JPS63195325A - Valve timing control device for engine with supercharger - Google Patents

Valve timing control device for engine with supercharger

Info

Publication number
JPS63195325A
JPS63195325A JP62027947A JP2794787A JPS63195325A JP S63195325 A JPS63195325 A JP S63195325A JP 62027947 A JP62027947 A JP 62027947A JP 2794787 A JP2794787 A JP 2794787A JP S63195325 A JPS63195325 A JP S63195325A
Authority
JP
Japan
Prior art keywords
intake
engine
valve
intake port
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62027947A
Other languages
Japanese (ja)
Other versions
JP2566232B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Junzo Sasaki
潤三 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2794787A priority Critical patent/JP2566232B2/en
Priority to KR1019870013322A priority patent/KR910002898B1/en
Priority to US07/125,982 priority patent/US4958606A/en
Priority to DE8787117608T priority patent/DE3781100T2/en
Priority to EP87117608A priority patent/EP0269125B1/en
Publication of JPS63195325A publication Critical patent/JPS63195325A/en
Application granted granted Critical
Publication of JP2566232B2 publication Critical patent/JP2566232B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To achieve the enhancement in charging efficiency, by advancing the opening timing of an intake port in such an operating region as the supercharged pressure is greater than the exhaust pressure. CONSTITUTION:The first and the second intake ports 10, 11 which are opened or closed by the first and the second intake valves 8, 9 are connected to each cylinder respectively, and a shutter valve 14 is provided in the second intake passage 13 which is communicated with the second intake port 11. In the operating region in which the supercharged pressure is greater than the exhaust pressure, the shutter valve 14 is opened to increase the overlap in the valve opening timing on both the intake side and the exhaust side. Thus, the charging efficiency of intake air can be enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は過給機付エンジンのバルブタイミング制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a valve timing control device for a supercharged engine.

(従来の技術) エンジンの吸気系に過給機を設けたものは一般に知られ
ている(例えば、特開昭59−39927号公報参照)
。ところで、一般に過給機付エンジンにおいては、その
排気ガス温度が高いために高速運転領域では空燃比のリ
ッチ化(混合気濃度を濃くすること)を図り、排気ガス
温度を排気系部品の耐熱限界以下に抑えるという制御が
なされている。
(Prior art) It is generally known that a supercharger is provided in the intake system of an engine (for example, see Japanese Patent Laid-Open No. 59-39927).
. By the way, in a supercharged engine, the exhaust gas temperature is generally high, so the air-fuel ratio is enriched (increasing the mixture concentration) in the high-speed operation range, and the exhaust gas temperature is lowered to the heat resistance limit of the exhaust system parts. Control is in place to keep it below.

また、過給機付エンジンの場合、その幾何学的圧縮比(
ピストン下死点でのシリンダ内容積/ピストン上死点で
のすきま容積)を過給機無しのエンジンのものよりも低
く抑えて高負荷運転領域での異常燃焼(ノッキング)が
避けられている。すなわち、幾何学的圧縮比を7.0な
いし8.5未満、吸気ポートの開時期を下死点からクラ
ンク角度で20〜40度を経過した時点に設定して有効
圧縮比を6.5〜8.25程度にしているのが通常であ
る。
In addition, in the case of a supercharged engine, its geometric compression ratio (
Abnormal combustion (knocking) in high-load operating ranges is avoided by keeping the cylinder internal volume at the bottom dead center of the piston / clearance volume at the top dead center of the piston) lower than that of an engine without a supercharger. That is, by setting the geometric compression ratio to less than 7.0 to 8.5 and setting the opening timing of the intake port to a point in time when the crank angle has passed from bottom dead center to 20 to 40 degrees, the effective compression ratio is set to 6.5 to 8.5. It is normal to set it to about 8.25.

(発明が解決しようとする問題点) 上述のように、過給機付エンジンでは高速運転領域で空
燃比のリッチ化を図ることから燃費が悪くなるという問
題があり、また、低圧縮比を用いることも熱効率が悪く
なるから燃費の点で好ましくない。
(Problems to be Solved by the Invention) As mentioned above, supercharged engines have the problem of poor fuel efficiency due to the enrichment of the air-fuel ratio in high-speed operating ranges, and the problem of poor fuel efficiency when using a low compression ratio. This is also unfavorable from the point of view of fuel efficiency, as thermal efficiency deteriorates.

