power source, such as vibration suppression on the load side or momentary power interruption, the response reduction amount of multiple power converters can be distributed, and the power can be adjusted by adjusting the total power. Side vibration can be suppressed.

また、負荷側に電動機により駆動される被駆動装置が接続された電力変換装置における、電動機と被駆動装置の軸共振周波数で生じる軸ねじり振動は特定の速度で発生する場合がある。そこで、電源側振動抑制条件配分器20から出力される電源側振動抑制条件に応答低減量配分値だけでなく各電力変換装置の速度指令値を追加し、制限量が大きい電力変換装置の速度指令値を操作することで制限量を緩和し、電源側の振動抑制を行うこともできる。   Further, in a power conversion device in which a driven device driven by an electric motor is connected to the load side, shaft torsional vibration that occurs at the axial resonance frequency of the electric motor and the driven device may occur at a specific speed. Therefore, not only the response reduction amount distribution value but also the speed command value of each power conversion device is added to the power supply side vibration suppression condition output from the power supply side vibration suppression condition distributor 20, and the speed command of the power conversion device having a large limit amount is added. By manipulating the value, the limit amount can be relaxed and vibration on the power supply side can be suppressed.

また、図4に示す実施例においては、総合電力演算手段への入力電力演算値が電力変換装置からとなっているが、同じ系統に接続されている電力変換装置以外の負荷電力も加えた総合電力で調整することも可能であり、この場合、各電力変換装置への応答低減量配分比が抑えられる効果がある。   In the embodiment shown in FIG. 4, the input power calculation value to the total power calculation means is from the power converter, but the total load power other than the power converter connected to the same system is also added. Adjustment with electric power is also possible, and in this case, there is an effect of suppressing the response reduction amount distribution ratio to each power converter.

以上の各実施例のエッセンスを纏めると以下のとおりとなる。すなわち、タービン発電機間の軸ねじれ振動へのダンピング特性が負荷側の電力変化に依存することに着目し、電源側に発電機を有する系統に接続された電力変換装置において、前記発電機の回転速度変動を前記電力変換装置の入力電圧の周波数変動または振幅変動として検出する変動量演算手段と、前記電力変換装置の電力を演算する電力演算手段と、前記変動量に応じて、前記電力演算値が変化するように前記電力変換装置の電源変動に対する外乱応答を低減する電力調整手段を設置するようにした。例えば、この調整においては、電力変動の発電機回転速度変動に対する比率が動作点での比率と同じ(ΔP/Δω=P0/ω0)、または、電力変動の発電機回転速度変動に対する比率が動作点での比率より大きくなるように電力変換装置の電源変動に対する外乱応答を低減するようにした。また、ダンピング特性がタービン発電機のイナーシャ比,減衰係数,固有振動数などに依存することに着目し、電力調整を行うための電力と変動量との関係式をタービン発電機の機械条件により可変できるようにした。   The essence of each of the above embodiments is summarized as follows. That is, paying attention to the fact that the damping characteristic to the shaft torsional vibration between turbine generators depends on the power change on the load side, in the power converter connected to the system having the generator on the power source side, the rotation of the generator Fluctuation amount calculation means for detecting speed fluctuation as frequency fluctuation or amplitude fluctuation of the input voltage of the power converter, power calculation means for calculating power of the power converter, and the power calculation value according to the fluctuation amount The power adjustment means for reducing the disturbance response to the power supply fluctuation of the power converter is installed so that the power changes. For example, in this adjustment, the ratio of the power fluctuation to the generator rotational speed fluctuation is the same as the ratio at the operating point (ΔP / Δω = P0 / ω0), or the ratio of the power fluctuation to the generator rotational speed fluctuation is the operating point. The disturbance response to the power supply fluctuation of the power converter is reduced so as to be larger than the ratio at. Focusing on the fact that the damping characteristics depend on the inertia ratio, damping coefficient, natural frequency, etc. of the turbine generator, the relational expression between the power for power adjustment and the amount of fluctuation can be changed according to the mechanical conditions of the turbine generator. I was able to do it.

