JP2010281249A - Internal combustion engine equipped with exhaust supercharger - Google Patents

Internal combustion engine equipped with exhaust supercharger Download PDF

Info

Publication number
JP2010281249A
JP2010281249A JP2009134719A JP2009134719A JP2010281249A JP 2010281249 A JP2010281249 A JP 2010281249A JP 2009134719 A JP2009134719 A JP 2009134719A JP 2009134719 A JP2009134719 A JP 2009134719A JP 2010281249 A JP2010281249 A JP 2010281249A
Authority
JP
Japan
Prior art keywords
intake
timing
closing timing
valve
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009134719A
Other languages
Japanese (ja)
Other versions
JP5227265B2 (en
Inventor
Masahiko Tashiro
雅彦 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009134719A priority Critical patent/JP5227265B2/en
Publication of JP2010281249A publication Critical patent/JP2010281249A/en
Application granted granted Critical
Publication of JP5227265B2 publication Critical patent/JP5227265B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • F02D13/0238Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine equipped with an exhaust supercharger, having improved fuel efficiency while suppressing the occurrence of knocking by recovering exhaust heat by the exhaust supercharger and increasing a geometric compression ratio by a delayed closing timing for an intake valve. <P>SOLUTION: The internal combustion engine includes a variable valve timing device for controlling a closing timing Ic for the intake valve between a maximum advanced closing timing Iac and a maximum delayed closing timing Irc depending on an engine operating condition, and a supercharging pressure control device for controlling the supercharging pressure by the exhaust supercharger. When the engine operating condition is in a high load, the supercharging pressure control device controls the supercharging pressure to be set to supercharging pressure with intake average pressure in an intake stroke higher than exhaust average pressure in an exhaust stroke and the variable valve timing device sets the closing timing Ic for the intake valve to a predetermined closing timing Ipc delayed from the maximum advanced closing timing Iac, or to the maximum delayed closing timing Irc. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排気ガスを利用して過給を行う排気過給機と、吸気弁の閉時期を機関運転状態に応じて変更可能な可変バルブタイミング装置とを備える内燃機関に関する。   The present invention relates to an internal combustion engine including an exhaust supercharger that performs supercharging using exhaust gas, and a variable valve timing device that can change the closing timing of an intake valve in accordance with an engine operating state.

内燃機関が、排気過給機(例えば、排気ターボ過給機)と、吸気弁の閉時期を変更可能な可変バルブタイミング装置とを備え、機関運転状態(例えば、機関回転速度に基づいて特定される運転状態)に応じて可変バルブタイミング装置が吸気弁の閉時期を早閉じタイミングまたは遅閉じタイミングとすることにより、充填効率を高めるものは知られている(例えば、特許文献1)。
また、内燃機関が、吸気弁の閉時期を機関運転状態(例えば、機関回転速度および機関負荷に基づいて特定される運転状態)に応じて変更可能な可変バルブタイミング装置を備え、可変バルブタイミング装置が、台形状のリフト曲線を規定する吸気カムを備えるものも知られている(例えば、特許文献2)。
An internal combustion engine includes an exhaust supercharger (for example, an exhaust turbocharger) and a variable valve timing device capable of changing a closing timing of an intake valve, and is specified based on an engine operation state (for example, an engine rotational speed). It is known that the variable valve timing device increases the charging efficiency by setting the closing timing of the intake valve to the early closing timing or the late closing timing according to the operating state) (for example, Patent Document 1).
The internal combustion engine includes a variable valve timing device that can change the closing timing of the intake valve in accordance with an engine operating state (for example, an operating state specified based on the engine speed and the engine load). However, there is also known one having an intake cam that defines a trapezoidal lift curve (for example, Patent Document 2).

特開平3−168328号公報Japanese Patent Laid-Open No. 3-168328 特開2004−68755号公報JP 2004-68755 A

過給機を備える内燃機関では、過給による充填効率の向上に起因して、機関負荷の高負荷時にノッキングが生じやすく、特に内燃機関の低速回転時には、ピストンの移動速度が高速回転時に比べて小さいことから、高速回転時に比べてノッキングが発生しやすい。そこで、ノッキングの発生を抑制するために、吸気下死点での燃焼室の容積と圧縮上死点での燃焼室の容積の比である圧縮比(以下、「幾何圧縮比」という。)を小さく設定することや、燃料量を増加させて燃焼温度を低下させること、いわゆる燃料冷却が行われる。しかしながら、幾何圧縮比の低下により熱効率が低下すること、および冷却用に余分な燃料が必要になることが、過給機を備える内燃機関の燃費性能を低下させる原因になっている。
また、幾何圧縮比を大きく設定した内燃機関において、ノッキング抑制対策として、吸気弁の閉弁開始時(吸気の実質的な圧縮開始時)の燃焼室の容積と圧縮上死点での燃焼室の容積との比である有効圧縮比を小さくするために吸気弁の閉時期を遅角させる場合、台形状のリフト曲線を有する吸気カムを使用することにより、吸気弁のリフト量が比較的大きい状態での開弁期間が大きくなることで、吸気弁の絞りによるポンプ損失を減少できると共に充填効率を増加させることができる。その一方、吸気カムのリフト曲線においてリフト量が増加するリフト量増加領域で、吸気カムと吸気弁との間に介在して吸気カムに当接するカムフォロア(例えば、ロッカアーム)が吸気カムから一時的に離れて吸気弁の開弁状態が吸気カムに追従しないバルブジャンプが発生した場合、吸気カムにおいて台形状のリフト曲線の上底に相当する部分(以下、「カム山頂部」という。)において、バルブジャンプにより吸気カムに追従しなくなったカムフォロアおよび吸気弁が前記カム山頂部に衝突した後に跳ね返るバルブバウンスが発生する。そして、このバルブバウンスは、リフト量に影響を与えるため、吸気カムによる吸気弁のリフト量精度を低下させる。
In an internal combustion engine equipped with a supercharger, knocking is likely to occur when the engine load is high due to an increase in charging efficiency due to supercharging. Since it is small, knocking is more likely to occur than during high-speed rotation. Therefore, in order to suppress the occurrence of knocking, a compression ratio (hereinafter referred to as “geometric compression ratio”), which is a ratio of the volume of the combustion chamber at the intake bottom dead center and the volume of the combustion chamber at the compression top dead center. A so-called fuel cooling is carried out by setting a small value or increasing the fuel amount to lower the combustion temperature. However, the reduction in the thermal efficiency due to the reduction in the geometric compression ratio and the need for extra fuel for cooling cause the fuel efficiency of an internal combustion engine equipped with a supercharger to deteriorate.
Further, in an internal combustion engine having a large geometric compression ratio, as a countermeasure for suppressing knocking, the combustion chamber volume at the start of closing of the intake valve (at the start of substantial compression of intake) and the combustion chamber at the compression top dead center When the intake valve closing timing is retarded in order to reduce the effective compression ratio, which is the ratio to the volume, the intake valve lift amount is relatively large by using an intake cam having a trapezoidal lift curve. By increasing the valve opening period at, the pump loss due to the throttle of the intake valve can be reduced and the charging efficiency can be increased. On the other hand, in the lift amount increase region where the lift amount increases in the lift curve of the intake cam, a cam follower (for example, a rocker arm) that is interposed between the intake cam and the intake valve and contacts the intake cam is temporarily removed from the intake cam. When a valve jump occurs in which the intake valve opens and the intake valve does not follow the intake cam, the valve in a portion corresponding to the upper base of the trapezoidal lift curve in the intake cam (hereinafter referred to as “cam peak summit”). A valve bounce that rebounds after the cam follower and the intake valve that have stopped following the intake cam due to the jump collide with the cam top. Since this valve bounce affects the lift amount, the lift amount accuracy of the intake valve by the intake cam is lowered.

本発明は、このような事情に鑑みてなされたものであり、排気過給機を備える内燃機関において、排気過給機による排熱の回収および吸気弁の閉時期の遅角化による幾何圧縮比の増加により、ノッキングの発生を抑制しながら燃費性能の向上を図ることを目的とする。また、本発明は、さらに、充填効率を向上させながら吸気弁の遅閉じを可能とする吸気カムでのバルブバウンスの抑制を図ることを目的とする。   The present invention has been made in view of such circumstances, and in an internal combustion engine including an exhaust supercharger, a geometric compression ratio is obtained by collecting exhaust heat by the exhaust supercharger and retarding the closing timing of the intake valve. The purpose of this is to improve fuel efficiency while suppressing the occurrence of knocking. Another object of the present invention is to suppress valve bounce at the intake cam that enables the intake valve to be closed slowly while improving the charging efficiency.