上記空燃比のリッチ化は排気ガス温度の過度上昇を防止
するためであるから、本発明はこれに代わる冷却手段と
して断熱膨張を利用しようとするものであるが、その場
合でも以下の問題がある。
Since the purpose of enriching the air-fuel ratio is to prevent an excessive rise in exhaust gas temperature, the present invention attempts to utilize adiabatic expansion as an alternative cooling means, but even in that case, the following problems still occur. .

すなわち、断熱膨張による燃焼ガスの冷却を行なうには
、吸気ポートを遅く閉じるようにして圧縮行程における
ピストンの実質的なストロークを短く、従って膨張行程
の同ストロークを相対的に長くすればよいが、圧縮期間
が短くなるため逆に圧縮による温度上昇が得られずに燃
焼性が悪化することになる。
In other words, in order to cool the combustion gas through adiabatic expansion, the intake port can be closed late to shorten the actual stroke of the piston in the compression stroke, and therefore, the stroke in the expansion stroke can be made relatively long. Since the compression period is shortened, the temperature increase due to compression cannot be achieved and combustibility deteriorates.

また、上記膨張行程の後、燃焼ガスは完全には排出され
ず一部は燃焼室に残るが、この残留ガスは高温であるか
ら次に燃焼する混合気の温度上昇、ひいては異常燃焼を
招き易くなるとともに、吸気の充填効率も残留ガス分だ
け低くなる問題がある。
In addition, after the expansion stroke, the combustion gas is not completely exhausted and some remains in the combustion chamber, but since this residual gas is high temperature, it tends to increase the temperature of the next combusted air-fuel mixture, which can lead to abnormal combustion. At the same time, there is a problem in that the filling efficiency of intake air is also lowered by the amount of residual gas.

(問題点を解決するための手段) 本発明は、上記問題点を解決する手段として、過給機付
エンジンにおいて、その幾何学的圧縮比が8.5以上、
吸気ポートの閉時期がピストン下死点からクランク角度
で50度以上経過した時点にそれぞれ設定されていて、
過給圧が排気圧を上回る運転領域で吸気ポートの開時期
を他の運転領域よりも早めて吸気側と排気側の両開弁期
間のオーバラップを大きくする手段を備えた過給機付エ
ンジンのバルブタイミング制御装置を提供するものであ
る。
(Means for Solving the Problems) The present invention provides, as means for solving the above problems, a supercharged engine whose geometric compression ratio is 8.5 or more.
The closing timing of the intake port is set when 50 degrees or more of the crank angle has passed from the bottom dead center of the piston.
A supercharged engine equipped with a means for opening the intake port earlier than in other operating regions in an operating region where the boost pressure exceeds the exhaust pressure to increase the overlap between the valve opening periods on the intake side and the exhaust side. The present invention provides a valve timing control device.

(作用) すなわち、本発明においては、吸気ポート閉時期が遅い
ことにより、圧縮行程のビストンストロークが短くなっ
て膨張行程のビストンストロークが相対的に長くなり、
燃焼ガスの断熱膨張による冷却が図れる。そして、上記
閉時期が遅くとも幾何学的圧縮比が高いことにより、燃
焼安定性の確保に必要な有効圧縮比が得られ、また、ピ
ストン上死点でのシリンダのすきま容積が小さくなって
燃焼室の残留ガスが減ることも上記燃焼安定性の確保に
寄与することになる。また、上記閉時期が遅いことによ
り軽負荷運転領域でのボンピングロス(吸気行程での負
の仕事)の低減が図れる。
(Function) That is, in the present invention, due to the late intake port closing timing, the piston stroke in the compression stroke becomes short and the piston stroke in the expansion stroke becomes relatively long.
Cooling can be achieved by adiabatic expansion of combustion gas. Even if the above-mentioned closing timing is late, the geometric compression ratio is high, so the effective compression ratio necessary to ensure combustion stability is obtained, and the cylinder clearance volume at the piston top dead center is reduced, so that the combustion chamber The reduction in residual gas also contributes to securing the above-mentioned combustion stability. In addition, since the closing timing is late, it is possible to reduce the pumping loss (negative work in the intake stroke) in the light load operation region.