また、電源側に発電機を有する系統に接続され、負荷側に電動機により駆動される被駆動装置が接続された電力変換装置において、前記発電機の回転速度変動を前記電力変換装置の入力電圧の周波数変動または振幅変動として検出する変動量演算手段と、前記電力変換装置の電力を演算する電力演算手段と、前記変動量に応じて、前記電力演算値が変化するように前記電力変換装置の電源変動に対する外乱応答を低減する電力調整手段と、前記電力調整手段が出力する応答低減量を増減する応答低減量調整手段と負荷側の振動現象に応じて前記応答低減量調整手段の制限量を演算する応答低減制限演算手段を設置し、負荷側の振動現象に応じて電力調整手段による応答低減量を前記応答低減量調整手段で増減するようにした。   Further, in a power converter connected to a system having a generator on the power supply side and connected to a driven device driven by an electric motor on the load side, the rotational speed fluctuation of the generator is calculated based on the input voltage of the power converter. Fluctuation amount calculation means for detecting frequency fluctuations or amplitude fluctuations, power calculation means for calculating the power of the power converter, and a power source of the power converter so that the power calculation value changes according to the fluctuation amount Power adjustment means for reducing disturbance response to fluctuation, response reduction amount adjustment means for increasing / decreasing the response reduction amount output by the power adjustment means, and calculating the limit amount of the response reduction amount adjustment means according to the vibration phenomenon on the load side The response reduction limit calculation means is installed, and the response reduction amount by the power adjustment means is increased or decreased by the response reduction amount adjustment means according to the vibration phenomenon on the load side.

また、電源側に発電機を有する系統に接続され、負荷側に電動機により駆動される被駆動装置が接続された電力変換装置が共通の系統に複数接続されているシステムにおいて、前記発電機の回転速度変動を前記電力変換装置の入力電圧の周波数変動または振幅変動として検出する変動量演算手段と、前記電力変換装置の電力を演算する電力演算手段と、前記変動量に応じて、前記電力演算値が変化するように前記電力変換装置の電源変動に対する外乱応答を低減する電力調整手段と、前記電力調整手段が出力する応答低減量を増減する応答低減量調整手段と負荷側の振動現象に応じて前記応答低減量調整手段の制限量を演算する応答低減制限演算手段を複数の電力変換装置の各々に設置し、各電力変換装置の電力演算手段の電力値を合計する総合電力演算手段と前記発電機の回転速度変動を前記電力変換装置の入力電圧の周波数変動または振幅変動として検出する変動量演算手段と、前記変動量に応じて、前記総合電力演算値が変化するように前記電力変換装置の電源変動に対する外乱応答を低減する総合電力調整手段と、各電力変換装置の応答低減制限演算手段の制限値と総合電力演算手段からの各電力変換器出力の総合電力に対する電力比率から各電力変換装置に配分される応答低減量を演算する応答低減量配分手段を設置し、前記応答低減量配分手段からの応答低減量配分により各電力変換装置の前記応答低減量調整手段で応答低減量の増減を行い、総合電力として調整するようにした。   Further, in a system in which a plurality of power converters connected to a system having a generator on the power source side and connected to a driven device driven by an electric motor on the load side are connected to a common system, the rotation of the generator Fluctuation amount calculation means for detecting speed fluctuation as frequency fluctuation or amplitude fluctuation of the input voltage of the power converter, power calculation means for calculating power of the power converter, and the power calculation value according to the fluctuation amount According to the vibration phenomenon on the load side and the power adjustment means for reducing the disturbance response to the power fluctuation of the power conversion device, the response reduction amount adjustment means for increasing or decreasing the response reduction amount output by the power adjustment means, and Response reduction limit calculation means for calculating the limit amount of the response reduction amount adjustment means is installed in each of the plurality of power conversion devices, and the power values of the power calculation means of each power conversion device are summed up. Combined power calculation means, fluctuation amount calculation means for detecting fluctuations in the rotational speed of the generator as frequency fluctuations or amplitude fluctuations of the input voltage of the power converter, and the total power calculation value changes according to the fluctuation amount. The total power adjusting means for reducing the disturbance response to the power supply fluctuation of the power converter, the limit value of the response reduction limit calculating means of each power converter and the total power of each power converter output from the total power calculating means Response reduction amount distribution means for calculating the response reduction amount distributed to each power conversion device from the power ratio is installed, and the response reduction amount adjustment means of each power conversion device by response reduction amount distribution from the response reduction amount distribution means The amount of response reduction was increased and decreased to adjust the total power.