請求項1記載の発明は、燃焼室(6)に開口する吸気ポート(7)および排気ポート(8)をそれぞれ開閉する吸気弁(9)および排気弁(10)と、排気ガスを利用して吸入空気を加圧する排気過給機(40)と、前記吸気弁(9)の閉時期(Ic)を最大進角閉時期(Iac)と最大遅角閉時期(Irc)との間で機関運転状態に応じて制御する可変バルブタイミング装置(M)を備える動弁装置(20)と、過給圧を前記機関運転状態に応じて制御する過給圧制御装置(50)とを備える内燃機関において、前記機関運転状態が高負荷であるとき、前記過給圧制御装置(50)は、前記過給圧を、吸気行程での前記燃焼室(6)内の吸気時平均圧力(Pi)が排気行程での前記燃焼室(6)内の排気時平均圧力(Pe)よりも高くなる設定過給圧に制御し、かつ、前記可変バルブタイミング装置(M)は、前記閉時期(Ic)を、前記最大進角閉時期(Iac)よりも遅角した所定閉時期(Ipc)または前記最大遅角閉時期(Irc)にする内燃機関である。
これによれば、過給圧制御装置は、内燃機関の高負荷時に、過給圧を、吸気時平均圧力が排気時平均圧力よりも大きくなる状態(以下、「正のポンプ仕事」という。)が得られる設定過給圧に制御するので、内燃機関が発生した熱エネルギのうちで排気ガスが有する熱エネルギが排気過給機により回収されて正のポンプ仕事に変換される。また、可変バルブタイミング装置は、内燃機関の高負荷時に、吸気弁の閉時期を所定閉時期または最大遅角閉時期まで最大進角閉時期よりも遅角することから、高負荷時に有効圧縮比を小さくできるので、幾何圧縮比を増加させたとしても、ノッキングの発生を抑制できる。
請求項2記載の発明は、請求項1記載の内燃機関において、前記可変バルブタイミング装置(M)は、前記機関運転状態が低速回転高負荷であるとき前記閉時期(Ic)を前記最大遅角閉時期(Irc)にするものである。
これによれば、内燃機関の高速回転高負荷時に比べて機関回転速度が小さいためにノッキングが発生し易い低速回転高負荷時に、可変バルブタイミング装置は、吸気弁の閉時期を最大遅角閉時期まで遅角することから、有効圧縮比を最小にできるので、幾何圧縮比を大きく増加させたとしても、ノッキングの発生を抑制できる。
請求項3記載の発明は、請求項1または2記載の内燃機関において、前記可変バルブタイミング装置(M)は、前記機関運転状態が低負荷であるとき、前記閉時期(Ic)を前記最大進角閉時期(Iac)にし、前記閉時期(Ic)が前記最大進角閉時期(Iac)であるとき、吸気下死点での前記吸気弁(9)のリフト量(L)は、前記吸気弁(9)の最大リフト量(Lm)の1/2以上であるものである。
これによれば、内燃機関の低負荷時に、可変バルブタイミング装置は吸気弁の閉時期を最大進角閉時期にするので、開弁状態の吸気弁を通じての吸入空気の吹き返しが高負荷時に比べて減少して、充填効率が向上する。また、吸気弁が最大進角閉時期で閉弁するとき、吸気下死点での吸気弁のリフト量は最大リフト量の1/2以上であるので、吸気弁の閉時期が最大進角閉時期であるときにも比較的大きな遅角量での吸気弁の遅閉じのミラーサイクルを実現できる。
請求項4記載の発明は、請求項1から3のいずれか1項記載の内燃機関において、前記可変バルブタイミング装置(M)は、前記吸気弁(9)を開閉駆動すると共に前記吸気弁(9)のリフト曲線(C)を規定する吸気カム(23)を備え、前記リフト曲線(C)は、前記吸気弁(9)のリフト量(L)が最大リフト量(Lm)となる最大リフト点(Cm)に対して、前記リフト量(L)が開弁開始点(Co)から前記最大リフト点(Cm)に達するまで連続して増加するリフト量増加領域(Ca)と、前記リフト量(L)が前記最大リフト点(Cm)から閉弁開始点(Cc)まで連続して減少するリフト量減少領域(Cb)とを有し、前記リフト量減少領域(Cb)は、前記リフト量増加領域(Ca)での前記最大リフト点(Cm)と前記閉弁開始点(Cc)とを通る仮想直線(S)に対して前記リフト量(L)が大きい側に位置する減少開始側領域(Cbs)を有し、前記減少開始側領域(Cbs)は、前記仮想直線(S)からの距離が最大になる境界部(Cb3)を境に、前記最大リフト点(Cm)側の小減少領域(Cb1)と、前記閉弁開始点(Cc)側の大減少領域(Cb2)とに分けられ、前記小減少領域(Cb1)および前記境界部(Cb3)でのリフト量減少率は、前記大減少領域(Cb2)でのリフト量減少率よりも小さく、前記小減少領域(Cb1)および前記境界部(Cb3)に渡る前記吸気カム(23)の回転角範囲(A1)は、前記大減少領域(Cb2)での前記吸気カム(23)の回転角範囲(A2)よりも大きいものである。
これによれば、リフト曲線のリフト量減少領域において小減少領域および境界部に渡る回転角範囲が大減少領域での回転角範囲よりも大きいことにより充填効率が高められる吸気カムにおいて、リフト曲線のリフト量増加領域で、吸気弁のバルブジャンプが発生して、バルブジャンプにより吸気カムに一時的に追従しなくなった吸気弁がリフト曲線の小減少領域で吸気カムに復帰したとき、吸気カムは吸気弁のリフト量を減少させる状態にあるので、リフト量を減少させない状態の吸気カムに復帰する場合に比べて、復帰時の吸気弁に対する衝撃力が低減する。
請求項5記載の発明は、請求項4記載の内燃機関において、前記閉時期(Ic)が前記最大進角閉時期(Iac)であるときに前記境界部(Cb3)となる時期(Iab)は、前記閉時期(Ic)が前記最大遅角閉時期(Irc)であるときに前記境界部(Cb3)となる時期(Irb)よりも吸気下死点に近いものである。
これによれば、吸気弁の閉時期が最大進角閉時期であるとき、吸気弁のリフト量が減少するリフト量減少領域において、リフト量減少率が小さい小減少領域の終了点を規定する境界部が吸気下死点に比較的近い時期にあるので、比較的大きな遅角量での吸気弁の遅閉じのミラーサイクルを実現できる。
The invention according to claim 1 uses an intake valve (9) and an exhaust valve (10) for opening and closing an intake port (7) and an exhaust port (8) that open to the combustion chamber (6), respectively, and exhaust gas. The engine is operated between an exhaust supercharger (40) for pressurizing intake air and the closing timing (Ic) of the intake valve (9) between a maximum advance closing timing (Iac) and a maximum retard closing timing (Irc). In an internal combustion engine comprising a valve operating device (20) including a variable valve timing device (M) that is controlled according to a state, and a supercharging pressure control device (50) that controls a supercharging pressure according to the engine operating state. When the engine operating state is a high load, the supercharging pressure control device (50) exhausts the supercharging pressure by means of the intake mean pressure (Pi) in the combustion chamber (6) during the intake stroke. It becomes higher than the average pressure (Pe) during exhaust in the combustion chamber (6) during the stroke The variable valve timing device (M) controls to a constant supercharging pressure, and the variable valve timing device (M) delays the closing timing (Ic) from the maximum advance closing timing (Iac) or the closing timing (Ipc) The internal combustion engine has a maximum retarded closing timing (Irc).
According to this, when the internal combustion engine is under a high load, the supercharging pressure control device is in a state in which the average pressure during intake is greater than the average pressure during exhaust (hereinafter referred to as “positive pump work”). Therefore, of the thermal energy generated by the internal combustion engine, the thermal energy of the exhaust gas is recovered by the exhaust supercharger and converted to positive pump work. In addition, the variable valve timing device delays the intake valve closing timing from the maximum advance closing timing to the predetermined closing timing or the maximum retarded closing timing when the internal combustion engine is heavily loaded. Therefore, even if the geometric compression ratio is increased, the occurrence of knocking can be suppressed.
According to a second aspect of the present invention, in the internal combustion engine according to the first aspect, the variable valve timing device (M) sets the closing timing (Ic) to the maximum delay angle when the engine operating state is a low speed rotation high load. The closing time (Irc) is set.
According to this, the variable valve timing device sets the closing timing of the intake valve to the maximum retarded closing timing when the engine speed is low and the engine speed is low compared to when the internal combustion engine is high speed and high load. Since the effective compression ratio can be minimized, the occurrence of knocking can be suppressed even if the geometric compression ratio is greatly increased.
According to a third aspect of the present invention, in the internal combustion engine according to the first or second aspect, the variable valve timing device (M) sets the closing timing (Ic) to the maximum advance when the engine operating state is a low load. When the angle closing time (Iac) is set and the closing time (Ic) is the maximum advance angle closing time (Iac), the lift amount (L) of the intake valve (9) at the intake bottom dead center is the intake air amount. This is one half or more of the maximum lift amount (Lm) of the valve (9).
According to this, since the variable valve timing device sets the closing timing of the intake valve to the maximum advance closing timing when the internal combustion engine is lightly loaded, the return of the intake air through the intake valve in the valve opening state is higher than when the load is high. The filling efficiency is improved. Also, when the intake valve closes at the maximum advance angle, the intake valve lift amount at the intake bottom dead center is ½ or more of the maximum lift amount. Even during the time period, a mirror cycle for the slow closing of the intake valve with a relatively large retardation amount can be realized.
According to a fourth aspect of the present invention, in the internal combustion engine according to any one of the first to third aspects, the variable valve timing device (M) drives the intake valve (9) to open and close and the intake valve (9). ), And the lift curve (C) is a maximum lift point at which the lift amount (L) of the intake valve (9) becomes the maximum lift amount (Lm). With respect to (Cm), the lift amount (L) continuously increases until the lift amount (L) reaches the maximum lift point (Cm) from the valve opening start point (Co), and the lift amount ( L) has a lift amount decrease region (Cb) that continuously decreases from the maximum lift point (Cm) to the valve closing start point (Cc), and the lift amount decrease region (Cb) increases the lift amount. The maximum lift point (Cm) in the region (Ca) and the It has a decrease start side region (Cbs) located on the side where the lift amount (L) is large with respect to a virtual straight line (S) passing through the valve start point (Cc), and the decrease start side region (Cbs) Small boundary region (Cb1) on the maximum lift point (Cm) side and large on the valve closing start point (Cc) side, with the boundary (Cb3) where the distance from the virtual straight line (S) is maximum. The lift amount decrease rate in the small decrease region (Cb1) and the boundary portion (Cb3) is smaller than the lift amount decrease rate in the large decrease region (Cb2). The rotation angle range (A1) of the intake cam (23) across the small decrease region (Cb1) and the boundary portion (Cb3) is the rotation angle range of the intake cam (23) in the large decrease region (Cb2) ( It is larger than A2).
According to this, in the intake cam in which the charging efficiency is increased because the rotation angle range over the small decrease region and the boundary in the lift amount decrease region of the lift curve is larger than the rotation angle range in the large decrease region, When the intake valve valve jump occurs in the lift amount increase area and the intake valve that temporarily stops following the intake cam due to the valve jump returns to the intake cam in the small decrease area of the lift curve, the intake cam Since the lift amount of the valve is reduced, the impact force on the intake valve at the time of return is reduced compared to the case of returning to the intake cam in a state where the lift amount is not reduced.
According to a fifth aspect of the present invention, in the internal combustion engine of the fourth aspect, when the closing timing (Ic) is the maximum advance closing timing (Iac), the timing (Iab) that becomes the boundary portion (Cb3) is When the closing timing (Ic) is the maximum retarded closing timing (Irc), it is closer to the intake bottom dead center than the timing (Irb) at which the boundary portion (Cb3) is reached.
According to this, when the closing timing of the intake valve is the maximum advance closing timing, in the lift amount decrease region where the lift amount of the intake valve decreases, the boundary that defines the end point of the small decrease region where the lift amount decrease rate is small Since the part is at a time relatively close to the intake bottom dead center, it is possible to realize a mirror cycle of the slow closing of the intake valve with a relatively large retardation amount.

請求項1記載の発明によれば、内燃機関の高負荷時に、排気ガスが有する熱エネルギ(排熱)が排気過給機で回収されて正のポンプ仕事に変換され、しかも、吸気弁の閉時期を最大進角閉時期よりも遅角することにより有効圧縮比を小さくできるので、幾何圧縮比を増加させたときにもノッキングの発生を抑制できる。この結果、ノッキングの発生を抑制しながら、正のポンプ仕事および幾何圧縮比の増加により熱効率を向上できて、燃費性能が向上する。
請求項2記載の事項によれば、内燃機関の低速回転高負荷時に、吸気弁の閉時期を最大限まで遅角することにより有効圧縮比を最小にできるので、幾何圧縮比を増加させたときにもノッキングの発生を抑制できる。この結果、ノッキングの発生を抑制しながら、幾何圧縮比を最大限増加させて熱効率を向上できるので、燃費性能が向上する。
請求項3記載の事項によれば、内燃機関の低負荷時に、吸気弁の閉時期が高負荷時に比べて進角して最大限まで進角するので、吹き返しの減少により充填効率が向上すること、および、低負荷時にも、吸気下死点に対して吸気弁の遅閉じの遅角量が大きいミラーサイクルにより、熱効率を向上できるので、燃費性能が向上する。
請求項4記載の事項によれば、リフト量減少領域において小減少領域および境界部に渡る回転角範囲が大減少領域での回転角範囲よりも大きい吸気カムにおいて、リフト量増加領域でバルブジャンプが発生したとき、吸気弁が小減少領域において吸気カムに復帰したときの衝撃力が低減して、バルブバウンスが抑制されるので、吸気カムによる吸気弁のリフト量精度を向上できる。
請求項5記載の事項によれば、吸気弁の閉時期が最大進角閉時期であるときにも、吸気下死点に対して吸気弁の遅閉じの遅角量が大きいミラーサイクルにより、熱効率を向上できるので、燃費性能が向上する。
According to the first aspect of the present invention, when the internal combustion engine is at a high load, the heat energy (exhaust heat) of the exhaust gas is recovered by the exhaust supercharger and converted into positive pump work, and the intake valve is closed. Since the effective compression ratio can be reduced by retarding the timing from the maximum advance timing, the occurrence of knocking can be suppressed even when the geometric compression ratio is increased. As a result, while suppressing the occurrence of knocking, the thermal efficiency can be improved by increasing the positive pump work and the geometric compression ratio, thereby improving the fuel efficiency.
According to the second aspect of the present invention, the effective compression ratio can be minimized by retarding the closing timing of the intake valve to the maximum at the time of low speed rotation and high load of the internal combustion engine. Therefore, when the geometric compression ratio is increased In addition, the occurrence of knocking can be suppressed. As a result, while suppressing the occurrence of knocking, the geometric compression ratio can be increased to the maximum and the thermal efficiency can be improved, so that the fuel efficiency is improved.
According to the third aspect of the present invention, when the internal combustion engine is at a low load, the closing timing of the intake valve is advanced and advanced to the maximum as compared with a high load, so that the charging efficiency is improved by reducing the blowback. Further, even at low load, the heat efficiency can be improved by the mirror cycle in which the delay amount of the slow closing of the intake valve is large with respect to the intake bottom dead center, so that the fuel efficiency is improved.
According to the fourth aspect of the present invention, in the intake cam in which the rotation angle range over the small decrease region and the boundary portion in the lift amount decrease region is larger than the rotation angle range in the large decrease region, the valve jump occurs in the lift amount increase region. When this occurs, the impact force when the intake valve returns to the intake cam in the small decrease region is reduced and valve bounce is suppressed, so that the lift amount accuracy of the intake valve by the intake cam can be improved.
According to the fifth aspect of the present invention, even when the closing timing of the intake valve is the maximum advance timing, the thermal efficiency is improved by the mirror cycle in which the delay amount of the late closing of the intake valve is large with respect to the intake bottom dead center. Can improve fuel efficiency.