この場合、上記閉時期の設定に関しクランク角度で50
度以上という特定を与えたのは、比較的大きなボンピン
グロス低減効果が得られるピストン変位(ピストン移動
速度が比較的高くなるクランク角度)まで吸気ポートを
開放しておくためである。また、幾何学的圧縮比に8.
5以上という特定を与えたのは、上記閉時期の遅延によ
る有効圧縮比の低下を十分に補えるようにするためであ
る。
In this case, regarding the above closing timing setting, the crank angle is 50°.
The reason for specifying 1° or more is to keep the intake port open until the piston displacement (crank angle at which the piston movement speed becomes relatively high) provides a relatively large pumping loss reduction effect. Also, the geometric compression ratio is 8.
The reason for specifying 5 or more is to make it possible to sufficiently compensate for the decrease in the effective compression ratio due to the delay in the closing timing.

一方、本発明においては、過給圧が排気圧を上回る運転
領域で吸気側と排気側の開弁期間のオーバラップが大き
くなるため、排気行程の終わりごろに残留している燃焼
ガスが過給気で掃気され、吸気の充填効率が高くなり、
吸気ポートの開時期が遅いことによる有効圧縮比の低下
や吸気充填量の低下を補うことができる。
On the other hand, in the present invention, in the operating region where the boost pressure exceeds the exhaust pressure, the overlap between the valve opening periods on the intake side and the exhaust side becomes large, so that the combustion gas remaining near the end of the exhaust stroke is Air is scavenged with air, increasing the filling efficiency of intake air,
It is possible to compensate for a decrease in the effective compression ratio and a decrease in the intake air filling amount due to the late opening timing of the intake port.

なお、本明細書では、吸排気ポートの開閉時期に関して
は、バルブリフトm1 tmaの時点は実質的な吸排気
がなく閉弁状態としてとらえて説明している。例えば、
吸気ポート閉時期が下死点からクランク角度で50度と
いうときは、この50度の時点でバルブリフト量が1市
になるという意味である。
Note that, in this specification, the opening/closing timing of the intake/exhaust ports is explained by regarding the time of the valve lift m1 tma as a closed state where there is no substantial intake/exhaust. for example,
When the intake port close timing is 50 degrees in crank angle from bottom dead center, it means that the valve lift amount becomes 1 city at this 50 degrees.

(発明の効果) 従って、本発明によれば、高い幾何学的圧縮比と吸気ポ
ート開時期の制御により燃焼安定性を確保しながら、吸
気ポート閉時期の遅延により断熱膨張を有効に利用して
燃焼ガスを冷却し排気ガス温度の過度上昇を防止するこ
とができるため、空燃比のリッチ化を抑えて高速運転領
域での燃費の改善が図れる。
(Effects of the Invention) Therefore, according to the present invention, combustion stability is ensured by a high geometric compression ratio and control of the intake port opening timing, while adiabatic expansion is effectively utilized by delaying the intake port closing timing. Since the combustion gas can be cooled and the exhaust gas temperature can be prevented from rising excessively, it is possible to prevent the air-fuel ratio from becoming richer and improve fuel efficiency in high-speed driving ranges.

また、過給気による燃焼ガスの掃気が促進されるため、
低い過給圧でも加速時に十分な充填量、従って出力が得
られ、燃費も改善されるとともに、上記の高い幾何学的
圧縮比と相俟って残留ガスの低減が図れることにより、
この残留ガスによる混合気温度の上昇が抑えられ耐ノツ
キング性も向上することになる。
In addition, scavenging of combustion gas by supercharging air is promoted,
Even with low boost pressure, a sufficient charging amount and therefore power can be obtained during acceleration, improving fuel efficiency, and combined with the above-mentioned high geometric compression ratio, reducing residual gas,
An increase in the temperature of the mixture due to this residual gas is suppressed, and the knocking resistance is also improved.

(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図に示す過給機付エンジンにおいて、1は4サイク
ルのエンジン本体、2はターボ過給機である。吸気通路
3はその上流側から過給機2のコ・ンプレッサ2a、イ
ンタクーラ5、スロットル弁6が順に介装されてサージ
タンク7に続き、このサージタンク7から各気筒のそれ
ぞれ第1と第2の吸気バルブ8,9で開閉される第1と
第2の吸気ポートlo、11に対し第1と第2の通路1
2゜13が連なっている。そして、各第2通路13には
通路開閉用のシャッター弁14.が介装され、このシャ
ッター弁14の下流側において第1と第2の吸気ポート
10.11へ向けた燃料噴射弁15が設けられている。
In the supercharged engine shown in FIG. 1, 1 is a 4-stroke engine main body, and 2 is a turbo supercharger. The intake passage 3 has a compressor 2a of the supercharger 2, an intercooler 5, and a throttle valve 6 interposed in this order from the upstream side, and continues to a surge tank 7. From this surge tank 7, the first and second The first and second passages 1 are connected to the first and second intake ports lo and 11 which are opened and closed by the intake valves 8 and 9.
2°13 are in a row. Each second passage 13 has a shutter valve 14 for opening and closing the passage. A fuel injection valve 15 is provided downstream of the shutter valve 14 and directed toward the first and second intake ports 10.11.