以上の実施例では電動機8で被駆動装置9(例えば液化天然ガス製造用のコンプレッサ)を駆動する例を説明したが、これに限定されるものではなく、船舶に適用しても良い、この場合は、発電機&モータ駆動システムを船舶に積載できるように構成し、モータ駆動システムで船舶のスクリューを駆動する。また、エコ電車に適用しても良い。この場合は、発電機を電車用のディーゼル発電機とし、ディーゼル発電機&モータ駆動システムを用いて車輪を駆動する。また、非常用発電機+UPSとして適用しても良い、この場合、変換器としてUPS(無停電電源装置)が構成されることとなる。さらに、電動ダンプシステムに適用しても良い、この場合、発電機&モータ駆動システムを車両に積載できるように構成し、モータ駆動システムで車両の駆動輪を回転させる。しかしながら、これらの例は、適用例を示したに過ぎず、発電機+モータ駆動システムのどのようなシステムにも適用が可能なのは言うまでも無い。   In the above embodiment, the example in which the driven device 9 (for example, a compressor for producing liquefied natural gas) is driven by the electric motor 8 has been described. However, the present invention is not limited to this and may be applied to a ship. Is configured so that a generator & motor drive system can be loaded on the ship, and the motor drive system drives the screw of the ship. Moreover, you may apply to an eco-train. In this case, the generator is a diesel generator for trains, and the wheels are driven using a diesel generator & motor drive system. Moreover, you may apply as emergency generator + UPS. In this case, UPS (uninterruptible power supply) will be comprised as a converter. Further, the present invention may be applied to an electric dump system. In this case, the generator & motor drive system is configured to be loaded on the vehicle, and the drive wheel of the vehicle is rotated by the motor drive system. However, these examples are merely examples of application, and needless to say, the present invention can be applied to any system of a generator + motor driving system.

1 ガスタービン
2 発電機
3 ガスタービンと発電機間の機械軸
4 発電機電圧から系統電圧への変圧器
5 系統電圧から電力変換器入力電圧への変圧器
6 系統
7 電力変換器
8 電動機
9 被駆動装置
10 電動機と被駆動装置間の機械軸
11 電力変換器制御装置
12 電力変換器出力電流検出器
13 電力変換器出力電圧検出器
14 電力変換器入力電圧検出器
111 速度指令発生器
112 電動機ベクトル制御器
113 パルス生成器
114 変動量演算器
115 電力演算器
116 電力調整器
117 タービン発電機条件設定器
118 応答低減量調整器
119 応答低減制限演算器
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Generator 3 Mechanical shaft between gas turbine and generator 4 Transformer from generator voltage to system voltage 5 Transformer from system voltage to power converter input voltage 6 System 7 Power converter 8 Electric motor 9 Covered Drive device 10 Mechanical shaft 11 between motor and driven device 11 Power converter controller 12 Power converter output current detector 13 Power converter output voltage detector 14 Power converter input voltage detector 111 Speed command generator 112 Motor vector Controller 113 Pulse generator 114 Fluctuation amount calculator 115 Power calculator 116 Power regulator 117 Turbine generator condition setter 118 Response reduction amount adjuster 119 Response reduction limit calculator

Claims (16)