本発明が適用された内燃機関の要部模式図であり、機関本体が平面図として示されている。1 is a schematic view of a main part of an internal combustion engine to which the present invention is applied, in which the engine body is shown as a plan view. 図1の概略II−II線での要部断面図である。It is principal part sectional drawing in the general II-II line | wire of FIG. 図1の内燃機関の吸気弁および排気弁のリフト量とクランク角との関係を示す図である。It is a figure which shows the relationship between the lift amount and crank angle of the intake valve and exhaust valve of the internal combustion engine of FIG. 図1の内燃機関の吸気弁のリフト曲線を示す図である。It is a figure which shows the lift curve of the intake valve of the internal combustion engine of FIG. 図1の内燃機関の機関運転状態を説明する図である。It is a figure explaining the engine operating state of the internal combustion engine of FIG. 図1の内燃機関の各行程および排気側平均圧力および吸気側平均圧力を説明するための模式的なPV線図である。FIG. 2 is a schematic PV diagram for explaining each stroke, an exhaust-side average pressure, and an intake-side average pressure of the internal combustion engine of FIG. 1.

以下、本発明の実施形態を図1〜図6を参照して説明する。
図1,図2を参照すると、本発明が適用された内燃機関(以下、「内燃機関」という。)は、1以上のシリンダ1a、この実施形態では複数としての4つのシリンダ1aと、各シリンダ1aに摺動可能に嵌合するピストン4と、各ピストン4にコンロッドを介して連結されたクランク軸5とを備える多気筒内燃機関であり、使用対象としての車両に、その動力源として使用される。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
Referring to FIGS. 1 and 2, an internal combustion engine to which the present invention is applied (hereinafter referred to as “internal combustion engine”) includes one or more cylinders 1a, four cylinders 1a as a plurality in this embodiment, and each cylinder. 1 is a multi-cylinder internal combustion engine including a piston 4 slidably fitted to 1a and a crankshaft 5 connected to each piston 4 via a connecting rod, and is used as a power source for a vehicle to be used. The

内燃機関は、4つのシリンダ1aが直列に配列されて一体に設けられたシリンダブロック1と、シリンダブロック1の上端部に結合されるシリンダヘッド2と、シリンダヘッド2の上端部に結合されるヘッドカバー3とから構成される機関本体を備える。
シリンダ1a毎に、シリンダ軸線方向でピストン4とシリンダヘッド2との間には、シリンダ1aとピストン4とシリンダヘッド2とにより燃焼室6が形成される。
シリンダヘッド2には、シリンダ1a毎(または、燃焼室6毎)に、燃焼室6に開口する1対の吸気口7aを有する吸気ポート7および1対の排気口8aを有する排気ポート8と、1対の吸気口7aおよび1対の排気口8aをそれぞれ開閉する1対の吸気弁9および1対の排気弁10と、燃焼室6に臨む点火栓11とが設けられる。
なお、実施形態において、上下方向はシリンダ軸線Yに平行な方向(すなわちシリンダ軸線方向)であるとし、上方は、上下方向において、クランク軸5の回転中心線に対して燃焼室6が位置する方向であるとする。
The internal combustion engine includes a cylinder block 1 in which four cylinders 1 a are arranged in series, a cylinder head 2 coupled to the upper end portion of the cylinder block 1, and a head cover coupled to the upper end portion of the cylinder head 2. 3 is provided.
A combustion chamber 6 is formed by the cylinder 1a, the piston 4, and the cylinder head 2 between the piston 4 and the cylinder head 2 in the cylinder axial direction for each cylinder 1a.
The cylinder head 2 includes, for each cylinder 1a (or each combustion chamber 6), an intake port 7 having a pair of intake ports 7a opened to the combustion chamber 6 and an exhaust port 8 having a pair of exhaust ports 8a. A pair of intake valves 9 and a pair of exhaust valves 10 for opening and closing the pair of intake ports 7a and the pair of exhaust ports 8a, respectively, and an ignition plug 11 facing the combustion chamber 6 are provided.
In the embodiment, the vertical direction is a direction parallel to the cylinder axis Y (that is, the cylinder axis direction), and the upper direction is the direction in which the combustion chamber 6 is located with respect to the rotation center line of the crankshaft 5 in the vertical direction. Suppose that

内燃機関は、さらに、吸気弁9および排気弁10を開閉駆動する動弁装置20と、外気を取り入れるエアクリーナ12bを備えると共に吸入空気を吸気ポート7を経て燃焼室6に導く吸気通路12aを形成する吸気装置12と、吸入空気に燃料を噴射して混合気を形成する燃料噴射弁(図示されず)と、燃焼室6内での混合気の燃焼により発生した燃焼ガスを排気ガスとして排気ポート8を経て内燃機関の外部に導く排気通路13aを形成する排気装置13と、排気ガスのエネルギを利用してエアクリーナ12bからの吸入空気を加圧する排気過給機としての排気ターボ過給機40と、当該排気ターボ過給機40により加圧された吸入空気の圧力である過給圧を制御する過給圧制御装置50とを備える。
吸気行程、圧縮行程、膨張行程および排気行程(図6参照)の4ストロークを1サイクルとする内燃機関の幾何圧縮比は、同じ排気量の自然吸気式内燃機関の幾何圧縮比に対して、例えば同じ値に設定されているが、より大きな値に設定されてもよい。
The internal combustion engine further includes a valve gear 20 that opens and closes the intake valve 9 and the exhaust valve 10, an air cleaner 12 b that takes in outside air, and an intake passage 12 a that guides the intake air to the combustion chamber 6 through the intake port 7. An intake device 12, a fuel injection valve (not shown) that injects fuel into the intake air to form an air-fuel mixture, and an exhaust port 8 that uses combustion gas generated by combustion of the air-fuel mixture in the combustion chamber 6 as exhaust gas. An exhaust device 13 that forms an exhaust passage 13a that leads to the outside of the internal combustion engine through the exhaust gas, an exhaust turbocharger 40 that serves as an exhaust supercharger that pressurizes intake air from the air cleaner 12b using the energy of the exhaust gas, And a supercharging pressure control device 50 that controls a supercharging pressure that is the pressure of the intake air pressurized by the exhaust turbo supercharger 40.
The geometric compression ratio of an internal combustion engine in which four strokes of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke (see FIG. 6) are one cycle is, for example, the geometric compression ratio of a naturally aspirated internal combustion engine having the same displacement Although it is set to the same value, it may be set to a larger value.

吸気装置12は、排気ターボ過給機40のコンプレッサ41の下流に配置されたスロットル弁12cを備える。スロットル弁12cは、運転者によるアクセル操作部材の操作量に基づいて作動する駆動手段としての電動機12dにより駆動されて、その開度が最小開度としてのアイドル開度から全開開度までの範囲で制御される。また、前記燃料噴射弁は、燃料を、燃焼室6内で噴射するか、または吸気通路12a内もしくは吸気ポート7内で噴射する。
ピストン4は、燃焼室6内の燃焼ガスの圧力により駆動されて往復運動をし、シリンダブロック1の下部に回転可能に支持されたクランク軸5を回転駆動する。
The intake device 12 includes a throttle valve 12 c disposed downstream of the compressor 41 of the exhaust turbocharger 40. The throttle valve 12c is driven by an electric motor 12d as a driving means that operates based on an operation amount of an accelerator operation member by a driver, and its opening is in a range from an idle opening as a minimum opening to a fully opened opening. Be controlled. The fuel injection valve injects fuel in the combustion chamber 6 or in the intake passage 12 a or the intake port 7.
The piston 4 is driven by the pressure of the combustion gas in the combustion chamber 6 to reciprocate, and rotationally drives the crankshaft 5 that is rotatably supported at the lower part of the cylinder block 1.

動弁装置20は、吸気カム23を有する吸気カム軸21および排気カム24を有する排気カム軸22であるカム軸と、吸気弁9および排気弁10にそれぞれ当接すると共に動弁カムとしての吸気カム23および排気カム24によりそれぞれ駆動されて吸気弁9および排気弁10を開閉する吸気カムフォロアとしての吸気ロッカアーム25および排気カムフォロアとしての排気ロッカアーム26と、吸気弁9および排気弁10を閉弁方向に常時付勢する弁バネ27と、クランク軸5の回転と同期して各カム軸21,22(したがって各カム23,24)を回転駆動する回転駆動部材28と、吸気弁9の開時期Ioおよび閉時期Icからなる開閉時期I(図3参照)を変更可能とするために運転制御装置60により制御されるバルブタイミング制御部材30とを備える。   The valve gear 20 is in contact with an intake cam shaft 21 having an intake cam 23 and an exhaust cam shaft 22 having an exhaust cam 24, and an intake cam as a valve cam while contacting the intake valve 9 and the exhaust valve 10. 23 and an exhaust cam 24, which are respectively driven by an intake cam follower that opens and closes the intake valve 9 and the exhaust valve 10, an exhaust rocker arm 26 as an exhaust cam follower, and the intake valve 9 and the exhaust valve 10 are always closed. The energizing valve spring 27, the rotation drive member 28 for rotating the camshafts 21 and 22 (and thus the cams 23 and 24) in synchronization with the rotation of the crankshaft 5, and the opening timing Io and closing of the intake valve 9 The valve timing control controlled by the operation control device 60 in order to be able to change the opening / closing timing I (see FIG. 3) consisting of the timing Ic. And a member 30.

吸気カム軸21および排気カム軸22に相対移動不能にそれぞれ設けられた吸気カム23および排気カム24は、シリンダヘッド2に設けられて各カム軸21,22を回転可能に支持するカムホルダ(図示されず)に支持される1対のロッカ軸25a,26aに揺動可能に支持された吸気ロッカアーム25および排気ロッカアーム26を介して、吸気弁9および排気弁10をそれぞれ開閉駆動する。
回転駆動部材28は、例えば、クランク軸5の動力を各カム軸21,22に伝達する巻掛け伝動装置から構成されて、各カム軸21,22をクランク軸5の1/2の回転速度で回転駆動する。
An intake cam 23 and an exhaust cam 24 provided so as not to move relative to the intake cam shaft 21 and the exhaust cam shaft 22 are cam holders (not shown) that are provided on the cylinder head 2 and rotatably support the cam shafts 21 and 22. The intake valve 9 and the exhaust valve 10 are driven to open and close via the intake rocker arm 25 and the exhaust rocker arm 26 that are swingably supported by a pair of rocker shafts 25a and 26a.
The rotation drive member 28 is constituted by, for example, a winding transmission that transmits the power of the crankshaft 5 to the camshafts 21 and 22, and the camshafts 21 and 22 are rotated at half the rotational speed of the crankshaft 5. Rotating drive.