また、各気筒はそれぞれ第1と第2の排気バルブ16.
17で開閉される第1と第2の排気ポート18.19を
備える。そして、各気筒に連なる排気通路20には過給
機2のタービン2bが介装されているとともに、このタ
ービン2bをバイパスする通路21にウェストゲートバ
ルブ22が介装されている。
Each cylinder also has a first and a second exhaust valve 16.
It has first and second exhaust ports 18, 19 which are opened and closed at 17. A turbine 2b of the supercharger 2 is installed in an exhaust passage 20 connected to each cylinder, and a wastegate valve 22 is installed in a passage 21 that bypasses the turbine 2b.

しかして、上記エンジンの幾何学的圧縮比は8.5以上
に設定されている。吸気ポート10゜11の開閉時期に
関しては第2図に示す如く、第1吸気バルブ8は第1吸
気ポート10をピストン上死点(T、DC)の直前から
ピストン下死点(BDC)をクランク角度で50度以上
経過した後まで開き、第2吸気バルブ9は第2吸気ポー
ト11を第1吸気バルブ8の場合より早く開き、第1吸
気バルブ8と同時期に第2吸気ボーhllを閉じるよう
にカムシャフトでタイミングが設定されている。そして
、第2吸気ポート11に関しては、シャッター弁14を
利用して制御手段23により、第3図に斜線で示す如く
過給効率が高くて過給圧が排気圧を上回る低回転高負荷
側の運転領域でのみ燃焼室に対する吸気の導入を行なう
ようになっている。すなわち、制御手段23はサージタ
ンク7に設けた圧力センサ24で検出される吸気管圧力
と1回転センサ25で検出されるエンジン回転数の信号
に基づき、低回転高負荷の運転領域でシャッター弁14
のアクチュエータ26に開信号を出力するようになって
いる。
Therefore, the geometric compression ratio of the engine is set to 8.5 or higher. Regarding the opening/closing timing of the intake ports 10 and 11, as shown in Fig. 2, the first intake valve 8 cranks the first intake port 10 from just before the piston top dead center (T, DC) to the piston bottom dead center (BDC). The second intake valve 9 opens the second intake port 11 earlier than the first intake valve 8, and closes the second intake bow hll at the same time as the first intake valve 8. The timing is set by the camshaft. The second intake port 11 is controlled by the control means 23 using the shutter valve 14 on the low-speed, high-load side where the supercharging efficiency is high and the supercharging pressure exceeds the exhaust pressure, as shown by diagonal lines in FIG. Intake air is introduced into the combustion chamber only in the operating range. That is, the control means 23 controls the shutter valve 14 in the low rotation and high load operating region based on the intake pipe pressure detected by the pressure sensor 24 provided in the surge tank 7 and the engine rotation speed detected by the one revolution sensor 25.
An open signal is output to the actuator 26 of the actuator 26.

そうして、上記幾何学的圧縮比と吸気ポート閉時期の設
定のもとに、上記エンジンの有効圧縮比(圧縮始めのシ
リンダ内容積/ピストン上死点でのすきま容積)は、第
4図に実線で右下り斜線を引いて設定領域を示す如く6
.5〜8.25程度になされている。なお、同図に破線
の斜線で示す領域は従来の過給機付エンジンの設定範囲
である。
Then, based on the above geometric compression ratio and intake port closing timing settings, the effective compression ratio of the above engine (internal cylinder volume at the beginning of compression/clearance volume at piston top dead center) is as shown in Figure 4. Draw a solid line diagonally downward to the right to indicate the setting area6.
.. It is set at about 5 to 8.25. Note that the area indicated by broken diagonal lines in the figure is the setting range of a conventional supercharged engine.