発電機を有する系統に接続された電力変換装置において、電気的な物理量である指令値を演算する指令値演算手段と、所定の応答で前記指令値に近づくように変換動作を制御する制御手段と、前記発電機の回転速度変動に応じた電力となるように前記応答を設定する応答設定手段を有することを特徴とする電力変換装置。   In a power conversion device connected to a system having a generator, command value calculation means for calculating a command value which is an electrical physical quantity, and control means for controlling the conversion operation so as to approach the command value with a predetermined response; A power conversion apparatus comprising: response setting means for setting the response so that the electric power is in accordance with fluctuations in the rotational speed of the generator. 請求項1に記載の電力変換装置において、前記発電機の回転速度変動を入力電圧の周波数変動または振幅変動として検出することを特徴とする電力変換装置。   The power conversion device according to claim 1, wherein the rotation speed variation of the generator is detected as a frequency variation or amplitude variation of an input voltage. 請求項1又は2に記載の電力変換装置において、前記応答設定手段は、電気ダンピング係数が零以上に相当する電力となるように応答を設定することを特徴とする電力変換装置。   3. The power conversion device according to claim 1, wherein the response setting unit sets a response so that an electric damping coefficient is equal to or greater than zero. 4. 請求項1乃至3のいずれかに記載の電力変換装置において、前記応答設定手段は、電気系及び機械系で形成されるダンピング係数が零以上に相当となるように応答を設定することを特徴とする電力変換装置。   4. The power conversion device according to claim 1, wherein the response setting unit sets a response so that a damping coefficient formed by an electric system and a mechanical system is equivalent to zero or more. Power converter. 請求項1乃至4のいずれかに記載の電力変換装置において、前記指令値は電流指令値であり、前記応答は電流についての外乱応答であり、前記発電機の回転速度変動に応じて応答を低減させることを特徴とする電力変換装置。   5. The power conversion device according to claim 1, wherein the command value is a current command value, the response is a disturbance response with respect to a current, and the response is reduced according to a fluctuation in a rotational speed of the generator. A power conversion device characterized in that 請求項3乃至5のいずれかに記載の電力変換装置において、速度変動量に対する電力変動量が所定の比率となるように、前記応答を低減することを特徴とする電力変換装置。   6. The power conversion device according to claim 3, wherein the response is reduced so that the power fluctuation amount with respect to the speed fluctuation amount becomes a predetermined ratio. 7. 請求項6に記載の電力変換装置において、速度変動量に対する電力変動量の比率が、少なくとも、動作点での速度に対する電力の比率より大きくなるように、応答が設定されることを特徴とする電力変換装置。   7. The power converter according to claim 6, wherein the response is set such that the ratio of the power fluctuation amount to the speed fluctuation amount is at least larger than the ratio of the power to the speed at the operating point. Conversion device. 請求項7に記載の電力変換装置において、前記応答設定手段は、速度変動量と電力変動量とが関係づけられるように応答を演算し、電源側の機械定数により、前記の速度変動量と電力変動量との関係を可変にすることを特徴とする電力変換装置。   8. The power conversion device according to claim 7, wherein the response setting unit calculates a response so that the speed fluctuation amount and the power fluctuation amount are related to each other, and the speed fluctuation amount and the power are calculated by a mechanical constant on a power source side. A power conversion device characterized in that a relationship with a fluctuation amount is variable. 請求項1乃至8に記載の電力変換装置が、船舶,軌道を走行する電車、或いは車両の一部として搭載されているか、あるいは、無停電電源として用いられていることを特徴とする船舶,電車,車両或いは無停電電源装置。   The power conversion device according to any one of claims 1 to 8, wherein the power conversion device is mounted as a ship, a train traveling on a track, or a part of a vehicle, or used as an uninterruptible power supply. , Vehicle or uninterruptible power supply. 発電機を有する系統に接続され、負荷側に電動機により駆動される被駆動装置が接続された電力変換装置において、電気的な物理量である指令値を演算する指令値演算手段と、所定の応答で前記指令値に近づくように変換動作を制御する制御手段と、前記発電機の回転速度変動に応じた電力となるように前記応答を設定する応答設定手段と、負荷側の振動現象等を検出する検出手段と、前記検出に応じて前記応答を補正する補正手段を有することを特徴とする電力変換装置。   In a power conversion device connected to a system having a generator and connected to a driven device driven by an electric motor on the load side, command value calculation means for calculating a command value which is an electrical physical quantity, and a predetermined response Control means for controlling the conversion operation so as to approach the command value, response setting means for setting the response so as to obtain electric power according to fluctuations in the rotational speed of the generator, and detecting a vibration phenomenon on the load side A power conversion apparatus comprising: a detection unit; and a correction unit that corrects the response according to the detection. 