バルブタイミング制御部材30は、回転駆動部材28と吸気カム軸21との間での相対回転を生じさせる周知の装置であり、回転駆動部材28と吸気カム軸21との間に設けられてクランク軸5に対する吸気カム23(この実施形態では、吸気カム軸21と同義である。)の位相を変更可能である。
例えば、バルブタイミング制御部材30は、内燃機関が備える潤滑用のオイルポンプ14から吐出されたオイルの一部を作動油とする油圧式アクチュエータであり、図2にその一部が示されるように、互いに相対回転可能な第1,第2回転体31,32を備える。そして、回転駆動部材28により回転駆動されて一体に回転する第1回転体31と、吸気カム軸21(したがって吸気カム23)と一体に回転する第2回転体32とにより形成される進角用油圧室33および遅角用油圧室34に対する作動油の供給・排出が、運転制御装置60により内燃機関の機関運転状態に応じて制御される油圧制御弁15(図1参照)で制御されて、両回転体31,32が相対回転することによりクランク軸5に対する吸気カム23の位相(したがって、吸気弁9の開閉時期I(図3参照))が変更され、また各油圧室33,34に対する作動油の給排が行われることなく作動油が各油圧室33,34内に閉じこめられることにより両回転体31,32が相対回転することなく一体に回転して、クランク軸5に対する吸気カム23の位相(したがって、吸気弁9の開閉時期I(図3参照))が保持される。
一方、クランク軸5に対する排気カム24の位相(したがって、排気弁10の開時期Eoおよび閉時期Ecからなる開閉時期E(図3参照))は、この実施形態では、機関運転状態の変化に依存することなく同一に維持される。
そして、回転駆動部材28、バルブタイミング制御部材30、吸気カム軸21および吸気カム23は、運転制御装置60により制御されることで、機関運転状態に応じて、クランク軸5に対する吸気カム23の位相、したがって吸気弁9の開閉時期Iを変更可能に制御する可変バルブタイミング装置Mを構成する。
The valve timing control member 30 is a well-known device that causes relative rotation between the rotation drive member 28 and the intake camshaft 21, and is provided between the rotation drive member 28 and the intake camshaft 21 to be a crankshaft. 5, the phase of the intake cam 23 (synonymous with the intake cam shaft 21 in this embodiment) can be changed.
For example, the valve timing control member 30 is a hydraulic actuator that uses a part of oil discharged from a lubricating oil pump 14 included in the internal combustion engine as hydraulic oil, and a part of the hydraulic timing actuator 30 is shown in FIG. First and second rotating bodies 31 and 32 that are rotatable relative to each other are provided. Then, for the advance angle formed by the first rotating body 31 that is rotated and rotated integrally by the rotation driving member 28 and the second rotating body 32 that rotates integrally with the intake cam shaft 21 (and hence the intake cam 23). Supply / discharge of hydraulic oil to / from the hydraulic chamber 33 and the retarding hydraulic chamber 34 is controlled by the hydraulic control valve 15 (see FIG. 1) controlled by the operation control device 60 according to the engine operating state of the internal combustion engine. The relative rotation of the rotating bodies 31 and 32 changes the phase of the intake cam 23 with respect to the crankshaft 5 (therefore, the opening / closing timing I of the intake valve 9 (see FIG. 3)), and the operation for the hydraulic chambers 33 and 34. The hydraulic oil is confined in the hydraulic chambers 33 and 34 without supplying and discharging the oil, so that the rotating bodies 31 and 32 rotate integrally without relative rotation, and the crankshaft 5 is sucked. Phase of the cam 23 (and therefore, the opening and closing timing of the intake valve 9 I (see FIG. 3)) is held.
On the other hand, the phase of the exhaust cam 24 with respect to the crankshaft 5 (therefore, the opening / closing timing E (see FIG. 3) consisting of the opening timing Eo and the closing timing Ec of the exhaust valve 10) depends on changes in the engine operating state in this embodiment. It remains the same without
The rotation drive member 28, the valve timing control member 30, the intake camshaft 21, and the intake cam 23 are controlled by the operation control device 60, so that the phase of the intake cam 23 with respect to the crankshaft 5 according to the engine operating state. Therefore, a variable valve timing device M that controls the opening / closing timing I of the intake valve 9 to be changeable is configured.

図3に示されるように、各吸気カム23および各排気カム24(図2参照)のカム形状は、吸気弁9の開時期Ioおよび閉時期Icの間のクランク軸5のクランク角である吸気開弁期間Aiが排気弁10の開時期Eoおよび閉時期Ecの間のクランク角である排気開弁期間Aeよりも大きくなるように設定されている。   As shown in FIG. 3, the cam shape of each intake cam 23 and each exhaust cam 24 (see FIG. 2) is the intake angle that is the crank angle of the crankshaft 5 between the opening timing Io and the closing timing Ic of the intake valve 9. The valve opening period Ai is set to be longer than the exhaust valve opening period Ae which is the crank angle between the opening timing Eo and the closing timing Ec of the exhaust valve 10.

図4を参照すると、各吸気カム23は、クランク角(または、クランク角の1/2であるカム角)に対する吸気弁9のリフト量Lの変化特性を設定するリフト曲線Cを規定する。
台形に似た曲線であるリフト曲線Cは、吸気弁9のリフト量Lが最大リフト時期Imで最大リフト量Lmとなる最大リフト点Cmに対して、開時期Ioでの開弁開始点Co(リフト量Lは0(ゼロ)である。)から最大リフト点Cmに達するまで吸気カム23の回転につれて連続してリフト量Lが増加するリフト量増加領域Caと、最大リフト点Cmから閉時期Icでの閉弁開始点Cc(リフト量Lは0(ゼロ)である。)までリフト量Lが吸気カム23の回転につれて連続して減少するリフト量減少領域Cbとを有する。
Referring to FIG. 4, each intake cam 23 defines a lift curve C that sets a change characteristic of the lift amount L of the intake valve 9 with respect to a crank angle (or a cam angle that is ½ of the crank angle).
A lift curve C, which is a curve similar to a trapezoid, shows a valve opening start point Co () at the opening timing Io with respect to the maximum lift point Cm at which the lift amount L of the intake valve 9 becomes the maximum lift amount Lm at the maximum lift timing Im. The lift amount L is 0 (zero).) From the maximum lift point Cm to the closing timing Ic, the lift amount increase region Ca in which the lift amount L continuously increases as the intake cam 23 rotates until the maximum lift point Cm is reached. A lift amount decrease region Cb in which the lift amount L continuously decreases as the intake cam 23 rotates up to the valve closing start point Cc (the lift amount L is 0 (zero)).

リフト量減少領域Cbは、リフト量Lがリフト量増加領域Caでの最大リフト点Cmと閉弁開始点Ccとを通る仮想直線Sを境に分けられた減少開始側領域Cbsと減少終了側領域Cbfとを有する。減少開始側領域Cbsは仮想直線Sに対してリフト量Lが大きい側に位置し、減少終了側領域Cbfは仮想直線Sに対してリフト量Lが小さい側に位置する。
減少開始側領域Cbsは、仮想直線Sに直交する方向での仮想直線Sからの距離が最大になる境界部Cb3を境に分けられた最大リフト点Cm側の小減少領域Cb1と、閉弁開始点Cc側の大減少領域Cb2とを有する。また、境界部Cb3において、吸気弁9のリフト量Lは、境界時期Ibで境界リフト量Lbになる。
The lift amount decrease region Cb includes a decrease start side region Cbs and a decrease end side region where the lift amount L is divided by a virtual straight line S passing through the maximum lift point Cm and the valve closing start point Cc in the lift amount increase region Ca. Cbf. The decrease start side region Cbs is located on the side where the lift amount L is larger than the virtual straight line S, and the decrease end side region Cbf is located on the side where the lift amount L is small relative to the virtual straight line S.
The decrease start side region Cbs includes a small decrease region Cb1 on the maximum lift point Cm side separated by a boundary Cb3 where the distance from the virtual straight line S in the direction orthogonal to the virtual straight line S is maximum, and the start of valve closing And a large decrease region Cb2 on the point Cc side. In the boundary portion Cb3, the lift amount L of the intake valve 9 becomes the boundary lift amount Lb at the boundary time Ib.

そして、小減少領域Cb1および境界部Cb3でのリフト量減少率は、大減少領域Cb2でのリフト量減少率よりも小さい。
小減少領域Cb1は、リフト量増加領域Caにおいてリフト量Lの増加時に、吸気ロッカアーム25が吸気カム23から離れて、吸気弁9および吸気ロッカアーム25(図2参照)が吸気カム23に追従しなくなるバルブジャンプが発生したとき、吸気カム23に一時的に追従しなくなった吸気弁9および吸気ロッカアーム25がこの小減少領域Cb1において吸気カム23に復帰した際、すなわち吸気ロッカアーム25が吸気カム23に再度当接した際に発生するバルブバウンスを抑制するための部分であり、バルブジャンプをした吸気弁9および吸気ロッカアーム25と吸気カム23との当接時の衝撃を緩和する衝撃緩和領域を構成し、そのリフト量減少率は、バルブバウンスを抑制する観点から、実験などに基づいて設定される。
The lift amount decrease rate in the small decrease region Cb1 and the boundary portion Cb3 is smaller than the lift amount decrease rate in the large decrease region Cb2.
In the small decrease region Cb1, when the lift amount L increases in the lift amount increase region Ca, the intake rocker arm 25 is separated from the intake cam 23, and the intake valve 9 and the intake rocker arm 25 (see FIG. 2) do not follow the intake cam 23. When the valve jump occurs, when the intake valve 9 and the intake rocker arm 25, which have temporarily stopped following the intake cam 23, return to the intake cam 23 in this small decrease region Cb1, that is, the intake rocker arm 25 again returns to the intake cam 23. It is a part for suppressing valve bounce that occurs when abutting, and constitutes an impact mitigation region that mitigates the impact when the intake cam 9 and the intake rocker arm 25 and the intake cam 23 abut on the valve jump, The lift amount reduction rate is set based on experiments from the viewpoint of suppressing valve bounce.

小減少領域Cb1および境界部Cb3に渡る吸気カム23の回転角範囲A1は、大減少領域Cb2での吸気カム23の回転角範囲A2および減少終了側領域Cbfの吸気カム23の回転角範囲A3よりも大きい。また、境界部Cb3でのリフト量Lである境界リフト量Lbは、最大リフト量Lm未満、かつ最大リフト量Lmの3/4以上である。
なお、この実施形態において、小減少領域Cb1は、リフト量減少率が吸気カム23の回転につれて漸増する曲線であるが、別の例として、小減少領域Cb1のほぼ全体が直線であってもよく、当該直線の部分では、吸気カム23の回転に対して一定のリフト量減少率となる。
The rotation angle range A1 of the intake cam 23 across the small decrease region Cb1 and the boundary Cb3 is larger than the rotation angle range A2 of the intake cam 23 in the large decrease region Cb2 and the rotation angle range A3 of the intake cam 23 in the decrease end region Cbf. Is also big. The boundary lift amount Lb, which is the lift amount L at the boundary portion Cb3, is less than the maximum lift amount Lm and 3/4 or more of the maximum lift amount Lm.
In this embodiment, the small decrease region Cb1 is a curve in which the lift amount decrease rate gradually increases as the intake cam 23 rotates, but as another example, almost the entire small decrease region Cb1 may be a straight line. In the straight line portion, the lift rate reduction rate is constant with respect to the rotation of the intake cam 23.

図3を参照すると、可変バルブタイミング装置Mのバルブタイミング制御部材30(図2参照)により吸気弁9の開閉時期Iが変更されるとき、開閉時期Iは、最も進角した最大進角時期Iaと、最も遅角した最大遅角時期Irとの間で連続的に変更される一方、吸気開弁期間Aiは一定に維持される。なお、図3には、最大遅角時期Irでのリフト曲線Cが実線で示され、最大進角時期Iaでのリフト曲線Cが破線で示されている。
吸気弁9(図2参照)は、最大進角時期Iaにおいて、最大進角開時期Iaoで開弁を開始し、吸気下死点よりも遅角した最大進角閉時期Iacで閉弁を開始し、また最大遅角時期Irにおいて、最大遅角開時期Iroで開弁を開始し、吸気下死点および最大進角閉時期Iacよりも遅角した最大遅角閉時期Ircで閉弁を開始する。
Referring to FIG. 3, when the opening / closing timing I of the intake valve 9 is changed by the valve timing control member 30 (see FIG. 2) of the variable valve timing device M, the opening / closing timing I is the maximum advanced timing Ia. And the most retarded maximum retard timing Ir, while the intake valve opening period Ai is kept constant. In FIG. 3, the lift curve C at the maximum retard angle Ir is shown by a solid line, and the lift curve C at the maximum advance timing Ia is shown by a broken line.
The intake valve 9 (see FIG. 2) starts to open at the maximum advance angle Ia at the maximum advance angle Ia, and closes at the maximum advance timing Iac delayed from the intake bottom dead center. In addition, at the maximum retard angle Ir, the valve start is started at the maximum retard angle open timing Iro, and the valve is closed at the maximum retard angle close timing Irc that is delayed from the intake bottom dead center and the maximum advance angle close timing Iac. To do.