そして、第4図から、幾何学的圧縮比と吸気ポート閉時
期との関係を第5図に示す領域において設定すれば、上
記有効圧縮比6.5〜8,25が得られることがわかる
6また、上記吸気ポート閉時期に関し、ピストン下死点
後のクランク角度50度の時点は、第6図に示す如くク
ランク角度の変化に対してピストンの変位割合(ピスト
ン変位量X/ピストンの全ストロークX5C)が急激に
大きくなっていく時点である。
From FIG. 4, it can be seen that if the relationship between the geometric compression ratio and the intake port closing timing is set in the region shown in FIG. 5, the effective compression ratio 6.5 to 8.25 can be obtained. Regarding the above-mentioned intake port closing timing, when the crank angle is 50 degrees after the bottom dead center of the piston, the piston displacement ratio (piston displacement amount This is the point in time when X5C) suddenly increases.

従って、上記実施例の場合、吸気ポート閉時期の遅延に
より、膨張行程のビストンストロークが圧縮行程の同ス
トロークよりも相対的に長くなり、燃焼ガスが断熱膨張
により有効に冷却され、排気ガス温度は排気系部品の耐
熱限界温度以下に抑えられることになる。すなわち、高
速運転領域での空燃比のリッチ化は不要となり燃費の改
善が図れる。また1、吸気ポート10.’11は、ピス
トンの変位割合が急激に大きくなってきてから閉じられ
るため、軽負荷でのボンピングロスの低減が有効に図れ
る。しかも、上記吸気ポート閉時期の遅延にかかわらず
、幾何学的圧縮比を高くして有効圧縮比を確保するとと
もに、排気行程での燃焼室の残留ガスを減らしているか
ら、燃焼安定性の確保ないしは改善が図れ、有効圧縮比
を低く抑えることあるいは吸気ポート閉時期をさらに遅
らせることも可能となる。
Therefore, in the above embodiment, due to the delay in the intake port closing timing, the piston stroke in the expansion stroke becomes relatively longer than the same stroke in the compression stroke, the combustion gas is effectively cooled by adiabatic expansion, and the exhaust gas temperature is reduced. This means that the temperature can be kept below the heat-resistant limit temperature of exhaust system parts. That is, it is not necessary to enrich the air-fuel ratio in the high-speed driving range, and fuel efficiency can be improved. Also 1. Intake port 10. '11 is closed after the piston displacement rate increases rapidly, so it is possible to effectively reduce the pumping loss under light loads. Furthermore, despite the delay in the intake port closing timing, the geometric compression ratio is increased to ensure an effective compression ratio, and residual gas in the combustion chamber during the exhaust stroke is reduced, ensuring combustion stability. Or improvements can be made, and it becomes possible to keep the effective compression ratio low or further delay the intake port closing timing.

一方、過給圧が排気圧よりも高い運転領域では、シャッ
ター014の開動により第2吸気ポート11が吸気作用
を呈し、吸気側と排気側の開弁期間のオーバラップが大
きくなるため、過給気により燃焼ガスが掃気され、上記
幾何学的圧縮比が高いこともあって、燃焼室の残留ガス
の低減がより一層図られる。そして、この残留ガスの低
減により。
On the other hand, in the operating range where the boost pressure is higher than the exhaust pressure, the second intake port 11 exhibits an intake action due to the opening movement of the shutter 014, and the overlap between the valve opening periods on the intake side and the exhaust side increases, so the supercharging The combustion gas is scavenged by air, and the geometric compression ratio is high, so that the residual gas in the combustion chamber can be further reduced. And by reducing this residual gas.

燃焼室は低い過給圧でも吸気の充填量が高くなり、出力
の向上ないしは燃費の改善が図れるとともに、残留ガス
による混合気温度の上昇が抑えられ、耐ノツキング性も
改善される。なお、吸気ポート閉時期と幾何学的圧縮比
の関係を調整することにより、有効圧縮比が過度に高く
なることは防止できる。また、オーバラップを大きくし
掃気をさせた場合の未燃ガスの排出は、排気ポート18
.19が閉じられた後に燃料噴射を行なうようにするこ
とにより防止することができる。
The combustion chamber is filled with a high amount of intake air even at low boost pressure, which improves output and fuel efficiency, suppresses the rise in air-fuel mixture temperature due to residual gas, and improves knocking resistance. Note that by adjusting the relationship between the intake port closing timing and the geometric compression ratio, it is possible to prevent the effective compression ratio from becoming excessively high. In addition, when the overlap is increased and scavenging is performed, unburned gas is discharged from the exhaust port 18.
.. This can be prevented by injecting fuel after the valve 19 is closed.