発電機を有する系統に接続され、負荷側に電動機により駆動される被駆動装置が接続された電力変換装置が前記の系統に共通的に複数接続されている電力変換システムにおいて、電気的な物理量である各々の電力変換装置の指令値を演算する指令値演算手段と、所定の応答で前記指令値に近づくように各々の電力変換装置の変換動作を制御する制御手段と、前記発電機の回転速度変動に応じて、前記各々の応答を設定する応答設定手段を有することを特徴とする電力変換システム。   In a power conversion system in which a plurality of power conversion devices connected to a system having a generator and connected to a driven device driven by an electric motor on the load side are commonly connected to the system, an electrical physical quantity Command value calculating means for calculating a command value of each power converter, control means for controlling the conversion operation of each power converter so as to approach the command value with a predetermined response, and the rotational speed of the generator A power conversion system comprising response setting means for setting each of the responses according to fluctuations. 請求項11記載の電力変換装置において、各電力変換装置の負荷側の振動現象に応じて前記電力変換装置のうちの一部の電力変換装置の応答を制限する応答制限手段を有し、前記制限に応じて少なくとも他の電力変換器の一部の応答が決められることを特徴とする電力変換装置。   12. The power conversion device according to claim 11, further comprising response limiting means for limiting a response of a part of the power conversion devices of the power conversion devices according to a vibration phenomenon on a load side of each power conversion device, wherein the limit A power conversion device characterized in that at least a part of the response of another power converter is determined according to. 請求項12記載の電力変換装置において、前記各々の応答により、前記電力変換装置の総合的な電力が制御されることを特徴とする電力変換装置。   13. The power conversion device according to claim 12, wherein total power of the power conversion device is controlled by each response. 電気的な物理量である指令値を演算し、電力を演算し、前記演算した電力が、前記発電機の回転速度変動に応じた電力となるように応答値を演算し、前記演算された応答値に基づいて発電機を有する系統に接続された電力変換装置を制御する電力変換装置の制御方法。   A command value, which is an electrical physical quantity, is calculated, electric power is calculated, a response value is calculated so that the calculated electric power becomes electric power corresponding to a fluctuation in rotational speed of the generator, and the calculated response value The control method of the power converter device which controls the power converter device connected to the system | strain which has a generator based on. 電気的な物理量である指令値を演算し、電力を演算し、前記演算した電力が、前記発電機の回転速度変動に応じた電力となるように応答値を演算し、負荷側の振動現象を検出し、前記検出された振動現象に応じて前記応答値を補正し、前記補正された応答値に基づいて発電機を有する系統に接続された電力変換装置を制御する電力変換装置の制御方法。   A command value, which is an electrical physical quantity, is calculated, electric power is calculated, a response value is calculated so that the calculated electric power becomes electric power according to fluctuations in the rotational speed of the generator, and a vibration phenomenon on the load side is calculated. A control method for a power converter that detects, corrects the response value according to the detected vibration phenomenon, and controls a power converter connected to a system having a generator based on the corrected response value. 系統に共通的に接続されている複数の電力変換装置の各々に対して、電気的な物理量である各々の電力変換装置の指令値を演算し、前記発電機の回転速度変動に応じて、前記各々の応答値を演算し、前記所定の応答で前記指令値に近づくように、共通的な発電機に接続された各々の電力変換装置の変換動作を制御する電力変換装置の制御方法。   For each of the plurality of power converters commonly connected to the system, the command value of each power converter that is an electrical physical quantity is calculated, and according to the rotational speed variation of the generator, A control method for a power converter that calculates a response value and controls a conversion operation of each power converter connected to a common generator so as to approach the command value with the predetermined response.
JP2009132658A 2009-06-02 2009-06-02 Power converter Active JP5486847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132658A JP5486847B2 (en) 2009-06-02 2009-06-02 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132658A JP5486847B2 (en) 2009-06-02 2009-06-02 Power converter