そして、閉時期Icが最大遅角閉時期Ircにあるとき、最大リフト時期Imは、吸気下死点に対して進角側にあり、最大遅角時期Irでの境界時期Ibである最大遅角境界時期Irbは、吸気下死点に対して遅角側にある。
また、閉時期Icが、最大進角閉時期Iacよりも遅角していると共に最大遅角閉時期Ircよりも進角した時期である所定閉時期Ipcにあるとき、境界時期Ibは、所定閉時期Ipcに応じて、吸気下死点よりも遅角した遅角側時期と、吸気下死点よりも進角した進角側時期との間に位置する。図3には、所定閉時期Ipcの一例として、境界時期Ibが前記遅角側時期Iprとなるときのリフト曲線Cが二点鎖線で示されている。
When the closing timing Ic is at the maximum retardation closing timing Irc, the maximum lift timing Im is on the advance side with respect to the intake bottom dead center, and the maximum retardation that is the boundary timing Ib at the maximum retardation timing Ir. The boundary time Irb is on the retard side with respect to the intake bottom dead center.
When the closing timing Ic is delayed from the maximum advance closing timing Iac and at a predetermined closing timing Ipc that is advanced from the maximum retard closing timing Irc, the boundary timing Ib is In accordance with the timing Ipc, the timing is located between the retard timing that is retarded from the intake bottom dead center and the advance timing that is advanced from the intake bottom dead center. In FIG. 3, as an example of the predetermined closing timing Ipc, a lift curve C when the boundary timing Ib becomes the retard side timing Ipr is indicated by a two-dot chain line.

閉時期Icが最大進角閉時期Iacであるとき、吸気下死点でのリフト量Lは、最大リフト量Lmの3/4以下かつ最大リフト量Lmの1/2以上である。また、境界時期Ibに関して、閉時期Icが最大進角閉時期Iacであるときの最大進角境界時期Iabは閉時期Icが最大遅角閉時期Ircであるときの最大遅角境界時期Irbよりも吸気下死点に近い。   When the closing timing Ic is the maximum advance closing timing Iac, the lift amount L at the intake bottom dead center is 3/4 or less of the maximum lift amount Lm and 1/2 or more of the maximum lift amount Lm. Regarding the boundary timing Ib, the maximum advance boundary timing Iab when the closing timing Ic is the maximum advance closing timing Iac is greater than the maximum retard boundary timing Irb when the closing timing Ic is the maximum retard closing timing Irc. Near intake bottom dead center.

吸気カム23が前述したリフト曲線Cを有することにより、吸気弁9が大きいリフト量Lで開弁している期間を大きくすることができて、リフト曲線Cにより囲まれる面積が大きくなること、しかも吸気弁9による吸入空気の流通抵抗を小さくできることから、充填効率を向上できる。   Since the intake cam 23 has the above-described lift curve C, the period during which the intake valve 9 is opened with a large lift amount L can be increased, and the area surrounded by the lift curve C can be increased. Since the flow resistance of the intake air by the intake valve 9 can be reduced, the charging efficiency can be improved.

図1を参照すると、排気ガスにより駆動される排気ターボ過給機40は、吸気通路12aに配置されて吸入空気を加圧する吸気圧縮部としてのコンプレッサ41と、排気通路13aに配置されて排気ガスにより駆動される排気駆動部としてのタービン42とを備える。駆動軸43を介してコンプレッサ41と一体に連結されたタービン42は、内燃機関が発生した熱エネルギの一部を有する排気ガスを利用してコンプレッサ41で吸入空気を加圧する。   Referring to FIG. 1, an exhaust turbocharger 40 driven by exhaust gas is disposed in an intake passage 12a and a compressor 41 as an intake air compression unit that pressurizes intake air, and an exhaust gas is disposed in an exhaust passage 13a. And a turbine 42 as an exhaust driving unit driven by the motor. A turbine 42 that is integrally connected to the compressor 41 via a drive shaft 43 pressurizes intake air by the compressor 41 using exhaust gas having a part of thermal energy generated by the internal combustion engine.

運転制御装置60により制御されることにより機関運転状態に応じて過給圧を変更可能に制御する過給圧制御装置50は、タービン42に流入する排気ガスの流れを制御する過給圧制御部材としての可変ベーン51と、排気ターボ過給機40に設けられて可変ベーン51を駆動する駆動部材としてのアクチュエータ52とを備える。
排気ターボ過給機40に設けられた1以上の、ここでは複数の可変ベーン51は、排気通路13aにおいてタービン42への排気ガスの入口通路に揺動可能に配置される。アクチュエータ52は、運転制御装置60により機関運転状態に応じて制御されて、可変ベーン51の作動位置を制御することで、前記入口通路の通路面積を変更して、排気ガスの流速を変更し、その結果、タービン42の回転速度が制御されて、過給圧が制御される。
The supercharging pressure control device 50 that controls the supercharging pressure to be changeable according to the engine operating state by being controlled by the operation control device 60 is a supercharging pressure control member that controls the flow of exhaust gas flowing into the turbine 42. And an actuator 52 as a driving member that is provided in the exhaust turbocharger 40 and drives the variable vane 51.
One or more variable vanes 51 provided here in the exhaust turbocharger 40 are swingably disposed in the exhaust gas inlet passage to the turbine 42 in the exhaust passage 13a. The actuator 52 is controlled by the operation control device 60 according to the engine operating state, and by controlling the operating position of the variable vane 51, the passage area of the inlet passage is changed, the flow velocity of the exhaust gas is changed, As a result, the rotational speed of the turbine 42 is controlled, and the supercharging pressure is controlled.

図1に示されるように、内燃機関は、その運転状態を制御する運転制御装置60を備える。運転制御装置60は、内燃機関の機関状態を検出する機関状態検出手段62と、機関状態検出手段62により検出された機関状態に基づいて内燃機関の機関運転状態を特定すると共に、当該機関運転状態に応じて前記燃料噴射弁、スロットル弁12c用の電動機12d、可変バルブタイミング装置Mおよび過給圧制御装置50のそれぞれの作動を制御する電子制御ユニット61とを備える。
電子制御ユニット61は、入出力インターフェース、中央演算処理装置、制御プログラムおよびマップなどが記憶された記憶装置を備えるコンピュータから構成される。
As shown in FIG. 1, the internal combustion engine includes an operation control device 60 that controls its operation state. The operation control device 60 detects the engine state of the internal combustion engine 62, specifies the engine operating state of the internal combustion engine based on the engine state detected by the engine state detecting unit 62, and also determines the engine operating state. And an electronic control unit 61 for controlling the operation of the fuel injection valve, the electric motor 12d for the throttle valve 12c, the variable valve timing device M, and the supercharging pressure control device 50, respectively.
The electronic control unit 61 is composed of a computer including an input / output interface, a central processing unit, a control program, a storage device storing a map, and the like.

機関状態検出手段62は、内燃機関の機関回転速度Nを検出する機関回転速度検出手段63と、運転者による前記アクセル操作部材の操作量を検出するアクセル操作量検出手段64、吸気通路12aにおいてスロットル弁12cよりも下流の過給圧を検出する過給圧検出手段65と、吸入空気量を検出する吸入空気量検出手段66とを備える。この実施形態において、アクセル操作量検出手段64は内燃機関の機関負荷Dを検出する機関負荷検出手段を構成する。
電子制御ユニット61は、機関状態検出手段62により検出された機関状態に応じて、バルブタイミング制御部材30に対して吸排される作動油を制御する油圧制御弁15を制御することにより可変バルブタイミング装置Mを制御し、同様に、アクチュエータ52を制御することにより過給圧制御装置50を制御する。
The engine state detection means 62 includes an engine rotation speed detection means 63 for detecting the engine rotation speed N of the internal combustion engine, an accelerator operation amount detection means 64 for detecting the operation amount of the accelerator operation member by the driver, and a throttle in the intake passage 12a. A supercharging pressure detection unit 65 that detects a supercharging pressure downstream of the valve 12c and an intake air amount detection unit 66 that detects an intake air amount are provided. In this embodiment, the accelerator operation amount detection means 64 constitutes an engine load detection means for detecting the engine load D of the internal combustion engine.
The electronic control unit 61 controls the hydraulic control valve 15 that controls the hydraulic oil that is sucked into and discharged from the valve timing control member 30 in accordance with the engine state detected by the engine state detection means 62, thereby changing the valve timing device. The supercharging pressure control device 50 is controlled by controlling M and similarly controlling the actuator 52.

図1,図3,図5,図6を参照して、過給圧制御装置50による過給圧の制御および可変バルブタイミング装置Mによる吸気弁9の開閉時期Iの制御について説明する。
図5に示されるように、機関運転状態が、機関回転速度Nに関して、アイドル回転速度Niと最大回転速度との間で、境界回転速度Nbを境に、アイドル回転速度Niよりも大きく境界回転速度Nb以下の低速回転と境界回転速度Nbを超える高速回転とに二分され、機関負荷Dに関して、アイドルDiと最大負荷Dmとの間で、境界負荷Dbを境にアイドルよりも大きく境界負荷Db以下の低負荷と境界負荷Dbを超える高負荷とに二分されるとする。
一例として、境界回転速度Nbは、アイドル回転速度Niから前記最大回転速度までの回転速度範囲を、ほぼ二等分する機関回転速度Nまたはほぼ三等分するときの低速側の機関回転速度Nであり、境界負荷DbはアイドルDiから最大負荷Dmまでの負荷範囲をほぼ二等分する機関負荷Dである。しかしながら、境界回転速度Nbは前記ほぼ二等分またはほぼ三等分するときの機関回転速度N以外の機関回転速度Nであってもよく、境界負荷Dbは前記ほぼ二等分する機関負荷D以外の機関負荷Dであってもよい。
With reference to FIGS. 1, 3, 5, and 6, the control of the supercharging pressure by the supercharging pressure control device 50 and the control of the opening / closing timing I of the intake valve 9 by the variable valve timing device M will be described.
As shown in FIG. 5, the engine operating state is higher than the idle rotational speed Ni with respect to the engine rotational speed N between the idle rotational speed Ni and the maximum rotational speed at the boundary rotational speed Nb. The engine load D is divided into a low-speed rotation of Nb or less and a high-speed rotation exceeding the boundary rotation speed Nb. The engine load D is less than the boundary load Db between the idle Di and the maximum load Dm. It is assumed that the load is divided into a low load and a high load exceeding the boundary load Db.
As an example, the boundary rotational speed Nb is the engine rotational speed N that divides the rotational speed range from the idle rotational speed Ni to the maximum rotational speed into substantially equal parts, or the engine speed N on the lower speed side when substantially divided into three parts. The boundary load Db is an engine load D that substantially bisects the load range from the idle Di to the maximum load Dm. However, the boundary rotational speed Nb may be an engine rotational speed N other than the engine rotational speed N when the engine is substantially divided into two or approximately three parts, and the boundary load Db is other than the engine load D that is divided into two parts. Engine load D may be used.

過給圧制御装置50は、運転制御装置60により制御されて、内燃機関が、アイドルDiからの過渡状態を除いて低負荷および高負荷にあるとき、機関回転速度Nに関わらず、燃焼室6内の圧力に関して、図6に示されるように、吸気行程での吸気時平均圧力Piが排気行程での排気時平均圧力Peよりも高くなる設定過給圧になるように過給圧を制御する。ここで、平均圧力とは、吸気行程または排気行程において変動する燃焼室6内の圧力の平均値である。   The supercharging pressure control device 50 is controlled by the operation control device 60 so that when the internal combustion engine is at a low load and a high load except for a transient state from the idle Di, the combustion chamber 6 regardless of the engine speed N. As shown in FIG. 6, the boost pressure is controlled so that the intake average pressure Pi in the intake stroke becomes higher than the exhaust average pressure Pe in the exhaust stroke. . Here, the average pressure is an average value of the pressure in the combustion chamber 6 that fluctuates in the intake stroke or the exhaust stroke.

より具体的には、排気ターボ過給機40の作動時、機関回転速度Nをパラメータとして、吸気行程および排気行程における燃焼室6内の実際の圧力変化を測定して得られた実験データに基づいて、内燃機関の低負荷および高負荷で、機関回転速度Nに関わらず、吸気時平均圧力Piが排気時平均圧力Peよりも高くなる過給圧が設定される。そして、この実験結果に基づいて、機関回転速度Nおよび機関負荷Dに対して吸気時平均圧力Piが排気時平均圧力Peよりも高くなる前記設定過給圧がマップ化されて、運転制御装置60の前記記憶装置に過給圧マップとして記憶される。
過給圧制御装置50は、過給圧検出手段65により検出される実際の過給圧が、機関回転速度検出手段63およびアクセル操作量検出手段64によりそれぞれ検出された機関回転速度Nおよび機関負荷Dに対応して前記過給圧マップで得られる前記設定過給圧になるように、可変ベーン51の作動位置を制御して、過給圧をフィードバック制御する。
More specifically, based on experimental data obtained by measuring actual pressure changes in the combustion chamber 6 during the intake stroke and the exhaust stroke, using the engine speed N as a parameter when the exhaust turbocharger 40 is operated. Thus, a supercharging pressure is set at which the intake average pressure Pi is higher than the exhaust average pressure Pe regardless of the engine speed N at low and high loads of the internal combustion engine. Based on the experimental results, the set supercharging pressure at which the intake average pressure Pi becomes higher than the exhaust average pressure Pe with respect to the engine speed N and the engine load D is mapped, and the operation control device 60 is mapped. Is stored as a supercharging pressure map.
The supercharging pressure control device 50 is configured such that the actual supercharging pressure detected by the supercharging pressure detecting means 65 is detected by the engine rotational speed N and the engine load detected by the engine rotational speed detecting means 63 and the accelerator operation amount detecting means 64, respectively. The operating position of the variable vane 51 is controlled so that the set supercharging pressure obtained in the supercharging pressure map corresponding to D is obtained, and the supercharging pressure is feedback-controlled.