上記実施例では第1と第2の両吸気ポート10゜11を
同時に閉じるようにしたが、第7図に示す如く、第2吸
気バルブは第2吸気ポートを第1吸気バルブよりも遅れ
て閉じるようにしてもよい。
In the above embodiment, both the first and second intake ports 10 and 11 are closed at the same time, but as shown in FIG. 7, the second intake valve closes the second intake port later than the first intake valve. You can do it like this.

これにより低回転高負荷の運転領域での燃焼ガスの断熱
膨張によビ冷却効率をさらに高め、また、有効圧縮比の
低下を図って、ノッキングの発生をより確実に防止する
ことができる。
This further increases the engine cooling efficiency through adiabatic expansion of the combustion gas in the low-speed, high-load operating range, and also lowers the effective compression ratio, thereby making it possible to more reliably prevent knocking.

また、第8図に示す如く、第1吸気パルブレま第2吸気
バルブよりも吸気ポートを早く(ピストン下死点からク
ランク角度50度に至る間に)閉じるようにして、軽負
荷側では有効圧縮比を高くして空燃比のリーン(希薄)
化ないしは燃焼安定性の向上を図り、高負荷側でのみ吸
気ポートの閉時期を遅らせて有効圧縮比の低下を図りな
がら燃焼ガスの冷却を有効に行なえるようにしてもよし
1゜また、上記実施例ではシャッター弁14を用し)て
第2吸気バルブ9に上り吸気ポートの開閉時期を制御し
ているが、第2吸気バルブに弁停止機構を設けてこれを
シャッター弁と同様に制御する方式としてもよく、さら
にこの第2吸気ノ\ルブの(fi相を吸気カム側でモー
タにより任意に変更できるようにして、第3図に111
mで等位相線を示す如く高負荷になるに従って吸気側と
排気側のオーツ(ラップが漸次大きくなるように制御し
てもよ)1゜また、エンジンのクランク軸により駆動さ
れる機械式の過給機を用いる場合でも、上記ターボ過給
機の場合と略同様にして本発明を実施することができる
。二の機械式過給機の場合、ターボ過給機と違って広い
回転速度領域にわたって高しX過給圧が得られるため、
上記オーバラップのII御マ・ツブは第9図に示す如く
エンジン高回転側でオーツくラップがより大きくなるも
のになる。また、吸気ポート閉時期の遅延により一般に
吸気の充填量&ま低くなりがちであるが1機械式過給機
でl1加速と同時に過給により十分な充填量が得られる
ため加速性に特に問題はない、しかも上記オーツルラッ
プの拡大により、低回転高負荷時に掃気によって充填量
が多くなるとともに、過給圧が下がる力1ら、過給機の
駆動抵抗も小さくなり、エンジンのトルり上昇、燃費の
改善が図れる。
In addition, as shown in Fig. 8, the first intake valve closes the intake port earlier than the second intake valve (between the piston bottom dead center and the crank angle of 50 degrees), so that effective compression is achieved on the light load side. Lean air-fuel ratio by increasing the ratio
It is also possible to improve the combustion stability and to delay the closing timing of the intake port only on the high load side to effectively cool the combustion gas while lowering the effective compression ratio. In the embodiment, a shutter valve 14) is used to control the opening/closing timing of the intake port to the second intake valve 9, but a valve stop mechanism is provided to the second intake valve to control it in the same way as the shutter valve. It is also possible to change the (fi phase) of this second intake knob/rube arbitrarily by a motor on the intake cam side, as shown in Fig. 3.
As the load increases, as the load increases, as shown by the equal phase line at m (the wrap may be controlled so that it gradually increases), the mechanical overload is driven by the engine crankshaft. Even when a charger is used, the present invention can be carried out in substantially the same manner as in the case of the turbocharger described above. In the case of the second mechanical supercharger, unlike a turbo supercharger, a high X supercharging pressure can be obtained over a wide rotation speed range, so
As shown in FIG. 9, the above-mentioned overlap II control knob automatically becomes larger at higher engine speeds. Additionally, due to the delay in the intake port closing timing, the amount of intake air filling tends to be low in general, but with a 1 mechanical supercharger, a sufficient amount of filling can be obtained through supercharging at the same time as 11 acceleration, so there is no particular problem with acceleration. Moreover, due to the enlargement of the oaturu wrap mentioned above, the amount of charge is increased by scavenging air at low rotation speeds and high loads, and the force of reducing supercharging pressure1 and the driving resistance of the supercharger are also reduced, which increases engine torque and reduces fuel consumption. Improvements can be made.