Publications (2)

Publication Number Publication Date
JP2010283904A true JP2010283904A (en) 2010-12-16
JP5486847B2 JP5486847B2 (en) 2014-05-07

Family

ID=43540146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132658A Active JP5486847B2 (en) 2009-06-02 2009-06-02 Power converter

Country Status (1)

Country Link
JP (1) JP5486847B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801373A (en) * 2011-05-25 2012-11-28 株式会社日立制作所 Motor driving system and method
KR101449457B1 (en) * 2013-06-26 2014-10-13 주식회사 포스코 Apparatus of generator control
JP2017096258A (en) * 2015-10-23 2017-06-01 ゼネラル・エレクトリック・カンパニイ Torsional damping for gas turbine engines
US11346243B2 (en) 2015-10-23 2022-05-31 General Electric Company Torsional damping for gas turbine engines
US11539316B2 (en) 2019-07-30 2022-12-27 General Electric Company Active stability control of compression systems utilizing electric machines

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148832A (en) * 1986-12-12 1988-06-21 株式会社日立製作所 Shaft distortion suppressor for turbogenerator
JPH0226225A (en) * 1988-07-13 1990-01-29 Hitachi Ltd Dc transmission controller
JPH06225457A (en) * 1993-01-25 1994-08-12 Central Res Inst Of Electric Power Ind Abnormal vibration preventing system for power system
JPH10146099A (en) * 1996-11-11 1998-05-29 Tokyo Electric Power Co Inc:The Ac-dc converter
JPH1127993A (en) * 1997-06-30 1999-01-29 Toshiba Corp Power converter and power system
JP2000060003A (en) * 1998-08-04 2000-02-25 Toshiba Corp Control equipment for ac-to-dc converter used in dc power transmission system
JP2000224896A (en) * 1999-02-02 2000-08-11 Hitachi Ltd Dc transmission-controlling device
JP2005045849A (en) * 2003-07-22 2005-02-17 Hitachi Ltd Wind power generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148832A (en) * 1986-12-12 1988-06-21 株式会社日立製作所 Shaft distortion suppressor for turbogenerator
JPH0226225A (en) * 1988-07-13 1990-01-29 Hitachi Ltd Dc transmission controller
JPH06225457A (en) * 1993-01-25 1994-08-12 Central Res Inst Of Electric Power Ind Abnormal vibration preventing system for power system
JPH10146099A (en) * 1996-11-11 1998-05-29 Tokyo Electric Power Co Inc:The Ac-dc converter
JPH1127993A (en) * 1997-06-30 1999-01-29 Toshiba Corp Power converter and power system
JP2000060003A (en) * 1998-08-04 2000-02-25 Toshiba Corp Control equipment for ac-to-dc converter used in dc power transmission system
JP2000224896A (en) * 1999-02-02 2000-08-11 Hitachi Ltd Dc transmission-controlling device
JP2005045849A (en) * 2003-07-22 2005-02-17 Hitachi Ltd Wind power generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801373A (en) * 2011-05-25 2012-11-28 株式会社日立制作所 Motor driving system and method
JP2012249342A (en) * 2011-05-25 2012-12-13 Hitachi Ltd Motor driving system and method
KR101449457B1 (en) * 2013-06-26 2014-10-13 주식회사 포스코 Apparatus of generator control
JP2017096258A (en) * 2015-10-23 2017-06-01 ゼネラル・エレクトリック・カンパニイ Torsional damping for gas turbine engines
US9938853B2 (en) 2015-10-23 2018-04-10 General Electric Company Torsional damping for gas turbine engines
US11346243B2 (en) 2015-10-23 2022-05-31 General Electric Company Torsional damping for gas turbine engines
US11802492B2 (en) 2015-10-23 2023-10-31 General Electric Company Torsional damping for gas turbine engines
US11539316B2 (en) 2019-07-30 2022-12-27 General Electric Company Active stability control of compression systems utilizing electric machines

Also Published As

Publication number Publication date
JP5486847B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5095196B2 (en) Power balancing of multiple synchronous generators.
JP4672525B2 (en) Power quality maintenance control device
JP5566736B2 (en) Solar power system
JP6084863B2 (en) Power converter for grid connection
JP5486847B2 (en) Power converter
JP5439039B2 (en) Power converter
US20150001939A1 (en) System stabilization device
CA2664924A1 (en) Method for operating a wind turbine connected to a utility grid during a utility grid disturbance, wind turbine and wind park
JP2017053275A (en) Wind turbine generator system or method for controlling the same
WO2016163343A1 (en) Motor control device and electric power steering device equipped with same
CN112368477A (en) Method and system for controlling a wind turbine to reduce nacelle vibrations
JP2017188990A (en) Power conversion control device for train
JP2007306669A (en) Power stabilization system employing power storage unit
JP4685715B2 (en) Power system stabilization method and power system stabilization system using the method
JP2012217284A (en) Vehicle motor control device
WO2011114165A1 (en) Apparatus and method of vibration control
JP2009071908A (en) Simultaneous balancing controller having function of suppressing axial torsional vibration
US8866418B2 (en) Dual pinion drive system
JP4521421B2 (en) Electric vehicle control device
WO2014002435A1 (en) Horsepower limiting device and horsepower limiting method
JP4501066B2 (en) Vehicle power generation device
JP3958265B2 (en) Electric vehicle control device
JPS6271497A (en) Controller for variable-speed hydraulic turbine generator
CN108141165B (en) Method and control unit for controlling the operation of an engine of a generator set
JP3744831B2 (en) Power storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140224

R151 Written notification of patent or utility model registration

Ref document number: 5486847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350