そして、可変バルブタイミング装置Mは、運転制御装置60により制御されて、機関回転速度Nおよび機関負荷Dに応じて吸気弁9の開閉時期Iを制御する。具体的には以下の通りである。なお、内燃機関のすべての機関運転状態において、ミラーサイクルによる熱効率向上の効果が奏される。   The variable valve timing device M is controlled by the operation control device 60 to control the opening / closing timing I of the intake valve 9 according to the engine speed N and the engine load D. Specifically, it is as follows. In all engine operating states of the internal combustion engine, the effect of improving the thermal efficiency by the mirror cycle is exhibited.

機関運転状態が機関回転速度Nに関わらず低負荷(すなわち、低速回転低負荷、または、高速回転低負荷)であるとき。
過給圧制御装置50により過給圧が前記設定過給圧に制御されて、正のポンプ仕事(すなわち、吸気時平均圧力Piが排気時平均圧力Peよりも大きくなる状態)が得られることにより、熱効率が向上する。
バルブタイミング制御部材30により、吸気弁9の開閉時期Iが最大進角時期Iaになり、有効圧縮比が増加して、開弁状態にある吸気弁9を通じての吸気ポート7への吸気の吹き返しが減少するため、充填効率が向上する。また、開時期Ioが最大進角開時期Iaoになることから、バルブオーバラップ期間が最大になるので、燃焼室6内に残留する排気ガス量である内部EGR量が増加して、燃焼室6内の混合気が加熱されて燃焼性が向上する。
When the engine operating state is a low load regardless of the engine rotational speed N (that is, a low-speed rotational low load or a high-speed rotational low load).
By the supercharging pressure control device 50 controlling the supercharging pressure to the set supercharging pressure, a positive pump work (that is, a state where the average pressure Pi during intake is larger than the average pressure Pe during exhaust) is obtained. , Improve thermal efficiency.
Due to the valve timing control member 30, the opening / closing timing I of the intake valve 9 becomes the maximum advance timing Ia, the effective compression ratio increases, and the intake air blows back to the intake port 7 through the intake valve 9 in the valve open state. As a result, the filling efficiency is improved. Further, since the opening timing Io becomes the maximum advance opening timing Iao, the valve overlap period is maximized, so that the amount of internal EGR that is the amount of exhaust gas remaining in the combustion chamber 6 increases, and the combustion chamber 6 The air-fuel mixture is heated and the combustibility is improved.

機関運転状態が低速回転高負荷であるとき。
過給圧制御装置50による過給圧制御での正のポンプ仕事により熱効率が向上する。
バルブタイミング制御部材30により、開閉時期Iは最大遅角時期Irになる。このため、閉時期Icが最大遅角閉時期Ircとなって、幾何圧縮比を増加させたことにより熱効率を向上できる一方で、有効圧縮比が減少するので、幾何圧縮比の増加にも拘わらずノッキングの発生が抑制される。
When the engine is operating at low speed and high load.
The thermal efficiency is improved by the positive pump work in the supercharging pressure control by the supercharging pressure control device 50.
The valve timing control member 30 causes the opening / closing timing I to become the maximum retardation timing Ir. For this reason, the closing timing Ic becomes the maximum retarded closing timing Irc, and the thermal compression efficiency can be improved by increasing the geometric compression ratio. On the other hand, the effective compression ratio decreases. The occurrence of knocking is suppressed.

機関運転状態が高速回転高負荷であるとき。
過給圧制御装置50による過給圧制御での正のポンプ仕事により熱効率が向上する。
バルブタイミング制御部材30により、閉時期Icが、最大進角閉時期Iacよりも遅角していると共に最大遅角閉時期Ircよりも進角した所定閉時期Ipcとなる。このため、閉時期Icが最大進角閉時期Iacよりも遅角していて有効圧縮比が減少するので、幾何圧縮比の増加にも拘わらずノッキングの発生が抑制される一方、閉時期Icが最大遅角閉時期Ircであるときに比べて有効圧縮比が増加して吸気ポート7への吸気の吹き返しが減少するため充填効率が向上し、またバルブオーバラップ期間の増加による内部EGR量の増加により、燃焼室6内の混合気が加熱されることで燃焼性が向上する。
ここで、所定閉時期Ipcは、機関負荷Dが小さくなるほど進角させることや、ノッキングセンサが設けられる場合に当該ノッキングセンサによりノッキングが検出されない範囲で進角させることができる。
When the engine is operating at high speed and high load.
The thermal efficiency is improved by the positive pump work in the supercharging pressure control by the supercharging pressure control device 50.
The valve timing control member 30 causes the closing timing Ic to be a predetermined closing timing Ipc that is retarded from the maximum advance closing timing Iac and advanced from the maximum retard closing timing Irc. For this reason, the closing timing Ic is retarded from the maximum advance closing timing Iac and the effective compression ratio is decreased, so that the occurrence of knocking is suppressed despite the increase in the geometric compression ratio, while the closing timing Ic is Compared with the maximum retarded closing timing Irc, the effective compression ratio is increased and the return of intake air to the intake port 7 is reduced, so that the charging efficiency is improved and the internal EGR amount is increased due to the increase of the valve overlap period. Thus, the air-fuel mixture in the combustion chamber 6 is heated to improve the combustibility.
Here, the predetermined closing timing Ipc can be advanced as the engine load D becomes smaller, or can be advanced within a range in which knocking is not detected by the knocking sensor when a knocking sensor is provided.

次に、前述のように構成された実施形態の作用および効果について説明する。
内燃機関の機関運転状態が低速回転高負荷および高速回転高負荷であるとき、過給圧制御装置50は、過給圧を、吸気時平均圧力Piが排気時平均圧力Peよりも高くなる前記設定過給圧に制御し、かつ、可変バルブタイミング装置Mは、吸気弁9の閉時期Icを、高速回転高負荷には最大進角閉時期Iacよりも遅角した所定閉時期Ipcにし、低速回転高負荷には最大遅角閉時期Ircにする。
この構造により、内燃機関の高負荷時に、過給圧制御装置50は、過給圧を、正のポンプ仕事が得られる前記設定過給圧に制御するので、内燃機関が発生した熱エネルギのうちで排気ガスが有する熱エネルギが排気ターボ過給機40により回収されて正のポンプ仕事に変換される。同時に、可変バルブタイミング装置Mは、閉時期Icを所定閉時期Ipcまたは最大遅角閉時期Ircまで最大進角閉時期Iacよりも遅角することから、高負荷時に有効圧縮比を小さくできるので、幾何圧縮比を増加させたとしても、ノッキングの発生を抑制できる。
このように、内燃機関の高負荷時には、排気ガスが有する熱エネルギ(排熱)が排気過給機で回収されて正のポンプ仕事に変換され、しかも、吸気弁9の閉時期Icを最大進角閉時期Iacよりも遅角することにより有効圧縮比を小さくできるので、幾何圧縮比を増加させたときにもノッキングの発生を抑制できる。この結果、ノッキングの発生を抑制しながら、正のポンプ仕事および幾何圧縮比の増加による熱効率の向上により、またミラーサイクルによる熱効率の向上により、さらにノッキング抑制のための燃料冷却が不要となることにより、燃費性能が向上する。
Next, operations and effects of the embodiment configured as described above will be described.
When the engine operating state of the internal combustion engine is a low speed rotation high load and a high speed rotation high load, the supercharging pressure control device 50 sets the supercharging pressure so that the intake average pressure Pi is higher than the exhaust average pressure Pe. The variable valve timing device M controls to the supercharging pressure, and the closing timing Ic of the intake valve 9 is set to a predetermined closing timing Ipc that is retarded from the maximum advance closing timing Iac for high speed rotation and high load, so that the low speed rotation is performed. For high loads, the maximum retarded closing timing Irc is used.
With this structure, when the internal combustion engine is under a high load, the supercharging pressure control device 50 controls the supercharging pressure to the set supercharging pressure at which positive pump work is obtained. Then, the heat energy of the exhaust gas is recovered by the exhaust turbocharger 40 and converted into positive pump work. At the same time, since the variable valve timing device M retards the closing timing Ic from the maximum advance closing timing Iac to the predetermined closing timing Ipc or the maximum retarded closing timing Irc, the effective compression ratio can be reduced at high loads. Even if the geometric compression ratio is increased, the occurrence of knocking can be suppressed.
Thus, when the internal combustion engine is under a high load, the heat energy (exhaust heat) of the exhaust gas is recovered by the exhaust supercharger and converted into positive pump work, and the closing timing Ic of the intake valve 9 is advanced to the maximum. Since the effective compression ratio can be reduced by retarding the angle closing timing Iac, the occurrence of knocking can be suppressed even when the geometric compression ratio is increased. As a result, while suppressing the occurrence of knocking, by improving the thermal efficiency by increasing the positive pump work and the geometric compression ratio, and by improving the thermal efficiency by the mirror cycle, fuel cooling for further knocking suppression becomes unnecessary. , Fuel efficiency is improved.

そして、高速回転高負荷時に比べて機関回転速度Nが小さいためにノッキングが発生し易い低速回転高負荷時に、可変バルブタイミング装置Mは、吸気弁9の閉時期Icを最大遅角閉時期Ircまで最大限遅角することから、有効圧縮比を最小にできるので、幾何圧縮比を大きく増加させたとしても、ノッキングの発生を抑制できる。この結果、内燃機関の低速回転高負荷時に、ノッキングの発生を抑制しながら、幾何圧縮比を最大限増加させて熱効率を向上できるので、燃費性能が向上する。   Then, the variable valve timing device M changes the closing timing Ic of the intake valve 9 to the maximum retarded closing timing Irc when the engine speed N is smaller than that at the time of high speed rotation and high speed and knocking is likely to occur. Since the effective compression ratio can be minimized because the retardation is maximized, the occurrence of knocking can be suppressed even if the geometric compression ratio is greatly increased. As a result, at the time of low speed rotation and high load of the internal combustion engine, while suppressing the occurrence of knocking, the geometric compression ratio can be increased to the maximum and the thermal efficiency can be improved, so the fuel efficiency is improved.

また、高速回転高負荷時には、閉時期Icが最大遅角閉時期Ircであるときに比べて有効圧縮比が増加して吸気ポート7への吸気の吹き返しが減少することで充填効率が向上すること、および、バルブオーバラップ期間の増加による内部EGR量の増加で燃焼室6内の混合気が加熱されて燃焼性が向上することにより、燃費性能が向上する。   In addition, when the engine speed is high and the load is high, the effective compression ratio is increased compared to when the closing timing Ic is the maximum retarded closing timing Irc, and the recharging of the intake air to the intake port 7 is reduced, thereby improving the charging efficiency. In addition, the air-fuel mixture in the combustion chamber 6 is heated by the increase in the internal EGR amount due to the increase in the valve overlap period, and the combustibility is improved, thereby improving the fuel efficiency.