なお、バルブの位相なモータで変える方式を採用する場
合、第2吸気バルブだけでなく第1吸タバルブも同時に
制御してもよく、もちろん、2ノ1ルブ方式に限らず吸
気バルブが1つの方式の工)ジンでも本発明は実施する
二とができる。
In addition, when adopting a method of changing the valve phase using a motor, it is possible to control not only the second intake valve but also the first intake valve at the same time. The present invention can also be carried out in other industries.

また、上記オーバラップの制御は過給圧と排り圧をそれ
ぞれセンサで検出し両者を直接比較しながら行なっても
よく、さらにオーバラップ量を変更する場合、排気ポー
トの閉時期を変えるよう番こしてもよい。
In addition, the above-mentioned overlap control may be performed by detecting the boost pressure and exhaust pressure with sensors and directly comparing the two.Furthermore, when changing the amount of overlap, the timing of closing the exhaust port may be changed. You can also strain it.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は過給機付エンジ
ンの全体構成図、第2図は吸気ノ(ルブのタイミング特
性を示す図、第3図はターボ式過給機の場合のオーバラ
ップ拡大領域を示す特性図、第4図は幾何学的圧縮比と
吸気ポート閉時期と有効圧縮比との関係に関し本発明と
従来例の設定領域を示す特性図、第5図は幾何学的圧縮
比と吸気ポート閉時期に関する設定領域を示す特性図、
第6図はクランク角度とピストンの変位割合との関係を
示す図、第7図および第8図は吸気)くルブのタイミン
グ特性の他の例を示す図、第9図&ま機械式過給機の場
合の第3図と同様の図である。 ■・・・・・・エンジン本体、2・・・・・・過給機、
3・・・・・・吸気通路、8・・・・・・第1吸気バル
ブ、9・・・・・・第2吸気乙  バルブ、10・・・
・・・第1吸気ポート、11・・・・・・第2吸気ポー
ト、14・・・・・・シャッター弁、18.19・・・
・・・排気ポート。 第2図     第3図 第4図 第5図 第7図      第8図
The drawings show an embodiment of the present invention, and Fig. 1 is an overall configuration diagram of a supercharged engine, Fig. 2 is a diagram showing the timing characteristics of the intake nozzle, and Fig. 3 is a diagram showing the case of a turbo supercharger. Fig. 4 is a characteristic diagram showing the setting range of the present invention and the conventional example regarding the relationship between the geometric compression ratio, intake port closing timing, and effective compression ratio, and Fig. 5 is the geometric Characteristic diagram showing the setting range regarding the theoretical compression ratio and intake port closing timing,
Figure 6 is a diagram showing the relationship between the crank angle and the displacement rate of the piston, Figures 7 and 8 are diagrams showing other examples of intake valve timing characteristics, and Figure 9 is a diagram showing the relationship between the crank angle and the displacement rate of the piston. FIG. 3 is a diagram similar to FIG. 3 in the case of a machine. ■・・・Engine body, 2・・・Supercharger,
3... Intake passage, 8... First intake valve, 9... Second intake valve, 10...
...First intake port, 11...Second intake port, 14...Shutter valve, 18.19...
...Exhaust port. Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1)過給機を備えたエンジンにおいて、エンジンの幾
何学的圧縮比は8.5以上に設定され、吸気ポートの閉
時期はピストンの下死点からクランク角度で50度以上
経過した時点に設定されていて、過給圧が排気圧を上回
る運転領域で吸気ポートの開時期を他の運転領域よりも
早めて吸気側と排気側の開弁期間のオーバラップを大き
くする手段を備えていることを特徴とする過給機付エン
ジンのバルブタイミング制御装置。
(1) In an engine equipped with a supercharger, the geometric compression ratio of the engine is set to 8.5 or higher, and the intake port closes at the point when 50 degrees or more of the crank angle has passed from the bottom dead center of the piston. The engine is equipped with a means to increase the overlap between the valve opening periods on the intake side and the exhaust side by opening the intake port earlier than in other operating areas in the operating range where the boost pressure exceeds the exhaust pressure. A valve timing control device for a supercharged engine, characterized by:
JP2794787A 1986-11-27 1987-02-09 Valve timing controller for engine with supercharger Expired - Lifetime JP2566232B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2794787A JP2566232B2 (en) 1987-02-09 1987-02-09 Valve timing controller for engine with supercharger
KR1019870013322A KR910002898B1 (en) 1986-11-27 1987-11-26 Supercharged engine
US07/125,982 US4958606A (en) 1986-11-27 1987-11-27 Supercharged engine
DE8787117608T DE3781100T2 (en) 1986-11-27 1987-11-27 CHARGED ENGINE.
EP87117608A EP0269125B1 (en) 1986-11-27 1987-11-27 Supercharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2794787A JP2566232B2 (en) 1987-02-09 1987-02-09 Valve timing controller for engine with supercharger