可変バルブタイミング装置Mは、機関運転状態が低負荷であるとき、吸気弁9の閉時期Icを最大進角閉時期Iacにし、閉時期Icが最大進角閉時期Iacであるとき、吸気下死点での吸気弁9のリフト量Lは、吸気弁9の最大リフト量Lmの1/2以上である。
この構造により、内燃機関の低負荷時に、可変バルブタイミング装置Mは閉時期Icを最大進角閉時期Iacにするので、開弁状態の吸気弁9を通じての吸気の吹き返しが高負荷時に比べて減少して、充填効率が向上する。また、吸気弁9が最大進角閉時期Iacで閉弁するとき、吸気下死点での吸気弁9のリフト量Lは最大リフト量Lmの1/2以上であるので、閉時期Icが最大進角閉時期Iacであるときにも比較的大きな遅角量での吸気弁9の遅閉じのミラーサイクルを実現できる。
この効果、低負荷時には、閉時期Icが高負荷時に比べて進角して最大限まで進角するので、吹き返しの減少により充填効率が向上すること、および、低負荷時にも、吸気下死点に対して吸気弁9の遅閉じの遅角量が大きいミラーサイクルにより、熱効率を向上できるので、燃費性能が向上する。
The variable valve timing device M sets the closing timing Ic of the intake valve 9 to the maximum advance angle closing timing Iac when the engine operating state is a low load, and when the closing timing Ic is the maximum advance angle closing timing Iac, The lift amount L of the intake valve 9 at the point is ½ or more of the maximum lift amount Lm of the intake valve 9.
With this structure, when the internal combustion engine is under a low load, the variable valve timing device M sets the closing timing Ic to the maximum advance angle closing timing Iac, so that the return of intake air through the intake valve 9 in the opened state is reduced compared to when the load is high. Thus, the filling efficiency is improved. Further, when the intake valve 9 is closed at the maximum advance closing timing Iac, the lift amount L of the intake valve 9 at the intake bottom dead center is equal to or greater than ½ of the maximum lift amount Lm. Even at the advance angle closing time Iac, it is possible to realize the mirror cycle of the late closing of the intake valve 9 with a relatively large amount of retardation.
Because of this effect, when the load is low, the closing timing Ic is advanced to the maximum as compared to when the load is high, so that the charging efficiency is improved by reducing the blow-back, and the intake bottom dead center is also reduced during the low load. On the other hand, the mirror cycle having a large delay amount of the slow closing of the intake valve 9 can improve the thermal efficiency, thereby improving the fuel efficiency.

さらに、低負荷時においても、過給圧制御装置50は、過給圧を、正のポンプ仕事が得られる前記設定過給圧に制御するので、熱効率が向上して、この点でも燃費性能が向上する。また、低負荷時には、吸気弁9の開時期Ioが最大進角開時期Iaoになることから、バルブオーバラップ期間が最大になるので、内部EGR量が増加して、燃焼室6内の混合気が加熱されて燃焼性が向上するので、燃費性能が向上する。   Further, even at low load, the supercharging pressure control device 50 controls the supercharging pressure to the set supercharging pressure at which positive pump work can be obtained, so that thermal efficiency is improved and fuel efficiency performance is also improved in this respect. improves. Further, when the load is low, the opening timing Io of the intake valve 9 becomes the maximum advance opening timing Iao, so that the valve overlap period is maximized, so that the internal EGR amount increases and the air-fuel mixture in the combustion chamber 6 increases. As the fuel is heated and the combustibility is improved, the fuel efficiency is improved.

吸気カム23のリフト曲線Cは、増加するリフト量増加領域Caとリフト量減少領域Cbとを有し、リフト量減少領域Cbの減少開始側領域Cbsは、境界部Cb3を境に、小減少領域Cb1と大減少領域Cb2とに分けられ、小減少領域Cb1および境界部Cb3でのリフト量減少率は、大減少領域Cb2でのリフト量減少率よりも小さく、小減少領域Cb1および境界部Cb3に渡る吸気カム23の回転角範囲A1は、大減少領域Cb2での吸気カム23の回転角範囲A2よりも大きい。この構造により、リフト曲線Cのリフト量減少領域Cbにおいて小減少領域Cb1および境界部Cb3に渡る回転角範囲A1が大減少領域Cb2での回転角範囲A2よりも大きいことにより充填効率が高められる吸気カム23において、リフト量増加領域Caで、吸気ロッカアーム25および吸気弁9のバルブジャンプが発生して、当該バルブジャンプにより吸気カム23に一時的に追従しなくなった吸気ロッカアーム25および吸気弁9が小減少領域Cb1で吸気カム23に復帰して吸気ロッカアーム25が吸気カム23に当接したしたとき、吸気カム23は吸気弁9のリフト量Lを減少させる状態にあるので、リフト量Lを減少させない状態の吸気カム23に復帰する場合に比べて、復帰時の吸気ロッカアーム25および吸気弁9に対する衝撃力が低減して、バルブバウンスが抑制されるので、吸気カム23による吸気弁9のリフト量精度を向上できる。   The lift curve C of the intake cam 23 has a lift amount increase region Ca and a lift amount decrease region Cb that increase, and the decrease start side region Cbs of the lift amount decrease region Cb is a small decrease region with the boundary Cb3 as a boundary. The lift amount decrease rate in the small decrease region Cb1 and the boundary portion Cb3 is smaller than the lift amount decrease rate in the large decrease region Cb2, and is divided into the small decrease region Cb1 and the boundary portion Cb3. The rotation angle range A1 of the intake cam 23 that crosses is larger than the rotation angle range A2 of the intake cam 23 in the large decrease region Cb2. With this structure, in the lift amount reduction region Cb of the lift curve C, the intake angle that increases the charging efficiency because the rotation angle range A1 over the small decrease region Cb1 and the boundary Cb3 is larger than the rotation angle range A2 in the large decrease region Cb2. In the cam 23, a valve jump of the intake rocker arm 25 and the intake valve 9 occurs in the lift amount increasing region Ca, and the intake rocker arm 25 and the intake valve 9 that have temporarily stopped following the intake cam 23 due to the valve jump are small. When returning to the intake cam 23 in the decrease region Cb1 and the intake rocker arm 25 comes into contact with the intake cam 23, the intake cam 23 is in a state of decreasing the lift amount L of the intake valve 9, so the lift amount L is not decreased. As compared with the case of returning to the intake cam 23 in the state, the intake rocker arm 25 and the intake valve 9 at the time of return are restored. Impact force is reduced, the valve bounce is suppressed, which improves the lift amount accuracy of the intake valve 9 by the intake cam 23.

リフト曲線Cの境界部Cb3に関して、吸気弁9の閉時期Icが最大進角閉時期Iacであるときの最大進角境界時期Iabは、閉時期Icが最大遅角閉時期Ircであるときの最大遅角境界時期Irbよりも吸気下死点に近いことにより、閉時期Icが最大進角閉時期Iacであるとき、吸気弁9のリフト量Lが減少するリフト量減少領域Cbにおいて、リフト量減少率が小さい小減少領域Cb1の終了点を規定する境界部Cb3が吸気下死点に比較的近い時期(または位置)にあるので、比較的大きな遅角量での吸気弁9の遅閉じのミラーサイクルを実現できる。
この結果、吸気弁9の閉時期Icが最大進角閉時期Iacであるときにも、吸気下死点に対して吸気弁9の遅閉じの遅角量が大きいミラーサイクルにより、熱効率を向上できるので、燃費性能が向上する。
Regarding the boundary portion Cb3 of the lift curve C, the maximum advance boundary time Iab when the closing timing Ic of the intake valve 9 is the maximum advance closing timing Iac is the maximum when the closing timing Ic is the maximum retard closing timing Irc. Due to being closer to the intake bottom dead center than the retard boundary timing Irb, when the closing timing Ic is the maximum advance closing timing Iac, the lift amount decreases in the lift amount decrease region Cb where the lift amount L of the intake valve 9 decreases. Since the boundary Cb3 that defines the end point of the small decrease area Cb1 with a small rate is at a time (or position) relatively close to the intake bottom dead center, the mirror of the late closing of the intake valve 9 with a relatively large retardation amount A cycle can be realized.
As a result, even when the closing timing Ic of the intake valve 9 is the maximum advance closing timing Iac, the thermal efficiency can be improved by the mirror cycle in which the delay amount of the slow closing of the intake valve 9 with respect to the intake bottom dead center is large. Therefore, fuel efficiency is improved.

以下、前述した実施形態の一部の構成を変更した実施形態について、変更した構成に関して説明する。
最大遅角閉時期Ircでの遅角量が大きい場合や、自然吸気式内燃機関の幾何圧縮比に対する増加量が比較的小さい場合や、ノッキングセンサが設けられる場合などにおいては、内燃機関の低速回転高負荷時に、吸気弁9の閉時期Icが所定閉時期Ipcに設定されてもよい。また、内燃機関の高速回転高負荷時に、吸気弁9の閉時期Icが最大遅角閉時期Ircに設定されてもよい。
可変バルブタイミング装置は、油圧駆動の代わりに、電磁気的に駆動されるバルブタイミング制御部材を備えるものであってもよい。
可変バルブタイミング装置は、吸気弁9の閉時期Icのみを変更可能であり、開時期Ioを変更しない、または吸気開弁期間Aiが変更可能な装置であってもよい。例えば、可変バルブタイミング装置は、吸気弁9の閉時期Icが異なる複数の吸気カムを備え、当該複数の吸気カムが択一的に吸気弁9を駆動する機構を備えるものであってもく、さらにその場合には、内燃機関は吸気カムおよび排気カムが設けられた1つのカム軸を備えるものでもよい。また、吸気弁9の開閉時期Iにおいて少なくとも閉時期Icは段階的に変更されてもよい。
吸気カムのリフト曲線は、リフト量増加領域とリフト量減少領域との間に、リフト量増加領域でバルブジャンプが発生したときに吸気弁および吸気カムフォロアが再度当接することがない範囲で、リフト量増加領域に連なると共に最大リフト量が所定期間維持される直線状の最大リフト領域を有していてもよい。
吸気カム軸は、クランク軸により回転駆動されることなく、クランク軸の回転位置と関連して作動するアクチュエータ(例えば、電動機)により回転駆動されてもよい。
吸気カムは、360°以下の回転角度の範囲で回転して往復運動する揺動カムであってもよい
排気過給機は、排気ターボ過給機40以外に、例えば容積型圧縮機であってもよく、排気エネルギを利用して過給を行う構造の過給機であればよい。
過給圧制御部材は、可変ベーン51の代わりに、タービン42に流入する排気ガスの流量を制御する流量制御弁(例えば排気バイパス弁)であってもよい。
内燃機関の使用対象は、車両以外に、鉛直方向を指向するクランク軸5を備える船外機等の船舶推進装置、または発電装置などであってもよい。
内燃機関は、前記実施形態では火花点火式のものであったが、圧縮点火式のものであってもよい。
Hereinafter, an embodiment in which a part of the configuration of the above-described embodiment is changed will be described with respect to the changed configuration.
When the amount of retardation at the maximum retardation closing timing Irc is large, when the increase amount with respect to the geometric compression ratio of the naturally aspirated internal combustion engine is relatively small, or when a knocking sensor is provided, the internal combustion engine rotates at a low speed. When the load is high, the closing timing Ic of the intake valve 9 may be set to a predetermined closing timing Ipc. Further, the closing timing Ic of the intake valve 9 may be set to the maximum retard closing timing Irc when the internal combustion engine is at high speed and high load.
The variable valve timing device may include an electromagnetically driven valve timing control member instead of hydraulic driving.
The variable valve timing device may be a device capable of changing only the closing timing Ic of the intake valve 9 and not changing the opening timing Io or changing the intake valve opening period Ai. For example, the variable valve timing device may include a plurality of intake cams having different closing timings Ic of the intake valves 9, and the plurality of intake cams may alternatively include a mechanism for driving the intake valves 9. Further, in that case, the internal combustion engine may be provided with one cam shaft provided with an intake cam and an exhaust cam. Further, at least the closing timing Ic in the opening / closing timing I of the intake valve 9 may be changed stepwise.
The lift curve of the intake cam is the range in which the intake valve and intake cam follower do not come into contact again when a valve jump occurs in the lift amount increase region between the lift amount increase region and the lift amount decrease region. You may have the linear maximum lift area | region which continues to an increase area and the maximum lift amount is maintained for a predetermined period.
The intake camshaft may be rotationally driven by an actuator (for example, an electric motor) that operates in association with the rotational position of the crankshaft without being rotationally driven by the crankshaft.
The intake cam may be a rocking cam that reciprocates by rotating within a range of a rotation angle of 360 ° or less. The exhaust supercharger is, for example, a positive displacement compressor in addition to the exhaust turbocharger 40. In other words, any supercharger having a structure in which the exhaust energy is used for supercharging may be used.
The supercharging pressure control member may be a flow rate control valve (for example, an exhaust bypass valve) that controls the flow rate of the exhaust gas flowing into the turbine 42 instead of the variable vane 51.
In addition to the vehicle, the use target of the internal combustion engine may be a ship propulsion device such as an outboard motor having a crankshaft 5 oriented in the vertical direction, or a power generation device.
The internal combustion engine is of the spark ignition type in the above embodiment, but may be of the compression ignition type.