Publications (2)

Publication Number Publication Date
JPS63195325A true JPS63195325A (en) 1988-08-12
JP2566232B2 JP2566232B2 (en) 1996-12-25

Family

ID=12235087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2794787A Expired - Lifetime JP2566232B2 (en) 1986-11-27 1987-02-09 Valve timing controller for engine with supercharger

Country Status (1)

Country Link
JP (1) JP2566232B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443050A (en) * 1992-01-31 1995-08-22 Mazda Motor Corporation Engine control system
JP2010281249A (en) * 2009-06-04 2010-12-16 Honda Motor Co Ltd Internal combustion engine equipped with exhaust supercharger
US8100099B2 (en) 2004-05-13 2012-01-24 Audi, Ag Method for operating an internal combustion engine, and internal combustion engine for carrying out said method
JP2012225331A (en) * 2011-04-22 2012-11-15 Toyota Motor Corp Internal combustion engine with variable compression ratio mechanism
JP2014222049A (en) * 2013-05-14 2014-11-27 株式会社デンソー Intake system of internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166824A (en) * 1984-09-10 1986-04-05 Mazda Motor Corp Valve timing control device of engine
JPS61187543A (en) * 1985-02-15 1986-08-21 Toyota Motor Corp Control method of variable valve-timing engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166824A (en) * 1984-09-10 1986-04-05 Mazda Motor Corp Valve timing control device of engine
JPS61187543A (en) * 1985-02-15 1986-08-21 Toyota Motor Corp Control method of variable valve-timing engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443050A (en) * 1992-01-31 1995-08-22 Mazda Motor Corporation Engine control system
US8100099B2 (en) 2004-05-13 2012-01-24 Audi, Ag Method for operating an internal combustion engine, and internal combustion engine for carrying out said method
JP2010281249A (en) * 2009-06-04 2010-12-16 Honda Motor Co Ltd Internal combustion engine equipped with exhaust supercharger
JP2012225331A (en) * 2011-04-22 2012-11-15 Toyota Motor Corp Internal combustion engine with variable compression ratio mechanism
JP2014222049A (en) * 2013-05-14 2014-11-27 株式会社デンソー Intake system of internal combustion engine

Also Published As

Publication number Publication date
JP2566232B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
JP4517515B2 (en) 4-cycle engine for automobiles
US4958606A (en) Supercharged engine
JPH1089106A (en) Engine with turbo-supercharger and power unit of vehicle loaded with the same engine
JP4385531B2 (en) 4-cycle engine with catalyst
JP3280758B2 (en) Intake device for engine with mechanical supercharger
JP2002332877A (en) Four-stroke engine for car
JP4797868B2 (en) Turbocharged engine
JP2566232B2 (en) Valve timing controller for engine with supercharger
JP4466164B2 (en) Multi-cylinder engine with turbocharger
JP2799388B2 (en) Engine with turbocharger
JP3384579B2 (en) Engine with turbocharger
JP3377828B2 (en) Intake device for engine with mechanical supercharger
EP1239130A2 (en) Dual-mode engine with controlled auto-ignition
JP3183560B2 (en) Control device for supercharged engine
JP3551436B2 (en) Engine with turbocharger
JP2994784B2 (en) Engine combustion chamber structure
JP2673427B2 (en) Engine with turbocharger
JPH10274069A (en) Cylinder injection type engine with mechanical supercharger
JPH0717787Y2 (en) Supercharged engine
JP2966129B2 (en) Engine combustion chamber structure
JP4375089B2 (en) Multi-cylinder engine with turbocharger
JPS60256523A (en) Diesel engine
JP3330189B2 (en) Engine control device
JP3280757B2 (en) Intake device for engine with mechanical supercharger
JPH01318A (en) supercharged engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term