6…燃焼室
7…吸気ポート
9…吸気弁
20…動弁装置
23…吸気カム
30…バルブタイミング制御部材
40…排気ターボ過給機
50…過給圧制御装置
60…運転制御装置、
M…可変バルブタイミング装置
I…開閉時期
Ia…最大進角時期
Ir…最大遅角時期
Io,Iao,Iro…開時期
Ic,Iac,Irc…閉時期
C…リフト曲線
L…リフト量
Lm…最大リフト量
Lb…境界リフト量
S…仮想直線
Ipc…所定閉時期
Pi…吸気時平均圧力
Pe…排気時平均圧力
6 ... Combustion chamber 7 ... Intake port 9 ... Intake valve 20 ... Valve operating device 23 ... Intake cam 30 ... Valve timing control member 40 ... Exhaust turbocharger 50 ... Supercharging pressure control device 60 ... Operation control device,
M ... Variable valve timing device I ... Open / close timing Ia ... Maximum advance timing Ir ... Maximum retard timing Io, Iao, Iro ... Open timing Ic, Iac, Irc ... Close timing C ... Lift curve L ... Lift amount Lm ... Maximum lift Amount Lb ... boundary lift amount S ... virtual straight line Ipc ... predetermined closing timing Pi ... intake average pressure Pe ... exhaust average pressure

Claims (5)

燃焼室に開口する吸気ポートおよび排気ポートをそれぞれ開閉する吸気弁および排気弁と、排気ガスを利用して吸入空気を加圧する排気過給機と、前記吸気弁の閉時期を最大進角閉時期と最大遅角閉時期との間で機関運転状態に応じて制御する可変バルブタイミング装置を備える動弁装置と、過給圧を前記機関運転状態に応じて制御する過給圧制御装置とを備える内燃機関において、
前記機関運転状態が高負荷であるとき、前記過給圧制御装置は、前記過給圧を、吸気行程での前記燃焼室内の吸気時平均圧力が排気行程での前記燃焼室内の排気時平均圧力よりも高くなる設定過給圧に制御し、かつ、前記可変バルブタイミング装置は、前記閉時期を、前記最大進角閉時期よりも遅角した所定閉時期または前記最大遅角閉時期にすることを特徴とする内燃機関。
An intake valve and an exhaust valve for opening and closing an intake port and an exhaust port that open to the combustion chamber, an exhaust supercharger that pressurizes intake air using exhaust gas, and a closing timing of the intake valve is a maximum advance closing timing A variable valve timing device that controls the engine according to the engine operating state between the engine and the maximum retarded closing timing, and a supercharging pressure control device that controls the supercharging pressure according to the engine operating state In internal combustion engines,
When the engine operating state is a high load, the supercharging pressure control device uses the supercharging pressure as the average pressure during exhaust in the combustion chamber during the exhaust stroke when the average pressure during intake during the intake stroke And the variable valve timing device sets the closing timing to a predetermined closing timing delayed from the maximum advance closing timing or the maximum retard closing timing. An internal combustion engine characterized by the above.
前記可変バルブタイミング装置は、前記機関運転状態が低速回転高負荷であるとき前記閉時期を前記最大遅角閉時期にすることを特徴とする請求項1記載の内燃機関。   2. The internal combustion engine according to claim 1, wherein the variable valve timing device sets the closing timing to the maximum retarded closing timing when the engine operating state is a low speed rotation and high load. 前記可変バルブタイミング装置は、前記機関運転状態が低負荷であるとき、前記閉時期を前記最大進角閉時期にし、
前記閉時期が前記最大進角閉時期であるとき、吸気下死点での前記吸気弁のリフト量は、前記吸気弁の最大リフト量の1/2以上であることを特徴とする請求項1または2記載の内燃機関。
The variable valve timing device sets the closing timing to the maximum advance closing timing when the engine operation state is a low load,
2. The lift amount of the intake valve at the intake bottom dead center when the close timing is the maximum advance angle close timing is ½ or more of the maximum lift amount of the intake valve. Or the internal combustion engine of 2.
前記可変バルブタイミング装置は、前記吸気弁を開閉駆動すると共に前記吸気弁のリフト曲線を規定する吸気カムを備え、
前記リフト曲線は、前記吸気弁のリフト量が最大リフト量となる最大リフト点に対して、前記リフト量が開弁開始点から前記最大リフト点に達するまで連続して増加するリフト量増加領域と、前記リフト量が前記最大リフト点から閉弁開始点まで連続して減少するリフト量減少領域とを有し、
前記リフト量減少領域は、前記リフト量増加領域での前記最大リフト点と前記閉弁開始点とを通る仮想直線に対して前記リフト量が大きい側に位置する減少開始側領域を有し、
前記減少開始側領域は、前記仮想直線からの距離が最大になる境界部を境に、前記最大リフト点側の小減少領域と、前記閉弁開始点側の大減少領域とに分けられ、
前記小減少領域および前記境界部でのリフト量減少率は、前記大減少領域でのリフト量減少率よりも小さく、前記小減少領域および前記境界部に渡る前記吸気カムの回転角範囲は、前記大減少領域での前記吸気カムの回転角範囲よりも大きいことを特徴とする請求項1から3のいずれか1項記載の内燃機関。
The variable valve timing device includes an intake cam that opens and closes the intake valve and defines a lift curve of the intake valve,
The lift curve has a lift amount increasing region in which the lift amount continuously increases from a valve opening start point to the maximum lift point with respect to a maximum lift point at which the lift amount of the intake valve becomes a maximum lift amount. A lift amount decrease region in which the lift amount continuously decreases from the maximum lift point to a valve closing start point;
The lift amount decrease region has a decrease start side region located on the side where the lift amount is large with respect to a virtual straight line passing through the maximum lift point and the valve closing start point in the lift amount increase region,
The decrease start side region is divided into a small decrease region on the maximum lift point side and a large decrease region on the valve closing start point side, with a boundary portion where the distance from the virtual straight line is maximized as a boundary,
The lift amount decrease rate at the small decrease region and the boundary portion is smaller than the lift amount decrease rate at the large decrease region, and the rotation angle range of the intake cam across the small decrease region and the boundary portion is The internal combustion engine according to any one of claims 1 to 3, wherein the internal combustion engine is larger than a rotation angle range of the intake cam in a large decrease region.
前記閉時期が前記最大進角閉時期であるときに前記境界部となる時期は、前記閉時期が前記最大遅角閉時期であるときに前記境界部となる時期よりも吸気下死点に近いことを特徴とする請求項4記載の内燃機関。
The timing when the closing timing is the maximum advance closing timing is closer to the intake bottom dead center than the timing when the closing timing is the maximum retard closing timing than the timing when the closing timing is the maximum retard closing timing 5. The internal combustion engine according to claim 4, wherein
JP2009134719A 2009-06-04 2009-06-04 Internal combustion engine with exhaust supercharger Expired - Fee Related JP5227265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009134719A JP5227265B2 (en) 2009-06-04 2009-06-04 Internal combustion engine with exhaust supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009134719A JP5227265B2 (en) 2009-06-04 2009-06-04 Internal combustion engine with exhaust supercharger

Publications (2)

Publication Number Publication Date
JP2010281249A true JP2010281249A (en) 2010-12-16
JP5227265B2 JP5227265B2 (en) 2013-07-03

Family

ID=43538194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134719A Expired - Fee Related JP5227265B2 (en) 2009-06-04 2009-06-04 Internal combustion engine with exhaust supercharger

Country Status (1)

Country Link
JP (1) JP5227265B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2829709A4 (en) * 2012-03-23 2016-01-27 Toyota Motor Co Ltd Variable valve device of internal combustion engine
CN110594024A (en) * 2018-06-13 2019-12-20 宝马股份公司 Method and control device for operating a reciprocating piston internal combustion engine
KR20210029092A (en) * 2019-09-05 2021-03-15 만 에너지 솔루션즈 에스이 Valve train and method for actuating gas exchange valves
CN115992767A (en) * 2023-03-22 2023-04-21 潍柴动力股份有限公司 Variable valve control method, device and equipment for reducing pumping loss

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195325A (en) * 1987-02-09 1988-08-12 Mazda Motor Corp Valve timing control device for engine with supercharger
JPH1037772A (en) * 1996-07-24 1998-02-10 Nissan Motor Co Ltd Intake valve control device of internal combustion engine with supercharger, and control method therefor
JP2005282437A (en) * 2004-03-29 2005-10-13 Osaka Gas Co Ltd Valve system for engine
JP2006348774A (en) * 2005-06-13 2006-12-28 Mazda Motor Corp Intake control device for engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195325A (en) * 1987-02-09 1988-08-12 Mazda Motor Corp Valve timing control device for engine with supercharger
JPH1037772A (en) * 1996-07-24 1998-02-10 Nissan Motor Co Ltd Intake valve control device of internal combustion engine with supercharger, and control method therefor
JP2005282437A (en) * 2004-03-29 2005-10-13 Osaka Gas Co Ltd Valve system for engine
JP2006348774A (en) * 2005-06-13 2006-12-28 Mazda Motor Corp Intake control device for engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2829709A4 (en) * 2012-03-23 2016-01-27 Toyota Motor Co Ltd Variable valve device of internal combustion engine
CN110594024A (en) * 2018-06-13 2019-12-20 宝马股份公司 Method and control device for operating a reciprocating piston internal combustion engine
CN110594024B (en) * 2018-06-13 2023-08-08 宝马股份公司 Method and control device for operating a reciprocating piston internal combustion engine
KR20210029092A (en) * 2019-09-05 2021-03-15 만 에너지 솔루션즈 에스이 Valve train and method for actuating gas exchange valves
KR102627371B1 (en) * 2019-09-05 2024-01-18 만 에너지 솔루션즈 에스이 Valve train and method for actuating gas exchange valves
CN115992767A (en) * 2023-03-22 2023-04-21 潍柴动力股份有限公司 Variable valve control method, device and equipment for reducing pumping loss

Also Published As

Publication number Publication date
JP5227265B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
US9476364B2 (en) Internal combustion engine having a plurality of exhaust ports per cylinder and charge exchange method for such an internal combustion engine
JP4905591B2 (en) High expansion ratio internal combustion engine
JP2004068755A (en) Valve gear for internal combustion engine
JP6564652B2 (en) COMPRESSION RATIO ADJUSTING DEVICE FOR INTERNAL COMBUSTION ENGINE AND METHOD FOR CONTROLLING COMPRESSION RATIO ADJUSTING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP5116465B2 (en) Method for operating an internal combustion engine and internal combustion engine implementing the method
JP6386577B2 (en) Variable stroke compression ratio internal combustion engine
JP5227265B2 (en) Internal combustion engine with exhaust supercharger
WO2018092586A1 (en) Variation system for internal combustion engine, and control method therefor
JP3994783B2 (en) Control device for internal combustion engine
KR20110094286A (en) Method of controlling turbocharger speed of a piston engine and a control system for a turbocharged piston engine
JP6544363B2 (en) Control device for internal combustion engine
JP2018168719A (en) Internal combustion engine
JP2015048839A (en) Valve timing control device for internal combustion engine
JP2018017164A (en) Control device of internal combustion engine
JP6753530B2 (en) Internal combustion engine control method and control device
JP5206565B2 (en) Internal combustion engine control system
JP4957542B2 (en) Intake control device for internal combustion engine
JP2014214638A (en) Engine device with turbo supercharger
JPH06330776A (en) Intake device for engine with mechanical supercharger
JPH0347407B2 (en)
WO2018211853A1 (en) Internal combustion engine variable operation system and control device therefor
JPH08260925A (en) Intake system of engine
JP5759512B2 (en) Control device for internal combustion engine
JP5218701B2 (en) Control device for internal combustion engine
JP2020007927A (en) Variable valve system of internal combustion engine and control device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees