WO2018211853A1 - Internal combustion engine variable operation system and control device therefor - Google Patents

Internal combustion engine variable operation system and control device therefor Download PDF

Info

Publication number
WO2018211853A1
WO2018211853A1 PCT/JP2018/014656 JP2018014656W WO2018211853A1 WO 2018211853 A1 WO2018211853 A1 WO 2018211853A1 JP 2018014656 W JP2018014656 W JP 2018014656W WO 2018211853 A1 WO2018211853 A1 WO 2018211853A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable
internal combustion
combustion engine
compression ratio
intake
Prior art date
Application number
PCT/JP2018/014656
Other languages
French (fr)
Japanese (ja)
Inventor
中村 信
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018211853A1 publication Critical patent/WO2018211853A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a variable operation system for an internal combustion engine, and in particular, includes a variable compression ratio mechanism for controlling a mechanical compression ratio (including an expansion ratio) in a four-cycle internal combustion engine, and a variable valve mechanism for controlling valve timing.
  • the present invention relates to a variable operation system for an internal combustion engine and a control device therefor.
  • variable compression ratio mechanism that variably controls the mechanical compression ratio and the mechanical expansion ratio, an intake valve and an exhaust that influence the actual compression ratio. It has been proposed to improve the operating performance of an internal combustion engine by combining with a variable valve mechanism that variably controls the valve timing (opening / closing timing) of the valve.
  • the variable compression ratio mechanism for example, one described in JP-A-2002-276446 (Patent Document 1) is known.
  • Non-Patent Document 1 the mechanical compression ratio map is shown in Figs.
  • An object of the present invention is to provide a novel variable internal combustion engine system and its control device that can increase the temperature of exhaust gas at the time of cold start of the internal combustion engine to promote the warm-up of the exhaust gas purification catalyst. Is to provide.
  • the features of the present invention include at least a variable compression ratio mechanism that controls a mechanical compression ratio and a mechanical expansion ratio in a four-cycle internal combustion engine, and an intake side variable valve mechanism that controls the phase of the opening and closing timing of the intake valve,
  • the variable compression ratio mechanism sets the piston position to a position where the mechanical expansion ratio becomes substantially minimum, and the intake side variable valve mechanism closes the intake valve as compared with the low load after warm-up.
  • the timing is set near the bottom dead center, and the opening timing of the intake valve is set at a position on the advance side before the top dead center.
  • the temperature of the exhaust gas can be increased by reducing the mechanical expansion ratio at the time of cold start, and the exhaust gas purification catalyst can be warmed up early to improve the conversion efficiency of exhaust harmful components.
  • the amount of exhaust harmful components in the exhaust gas can be reduced.
  • the effective compression ratio can be increased, and the combustion improvement effect can be enhanced.
  • FIG. 1 is an overall schematic diagram of a variable operation system for an internal combustion engine according to the present invention. It is a block diagram which shows the structure of the variable compression ratio mechanism used for this invention, and shows the state currently controlled by the minimum mechanical compression ratio (minimum mechanical expansion ratio). It is a block diagram which shows the structure of the variable compression ratio mechanism used for this invention, and shows the state currently controlled by the maximum mechanical compression ratio (maximum mechanical expansion ratio). It is explanatory drawing explaining the control characteristic of the intake valve and exhaust valve of the variable operation system which becomes the 1st Embodiment of this invention.
  • FIG. 3B is a lift characteristic diagram illustrating control characteristics of the intake valve and the exhaust valve shown in FIG. 3A with lift characteristic lines.
  • 3 is a control flowchart for executing control at the time of engine stop transition of the variable operation system for the internal combustion engine according to the first embodiment of the present invention. It is a control flowchart which performs control from the time of starting of the variable operation system of the internal combustion engine which becomes a 1st embodiment of the present invention. It is explanatory drawing which shows an example of the control value of the piston position by the variable compression ratio mechanism used for the 2nd Embodiment of this invention. It is a characteristic view explaining the control characteristic of the main parameter of the variable operation system of the internal combustion engine which becomes the 2nd Embodiment of this invention.
  • FIG. 1 shows the overall configuration of the variable operation system for an internal combustion engine to which the present invention is applied.
  • a piston 01 provided inside a cylinder bore formed in a cylinder block SB so as to be slidable up and down by combustion pressure or the like, and a cylinder head
  • an exhaust valve 5 An exhaust valve 5.
  • the piston 01 is connected to the crankshaft 02 via a connecting rod 03 composed of a lower link 42 and an upper link 43 described later, and a combustion chamber 04 is formed between the crown surface and the lower surface of the cylinder head SH. Yes.
  • a spark plug 05 is provided substantially at the center of the cylinder head SH.
  • the intake port IP is connected to an air cleaner (not shown), and intake air is supplied via the electric throttle valve 72.
  • the electric throttle valve 72 is controlled by the controller 22 and basically its opening degree is controlled in accordance with the amount of depression of the accelerator pedal.
  • the exhaust port EP discharges exhaust gas from the tail pipe to the atmosphere via the exhaust gas purification catalyst 74.
  • an intake side variable valve mechanism that controls the valve opening characteristics of the intake valve 4 and the exhaust valve 5
  • an exhaust side variable valve mechanism that controls the piston position characteristics.
  • a compression ratio mechanism that controls the compression ratio of the intake valve 4 and the exhaust valve 5
  • An intake side variable valve mechanism (hereinafter referred to as an intake side VTC mechanism) 1A, which is a “phase angle variable mechanism” for controlling the center phase angle of the valve lift of the intake valve 4, is provided on the intake side.
  • an exhaust side variable valve mechanism (hereinafter referred to as an exhaust side VTC mechanism) 1B which is a “phase angle variable mechanism” that controls the central phase angle of the valve lift of the exhaust valve 5.
  • a variable compression ratio mechanism hereinafter referred to as a VCR mechanism) 3 that is a “piston stroke variable mechanism” for controlling the mechanical compression ratio ⁇ C and the mechanical expansion ratio ⁇ E in the cylinder is provided.
  • the mechanical compression ratio ⁇ C and the mechanical expansion ratio ⁇ E are both set to the same value.
  • the intake-side VTC mechanism 1A and the exhaust-side VTC mechanism 1B are equipped with phase control hydraulic actuators 2A and 2B, and are configured to control the opening / closing timing of the intake valve 4 and the exhaust valve 5 by hydraulic pressure.
  • the hydraulic pressure supply to the phase control hydraulic actuators 2 ⁇ / b> A and 2 ⁇ / b> B is controlled by a hydraulic control unit (not shown) based on a control signal from the controller 22.
  • the center phase ⁇ of the lift characteristic is controlled to the retard side or the advance side by the hydraulic control to the phase control hydraulic actuators 2A and 2B.
  • the intake-side VTC mechanism 1A and the exhaust-side VTC mechanism 1B are not limited to hydraulic types, and various configurations such as those using an electric motor or an electromagnetic actuator are possible.
  • the intake side VTC mechanism 1A both when there is a hydraulic supply from the hydraulic pump and when there is no hydraulic supply, the intake side VTC mechanism 1A is mechanically moved by a biasing spring or the like near the “most advanced position” that is the default position. It is controlled. Therefore, even when there is a disconnection failure or the like in the electrical system, the mechanical fail-safe effect is provided. Therefore, as will be described later, when the internal combustion engine is stopped, the intake valve is set near the “most advanced angle position”.
  • the present engine state is detected from various information signals such as an opening sensor, a vehicle speed sensor, a gear position sensor, an engine cooling water temperature sensor 31 that detects the temperature of the engine body, and humidity from the atmospheric humidity sensor.
  • the controller 22 outputs an intake VTC control signal to the intake side VTC mechanism 1A, and outputs an exhaust VTC control signal to the exhaust side VTC mechanism 1B.
  • FIGS. 1, 2A, and 2B show the piston position at the compression top dead center at the minimum mechanical compression ratio
  • FIG. 2B shows the piston position at the compression top dead center at the maximum mechanical compression ratio.
  • the piston position at the exhaust top dead center coincides with the piston position at the compression top dead center shown in FIGS. 2A and 2B in both the minimum mechanical compression ratio and the maximum mechanical compression ratio. ing.
  • the VCR mechanism 3 has the same configuration as that described in Patent Document 1 described above as the prior art.
  • the crankshaft 02 includes a plurality of journal portions 40 and a crank pin portion 41, and the journal portion 40 is rotatably supported by the main bearing of the cylinder block SB.
  • the crankpin portion 41 is eccentric from the journal portion 40 by a predetermined amount, and a lower link 42 serving as a second link is rotatably connected thereto.
  • the lower link 42 is configured to be split into two left and right members, and the crankpin portion 41 is fitted in a substantially central connecting hole.
  • the upper link 43 serving as the first link has a lower end side rotatably connected to one end of the lower link 42 by a connecting pin 44, and an upper end side rotatably connected to the piston 01 by a piston pin 45.
  • the control link 46 serving as the third link is pivotally connected at its upper end side to the other end of the lower link 42 by a connecting pin 47, and the lower end side of the lower part of the cylinder block SB that becomes part of the engine body via the control shaft 48. It is connected to the pivotable.
  • the control shaft 48 is rotatably supported by the engine body, and has an eccentric cam portion 48a that is eccentric from the center of rotation.
  • the lower end portion of the control link 46 is rotatably fitted to the eccentric cam portion 48a. is doing.
  • the rotation position of the control shaft 48 is controlled by a compression ratio control actuator 49 using an electric motor based on a control signal from the controller 22.
  • the eccentric cam portion 48a faces upward, thereby pushing up the control link 46 and rotating the lower link 42 counterclockwise. Accordingly, the position of the piston 01 is lowered by lowering the upper link 43.
  • the eccentric cam portion 48a faces to the left side, whereby the control link 46 is relatively lowered and the lower link 42 is rotated clockwise. Thus, the position of the piston 01 is pushed up by pushing up the upper link 43.
  • This mechanical compression ratio is a geometric compression ratio determined only by the change in the volume of the combustion chamber due to the stroke of the piston 01, and the cylinder volume at the bottom dead center of the intake stroke of the piston 01 and the compression stroke of the piston 01. It is the ratio of the in-cylinder volume at the top dead center.
  • 2A shows the state of the minimum mechanical compression ratio
  • FIG. 2B shows the state of the maximum mechanical compression ratio, respectively, and the compression ratio can be continuously changed between these.
  • the mechanical compression ratio ( ⁇ C) is set to the maximum mechanical compression ratio ( ⁇ Cmax) in Non-Patent Document 1. Therefore, the mechanical expansion ratio ( ⁇ E) also becomes the maximum mechanical expansion ratio ( ⁇ Emax), and the phenomenon that the temperature of the exhaust gas discharged from the internal combustion engine decreases occurs. For this reason, it is difficult to warm up the exhaust gas purification catalyst provided in the middle of the exhaust pipe, and the conversion rate of exhaust harmful components in the exhaust gas purification catalyst becomes low. As a result, there is a problem that the exhaust amount of exhaust harmful components in the exhaust gas discharged from the tail pipe after passing through the exhaust gas purifying catalyst increases.
  • the VCR mechanism 3 sets the piston position to a position where the mechanical expansion ratio is substantially minimum, and the intake variable valve mechanism 1A Compared to the low load after warm-up, the closing timing of the intake valve 4 is set near the bottom dead center, and the opening timing of the intake valve 4 is set to a position on the advance side before the top dead center. It is what we propose.
  • FIG. 3A shows the control characteristics of the opening / closing timing of the intake valve 4 and the exhaust valve 5 by the intake side VTC mechanism 1A and the exhaust side VTC mechanism 1B according to this embodiment, and FIG. The lift characteristic line of the control characteristic of the exhaust valve 5 is shown.
  • FIGS. 3A and 3B “at the time of cold start”, “at the time of low load after warm-up” including “idle after warm-up”, “at the time of medium load after warm-up”, and “at the time of high load after warm-up”
  • the opening / closing timing of the intake valve 4 and the exhaust valve 5 will be described.
  • the exhaust valve 5 is controlled in the vicinity of the most retarded angle position which is the default position. Therefore, the opening timing (EVOc) and closing timing (EVCc) of the exhaust valve 5 are set near the most retarded position.
  • valve overlap between the intake valve 4 and the exhaust valve 5 is a positive valve overlap state in which both the intake valve 4 and the exhaust valve 5 are opened, and the phase angle of the positive valve overlap is
  • the positive valve overlap (PVOLc) is set.
  • the intake valve 4 is controlled by the phase control hydraulic actuator 2A of the intake side VTC mechanism 1A. It is controlled to the retard side. Accordingly, the opening timing (IVOi) and closing timing (IVCi) of the intake valve 4 are set to the retarded position by a predetermined angle compared to the most advanced position.
  • the exhaust valve 5 is controlled to the advance side by the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B. Therefore, the opening timing (EVOi) and closing timing (EVCi) of the exhaust valve 5 are set to the advance position by a predetermined angle compared to the most retarded position.
  • valve overlap between the intake valve 4 and the exhaust valve 5 is set to “substantially 0”.
  • the valve overlap is not completely “0”, and may include a valve overlap that does not cause a problem in control (positive valve overlap or negative valve overlap described later).
  • the exhaust valve 5 is further controlled to be advanced by the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B than in the case of “(B) low load after warming up”. Therefore, the opening timing (EVOm) and closing timing (EVCm) of the exhaust valve 5 are set to an advanced position by a predetermined angle as compared with “(B) Low load after warm-up”.
  • the valve overlap between the intake valve 4 and the exhaust valve 5 is a negative valve overlap state in which both the intake valve 4 and the exhaust valve 5 are closed, and the phase angle of the negative valve overlap is Negative valve overlap (NVOLm) is set.
  • the intake valve 4 is "(C) medium load after warm-up” by the hydraulic actuator 2A for phase control of the intake-side VTC mechanism 1A. It is controlled to the advance side beyond the top dead center (TDC). Accordingly, the opening timing (IVOh) and closing timing (IVCh) of the intake valve are set by returning to the advance position by a predetermined angle compared to “(C) During middle load after warm-up”.
  • the exhaust valve 5 is controlled by the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B beyond the top dead center (TDC) to the retard side than in the case of “(C) middle load after warm-up”.
  • TDC top dead center
  • the opening timing (EVOh) and closing timing (EVCh) of the exhaust valve are set by returning to the retarded position by a predetermined angle as compared with “(C) During middle load after warm-up”.
  • valve overlap between the intake valve and the exhaust valve is a positive valve overlap state in which both the intake valve 4 and the exhaust valve 5 are opened, and the phase angle of the positive valve overlap is positive.
  • Valve overlap (PVOLh) is set.
  • the positive overlap (PVOLh) of “(D) at the time of high load after warm-up” is set to a smaller phase angle than the positive valve overlap (PVOLc) of “(A) at the time of cold start”, and “PVOLc> PVOLh ".
  • the intake valve opening timing (IVO) has a relationship of “IVOc> IVOh> IVOi> IVOm” with respect to the advance side.
  • the intake valve closing timing (IVC) also has a relationship of “IVCc> IVCh> IVCi> IVCm”.
  • the exhaust valve opening timing (EVO) has a relationship of “EVOc> EVOh> EVOi> EVOm” with respect to the retard side.
  • the exhaust valve closing timing (EVC) also has a relationship of “EVCc> EVCh> EVCi> EVCm”.
  • the intake side VTC mechanism 1A and the exhaust side VTC mechanism 1B are provided with an intake air that is suitable for cold start before the internal combustion engine is stopped and then left (cooling water temperature decreases) before the next start.
  • the valve 4 is moved to near the opening / closing timing (IVOc, IVCc) and the exhaust valve 5 is opened / closed (EVOc, EVCc).
  • the VCR mechanism 3 is a highly irreversible speed reduction mechanism such as a worm mechanism, and a return biasing spring is also particularly provided.
  • a stable transition to a specific default position does not occur as the rotation speed of the internal combustion engine decreases.
  • the opening / closing timing (IVO, IVC) of the intake valve 4 and the opening / closing timing (EVO, EVC) of the exhaust valve 5 are the opening / closing timing (IVOc, IVCc) of the intake valve 4 and The default position substantially coincides with the opening / closing timing (EVOc, EVCc) of the exhaust valve 5. For this reason, since the amount of control conversion at the time of starting is small, the conversion response time can be extremely shortened, and the required energy (hydraulic energy) required for conversion can be suppressed.
  • the opening and closing timings of the intake valve 4 and the exhaust valve 5 when the engine is stopped, and the intake of the cold start Since the required opening / closing timings (IVOc, IVCc, EVOc, EVCc) of the valve 4 and the exhaust valve 5 can be made coincident with each other, it can be set to an appropriate valve opening / closing timing from the beginning of the start, and less driving energy is required. Therefore, even if it is a hydraulic actuator, start control without a problem is attained.
  • (A) “ ⁇ Emin” shown in FIG. 4 or the like when starting the cold machine indicates the mechanical expansion ratio at the time of starting combustion after finishing the cranking. That is, it is not the variation “ ⁇ Emax” to “ ⁇ Emin” at the beginning of cranking, but the mechanical expansion ratio at the time of completion of cranking and starting combustion.
  • the piston position at which the mechanical expansion ratio ( ⁇ E) is minimized is controlled by the VCR mechanism 3, and the closing timing (IVCc) of the intake valve 4 exceeds the bottom dead center (BDC) by the intake side VTC mechanism 1A.
  • the opening timing (IVOc) of the intake valve 4 is controlled to the most advanced position beyond the top dead center (TDC). .
  • the VCR mechanism 3 is controlled to a substantially minimum mechanical expansion ratio ( ⁇ Emin), there is little expansion work, and the temperature of the exhaust gas is relatively increased accordingly.
  • ⁇ Emin substantially minimum mechanical expansion ratio
  • the exhaust gas purification catalyst 74 provided in the exhaust pipe can be warmed up early, and the conversion efficiency of the exhaust gas purification catalyst 74 can be improved.
  • the intake side VTC mechanism 1A controls the closing timing (IVCc) of the intake valve 4 to a position close to the vicinity of the bottom dead center (BDC), so that the effective compression ratio is improved and the combustion improvement effect is enhanced. be able to.
  • harmful exhaust components themselves in the exhaust gas of the internal combustion engine can be reduced.
  • exhaust harmful components in the exhaust gas exhausted from the tail pipe are further reduced. Components can be reduced.
  • the combustion gas containing unburned HC and unburned PM is reintroduced into the cylinder in the next intake stroke. Exhaust harmful components in the gas can be further reduced.
  • the mechanical expansion ratio ( ⁇ E) is set to be small
  • the mechanical compression ratio ( ⁇ C) is also set to be small, which may cause deterioration of combustion. Therefore, in this embodiment, the closing timing (IVC) of the intake valve 4 is set to the most advanced angle position near the bottom dead center (BDC) that exceeds the bottom dead center (BDC) by the intake side VTC mechanism 1A.
  • the effective compression ratio is improved, and the opening timing (IVOc) of the intake valve 4 is set to the position of the most advanced angle beyond the top dead center (TDC). It has a special supplementary effect of offsetting the deterioration of combustion.
  • the closing timing (EVC) of the exhaust valve 5 is delayed by a predetermined angle from the most advanced angle phase within the variable range, and is controlled to the closing timing (EVCc) on the retarded side exceeding the top dead center (TDC). ing.
  • the most retarded position is set.
  • the high-temperature combustion gas on the exhaust port side can be sucked back into the cylinder by the piston lowering operation, and the in-cylinder heating effect thereby
  • combustion can be improved and generation of harmful exhaust components from the internal combustion engine can be further reduced.
  • high-concentration HC contained in the high-temperature combustion gas sucked back on the exhaust port side can be recombusted in the next combustion stroke, and from this aspect, the generation of harmful exhaust components from the internal combustion engine can be further reduced.
  • exhaust gas harmful substances at the time of cold start can be sufficiently reduced by various effects.
  • the reason why the fuel efficiency is improved is that when the mechanical expansion ratio ( ⁇ E) is increased, the expansion work is increased even with the same fuel injection amount, so that the thermal efficiency is increased.
  • the closing timing (IVC) of the intake valve 4 is set by retarding the intake side VTC mechanism 1A in order to maintain the engine torque. Moving from the bottom dead center (BDC) to the retard side, the closing timing (IVCc) is changed to the closing timing (IVCi). Therefore, by reducing the charging efficiency of fresh air by this intake valve closing timing control, it becomes possible to reduce the combustion injection amount and improve the fuel efficiency.
  • the opening / closing timing (EVOi, EVCi) of the exhaust valve 5 is controlled to the advance side by the exhaust side VTC mechanism 1B. Since the mechanical expansion ratio ( ⁇ E) is increased by the VCR mechanism 3 described above, a slight in-cylinder negative pressure tends to be generated in the cylinder slightly before the bottom dead center (BDC) at the end of the expansion stroke. . When negative pressure is generated in the cylinder, this negative pressure acts to hinder the downward movement of the piston, resulting in another pump loss (pump loss at the end of the expansion stroke).
  • the exhaust valve 5 opening timing (EVO) opening timing (EVO) to the opening timing (EVOi) by the exhaust side VTC mechanism 1B, the exhaust valve 5 is opened before the in-cylinder negative pressure is generated, and the pump loss at the end of the expansion stroke is reduced. Suppresses and improves fuel efficiency.
  • the valve overlap between the closing timing (EVCi) of the exhaust valve 5 and the opening timing (IVOi) of the intake valve 4 is controlled to “substantially 0” by the intake side VTC mechanism 1A and the exhaust side VTC mechanism 1B. .
  • the amount of internal EGR gas which is an inert gas, can be suppressed, and instability of combustion in a low load range that tends to occur during idling after warm-up can be sufficiently suppressed.
  • lean burn combustion with good fuel efficiency it becomes possible to increase the amount of lean mixture as much as the internal EGR is reduced, and increase the limit torque in lean burn combustion. Since it can shift to the load side, the lean burn combustion region can be expanded, and the fuel efficiency can be reduced from that aspect.
  • NVOLm negative valve overlap
  • This negative valve overlap (NVOLm) is different from the in-cylinder residual combustion gas by the positive valve overlap (PVOL) in which the combustion gas returned to the intake system is re-inhaled.
  • the absolute temperature is high. For this reason, there is a volume expansion of the residual combustion gas in the cylinder, and the intake ratio (filling efficiency) of fresh air tends to decrease by that amount, so the throttle opening is opened more widely to obtain the predetermined engine torque. Therefore, the pump loss in the middle load range can be sufficiently reduced.
  • the closing timing (IVC) of the intake valve 4 is further retarded from the closing timing (IVCi) to the closing timing (IVCm), the so-called Atkinson cycle effect (pump loss reduction effect) is further increased and fuel efficiency is further improved. Can be achieved.
  • the intake valve 4 is controlled to be advanced by the intake side VTC mechanism 1A as the load increases, so that the closing timing (IVCh) of the intake valve 4 is slightly closer to the bottom dead center (BDC). Yes. This is because it is necessary to increase the charging efficiency as the required load increases, so that the closing timing (IVCh) of the intake valve 4 is made slightly closer to the bottom dead center (BDC) (slightly advanced). Yes. For further increases in load, the throttle opening is increased, and at full load (accelerator opening is fully open), the throttle opening is fully open.
  • This control flow is executed by a microcomputer built in the controller 22 at a start timing of every 10 ms, for example.
  • FIG. 5A shows a control flow for setting the stop positions of the intake side VTC mechanism 1A, the exhaust side VTC mechanism 1B, and the VCR mechanism 3 at the time of stop transition for stopping the internal combustion engine.
  • step S10 engine stop information for stopping the internal combustion engine and operating condition information for the internal combustion engine are read.
  • the engine stop information for stopping the internal combustion engine there is typically a key-off signal, and there are many signals indicating the operating condition information of the internal combustion engine.
  • the engine speed information, the intake air There are quantity information, water temperature information, required load information (accelerator opening), and the like, and further, actual position information of the intake side VTC mechanism 1A and the exhaust side VTC mechanism 1B. If various information is read in this step S10, it will transfer to step S11.
  • Step S11 it is determined whether the engine stop transition condition is satisfied. For this determination, for example, the key-off signal may be monitored, and if the key-off signal is not input, the process ends and waits for the next activation timing. On the other hand, when the key-off signal is input, the engine stop transition condition is determined and the process proceeds to step S12.
  • Step S12 a fuel cut signal is sent to the fuel injection valve to stop the internal combustion engine, and an ignition cut signal is sent to the ignition device. As a result, the rotational speed Ne of the internal combustion engine decreases and the internal combustion engine is stopped.
  • Step S13 the conversion control signal is transmitted to the intake side VTC mechanism 1A and the exhaust side VTC mechanism 1B to the default position, the phase control hydraulic actuator 2A of the intake side VTC mechanism 1A, and the exhaust side VTC mechanism. 1B is output to the hydraulic actuator 2B for phase control. That is, in order to respond to the next start, control is performed so that the opening / closing timing characteristics of “(O) When the engine is stopped” in FIG. 4 are obtained. Actually, it is configured to mechanically return to the default position when the conversion control signal is cut off.
  • the opening timing (IVO) of the intake valve 4 is set near the opening timing (IVOc)
  • the closing timing (IVC) of the intake valve 4 is set near the closing timing (IVCc)
  • the closing timing of the exhaust valve 5 is set.
  • (EVC) is set near the closing timing (EVCc).
  • the mechanical expansion ratio ( ⁇ E) by the VCR mechanism 3 depends on the state of the internal combustion engine when it is stopped, and depends on the position of the mechanical expansion ratio ( ⁇ E) immediately before reaching the stop condition of the internal combustion engine.
  • the mechanical expansion ratio ( ⁇ E) at the time of stoppage is almost determined. This is because the VCR mechanism 3 does not have a default position that is mechanically stable. Accordingly, the position is set to vary depending on the position at the start of the stop transition between “ ⁇ Emax” and “ ⁇ Emin”. In practice, the VCR mechanism 3 conversion control signal may be cut off.
  • Step S20 engine start information for starting the internal combustion engine and operating condition information for the internal combustion engine are read.
  • the engine start information for starting the internal combustion engine is typically a key-on signal or a starter activation signal, and there are many signals indicating the operating condition information of the internal combustion engine.
  • Step S21 it is determined whether the engine start condition is satisfied. For this determination, for example, a key-on signal or a starter activation signal may be monitored. If no starter activation signal is input, the process returns to return and waits for the next activation timing. On the other hand, when the starter activation signal is input, the engine start condition is determined and the process proceeds to step S22.
  • a key-on signal or a starter activation signal may be monitored. If no starter activation signal is input, the process returns to return and waits for the next activation timing. On the other hand, when the starter activation signal is input, the engine start condition is determined and the process proceeds to step S22.
  • Step S22 the conversion control signal is transferred to the default position to the intake side VTC mechanism 1A and the exhaust side VTC mechanism 1B, and the phase control hydraulic actuator 2A and the exhaust side of the intake side VTC mechanism 1A. It is output to the phase control hydraulic actuator 2B of the VTC mechanism 1B.
  • a conversion control signal is also output to the compression ratio control actuator 49 of the VCR mechanism 3. That is, in order to respond to the start, control is performed so that the valve opening / closing timing characteristics and the piston position characteristics shown in “(A) Cold start” in FIG. 4 are obtained.
  • the opening timing (IVO) of the intake valve 4 is set to the opening timing (IVOc)
  • the closing timing (IVC) of the intake valve 4 is set to the closing timing (IVCc)
  • the closing timing (EVC) of the exhaust valve 5 is set.
  • the mechanical expansion ratio ( ⁇ E) is set to the mechanical compression ratio ( ⁇ Emin).
  • the conversion control signal is output to the phase control hydraulic actuator 2A of the intake side VTC mechanism 1A and the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B, and the conversion control is performed to the compression ratio control actuator 49 of the VCR mechanism 3.
  • the process proceeds to step S23 and step S24.
  • Step S23 cranking is started by the starter motor, and then it is determined in step 24 whether the rotational speed Ne has reached a predetermined cranking rotational speed. When the rotational speed Ne reaches the predetermined cranking rotation, it is determined that each mechanism has been converted to the target position, and the process proceeds to step S25.
  • Step S25 a drive signal is supplied to the fuel injection valve and the ignition device in order to start the internal combustion engine in accordance with the rotation of the starter motor.
  • the process proceeds to step S26.
  • Step S26 the engine temperature (cooling water temperature) of the internal combustion engine is detected to determine whether or not a predetermined temperature To has been exceeded. If the temperature does not exceed the predetermined temperature To, it is determined that the engine is in the cold state, and the process returns to step S25 to execute again, and this loop is continued until the temperature exceeds the predetermined temperature To.
  • step S25 to S26 (until the predetermined temperature To is reached), the opening / closing timing of the intake valve 4 (IVO, IVC), the closing timing of the exhaust valve 5 (EVO, EVC), and With respect to the mechanical expansion ratio ( ⁇ E), an operation as shown in FIG. 4 (A) is performed. That is, during this time, exhaust emission (exhaust harmful components) discharged from the tail pipe during the cold start operation is greatly suppressed.
  • the warm-up of the internal combustion engine proceeds and exceeds the predetermined temperature To, it is determined that the warm-up has been completed from the cold state, and the process proceeds to step S27.
  • Step S27 the conversion control signal when the warm-up is completed is output to the phase control hydraulic actuator 2A of the intake side VTC mechanism 1A and the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B. Is done. A conversion control signal is also output to the compression ratio control actuator 49 of the VCR mechanism 3.
  • the example shown in FIG. 4B shows an idle state after warm-up as an example of “(B) low load after warm-up”.
  • the opening timing (IVO) of the intake valve 4 is set to the opening timing (IVOi)
  • the closing timing (IVC) of the intake valve 4 is set to the closing timing (IVCi)
  • the closing timing (EVC) of the exhaust valve 5 is set.
  • the mechanical expansion ratio ( ⁇ E) is set to the mechanical expansion ratio ( ⁇ Emax).
  • the conversion control signal is output to the phase control hydraulic actuator 2A of the intake side VTC mechanism 1A and the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B, and the conversion control is performed to the compression ratio control actuator 49 of the VCR mechanism 3.
  • the process proceeds to step S28.
  • Step S28 it is determined whether or not the load of the internal combustion engine has exceeded the low load range after warming up.
  • the routine returns to return and waits for the next start timing.
  • the program is created so as to execute the control step of step S27 without executing the control steps of step S20 to step 26 using the “execution flag” or the like. That is, when the “execution flag” is set after the process of step S27 and this “execution flag” is set at the next activation timing, the process proceeds to step S27.
  • step S28 when it is determined in step S28 that the load of the internal combustion engine exceeds the low load region after warming up, the process proceeds to step S29.
  • Step S29 a conversion control signal corresponding to the load is output to the phase control hydraulic actuator 2A of the intake side VTC mechanism 1A and the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B.
  • a conversion control signal is also output to the compression ratio control actuator 49 of the VCR mechanism 3.
  • the opening timing (IVO) of the intake valve 4 is set to the opening timing (IVOm), and the closing timing (IVC) of the intake valve 4 is set to the closing timing (IVCm).
  • the closing timing (EVC) of the exhaust valve 5 is set to the closing timing (EVCm).
  • the mechanical expansion ratio ( ⁇ E) is set to the mechanical compression ratio ( ⁇ Emax).
  • the opening timing (IVO) of the intake valve 4 is set to the opening timing (IVOh), and the closing timing (IVC) of the intake valve 4 is the closing timing. (IVCh) is set, and the closing timing (EVC) of the exhaust valve 5 is set to the closing timing (EVCh). Further, the mechanical expansion ratio ( ⁇ E) is set to the mechanical compression ratio ( ⁇ Emin).
  • the conversion control signal is output to the phase control hydraulic actuator 2A of the intake side VTC mechanism 1A and the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B, and the conversion control is performed to the compression ratio control actuator 49 of the VCR mechanism 3.
  • the process ends and waits for the next activation timing.
  • the exhaust gas purification catalyst is warmed up early by raising the temperature of the exhaust gas.
  • the conversion efficiency of the exhaust gas purifying catalyst can be improved.
  • the effective compression ratio can be increased and the combustion improvement effect can be enhanced.
  • IVC intake valve closing timing
  • BDC bottom dead center
  • the combustion gas containing a large amount of unburned HC and unburned PM (particulate matter) at the end of the exhaust stroke is pushed up to the piston from the opening timing (IVO) of the intake valve to the top dead center (TDC).
  • IVO opening timing
  • TDC top dead center
  • the combustion improvement effect can be further enhanced by stirring the intake system.
  • the combustion gas containing unburned HC and unburned PM is reintroduced into the cylinder in the next intake stroke. Exhaust harmful components in the gas can be further reduced.
  • the mechanical compression ratio ( ⁇ C) and the mechanical expansion ratio ( ⁇ E) obtained by the VCR mechanism are equal, but in this embodiment, the mechanical compression ratio ( ⁇ C) and the mechanical expansion ratio ( ⁇ E) ) Is controlled using different values.
  • this VCR mechanism is referred to as a “heterogeneous VCR mechanism” for convenience of explanation.
  • the heterogeneous VCR mechanism is described in Japanese Patent Application Laid-Open No. 2016-17489 filed by the applicant of the present application, and therefore detailed description thereof is omitted here.
  • the intake side VTC mechanism and the exhaust side VTC mechanism are the same as those in the first embodiment, and the same operation is performed. Therefore, when these explanations are not necessary, they are omitted.
  • FIG. 6 shows a variable range of the mechanical expansion ratio ( ⁇ E) and the mechanical compression ratio ( ⁇ C) by the heterogeneous VCR mechanism 3 according to the present embodiment, and the mechanical expansion ratio ( ⁇ E) and the mechanical compression ratio ( The change characteristic of ⁇ C) is shown in FIG.
  • the mechanical compression ratio is set to “10.5” of the maximum mechanical compression ratio ( ⁇ Cmax) with respect to “9.0” of the minimum mechanical expansion ratio ( ⁇ Emin).
  • the mechanical compression ratio is set to the same value as “10.0” of the minimum mechanical compression ratio ( ⁇ Cmin) with respect to “10.0” of the maximum mechanical expansion ratio ( ⁇ Emax).
  • the mechanical expansion ratio ( ⁇ E) and the mechanical compression ratio ( ⁇ C) can be set differently, and the minimum mechanical expansion ratio ( ⁇ Emin) to the maximum mechanical expansion ratio ( ⁇ Emax), and the minimum
  • the configuration is such that it can be continuously changed within a variable range from the mechanical compression ratio ( ⁇ Cmin) to the maximum mechanical compression ratio ( ⁇ Cmax). This value is exemplary, and an appropriate value can be selected depending on the capacity of the internal combustion engine.
  • the mechanical expansion ratio ( ⁇ E) is set to the minimum mechanical expansion ratio ( ⁇ Emin) as in the first embodiment.
  • ( ⁇ C) is set to the maximum mechanical compression ratio ( ⁇ Cmax).
  • the closing timing (IVCc) of the intake valve 4 is controlled near the bottom dead center (BDC) by the intake side VTC mechanism 1A, and the effective compression ratio is increased. Since the mechanical compression ratio ( ⁇ C) itself is set high, the overall effective compression ratio can be set even larger. Thereby, the combustion improvement effect at the time of cold start can be enhanced, and as a result, the stability of the start combustion and the purification of exhaust harmful components at the cold start can be further enhanced.
  • the mechanical expansion ratio ( ⁇ E) is the minimum mechanical expansion ratio ( ⁇ Emin) as in the first embodiment, it is possible to increase the temperature of the exhaust gas and promote the warm-up of the exhaust gas purification catalyst. Is the same as in the first embodiment.
  • FIG. 7 shows the main parameters of the variable operation system according to the second embodiment, which are the intake valve 4 opening timing (IVO), the exhaust valve 5 closing timing (EVC), the intake valve 4 closing timing (IVC), The control characteristics of mechanical expansion ratio ( ⁇ E) and mechanical compression ratio ( ⁇ C) are shown. Parameters other than the mechanical expansion ratio ( ⁇ E) and the mechanical compression ratio ( ⁇ C) are the same as those in the first embodiment.
  • the intake-side VTC mechanism 1A and the exhaust-side VTC mechanism 1B are stable at the above-described default positions, which are mechanically stable positions. Specifically, the intake valve opening / closing timing (IVOc, IVCc) and the exhaust valve opening / closing timing (EVOc, EVCc) are shifted to a position that substantially coincides with this, which is the same as in the first embodiment. .
  • the heterogeneous VCR mechanism 3 also moves to the default position (the control position (A)).
  • the mechanical expansion ratio ( ⁇ E) set to the minimum mechanical expansion ratio ( ⁇ Emin)
  • the mechanical compression ratio ( ⁇ C) is set to the maximum mechanical compression ratio ( ⁇ Cmax).
  • the intake valve 4 is opened and closed (IVOc, IVCc) by the intake side VTC mechanism 1A
  • the exhaust valve 5 is opened and closed (EVOc, EVCc) by the exhaust side VTC mechanism 1B. And controlled. This is the same as in the first embodiment.
  • control position (A) of the heterogeneous VCR mechanism 3 is continued and controlled to the minimum mechanical expansion ratio ( ⁇ Emin) and the maximum mechanical compression ratio ( ⁇ Cmax).
  • the mechanical compression ratio ( ⁇ C) is set to the maximum mechanical compression ratio ( ⁇ Cmax)
  • the effective compression ratio can be set larger.
  • the mechanical expansion ratio ( ⁇ E) and the mechanical compression ratio ( ⁇ C) when the engine is stopped are set at the time of cold start. Therefore, it is possible to obtain appropriate mechanical expansion ratio ( ⁇ E) and mechanical compression ratio ( ⁇ C) from the beginning at the time of starting.
  • the hydraulic energy required for the conversion of the heterogeneous VCR mechanism 3 can be reduced, and good start control can be performed even for the heterogeneous VCR mechanism 3 even if it is a hydraulic actuator.
  • the same effect can be obtained if a biasing spring is similarly provided for the return and is fixed to the default position by a fastening pin having a fixing function. Can do.
  • the mechanical expansion ratio ( ⁇ E) is the minimum mechanical expansion.
  • the ratio ( ⁇ Emin) shifts to the maximum mechanical expansion ratio ( ⁇ Emax), and the mechanical compression ratio ( ⁇ C) shifts from the maximum mechanical compression ratio ( ⁇ Cmax) to the minimum mechanical compression ratio ( ⁇ Cmin).
  • the VCR mechanism in the present invention may be a type in which the mechanical compression ratio and the mechanical expansion ratio are always controlled with the same value, or a type in which the mechanical compression ratio and the mechanical expansion ratio can be controlled to different values. It ’s good.
  • the intake-side VTC mechanism and the exhaust-side VTC mechanism may be a hydraulic phase variable type or an electric variable phase type.
  • a mechanism provided with a mechanism capable of controlling the lift may be used.
  • the present invention includes a variable compression ratio mechanism that controls the mechanical compression ratio and the mechanical expansion ratio in an at least four-cycle internal combustion engine, and an intake side variable valve mechanism that controls the phase of the opening / closing timing of the intake valve.
  • the piston position is set to a position where the mechanical expansion ratio becomes substantially minimum by the variable compression ratio mechanism, and the intake valve is set by the intake side variable valve mechanism compared with the low load after warm-up. Is set near the bottom dead center, and the opening timing of the intake valve is set to a position before the top dead center.
  • the exhaust gas temperature can be increased by reducing the mechanical expansion ratio at the time of cold start, and the exhaust gas purification catalyst can be warmed up early to improve the exhaust gas harmful component conversion performance. It is possible to reduce emissions of harmful exhaust components in gas.
  • the effective compression ratio can be improved and the combustion improvement effect can be enhanced.
  • the amount of harmful exhaust components themselves in the exhaust gas can be reduced.
  • exhaust harmful components in the exhaust gas discharged from the tailpipe are further reduced. Components can be reduced.
  • this invention is not limited to above-described embodiment, Various modifications are included.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Abstract

The present invention comprises: a variable compression ratio mechanism 3 that controls a mechanical compression ratio; and an intake variable valve mechanism 1A that controls the phase during opening/closing of an intake valve. During a cold start, the variable compression ratio mechanism 3 sets a piston position to a position at which a mechanical expansion ratio reaches substantially a minimum, and the intake variable valve mechanism 1A sets the closing timing of the intake valve 4 to near bottom dead center (BDC) and sets the opening timing (IVO) of the intake valve 4 to a position on an advance angle side beyond top dead center (TDC). Due to these configurations, the temperature of exhaust gas during a cold start of the internal combustion engine can be increased so as to promote the progress of warming-up of an exhaust gas purification catalyst.

Description

内燃機関の可変動作システム及びその制御装置Variable operation system for internal combustion engine and control device therefor
 本発明は内燃機関の可変動作システムに係り、特に4サイクル方式の内燃機関で機械圧縮比(膨張比も含む)を制御する可変圧縮比機構、及びバルブタイミングを制御する可変動弁機構を備えた内燃機関の可変動作システム及びその制御装置に関するものである。 The present invention relates to a variable operation system for an internal combustion engine, and in particular, includes a variable compression ratio mechanism for controlling a mechanical compression ratio (including an expansion ratio) in a four-cycle internal combustion engine, and a variable valve mechanism for controlling valve timing. The present invention relates to a variable operation system for an internal combustion engine and a control device therefor.
 最近の内燃機関においては、内燃機関の幾何学的な圧縮比及び膨張比、つまり機械圧縮比及び機械膨張比を可変制御する可変圧縮比機構と、実圧縮比を左右する、吸気バルブ、及び排気バルブのバルブタイミング(開閉時期)を可変制御する可変動弁機構との組み合わせによって、内燃機関の動作性能を改善することが提案されている。ここで、可変圧縮比機構は、例えば、特開2002‐276446号公報(特許文献1)等に記載されているものが知られている。 In a recent internal combustion engine, a geometric compression ratio and an expansion ratio of the internal combustion engine, that is, a variable compression ratio mechanism that variably controls the mechanical compression ratio and the mechanical expansion ratio, an intake valve and an exhaust that influence the actual compression ratio. It has been proposed to improve the operating performance of an internal combustion engine by combining with a variable valve mechanism that variably controls the valve timing (opening / closing timing) of the valve. Here, as the variable compression ratio mechanism, for example, one described in JP-A-2002-276446 (Patent Document 1) is known.
 また、「 CO2-potential of a two-stage VCR system in combination with future gasoline powertrains 」(非特許文献1)においては、図13~図14に機械圧縮比マップが示されており、これによれば低負荷になるほど機械圧縮比を高めている。これは、低負荷ほどノック発生の問題が低減するので、機械圧縮比を大きくすることができ、それに付随して機械膨張比(=機械圧縮比)も大きくさせることができ、結果的に内燃機関の熱効率高めることができる。このため、始動時においても、機械圧縮比は最大機械圧縮比(=最大機械膨張比)付近になっていると推測される。始動時に機械圧縮比を大きくすることは圧縮上死点の温度が高まり、始動時における燃焼を改善して良好な始動性に繋げることができる。 Further, in “CO2-potentialaof a two-stage VCR system in combination with future gasolinetrpowertrains" (Non-Patent Document 1), the mechanical compression ratio map is shown in Figs. The mechanical compression ratio increases as the load increases. This is because the problem of knocking is reduced as the load decreases, so that the mechanical compression ratio can be increased, and the mechanical expansion ratio (= mechanical compression ratio) can be increased accordingly, resulting in an internal combustion engine. The thermal efficiency of can be increased. For this reason, it is presumed that the mechanical compression ratio is close to the maximum mechanical compression ratio (= maximum mechanical expansion ratio) even at the start. Increasing the mechanical compression ratio at the time of starting increases the temperature at the compression top dead center, improving the combustion at the time of starting and leading to good startability.
特開2002‐276446号公報JP 2002-276446 A
 ところで、内燃機関を冷機始動する冷機始動時において、非特許文献1では機械圧縮比を最大機械圧縮比に設定しているため、機械膨張比も最大となって内燃機関から排出される排気ガスの温度が低下する現象が発生する。このため、排気管の途中に設けられている排気ガス浄化用触媒の暖機が進みにくく、排気ガス浄化用触媒での排気有害成分の転化率が低くなってしまうことになる。その結果、排気ガス浄化用触媒を経た後のテ-ルパイプから排出される排気ガス中の排気有害成分の排出量が増加するという課題がある。 By the way, since the mechanical compression ratio is set to the maximum mechanical compression ratio in Non-Patent Document 1 at the time of cold start for starting the internal combustion engine, the exhaust gas discharged from the internal combustion engine is maximized. A phenomenon occurs in which the temperature decreases. For this reason, it is difficult to warm up the exhaust gas purification catalyst provided in the middle of the exhaust pipe, and the conversion rate of exhaust harmful components in the exhaust gas purification catalyst becomes low. As a result, there is a problem that the exhaust amount of exhaust harmful components in the exhaust gas discharged from the tail pipe after passing through the exhaust gas purifying catalyst increases.
 本発明の目的は、内燃機関の冷機始動時での排気ガスの温度を上昇させて排気ガス浄化用触媒の暖機の進行を促進することができる新規な内燃機関の可変動作システム及びその制御装置を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a novel variable internal combustion engine system and its control device that can increase the temperature of exhaust gas at the time of cold start of the internal combustion engine to promote the warm-up of the exhaust gas purification catalyst. Is to provide.
 本発明の特徴は、少なくとも、4サイクル方式の内燃機関で機械圧縮比及び機械膨張比を制御する可変圧縮比機構、及び吸気バルブの開閉時期の位相を制御する吸気側可変動弁機構を備え、冷機始動時において、可変圧縮比機構によって、ピストン位置を機械膨張比が略最小となる位置に設定し、また、吸気側可変動弁機構によって、暖機後低負荷時に比べて、吸気バルブの閉時期を下死点付近に設定すると共に、吸気バルブの開時期を上死点前の進角側となる位置に設定する、ところにある。 The features of the present invention include at least a variable compression ratio mechanism that controls a mechanical compression ratio and a mechanical expansion ratio in a four-cycle internal combustion engine, and an intake side variable valve mechanism that controls the phase of the opening and closing timing of the intake valve, At the time of cold start, the variable compression ratio mechanism sets the piston position to a position where the mechanical expansion ratio becomes substantially minimum, and the intake side variable valve mechanism closes the intake valve as compared with the low load after warm-up. The timing is set near the bottom dead center, and the opening timing of the intake valve is set at a position on the advance side before the top dead center.
 本発明によれば、冷機始動時において機械膨張比が小さくなることによる排気ガスの温度の上昇が図れ、早期に排気ガス浄化用触媒の暖機を行なって排気有害成分の転化効率を向上できるので、排気ガス中の排気有害成分の排出量を低減できる。 According to the present invention, the temperature of the exhaust gas can be increased by reducing the mechanical expansion ratio at the time of cold start, and the exhaust gas purification catalyst can be warmed up early to improve the conversion efficiency of exhaust harmful components. The amount of exhaust harmful components in the exhaust gas can be reduced.
 また、これに加え、吸気バルブの閉時期が下死点に近いことから有効圧縮比を大きくでき、燃焼改善効果を高めることができる。その結果、機関本体からの排気有害成分自体の発生量を低減でき、上述の排ガス浄化用触媒での排気有害成分の転化率の向上と併せ、更にテールパイプから排出される排気ガス中の排気有害成分を低減できるようになる。 In addition to this, since the closing timing of the intake valve is close to bottom dead center, the effective compression ratio can be increased, and the combustion improvement effect can be enhanced. As a result, it is possible to reduce the amount of exhaust harmful components themselves from the engine body, improve the conversion rate of exhaust harmful components in the exhaust gas purification catalyst described above, and further reduce the exhaust harmful emissions in the exhaust gas discharged from the tailpipe. Components can be reduced.
本発明に係る内燃機関の可変動作システムの全体概略図である。1 is an overall schematic diagram of a variable operation system for an internal combustion engine according to the present invention. 本発明に使用される可変圧縮比機構の構成を示し、最小機械圧縮比(最小機械膨張比)に制御されている状態を示す構成図である。It is a block diagram which shows the structure of the variable compression ratio mechanism used for this invention, and shows the state currently controlled by the minimum mechanical compression ratio (minimum mechanical expansion ratio). 本発明に使用される可変圧縮比機構の構成を示し、最大機械圧縮比(最大機械膨張比)に制御されている状態を示す構成図である。It is a block diagram which shows the structure of the variable compression ratio mechanism used for this invention, and shows the state currently controlled by the maximum mechanical compression ratio (maximum mechanical expansion ratio). 本発明の第1の実施形態になる可変動作システムの吸気バルブと排気バルブの制御特性を説明する説明図である。It is explanatory drawing explaining the control characteristic of the intake valve and exhaust valve of the variable operation system which becomes the 1st Embodiment of this invention. 図3Aに示す吸気バルブと排気バルブの制御特性をリフト特性線で描いたリフト特性線図である。FIG. 3B is a lift characteristic diagram illustrating control characteristics of the intake valve and the exhaust valve shown in FIG. 3A with lift characteristic lines. 本発明の第1の実施形態になる内燃機関の可変動作システムの主要なパラメータの制御特性を説明する特性図である。It is a characteristic view explaining the control characteristic of the main parameters of the variable operation system of the internal combustion engine according to the first embodiment of the present invention. 本発明の第1の実施形態になる内燃機関の可変動作システムの機関停止移行時における制御を実行する制御フローチャートである。3 is a control flowchart for executing control at the time of engine stop transition of the variable operation system for the internal combustion engine according to the first embodiment of the present invention. 本発明の第1の実施形態になる内燃機関の可変動作システムの始動時からの制御を実行する制御フローチャートである。It is a control flowchart which performs control from the time of starting of the variable operation system of the internal combustion engine which becomes a 1st embodiment of the present invention. 本発明の第2の実施形態に使用される可変圧縮比機構によるピストン位置の制御値の一例を示す説明図である。It is explanatory drawing which shows an example of the control value of the piston position by the variable compression ratio mechanism used for the 2nd Embodiment of this invention. 本発明の第2の実施形態になる内燃機関の可変動作システムの主要なパラメータの制御特性を説明する特性図である。It is a characteristic view explaining the control characteristic of the main parameter of the variable operation system of the internal combustion engine which becomes the 2nd Embodiment of this invention.
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and various modifications and application examples are included in the technical concept of the present invention. Is also included in the range.
 本発明の第1の実施形態になる内燃機関の可変動作システムについて説明するが、図1は本発明が適用される内燃機関の可変動作システムの全体の構成を示している。 The variable operation system for an internal combustion engine according to the first embodiment of the present invention will be described. FIG. 1 shows the overall configuration of the variable operation system for an internal combustion engine to which the present invention is applied.
 まず、内燃機関の可変動作システムの基本構成を図1に基づいて説明すると、シリンダブロックSB内に形成されたシリンダボア内を燃焼圧力などによって上下に摺動自在に設けられたピストン01と、シリンダヘッドSHの内部にそれぞれ形成された吸気ポートIP及び排気ポートEPと、シリンダヘッドSHに摺動自在に設けられて吸、排気ポートIP、EPの開口端を開閉する一気筒当たりそれぞれ一対の吸気バルブ4及び排気バルブ5とを備えている。 First, a basic configuration of a variable operation system of an internal combustion engine will be described with reference to FIG. 1. A piston 01 provided inside a cylinder bore formed in a cylinder block SB so as to be slidable up and down by combustion pressure or the like, and a cylinder head An intake port IP and an exhaust port EP formed inside SH, respectively, and a pair of intake valves 4 per cylinder which are slidably provided on the cylinder head SH and open and close the open ends of the intake and exhaust ports IP and EP. And an exhaust valve 5.
 ピストン01は、クランクシャフト02に後述するロアリンク42とアッパリンク43とからなるコンロッド03を介して連結されていると共に、冠面とシリンダヘッドSHの下面との間に燃焼室04を形成している。また、シリンダヘッドSHのほぼ中央には、点火栓05が設けられている。 The piston 01 is connected to the crankshaft 02 via a connecting rod 03 composed of a lower link 42 and an upper link 43 described later, and a combustion chamber 04 is formed between the crown surface and the lower surface of the cylinder head SH. Yes. In addition, a spark plug 05 is provided substantially at the center of the cylinder head SH.
 吸気ポートIPは、図示しないエアクリーナと接続されており、電制スロットルバルブ72を介して吸入空気が供給されている。電制スロットルバルブ72は、コントローラ22によって制御されており、基本的にはアクセルペダルの踏込量に対応してその開度が制御されるものである。また、排気ポートEPは、排気ガス浄化触媒74を介してテールパイプから排気ガスを大気に放出している。 The intake port IP is connected to an air cleaner (not shown), and intake air is supplied via the electric throttle valve 72. The electric throttle valve 72 is controlled by the controller 22 and basically its opening degree is controlled in accordance with the amount of depression of the accelerator pedal. The exhaust port EP discharges exhaust gas from the tail pipe to the atmosphere via the exhaust gas purification catalyst 74.
 更に、この内燃機関には、図1に示すように吸気バルブ4と排気バルブ5の開弁特性を制御する吸気側可変動弁機構、排気側可変動弁機構、及びピストン位置特性を制御する可変圧縮比機構とが備えられている。 Further, in this internal combustion engine, as shown in FIG. 1, an intake side variable valve mechanism that controls the valve opening characteristics of the intake valve 4 and the exhaust valve 5, an exhaust side variable valve mechanism, and a variable that controls the piston position characteristics. And a compression ratio mechanism.
 吸気側には、吸気バルブ4のバルブリフトの中心位相角を制御する「位相角可変機構」である吸気側可変動弁機構(以下、吸気側VTC機構と表記する)1Aが設けられ、また、排気側には、排気バルブ5のバルブリフトの中心位相角を制御する「位相角可変機構」である排気側可変動弁機構(以下、排気側VTC機構と表記する)1Bが設けられている。更に、筒内の機械圧縮比εC、及び機械膨張比εEを制御する「ピストンストローク可変機構」である可変圧縮比機構(以下、VCR機構と表記する)3が設けられている。尚、このVCR機構3では、機械圧縮比εC、及び機械膨張比εEは共に同じ値に設定する構成となっている。 An intake side variable valve mechanism (hereinafter referred to as an intake side VTC mechanism) 1A, which is a “phase angle variable mechanism” for controlling the center phase angle of the valve lift of the intake valve 4, is provided on the intake side. On the exhaust side, there is provided an exhaust side variable valve mechanism (hereinafter referred to as an exhaust side VTC mechanism) 1B which is a “phase angle variable mechanism” that controls the central phase angle of the valve lift of the exhaust valve 5. Further, a variable compression ratio mechanism (hereinafter referred to as a VCR mechanism) 3 that is a “piston stroke variable mechanism” for controlling the mechanical compression ratio εC and the mechanical expansion ratio εE in the cylinder is provided. In the VCR mechanism 3, the mechanical compression ratio εC and the mechanical expansion ratio εE are both set to the same value.
 吸気側VTC機構1A、及び排気側VTC機構1Bは、位相制御用油圧アクチュエータ2A、2Bを備えており、油圧によって吸気バルブ4と排気バルブ5の開閉時期を制御する構成となっている。位相制御用油圧アクチュエータ2A、2Bへの油圧供給は、コントローラ22からの制御信号に基づき、図示しない油圧制御部によって制御されている。この位相制御用油圧アクチュエータ2A、2Bへの油圧制御によって、リフト特性の中心位相θが遅角側、或いは進角側に制御される。 The intake-side VTC mechanism 1A and the exhaust-side VTC mechanism 1B are equipped with phase control hydraulic actuators 2A and 2B, and are configured to control the opening / closing timing of the intake valve 4 and the exhaust valve 5 by hydraulic pressure. The hydraulic pressure supply to the phase control hydraulic actuators 2 </ b> A and 2 </ b> B is controlled by a hydraulic control unit (not shown) based on a control signal from the controller 22. The center phase θ of the lift characteristic is controlled to the retard side or the advance side by the hydraulic control to the phase control hydraulic actuators 2A and 2B.
 つまり、リフト特性の全体の曲線自体は変わらずに、全体が進角側もしくは遅角側に移動される。また、この移動変化も連続的に得ることができる。吸気側VTC機構1A、及び排気側VTC機構1Bとしては、油圧式のものに限られず、電動モータや電磁式アクチュエータを利用したものなど、種々の構成が可能である。 That is, the whole curve of the lift characteristic itself is not changed, and the whole is moved to the advance side or the retard side. Moreover, this movement change can also be obtained continuously. The intake-side VTC mechanism 1A and the exhaust-side VTC mechanism 1B are not limited to hydraulic types, and various configurations such as those using an electric motor or an electromagnetic actuator are possible.
 尚、吸気側VTC機構1Aにおいては、油圧ポンプからの油圧供給が有る場合、及び油圧供給が無い場合の両方において、デフォルト位置である「最進角位置」付近に付勢スプリング等により機械的に制御されるのである。従って、電気系に断線故障等があった場合にも、メカニカルフェールセーフの効果を備えているものである。したがって、後述するが、内燃機関が停止されている状態では、吸気バルブは「最進角位置」付近に設定されることになる。 In the intake-side VTC mechanism 1A, both when there is a hydraulic supply from the hydraulic pump and when there is no hydraulic supply, the intake side VTC mechanism 1A is mechanically moved by a biasing spring or the like near the “most advanced position” that is the default position. It is controlled. Therefore, even when there is a disconnection failure or the like in the electrical system, the mechanical fail-safe effect is provided. Therefore, as will be described later, when the internal combustion engine is stopped, the intake valve is set near the “most advanced angle position”.
 同様に、排気側VTC機構1Bにおいても、油圧ポンプからの油圧供給が有る場合、及び油圧供給が無い場合の両方において、デフォルト位置である「最遅角位置」付近に付勢スプリング等により機械的に制御されるのである。従って、電気系に断線故障等があった場合にも、メカニカルフェールセーフの効果を備えているものである。したがって、後述するが、内燃機関が停止されている状態では、排気バルブは「最遅角位置」付近に設定されることになる。 Similarly, in the exhaust-side VTC mechanism 1B, both when there is hydraulic supply from the hydraulic pump and when there is no hydraulic supply, a mechanical force is applied near the “most retarded position” that is the default position by an urging spring or the like. It is controlled by. Therefore, even when there is a disconnection failure or the like in the electrical system, the mechanical fail-safe effect is provided. Therefore, as will be described later, when the internal combustion engine is stopped, the exhaust valve is set near the “most retarded position”.
 これらの吸気側VTC機構1A、及び排気側VTC機構1Bは、本出願人が出願した、特開2011‐220349号公報等に詳細に記載されているので、ここでは、これ以上の説明は省略する。 Since the intake side VTC mechanism 1A and the exhaust side VTC mechanism 1B are described in detail in Japanese Patent Application Laid-Open No. 2011-220349 filed by the present applicant, further explanation is omitted here. .
 コントローラ(=制御手段)22は、現在の内燃機関の回転数Ne(rpm)をクランク角から検出するクランク角センサからの出力信号や、エアーフローメータからの吸入空気量(負荷)、その他、アクセル開度センサ、車速センサ、ギア位置センサ、機関本体の温度を検出する機関冷却水温センサ31、更には大気湿度センサから吸気管内の湿度などの各種情報信号から現在の機関状態を検出している。そして、コントローラ22は、吸気側VTC機構1Aに対して吸気VTC制御信号を出力し、排気側VTC機構1Bに対して排気VTC制御信号を出力する。 A controller (= control means) 22 outputs an output signal from a crank angle sensor that detects the current rotational speed Ne (rpm) of the internal combustion engine from a crank angle, an intake air amount (load) from an air flow meter, and the like. The present engine state is detected from various information signals such as an opening sensor, a vehicle speed sensor, a gear position sensor, an engine cooling water temperature sensor 31 that detects the temperature of the engine body, and humidity from the atmospheric humidity sensor. Then, the controller 22 outputs an intake VTC control signal to the intake side VTC mechanism 1A, and outputs an exhaust VTC control signal to the exhaust side VTC mechanism 1B.
 次に、VCR機構3について図1、図2A、及び図2Bを用いて説明する。尚、図2Aは、最小機械圧縮比での圧縮上死点のピストン位置を示し、図2Bは、最大機械圧縮比での圧縮上死点のピストン位置を示している。また、排気上死点の位置についても、最小機械圧縮比、及び最大機械圧縮比の両方とも、排気上死点のピストン位置は図2A、図2Bに示す圧縮上死点のピストン位置と一致している。 Next, the VCR mechanism 3 will be described with reference to FIGS. 1, 2A, and 2B. 2A shows the piston position at the compression top dead center at the minimum mechanical compression ratio, and FIG. 2B shows the piston position at the compression top dead center at the maximum mechanical compression ratio. As for the position of the exhaust top dead center, the piston position at the exhaust top dead center coincides with the piston position at the compression top dead center shown in FIGS. 2A and 2B in both the minimum mechanical compression ratio and the maximum mechanical compression ratio. ing.
 このVCR機構3は、クランク角360ーで1サイクルとなる機構なので、原理的に圧縮上死点のピストン位置と排気上死点のピストン位置とは一致するようになっている。また、同様の理由で、吸気下死点のピストン位置と膨張下死点のピストン位置も一致する。これは、吸気下死点のピストン位置から圧縮上死点のピストン位置に至る間の圧縮ストロークと、圧縮上死点のピストン位置から膨張下死点のピストン位置に至る間の膨張ストロークも常に一致することを意味する。したがって、機械圧縮比εCと機械膨張比εEも原理的に一致(εC=εE)するものである。 Since this VCR mechanism 3 is a mechanism that makes one cycle at a crank angle 360-, in principle, the piston position at the compression top dead center coincides with the piston position at the exhaust top dead center. For the same reason, the piston position at the intake bottom dead center and the piston position at the expansion bottom dead center also coincide. This means that the compression stroke between the piston position at the intake bottom dead center and the piston position at the compression top dead center coincides with the expansion stroke between the piston position at the compression top dead center and the piston position at the expansion bottom dead center. It means to do. Therefore, the mechanical compression ratio εC and the mechanical expansion ratio εE also coincide in principle (εC = εE).
 VCR機構3は、先に従来技術として述べた特許文献1に記載されたものと同様な構成である。その構造を簡単に説明すると、クランクシャフト02は、複数のジャーナル部40とクランクピン部41とを備えており、シリンダブロックSBの主軸受に、ジャーナル部40が回転自在に支持されている。クランクピン部41は、ジャーナル部40から所定量だけ偏心しており、ここに第2リンクとなるロアリンク42が回転自在に連結されている。ロアリンク42は、左右の2部材に分割可能に構成されているとともに、略中央の連結孔にクランクピン部41が嵌合している。 The VCR mechanism 3 has the same configuration as that described in Patent Document 1 described above as the prior art. The crankshaft 02 includes a plurality of journal portions 40 and a crank pin portion 41, and the journal portion 40 is rotatably supported by the main bearing of the cylinder block SB. The crankpin portion 41 is eccentric from the journal portion 40 by a predetermined amount, and a lower link 42 serving as a second link is rotatably connected thereto. The lower link 42 is configured to be split into two left and right members, and the crankpin portion 41 is fitted in a substantially central connecting hole.
 第1リンクとなるアッパリンク43は、下端側が連結ピン44によりロアリンク42の一端に回動可能に連結され、上端側がピストンピン45によりピストン01に回動可能に連結されている。第3リンクとなるコントロールリンク46は、上端側が連結ピン47によりロアリンク42の他端に回動可能に連結され、下端側が制御シャフト48を介して機関本体の一部となるシリンダブロックSBの下部に回動可能に連結されている。 The upper link 43 serving as the first link has a lower end side rotatably connected to one end of the lower link 42 by a connecting pin 44, and an upper end side rotatably connected to the piston 01 by a piston pin 45. The control link 46 serving as the third link is pivotally connected at its upper end side to the other end of the lower link 42 by a connecting pin 47, and the lower end side of the lower part of the cylinder block SB that becomes part of the engine body via the control shaft 48. It is connected to the pivotable.
 制御シャフト48は、回転可能に機関本体に支持されていると共に、その回転中心から偏心している偏心カム部48aを有し、この偏心カム部48aにコントロールリンク46の下端部が回転可能に嵌合している。制御シャフト48は、コントローラ22からの制御信号に基づき、電動モータを用いた圧縮比制御アクチュエータ49によって回動位置が制御される。 The control shaft 48 is rotatably supported by the engine body, and has an eccentric cam portion 48a that is eccentric from the center of rotation. The lower end portion of the control link 46 is rotatably fitted to the eccentric cam portion 48a. is doing. The rotation position of the control shaft 48 is controlled by a compression ratio control actuator 49 using an electric motor based on a control signal from the controller 22.
 このような複リンク式ピストン-クランク機構を用いたVCR機構3においては、制御シャフト48が圧縮比制御アクチュエータ49によって回動されると、偏心カム部48aの中心位置、特に、機関本体に対する相対位置が変化する。これにより、コントロールリンク46の下端の揺動支持位置が変化する。そして、コントロールリンク46の揺動支持位置が変化すると、ピストン01のストローク位置やストローク量S1、S2が変化し、図2A、図2Bに示すように、ピストン上死点におけるピストン01の位置が高くなったり低くなったりする。これにより、機械圧縮比(εC)、及び機械膨張比(εE)を変えることが可能となる。 In the VCR mechanism 3 using such a multi-link type piston-crank mechanism, when the control shaft 48 is rotated by the compression ratio control actuator 49, the center position of the eccentric cam portion 48a, particularly the relative position with respect to the engine body. Changes. Thereby, the rocking | fluctuation support position of the lower end of the control link 46 changes. When the swing support position of the control link 46 changes, the stroke position and stroke amounts S1, S2 of the piston 01 change, and the position of the piston 01 at the piston top dead center becomes higher as shown in FIGS. 2A and 2B. It becomes lower or lower. Thereby, the mechanical compression ratio (εC) and the mechanical expansion ratio (εE) can be changed.
 補足すると、図2Aに示す最小機械圧縮比(εCmin)の位置では、偏心カム部48aが上方を向いており、これにより、コントロールリンク46を押し上げ、ロアリンク42を反時計方向に回動させ、もってアッパリンク43を引き下げることでピストン01の位置を引き下げるのである。一方、図2Bに示す最大機械圧縮比(εCmax)の位置では、偏心カム部48aが左側方を向いており、これにより、コントロールリンク46を相対的に引き下げ、ロアリンク42を時計方向に回動させ、もってアッパリンク43を押し上げることでピストン01の位置を押し上げるのである。 Supplementally, at the position of the minimum mechanical compression ratio (εCmin) shown in FIG. 2A, the eccentric cam portion 48a faces upward, thereby pushing up the control link 46 and rotating the lower link 42 counterclockwise. Accordingly, the position of the piston 01 is lowered by lowering the upper link 43. On the other hand, at the position of the maximum mechanical compression ratio (εCmax) shown in FIG. 2B, the eccentric cam portion 48a faces to the left side, whereby the control link 46 is relatively lowered and the lower link 42 is rotated clockwise. Thus, the position of the piston 01 is pushed up by pushing up the upper link 43.
 この機械圧縮比(εC)は、ピストン01のストロークによる燃焼室の容積変化のみで決まる幾何学的な圧縮比であって、ピストン01の吸気行程下死点における筒内容積とピストン01の圧縮行程上死点における筒内容積の比である。図2Aは最小機械圧縮比の状態を示し、図2Bは最大機械圧縮比の状態をそれぞれ示しているが、これらの間で圧縮比を連続的に変化させることができる。 This mechanical compression ratio (εC) is a geometric compression ratio determined only by the change in the volume of the combustion chamber due to the stroke of the piston 01, and the cylinder volume at the bottom dead center of the intake stroke of the piston 01 and the compression stroke of the piston 01. It is the ratio of the in-cylinder volume at the top dead center. 2A shows the state of the minimum mechanical compression ratio, and FIG. 2B shows the state of the maximum mechanical compression ratio, respectively, and the compression ratio can be continuously changed between these.
 ここで、ピストン圧縮上死点における筒内容積をVO、行程容積をVとしたとき、ピストン下死点における筒内容積は「VO+V」となるので、機械圧縮比(εC)は、「εC=(VO+V)/VO=V/VO+1」と表せる。この考え方から、図2Aに示す最小機械圧縮比εCmin(=最小機械膨張比εEmin)は、「εCmin=V1/VO1+1」(例えば、εCmin=9)となり、図2Bに示す最大機械圧縮比εCmax(=最大機械膨張比εEmax)は、「εCmax=V2/VO2+1」(例えば、εCmax=15)となる。 Here, when the cylinder volume at the piston compression top dead center is VO and the stroke volume is V, the cylinder volume at the piston bottom dead center is “VO + V”, so the mechanical compression ratio (εC) is “εC = (VO + V) / VO = V / VO + 1 ”. From this concept, the minimum mechanical compression ratio εCmin (= minimum mechanical expansion ratio εEmin) shown in FIG. 2A is “εCmin = V1 / VO1 + 1” (for example, εCmin = 9), and the maximum mechanical compression ratio εCmax (= The maximum mechanical expansion ratio εEmax is “εCmax = V2 / VO2 + 1” (for example, εCmax = 15).
 ところで、上述した「発明が解決しようとする課題」にあるように、内燃機関を冷機始動する冷機始動時において、非特許文献1では機械圧縮比(εC)を最大機械圧縮比(εCmax)に設定しているため、機械膨張比(εE)も最大機械膨張比(εEmax)となって、内燃機関から排出される排気ガスの温度が低下する現象が発生する。このため、排気管の途中に設けられている排気ガス浄化用触媒の暖機が進みにくく、排気ガス浄化用触媒での排気有害成分の転化率が低くなってしまうことになる。その結果、排気ガス浄化用触媒を経た後のテ-ルパイプから排出される排気ガス中の排気有害成分の排出量が増加するという課題がある。 By the way, as described above in “Problem to be Solved by the Invention”, at the time of cold start of the internal combustion engine, the mechanical compression ratio (εC) is set to the maximum mechanical compression ratio (εCmax) in Non-Patent Document 1. Therefore, the mechanical expansion ratio (εE) also becomes the maximum mechanical expansion ratio (εEmax), and the phenomenon that the temperature of the exhaust gas discharged from the internal combustion engine decreases occurs. For this reason, it is difficult to warm up the exhaust gas purification catalyst provided in the middle of the exhaust pipe, and the conversion rate of exhaust harmful components in the exhaust gas purification catalyst becomes low. As a result, there is a problem that the exhaust amount of exhaust harmful components in the exhaust gas discharged from the tail pipe after passing through the exhaust gas purifying catalyst increases.
 このような課題を解決するため、本実施形態では、冷機始動時において、VCR機構3によって、ピストン位置を機械膨張比が略最小となる位置に設定し、また、吸気可変動弁機構1Aによって、暖機後低負荷に比べて、吸気バルブ4の閉時期を下死点付近に設定すると共に、吸気バルブ4の開時期を上死点前で進角側となる位置に設定する、という構成を提案するものである。 In order to solve such a problem, in this embodiment, at the time of cold start, the VCR mechanism 3 sets the piston position to a position where the mechanical expansion ratio is substantially minimum, and the intake variable valve mechanism 1A Compared to the low load after warm-up, the closing timing of the intake valve 4 is set near the bottom dead center, and the opening timing of the intake valve 4 is set to a position on the advance side before the top dead center. It is what we propose.
 次に、このよう吸気側VTC機構1A、排気側VTC機構1B、及びVCR機構3を有する内燃機関における、冷機始動時での吸気側VTC機構1A、排気側VTC機構1B、及びVCR機構3の制御動作について説明する。 Next, in the internal combustion engine having the intake side VTC mechanism 1A, the exhaust side VTC mechanism 1B, and the VCR mechanism 3 as described above, the control of the intake side VTC mechanism 1A, the exhaust side VTC mechanism 1B, and the VCR mechanism 3 at the time of cold start. The operation will be described.
 図3Aは、本実施形態になる吸気側VTC機構1Aと排気側VTC機構1Bによる、吸気バルブ4と排気バルブ5の開閉時期の制御特性を示しており、更に、図3Bは、吸気バルブ4と排気バルブ5の制御特性のリフト特性線を示している。以下、図3A、図3Bを用いて、「冷機始動時」、暖機後アイドルを含む「暖機後低負荷時」、「暖機後中負荷時」、及び「暖機後高負荷時」での、吸気バルブ4と排気バルブ5の開閉時期について説明する。 FIG. 3A shows the control characteristics of the opening / closing timing of the intake valve 4 and the exhaust valve 5 by the intake side VTC mechanism 1A and the exhaust side VTC mechanism 1B according to this embodiment, and FIG. The lift characteristic line of the control characteristic of the exhaust valve 5 is shown. Hereinafter, referring to FIGS. 3A and 3B, “at the time of cold start”, “at the time of low load after warm-up” including “idle after warm-up”, “at the time of medium load after warm-up”, and “at the time of high load after warm-up” The opening / closing timing of the intake valve 4 and the exhaust valve 5 will be described.
 [(A)冷機始動時]冷機始動時においては、上述したように吸気側VTC機構1Aにおいては、吸気バルブ4はデフォルト位置である最進角位置付近に制御される。したがって、吸気バルブ4の開時期(IVOc)、及び閉時期(IVCc)は最進角位置付近に設定される。 [(A) During cold start] At the cold start, as described above, in the intake side VTC mechanism 1A, the intake valve 4 is controlled in the vicinity of the most advanced angle position which is the default position. Therefore, the opening timing (IVOc) and closing timing (IVCc) of the intake valve 4 are set near the most advanced position.
 同様に、排気側VTC機構1Bにおいては、排気バルブ5はデフォルト位置である最遅角位置付近に制御される。したがって、排気バルブ5の開時期(EVOc)、及び閉時期(EVCc)は最遅角位置付近に設定される。 Similarly, in the exhaust side VTC mechanism 1B, the exhaust valve 5 is controlled in the vicinity of the most retarded angle position which is the default position. Therefore, the opening timing (EVOc) and closing timing (EVCc) of the exhaust valve 5 are set near the most retarded position.
 この状態で、吸気バルブ4と排気バルブ5のバルブオーバーラップは、吸気バルブ4と排気バルブ5が共に開弁されている、ポジティブバルブオーバーラップの状態とされ、そのポジティブバルブオーバーラップの位相角度は、ポジティブバルブオーバーラップ(PVOLc)に設定されている。 In this state, the valve overlap between the intake valve 4 and the exhaust valve 5 is a positive valve overlap state in which both the intake valve 4 and the exhaust valve 5 are opened, and the phase angle of the positive valve overlap is The positive valve overlap (PVOLc) is set.
 [(B)暖機後低負荷時]内燃機関が運転を継続して暖機された暖機後低負荷時においては、吸気側VTC機構1Aの位相制御用油圧アクチュエータ2Aによって、吸気バルブ4は遅角側に制御される。したがって、吸気バルブ4の開時期(IVOi)、及び閉時期(IVCi)は最進角位置に比べて所定角度だけ遅角位置に設定される。 [(B) At low load after warming up] When the internal combustion engine is continuously warmed up and warmed up at low load, the intake valve 4 is controlled by the phase control hydraulic actuator 2A of the intake side VTC mechanism 1A. It is controlled to the retard side. Accordingly, the opening timing (IVOi) and closing timing (IVCi) of the intake valve 4 are set to the retarded position by a predetermined angle compared to the most advanced position.
 同様に、排気側VTC機構1Bの位相制御用油圧アクチュエータ2Bによって、排気バルブ5は進角側に制御される。したがって、排気バルブ5の開時期(EVOi)、及び閉時期(EVCi)は最遅角位置に比べて所定角度だけ進角位置に設定される。 Similarly, the exhaust valve 5 is controlled to the advance side by the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B. Therefore, the opening timing (EVOi) and closing timing (EVCi) of the exhaust valve 5 are set to the advance position by a predetermined angle compared to the most retarded position.
 この状態で、吸気バルブ4と排気バルブ5のバルブオーバーラップは「略0」に設定されている。ここで、バルブオーバーラップは完全に「0」とはならず、制御上で問題とならない程度のバルブオーバーラップ(ポジティブバルブオーバーラップ、或いは後述するネガティブバルブオーバーラップ)を含んでも良いものである。 In this state, the valve overlap between the intake valve 4 and the exhaust valve 5 is set to “substantially 0”. Here, the valve overlap is not completely “0”, and may include a valve overlap that does not cause a problem in control (positive valve overlap or negative valve overlap described later).
 [(C)暖機後中負荷]暖機後中負荷時においては、吸気側VTC機構1Aの位相制御用油圧アクチュエータ2Aによって、吸気バルブ4は「(B)暖機後低負荷時」の場合より更に遅角側に制御される。したがって、吸気バルブ4の開時期(IVOm)、及び閉時期(IVCm)は「暖機後低負荷時」に比べて所定角度だけ更に遅角位置に設定される。 [(C) Medium Load after Warm-up] In the case of medium load after warm-up, when the intake valve 4 is “(B) at low load after warm-up” by the hydraulic actuator 2A for phase control of the intake side VTC mechanism 1A. It is further controlled to the retard side. Therefore, the opening timing (IVOm) and the closing timing (IVCm) of the intake valve 4 are set to a further retarded position by a predetermined angle as compared with “at the time of low load after warm-up”.
 同様に、排気側VTC機構1Bの位相制御用油圧アクチュエータ2Bによって、排気バルブ5は更に「(B)暖機後低負荷時」の場合より進角側に制御される。したがって、排気バルブ5の開時期(EVOm)、及び閉時期(EVCm)は「(B)暖機後低負荷時」に比べて所定角度だけ更に進角位置に設定される。 Similarly, the exhaust valve 5 is further controlled to be advanced by the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B than in the case of “(B) low load after warming up”. Therefore, the opening timing (EVOm) and closing timing (EVCm) of the exhaust valve 5 are set to an advanced position by a predetermined angle as compared with “(B) Low load after warm-up”.
 この状態で、吸気バルブ4と排気バルブ5のバルブオーバーラップは、吸気バルブ4と排気バルブ5が共に閉弁されている、ネガティブバルブオーバーラップの状態とされ、そのネガティブバルブオーバーラップの位相角度は、ネガティブバルブオーバーラップ(NVOLm)に設定されている。 In this state, the valve overlap between the intake valve 4 and the exhaust valve 5 is a negative valve overlap state in which both the intake valve 4 and the exhaust valve 5 are closed, and the phase angle of the negative valve overlap is Negative valve overlap (NVOLm) is set.
 [(D)暖機後高負荷]暖機後高負荷時においては、吸気側VTC機構1Aの位相制御用油圧アクチュエータ2Aによって、吸気バルブ4は「(C)暖機後中負荷時」の場合より上死点(TDC)を越えて進角側に制御される。したがって、吸気バルブの開時期(IVOh)、及び閉時期(IVCh)は「(C)暖機後中負荷時」に比べて所定角度だけ進角位置に戻されて設定される。 [(D) High load after warm-up] When the load is high after warm-up, the intake valve 4 is "(C) medium load after warm-up" by the hydraulic actuator 2A for phase control of the intake-side VTC mechanism 1A. It is controlled to the advance side beyond the top dead center (TDC). Accordingly, the opening timing (IVOh) and closing timing (IVCh) of the intake valve are set by returning to the advance position by a predetermined angle compared to “(C) During middle load after warm-up”.
 同様に、排気側VTC機構1Bの位相制御用油圧アクチュエータ2Bによって、排気バルブ5は「(C)暖機後中負荷時」の場合より上死点(TDC)を越えて遅角側に制御される。したがって、排気バルブの開時期(EVOh)、及び閉時期(EVCh)は「(C)暖機後中負荷時」に比べて所定角度だけ遅角位置に戻されて設定される。 Similarly, the exhaust valve 5 is controlled by the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B beyond the top dead center (TDC) to the retard side than in the case of “(C) middle load after warm-up”. The Accordingly, the opening timing (EVOh) and closing timing (EVCh) of the exhaust valve are set by returning to the retarded position by a predetermined angle as compared with “(C) During middle load after warm-up”.
 この状態で、吸気バルブと排気バルブのバルブオーバーラップは、吸気バルブ4と排気バルブ5が共に開弁されている、ポジティブバルブオーバーラップの状態とされ、そのポジティブバルブオーバーラップの位相角度は、ポジティブバルブオーバーラップ(PVOLh)に設定されている。 In this state, the valve overlap between the intake valve and the exhaust valve is a positive valve overlap state in which both the intake valve 4 and the exhaust valve 5 are opened, and the phase angle of the positive valve overlap is positive. Valve overlap (PVOLh) is set.
 この「(D)暖機後高負荷時」のポジティブオーバーラップ(PVOLh)は、「(A)冷機始動時」のポジティブバルブオーバーラップ(PVOLc)に比べて小さい位相角度に設定され、「PVOLc>PVOLh」の関係を有している。 The positive overlap (PVOLh) of “(D) at the time of high load after warm-up” is set to a smaller phase angle than the positive valve overlap (PVOLc) of “(A) at the time of cold start”, and “PVOLc> PVOLh ".
 このように、吸気バルブの開時期(IVO)は進角側を基準にすると、「IVOc>IVOh>IVOi>IVOm」の関係を有している。同様に、作動角が同じであるので、吸気バルブの閉時期(IVC)も、「IVCc>IVCh>IVCi>IVCm」の関係を有している。 Thus, the intake valve opening timing (IVO) has a relationship of “IVOc> IVOh> IVOi> IVOm” with respect to the advance side. Similarly, since the operating angle is the same, the intake valve closing timing (IVC) also has a relationship of “IVCc> IVCh> IVCi> IVCm”.
 一方、排気バルブの開時期(EVO)は遅角側を基準にすると、「EVOc>EVOh>EVOi>EVOm」の関係を有している。同様に、作動角が同じであるので、排気バルブの閉時期(EVC)も、「EVCc>EVCh>EVCi>EVCm」の関係を有している。 On the other hand, the exhaust valve opening timing (EVO) has a relationship of “EVOc> EVOh> EVOi> EVOm” with respect to the retard side. Similarly, since the operating angle is the same, the exhaust valve closing timing (EVC) also has a relationship of “EVCc> EVCh> EVCi> EVCm”.
 次に、上述した運転領域での変化に対応した吸気側VTC機構1A、排気側VTC機構1B、及びVCR機構3の制御動作を、内燃機関の停止時から全負荷に至るまで運転領域毎に説明する。図4は第1の実施形態になる可変動作システムの主要なパラメータである、吸気バルブ4の開時期(IVO)、排気バルブ5の閉時期(EVC)、吸気バルブ4の閉時期(IVC)、機械膨張比εE(=機械圧縮比εC)の制御特性を示したものである。 Next, the control operation of the intake side VTC mechanism 1A, the exhaust side VTC mechanism 1B, and the VCR mechanism 3 corresponding to the change in the operation region described above will be described for each operation region from when the internal combustion engine is stopped until it reaches full load. To do. FIG. 4 shows the main parameters of the variable operation system according to the first embodiment, which are the intake valve 4 opening timing (IVO), the exhaust valve 5 closing timing (EVC), the intake valve 4 closing timing (IVC), This shows the control characteristics of the mechanical expansion ratio εE (= mechanical compression ratio εC).
 [(0)停止時]内燃機関が運転状態から機関停止条件になると、燃料カット、点火カット等の制御が行われて内燃機関の駆動燃焼トルクも失われ、内燃機関の回転数Neは低下していく。その際、内燃機関の停止時には、吸気側VTC機構1A、及び排気側VTC機構1Bは、機械的安定位置である上述のデフォルト位置に安定していくようになる。具体的には、図3A、図3Bに示した吸気バルブ4の開閉時期(IVOc、IVCc)及び排気バルブ5の開閉時期(EVOc、EVCc)に略一致する位置へと安定移行することになる。 [(0) When stopped] When the internal combustion engine changes from an operating state to an engine stop condition, control such as fuel cut and ignition cut is performed and the driving combustion torque of the internal combustion engine is lost, and the rotational speed Ne of the internal combustion engine decreases. To go. At that time, when the internal combustion engine is stopped, the intake-side VTC mechanism 1A and the exhaust-side VTC mechanism 1B are stabilized at the above-described default positions, which are mechanically stable positions. Specifically, the intake valve 4 opening / closing timing (IVOc, IVCc) and the exhaust valve 5 opening / closing timing (EVOc, EVCc) shown in FIGS. 3A and 3B are stably shifted.
 このように、内燃機関が停止され後に放置されて(冷却水の温度は低下)次の始動を迎える前に、吸気側VTC機構1A、及び排気側VTC機構1Bは、冷機始動に適した、吸気バルブ4の開閉時期(IVOc、IVCc)付近、及び排気バルブ5の開閉時期(EVOc、EVCc)付近に移行させる。 In this way, the intake side VTC mechanism 1A and the exhaust side VTC mechanism 1B are provided with an intake air that is suitable for cold start before the internal combustion engine is stopped and then left (cooling water temperature decreases) before the next start. The valve 4 is moved to near the opening / closing timing (IVOc, IVCc) and the exhaust valve 5 is opened / closed (EVOc, EVCc).
 一方、VCR機構3は、図2A、図2Bに示すように、圧縮比制御アクチュエータ49はウォーム機構のような非可逆性の強い減速機構であり、また、復帰用の付勢スプリングも特に設けられておらず、内燃機関の回転低下に伴い、特定のデフォルト位置に安定移行することはないものである。そして、停止条件に至る直前の機械膨張比(εE=εC)の位置付近で内燃機関の停止を迎え、停止条件に至る直前の機械膨張比εE(=機械圧縮比εC)の位置に応じて、内燃機関の停止時の機械膨張比εE(=機械圧縮比εC)が概ね決まることになる。したがって、その機械膨張比εE=(機械圧縮比εC)は、図4のεEで示す、「εEmax」~「εEmin」の間でばらつくことになる。 On the other hand, as shown in FIGS. 2A and 2B, the VCR mechanism 3 is a highly irreversible speed reduction mechanism such as a worm mechanism, and a return biasing spring is also particularly provided. However, a stable transition to a specific default position does not occur as the rotation speed of the internal combustion engine decreases. Then, the internal combustion engine is stopped near the position of the mechanical expansion ratio (εE = εC) immediately before reaching the stop condition, and according to the position of the mechanical expansion ratio εE (= mechanical compression ratio εC) immediately before the stop condition is reached, The mechanical expansion ratio εE (= mechanical compression ratio εC) when the internal combustion engine is stopped is generally determined. Therefore, the mechanical expansion ratio εE = (mechanical compression ratio εC) varies between “εEmax” and “εEmin” indicated by εE in FIG.
 ここで、内燃機関の停止時には、上述のように吸気バルブ4の開閉時期(IVO、IVC)及び排気バルブ5の開閉時期(EVO、EVC)は、吸気バルブ4の開閉時期(IVOc、IVCc)及び排気バルブ5の開閉時期(EVOc、EVCc)と略一致するデフォルト位置になっている。このため、始動時の制御変換量が僅かで済むので変換応答時間を極めて短縮できる上に、変換に要する所要エネルギ(油圧エネルギ)も抑制できる。 Here, when the internal combustion engine is stopped, the opening / closing timing (IVO, IVC) of the intake valve 4 and the opening / closing timing (EVO, EVC) of the exhaust valve 5 are the opening / closing timing (IVOc, IVCc) of the intake valve 4 and The default position substantially coincides with the opening / closing timing (EVOc, EVCc) of the exhaust valve 5. For this reason, since the amount of control conversion at the time of starting is small, the conversion response time can be extremely shortened, and the required energy (hydraulic energy) required for conversion can be suppressed.
 特に、本実施形態のように、デフォルト位置で機械的な固定機能を備える締結ピンで固定している場合には、機関停止時の吸気バルブ4及び排気バルブ5の開閉時期と、冷機始動の吸気バルブ4及び排気バルブ5の要求開閉時期(IVOc、IVCc、EVOc、EVCc)とを一致させることができるので、始動の最初から適切なバルブ開閉時期に設定でき、また、必要とする駆動エネルギも少なくできるので、油圧アクチュエ-タであっても問題ない始動制御が可能となる。 In particular, as in the present embodiment, in the case of fixing with a fastening pin having a mechanical fixing function at the default position, the opening and closing timings of the intake valve 4 and the exhaust valve 5 when the engine is stopped, and the intake of the cold start Since the required opening / closing timings (IVOc, IVCc, EVOc, EVCc) of the valve 4 and the exhaust valve 5 can be made coincident with each other, it can be set to an appropriate valve opening / closing timing from the beginning of the start, and less driving energy is required. Therefore, even if it is a hydraulic actuator, start control without a problem is attained.
 一方、VCR機構3は、内燃機関の停止時の位置が前述のようにばらついているので、冷機始動に適した最小の機械膨張比(εEmin=εCmin)に素早く変換するには、大きな出力を持った電動アクチュエ-タが必要になる。その結果、変換に必要なエネルギ(電力)は過大なものとなってしまい、また、変換応答性も悪化しがちである。 On the other hand, the VCR mechanism 3 has a large output in order to quickly convert it to the minimum mechanical expansion ratio (εEmin = εCmin) suitable for cold start since the position when the internal combustion engine is stopped varies as described above. Requires an electric actuator. As a result, the energy (electric power) necessary for the conversion becomes excessive, and the conversion response tends to deteriorate.
 しかしながら、本実施形態においては、吸気側VTC機構1A、及び排気側VTC機構1Bの冷機始動時の状態では、殆ど駆動エネルギを消費しなくて済むので、VCR機構3に限って大型の電動アクチュエ-タを用いることで、変換応答機能を満足させることが可能となっている。 However, in the present embodiment, in the state of the cold start of the intake side VTC mechanism 1A and the exhaust side VTC mechanism 1B, almost no driving energy is consumed, so that only the VCR mechanism 3 has a large electric actuator. By using the data, it is possible to satisfy the conversion response function.
 [(A)冷機始動時]そして、機関始動条件(キーオン)になりクランキングが開始されて、そのクランキング回転数が所定回転数に達すると、VCR機構3も目標の最小の機械膨張比(εEmin=εCmin)に変換されたとして、始動燃焼制御を開始する。具体的には、燃料噴射制御、点火制御などが開始されて始動燃焼を開始するものである。 [(A) When the cold engine is started] Then, when the engine start condition (key-on) is reached and cranking is started and the cranking rotational speed reaches a predetermined rotational speed, the VCR mechanism 3 also has a target minimum mechanical expansion ratio ( Assuming that εEmin = εCmin), the start combustion control is started. Specifically, fuel injection control, ignition control, etc. are started and start combustion is started.
 なお、ここで(A)冷機始動時として図4などで示される「εEmin」とは、クランキングを終了して始動燃焼する時点の機械膨張比を示している。すなわち、クランキング開始初期のばらついた「εEmax」~「εEmin」ではなく、クランキングを終了して始動燃焼する時点の機械膨張比のことである。 Here, (A) “εEmin” shown in FIG. 4 or the like when starting the cold machine indicates the mechanical expansion ratio at the time of starting combustion after finishing the cranking. That is, it is not the variation “εEmax” to “εEmin” at the beginning of cranking, but the mechanical expansion ratio at the time of completion of cranking and starting combustion.
 そして、このεEminの場合は、良好な冷機始動性、特に良好な排気ガス中の排気有害成分の低減性能を得ることができる。すなわち、VCR機構3によって機械膨張比(εE)が最小となるピストン位置に制御され、更に、吸気側VTC機構1Aによって吸気バルブ4の閉時期(IVCc)が、下死点(BDC)を越えているものの下死点(BDC)側の最進角位置に制御されると共に、吸気バルブ4の開時期(IVOc)が、上死点(TDC)を越えた最進角の位置に制御されている。 And, in the case of this εEmin, it is possible to obtain good cold startability, particularly good performance for reducing harmful exhaust components in the exhaust gas. In other words, the piston position at which the mechanical expansion ratio (εE) is minimized is controlled by the VCR mechanism 3, and the closing timing (IVCc) of the intake valve 4 exceeds the bottom dead center (BDC) by the intake side VTC mechanism 1A. In addition to being controlled to the most advanced position on the bottom dead center (BDC) side, the opening timing (IVOc) of the intake valve 4 is controlled to the most advanced position beyond the top dead center (TDC). .
 これによれば、VCR機構3によって略最小の機械膨張比(εEmin)に制御されているので、膨張仕事が少なくその分だけ排気ガスの温度が相対的に高くなる。これにより排気管に設けられた排気ガス浄化用触媒74を早期に暖機でき、排気ガス浄化用触媒74の転化効率を向上することができる。 According to this, since the VCR mechanism 3 is controlled to a substantially minimum mechanical expansion ratio (εEmin), there is little expansion work, and the temperature of the exhaust gas is relatively increased accordingly. Thus, the exhaust gas purification catalyst 74 provided in the exhaust pipe can be warmed up early, and the conversion efficiency of the exhaust gas purification catalyst 74 can be improved.
 また、吸気側VTC機構1Aによって吸気バルブ4の閉時期(IVCc)が、下死点(BDC)を越えた付近の近い位置に制御されるので、有効圧縮比が向上して燃焼改善効果を高めることができる。その結果、内燃機関の排気ガス中の排気有害成分自体を低減でき、上述の排ガス浄化用触媒での排気有害成分の転化率の向上と併せ、更にテールパイプから排出される排気ガス中の排気有害成分を低減することができる。 Further, the intake side VTC mechanism 1A controls the closing timing (IVCc) of the intake valve 4 to a position close to the vicinity of the bottom dead center (BDC), so that the effective compression ratio is improved and the combustion improvement effect is enhanced. be able to. As a result, harmful exhaust components themselves in the exhaust gas of the internal combustion engine can be reduced. In addition to improving the conversion rate of exhaust harmful components in the exhaust gas purification catalyst described above, exhaust harmful components in the exhaust gas exhausted from the tail pipe are further reduced. Components can be reduced.
 更に、吸気バルブ4の開時期(IVOc)から、上死点(TDC)に至るまでの間、排気行程末期の未燃HCや未燃PM(粒子状物質)を多く含む燃焼ガスが、ピストンに押し上げられることにより吸気系に戻されて、吸気系を撹拌することにより燃焼改善効果をさらに高めることが可能となる。これに加えて、未燃HCや未燃PMを含む燃焼ガスは次の吸気行程で再度筒内に導入されるので、未燃HCや未燃PMが再燃焼されることで、内燃機関の排気ガス中の排気有害成分を更に低減することができる。 Further, the combustion gas containing a large amount of unburned HC and unburned PM (particulate matter) at the end of the exhaust stroke from the opening timing (IVOc) of the intake valve 4 to the top dead center (TDC) It is returned to the intake system by being pushed up, and the combustion improvement effect can be further enhanced by stirring the intake system. In addition to this, the combustion gas containing unburned HC and unburned PM is reintroduced into the cylinder in the next intake stroke. Exhaust harmful components in the gas can be further reduced.
 尚、一般的なVCR機構では機械膨張比(εE)を小さく設定すると、付随的に機械圧縮比(εC)も小さく設定されるので、燃焼の悪化を伴う恐れがある。そこで、本実施形態では、吸気側VTC機構1Aによって吸気バルブ4の閉時期(IVC)を、下死点(BDC)を越えているものの下死点(BDC)付近の最進角位置に設定して有効圧縮比を向上し、更に、吸気バルブ4の開時期(IVOc)を、上死点(TDC)を越えた最進角側の位置に設定して、吸気系撹拌による燃焼改善効果で上述燃焼悪化分を相殺するという格別の補完効果を持たせている。 In a general VCR mechanism, if the mechanical expansion ratio (εE) is set to be small, the mechanical compression ratio (εC) is also set to be small, which may cause deterioration of combustion. Therefore, in this embodiment, the closing timing (IVC) of the intake valve 4 is set to the most advanced angle position near the bottom dead center (BDC) that exceeds the bottom dead center (BDC) by the intake side VTC mechanism 1A. The effective compression ratio is improved, and the opening timing (IVOc) of the intake valve 4 is set to the position of the most advanced angle beyond the top dead center (TDC). It has a special supplementary effect of offsetting the deterioration of combustion.
 更に、排気バルブ5の閉時期(EVC)を、可変できる範囲における最進角位相より所定角だけ遅角させ、上死点(TDC)を越えた遅角側の閉時期(EVCc)に制御されている。尚、本実施形態では最遅角位置に設定されている。 Further, the closing timing (EVC) of the exhaust valve 5 is delayed by a predetermined angle from the most advanced angle phase within the variable range, and is controlled to the closing timing (EVCc) on the retarded side exceeding the top dead center (TDC). ing. In this embodiment, the most retarded position is set.
 これによれば、上死点(TDC)から閉時期(EVCc)に至る間、排気ポ-ト側の高温燃焼ガスをピストン下降作動によって筒内に吸い戻すことができ、これによる筒内加熱効果により燃焼を改善でき、内燃機関からの排気有害成分の発生を更に低減することができる。また、排気ポ-ト側の吸い戻された高温燃焼ガスに含まれる高濃度HCを次の燃焼行程で再燃焼でき、その面からも更に内燃機関からの排気有害成分の発生を更に低減することができる。 According to this, during the period from the top dead center (TDC) to the closing timing (EVCc), the high-temperature combustion gas on the exhaust port side can be sucked back into the cylinder by the piston lowering operation, and the in-cylinder heating effect thereby Thus, combustion can be improved and generation of harmful exhaust components from the internal combustion engine can be further reduced. In addition, high-concentration HC contained in the high-temperature combustion gas sucked back on the exhaust port side can be recombusted in the next combustion stroke, and from this aspect, the generation of harmful exhaust components from the internal combustion engine can be further reduced. Can do.
 次に、異なるメカニズムによるVCR機構3の別の効果であるが、冷機始動時には上述のように略最小の機械膨張比εEmin(=εCmin)に制御されるが、図2Aに示すように、ピストンの圧縮上死点位置が最も低い位置となっている。これによって、冷機始動時に筒内燃料噴射弁から噴射された燃料噴霧がピストン冠面に付着しにくく、これによって排気行程末期の未燃HCや未燃PMの発生を抑制でき、内燃機関からの排気有害成分の発生を更に低減することができる。特に、筒内に直接噴射される筒内直噴式内燃機関では、圧縮行程噴射を行った場合に、この効果が大きくなるものである。 Next, another effect of the VCR mechanism 3 by a different mechanism is that, as described above, the mechanical expansion ratio εEmin (= εCmin) is controlled at the time of cold start. However, as shown in FIG. The compression top dead center position is the lowest position. As a result, the fuel spray injected from the in-cylinder fuel injection valve at the start of the cold engine is less likely to adhere to the piston crown surface, thereby suppressing the generation of unburned HC and unburned PM at the end of the exhaust stroke. Generation of harmful components can be further reduced. In particular, in a direct injection type internal combustion engine that is directly injected into a cylinder, this effect is increased when compression stroke injection is performed.
 このように、本実施例では、多岐にわたった諸効果により、冷機始動時の排気有害物質充分低減できるのである。 In this way, in this embodiment, exhaust gas harmful substances at the time of cold start can be sufficiently reduced by various effects.
 [(B)暖機後低負荷時]次に、内燃機関の暖機が進み冷却水の温度が所定温度に達すると、冷機始動時における排気有害成分が問題となる領域は脱したとして、燃費を重視したモ-ドに切り替わる。そして、暖機後に負荷が上昇していくと、この負荷に対応して吸気側VTC機構1A、排気側VTC機構1B、及びVCR機構3によって、吸気バルブ4の開閉時期(IVO、IVC)、排気バルブ5の開閉時期(EVO、EVC)、及び機械膨張比εE(=εC)が図4(B)に示すように制御される。 [(B) At low load after warming up] Next, when the internal combustion engine warms up and the temperature of the cooling water reaches a predetermined temperature, the exhaust gas harmful component at the time of cold start is considered to be out of the region, and the fuel consumption Switch to a mode that emphasizes. When the load rises after warming up, the intake valve 4 opening / closing timing (IVO, IVC), exhaust gas by the intake side VTC mechanism 1A, the exhaust side VTC mechanism 1B, and the VCR mechanism 3 corresponding to this load. The opening / closing timing (EVO, EVC) of the valve 5 and the mechanical expansion ratio εE (= εC) are controlled as shown in FIG.
 すなわち、アイドルを含む暖機後の低負荷では燃費の良い最大機械膨張比εEmax(=εCmax)で運転を行なうことになる。この最大機械膨張比εEmax(=εCmax)は可変できる範囲で最も大きな機械膨張比(εE)である。 That is, the operation is performed at the maximum mechanical expansion ratio εEmax (= εCmax) with good fuel efficiency at a low load after warm-up including idling. This maximum mechanical expansion ratio εEmax (= εCmax) is the largest mechanical expansion ratio (εE) within a variable range.
 ここで、燃費が良くなる理由は、機械膨張比(εE)が大きくなると、同じ燃料噴射量でも膨張仕事が増加するので、熱効率が上がるためである。このように、同じ燃料噴射量だと機関トルクが増大することになるので、機関トルクを維持するために吸気側VTC機構1Aを遅角制御することにより、吸気バルブ4の閉時期(IVC)を下死点(BDC)から遅角側に移動して、閉時期(IVCc)から閉時期(IVCi)に変更している。したがって、この吸気バルブ閉時期制御により新気の充填効率を下げることで、その分だけ燃焼噴射量を低減して燃費を向上することが可能となる。 Here, the reason why the fuel efficiency is improved is that when the mechanical expansion ratio (εE) is increased, the expansion work is increased even with the same fuel injection amount, so that the thermal efficiency is increased. Thus, since the engine torque increases at the same fuel injection amount, the closing timing (IVC) of the intake valve 4 is set by retarding the intake side VTC mechanism 1A in order to maintain the engine torque. Moving from the bottom dead center (BDC) to the retard side, the closing timing (IVCc) is changed to the closing timing (IVCi). Therefore, by reducing the charging efficiency of fresh air by this intake valve closing timing control, it becomes possible to reduce the combustion injection amount and improve the fuel efficiency.
 ここで、このように吸気バルブ4の閉時期(IVC)を下死点(BDC)から遅角側に移動して閉時期(IVCc)から閉時期(IVCi)に変更することにより、いわゆるアトキンソンサイクル効果(ポンプ損失低減効果)も加わり、一層の燃費向上を図ることができる。 Here, by moving the closing timing (IVC) of the intake valve 4 from the bottom dead center (BDC) to the retard side and changing the closing timing (IVCc) to the closing timing (IVCi) in this way, a so-called Atkinson cycle is performed. The effect (pump loss reduction effect) is also added, and fuel efficiency can be further improved.
 尚、本実施形態では、併せて排気側VTC機構1Bによって、排気バルブ5の開閉時期(EVOi、EVCi)を進角側に制御している。上述のVCR機構3によって機械膨張比(εE)を大きくしているので、膨張行程末期の下死点(BDC)より少し手前で筒内に僅かな筒内負圧が発生してくる傾向がある。筒内に負圧が発生すると、この負圧はピストンの下降動作を阻害するように働き、別なポンプ損失(膨張行程末期のポンプ損失)となる。 In the present embodiment, the opening / closing timing (EVOi, EVCi) of the exhaust valve 5 is controlled to the advance side by the exhaust side VTC mechanism 1B. Since the mechanical expansion ratio (εE) is increased by the VCR mechanism 3 described above, a slight in-cylinder negative pressure tends to be generated in the cylinder slightly before the bottom dead center (BDC) at the end of the expansion stroke. . When negative pressure is generated in the cylinder, this negative pressure acts to hinder the downward movement of the piston, resulting in another pump loss (pump loss at the end of the expansion stroke).
 そこで、排気側VTC機構1Bによって排気バルブ5の開時期(EVO)を開時期(EVOi)まで早めることで、筒内負圧が発生する前に排気バルブ5を開いて膨張行程末期のポンプ損失を抑制して燃費を向上するようにしている。 Therefore, by opening the exhaust valve 5 opening timing (EVO) to the opening timing (EVOi) by the exhaust side VTC mechanism 1B, the exhaust valve 5 is opened before the in-cylinder negative pressure is generated, and the pump loss at the end of the expansion stroke is reduced. Suppresses and improves fuel efficiency.
 ところで、吸気側VTC機構1A、排気側VTC機構1Bによって、排気バルブ5の閉時期(EVCi)と、吸気バルブ4の開時期(IVOi)とのバルブオーバーラップは「略0」に制御されている。これにより、不活性ガスであるところの内部EGRガス量を抑制でき、暖機後のアイドルで発生しがちな低負荷域の燃焼の不安定化も充分に抑制することができる。 By the way, the valve overlap between the closing timing (EVCi) of the exhaust valve 5 and the opening timing (IVOi) of the intake valve 4 is controlled to “substantially 0” by the intake side VTC mechanism 1A and the exhaust side VTC mechanism 1B. . Thereby, the amount of internal EGR gas, which is an inert gas, can be suppressed, and instability of combustion in a low load range that tends to occur during idling after warm-up can be sufficiently suppressed.
 また、ここで燃費の良いリーンバーン燃焼を行う場合を想定してみると、リーン混合気の充填量を内部EGRが低下した分だけ増量することが可能となり、リーンバーン燃焼での限界トルクを高負荷側にシフトできるので、リーンバーン燃焼領域を拡大できてその面から燃費を低減することができる。 Also, assuming that lean burn combustion with good fuel efficiency is performed, it becomes possible to increase the amount of lean mixture as much as the internal EGR is reduced, and increase the limit torque in lean burn combustion. Since it can shift to the load side, the lean burn combustion region can be expanded, and the fuel efficiency can be reduced from that aspect.
 [(C)暖機後中負荷] 暖機後低負荷から更に負荷が上昇していくと、この負荷上昇に対応して吸気側VTC機構1A、排気側VTC機構1B、及びVCR機構3によって、吸気バルブ4の開閉時期(IVO、IVC)、排気バルブ5の開閉時期(EVO、EVC)、及び機械膨張比εE(=εC)が図4(C)に示すように制御される。 [(C) Medium load after warm-up] When the load further increases from the low load after warm-up, the intake-side VTC mechanism 1A, the exhaust-side VTC mechanism 1B, and the VCR mechanism 3 correspond to this load increase. The opening / closing timing (IVO, IVC) of the intake valve 4, the opening / closing timing (EVO, EVC) of the exhaust valve 5, and the mechanical expansion ratio εE (= εC) are controlled as shown in FIG.
 尚、中負荷に達すると、VCR機構3によるピストン位置の変換は抑制されて、大きな機械膨張比εEmax(=εCmax)を維持しながら、吸気側VTC機構1Aによって吸気バルブ4の開閉時期(IVO、IVC)を遅角し、また排気側VTC機構1Bによって排気バルブ5の開閉時期(IVO、IVC)を進角させる制御を行なうものである。 When the intermediate load is reached, the conversion of the piston position by the VCR mechanism 3 is suppressed, and the intake valve 4 is opened and closed by the intake side VTC mechanism 1A while maintaining a large mechanical expansion ratio εEmax (= εCmax). IVC) is retarded, and the exhaust side VTC mechanism 1B controls the opening / closing timing (IVO, IVC) of the exhaust valve 5 to advance.
 これによって、図3A、図3B、図4に示すように、排気バルブ5の閉時期(EVCm)と吸気バルブ5の開時期(IVOm)との間に大きなネガティブバルブオーバーラップ(NVOLm)区間が生じるようになる。ネガティブバルブオーバーラップ(NVOLm)が生じると、高温燃焼ガスが筒内に封じ込まれることになる。 As a result, as shown in FIGS. 3A, 3B, and 4, a large negative valve overlap (NVOLm) interval is generated between the closing timing (EVCm) of the exhaust valve 5 and the opening timing (IVOm) of the intake valve 5. It becomes like this. When negative valve overlap (NVOLm) occurs, high-temperature combustion gas is sealed in the cylinder.
 このネガティブバルブオーバーラップ(NVOLm)は、吸気系に戻した燃焼ガスを再吸入するポジティブバルブオーバーラップ(PVOL)による筒内残留燃焼ガスとは異なり、吸気撹拌効果はないものの筒内残留燃焼ガスの絶対温度が高いという特徴を有している。このため、筒内残留燃焼ガスの容積膨張があり、その分だけ新気の吸入比率(充填効率)が減少する傾向にあるため、所定の機関トルクを得るためにスロットル開度をより大きく開くことから中負荷域でのポンプ損失が充分に低減できるようになる。 This negative valve overlap (NVOLm) is different from the in-cylinder residual combustion gas by the positive valve overlap (PVOL) in which the combustion gas returned to the intake system is re-inhaled. The absolute temperature is high. For this reason, there is a volume expansion of the residual combustion gas in the cylinder, and the intake ratio (filling efficiency) of fresh air tends to decrease by that amount, so the throttle opening is opened more widely to obtain the predetermined engine torque. Therefore, the pump loss in the middle load range can be sufficiently reduced.
 更に、吸気バルブ4の閉時期(IVC)が閉時期(IVCi)から閉時期(IVCm)に更に遅角されるので、いわゆるアトキンソンサイクル効果(ポンプ損失低減効果)も一層増加し、一層の燃費向上を図ることができる。 Furthermore, since the closing timing (IVC) of the intake valve 4 is further retarded from the closing timing (IVCi) to the closing timing (IVCm), the so-called Atkinson cycle effect (pump loss reduction effect) is further increased and fuel efficiency is further improved. Can be achieved.
 また、吸気バルブ4の閉時期(IVCm)が遅閉じとなるため、有効圧縮比が低減されることによって耐ノック性を向上することができる。これによって、低負荷から中負荷へと負荷が増加したにも拘らず、大きな機械圧縮比εCmax(=εEmax)を維持できるので高い熱効率を得ることができ、結果的に中負荷域において良好な燃費を得ることができる。 Also, since the closing timing (IVCm) of the intake valve 4 is closed late, knock resistance can be improved by reducing the effective compression ratio. As a result, a large mechanical compression ratio εCmax (= εEmax) can be maintained in spite of an increase in load from a low load to a medium load, so that a high thermal efficiency can be obtained. Can be obtained.
 [(D)暖機後高負荷] 暖機後中負荷から更に負荷が上昇していくと、この負荷上昇に対応して吸気側VTC機構1A、排気側VTC機構1B、及びVCR機構3によって、吸気バルブ4の開閉時期(IVO、IVC)、排気バルブ5の開閉時期(EVO、EVC)、及び機械膨張比εE(=εC)が図4(C)~(D)に示すように制御される。 [(D) High load after warm-up] When the load further increases from the middle load after warm-up, the intake side VTC mechanism 1A, the exhaust side VTC mechanism 1B, and the VCR mechanism 3 correspond to this load increase, The opening / closing timing (IVO, IVC) of the intake valve 4, the opening / closing timing (EVO, EVC) of the exhaust valve 5, and the mechanical expansion ratio εE (= εC) are controlled as shown in FIGS. .
 暖機後中負荷から暖機後高負荷へと移行すると、機械圧縮比εC(=εE)は減少方向に制御される。これは、高負荷側に負荷が上昇すると耐ノック性が急激に悪化するので、機械圧縮比εC(=εE)を負荷の上昇に対応させて急減させるようにしている。例えば、中負荷の状態から更に機関トルク(負荷)Sが増加すると、機械圧縮比εC(=εE)は、最大機械圧縮比εCmax(=εEmax)から略最小の機械圧縮比εCmin(=εEmin)まで急激に減少するように制御される。 When shifting from the middle load after warm-up to the high load after warm-up, the mechanical compression ratio εC (= εE) is controlled in a decreasing direction. This is because the knock resistance is abruptly deteriorated when the load is increased toward the high load side, so that the mechanical compression ratio εC (= εE) is rapidly decreased in accordance with the increase in the load. For example, when the engine torque (load) S further increases from the medium load state, the mechanical compression ratio εC (= εE) increases from the maximum mechanical compression ratio εCmax (= εEmax) to the substantially minimum mechanical compression ratio εCmin (= εEmin). It is controlled to decrease rapidly.
 ここで、耐ノック性を上げる手法として、従来のように点火時期を遅角する手法もあるが、これは燃焼による熱発生時期が遅れて熱効率の顕著な低下を伴うし、排気ガスの温度が過度に上昇して、排気ガス浄化用触媒74の熱劣化を生じて排気有害成分の転化効率が低下する、すなわち排気ガス浄化用触媒74の耐久性が悪化するという不具合を生じる。したがって、負荷の上昇と共に略最小の機械圧縮比εCmin(=εEmin)に迄小さくすることで、点火時期の遅角をおさえノックの発生を抑制しながら、所望の機関トルクを発生させることがきる。 Here, as a technique for increasing the knock resistance, there is also a technique for retarding the ignition timing as in the prior art, but this is accompanied by a noticeable decrease in thermal efficiency due to a delay in the heat generation time due to combustion, and the temperature of the exhaust gas When the exhaust gas purification catalyst 74 is excessively increased, thermal deterioration of the exhaust gas purification catalyst 74 is caused to reduce the conversion efficiency of exhaust harmful components, that is, the durability of the exhaust gas purification catalyst 74 is deteriorated. Therefore, by reducing the mechanical compression ratio εCmin (= εEmin) to a substantially minimum mechanical compression ratio as the load increases, a desired engine torque can be generated while suppressing the retard of the ignition timing and suppressing the occurrence of knocking.
 また、本実施形態では、負荷の増加に伴って吸気側VTC機構1Aによって吸気バルブ4を進角側に制御して吸気バルブ4の閉時期(IVCh)を下死点(BDC)にやや近づけている。これは、要求される負荷の増加に伴って充填効率を高める必要があり、そのために吸気バルブ4の閉時期(IVCh)を下死点(BDC)にやや近づける(やや進角する)ようにしている。そして、更なる負荷の増加に対しては、スロットル開度を大きくし、全負荷(アクセル開度が全開)ではスロットル開度を全開としている。 In the present embodiment, the intake valve 4 is controlled to be advanced by the intake side VTC mechanism 1A as the load increases, so that the closing timing (IVCh) of the intake valve 4 is slightly closer to the bottom dead center (BDC). Yes. This is because it is necessary to increase the charging efficiency as the required load increases, so that the closing timing (IVCh) of the intake valve 4 is made slightly closer to the bottom dead center (BDC) (slightly advanced). Yes. For further increases in load, the throttle opening is increased, and at full load (accelerator opening is fully open), the throttle opening is fully open.
 また、中負荷からの負荷の増加に伴って、吸気側VTC機構1Aによって吸気バルブ4の開時期(IVOh)をやや進角し、一方、排気側VTC機構1Bによって排気バルブ5の閉時期(EVCh)をやや遅角する。その結果、上述したネガティブバルブオーバーラップ(NVOLm)から、ポジティブバルブオーバーラップ(PVOLh)に急変する。 Further, as the load from the medium load increases, the intake valve 4 opening timing (IVOh) is slightly advanced by the intake side VTC mechanism 1A, while the exhaust valve 5 closing timing (EVCh) by the exhaust side VTC mechanism 1B. ) Is slightly delayed. As a result, the negative valve overlap (NVOLm) described above suddenly changes to a positive valve overlap (PVOLh).
 ネガティブバルブオーバーラップ(NVOL)に設定すると、筒内に高温燃焼ガスが封じ込まれるため、混合気の温度が高くなって高負荷においてはノックが発生しやすくなる。このため、ポジティブバルブオーバーラップ(PVOL)に変更して、燃焼ガスを吸気系(比較的冷たい)に戻してから筒内に再度吸入することで、混合気の温度をネガティブバルブオーバーラップ(NVOL)に比べて低くでき、機械圧縮比(εCmin)を小さくしたことと相俟ってノックの発生を抑制することができる。 When set to negative valve overlap (NVOL), high-temperature combustion gas is sealed in the cylinder, so that the temperature of the air-fuel mixture becomes high and knocking is likely to occur at high loads. For this reason, by changing to positive valve overlap (PVOL), the combustion gas is returned to the intake system (relatively cold) and then sucked into the cylinder again, so that the temperature of the air-fuel mixture is negative valve overlap (NVOL). The occurrence of knocking can be suppressed in combination with the reduction in the mechanical compression ratio (εCmin).
 一方、更に負荷を増加していくとノックの発生の危険性が高まるが、ポジティブバルブオーバーラップ(PVOL)の場合は、負荷の増加(吸気管負圧減少)に伴って燃焼ガスが筒内から吸気ポ-ト側に吸い戻されにくくなるので、結果として次の行程に吸気ポート側から筒内に吸入される既燃焼ガス量が減少していき、その分だけ耐ノック性が向上される。その結果、更なる負荷の増加に対応して機械圧縮比(εCmin)をさらに小さくしなくても、言い換えれば略一定の機械圧縮比(εCmin)であっても、耐ノック性の要求を満たせるようになる。 On the other hand, if the load is further increased, the risk of knocking increases, but in the case of positive valve overlap (PVOL), the combustion gas is discharged from the cylinder as the load increases (intake pipe negative pressure decreases). Since it becomes difficult to suck back to the intake port side, as a result, the amount of burned gas sucked into the cylinder from the intake port side in the next stroke decreases, and the knock resistance is improved accordingly. As a result, even if the mechanical compression ratio (εCmin) is not further reduced in response to a further increase in load, in other words, even if the mechanical compression ratio (εCmin) is substantially constant, the requirement for knock resistance can be satisfied. become.
 次に、上述した図4に示す制御特性を実行するための制御フローを図5A、図5Bに基づき簡単に説明する。この制御フローは、例えば10ms毎の起動タイミングでコントローラ22に内蔵されているマイクロコンピュータで実行されるものである。 Next, a control flow for executing the control characteristics shown in FIG. 4 will be briefly described with reference to FIGS. 5A and 5B. This control flow is executed by a microcomputer built in the controller 22 at a start timing of every 10 ms, for example.
 図5Aには、内燃機関を停止する停止移行時に、吸気側VTC機構1A、排気側VTC機構1B、及びVCR機構3の停止位置を設定する制御フローを示している。 FIG. 5A shows a control flow for setting the stop positions of the intake side VTC mechanism 1A, the exhaust side VTC mechanism 1B, and the VCR mechanism 3 at the time of stop transition for stopping the internal combustion engine.
 ≪ステップS10≫まず、ステップS10においては、内燃機関を停止する機関停止情報や、内燃機関の運転条件情報を読み込む。内燃機機関を停止する機関停止情報としては、代表的にはキーオフ信号があり、また、内燃機関の運転条件情報を示す信号としては数多くあるが、本実施形態では、内燃機関の回転数情報、吸気量情報、水温情報、要求負荷情報(アクセル開度)等があり、更に吸気側VTC機構1Aや排気側VTC機構1Bの実位置情報等がある。このステップS10で各種情報を読み込むとステップS11に移行する。 << Step S10 >> First, in step S10, engine stop information for stopping the internal combustion engine and operating condition information for the internal combustion engine are read. As the engine stop information for stopping the internal combustion engine, there is typically a key-off signal, and there are many signals indicating the operating condition information of the internal combustion engine. In this embodiment, the engine speed information, the intake air There are quantity information, water temperature information, required load information (accelerator opening), and the like, and further, actual position information of the intake side VTC mechanism 1A and the exhaust side VTC mechanism 1B. If various information is read in this step S10, it will transfer to step S11.
 ≪ステップS11≫ステップS11においては、機関停止移行条件かどうかを判断する。この判断は、例えば、キーオフ信号を監視しておけばよく、キーオフ信号が入力されないとエンドに抜けて次の起動タイミングを待つことになる。一方、キーオフ信号が入力されると、機関停止移行条件と判断してステップS12に移行する。 << Step S11 >> In step S11, it is determined whether the engine stop transition condition is satisfied. For this determination, for example, the key-off signal may be monitored, and if the key-off signal is not input, the process ends and waits for the next activation timing. On the other hand, when the key-off signal is input, the engine stop transition condition is determined and the process proceeds to step S12.
 ≪ステップS12≫ステップS12においては、内燃機関を停止するために燃料カット信号を燃料噴射弁に送り、また点火カット信号を点火装置に送る。これによって内燃機関の回転数Neが低下していき、内燃機関が停止されるようになる。 << Step S12 >> In step S12, a fuel cut signal is sent to the fuel injection valve to stop the internal combustion engine, and an ignition cut signal is sent to the ignition device. As a result, the rotational speed Ne of the internal combustion engine decreases and the internal combustion engine is stopped.
 ≪ステップS13≫ステップS13においては、吸気側VTC機構1A、排気側VTC機構1Bにデフォルト位置に移行するように、変換制御信号を吸気側VTC機構1Aの位相制御用油圧アクチュエータ2A、排気側VTC機構1Bの位相制御用油圧アクチュエータ2Bに出力する。つまり、次回の始動に対応するために、図4の「(O)機関停止時」の開閉時期特性になるように制御するものである。実際には、変換制御信号を遮断すれば機械的にデフォルト位置に戻る構成となっている。 << Step S13 >> In step S13, the conversion control signal is transmitted to the intake side VTC mechanism 1A and the exhaust side VTC mechanism 1B to the default position, the phase control hydraulic actuator 2A of the intake side VTC mechanism 1A, and the exhaust side VTC mechanism. 1B is output to the hydraulic actuator 2B for phase control. That is, in order to respond to the next start, control is performed so that the opening / closing timing characteristics of “(O) When the engine is stopped” in FIG. 4 are obtained. Actually, it is configured to mechanically return to the default position when the conversion control signal is cut off.
 したがって、吸気バルブ4の開時期(IVO)は開時期(IVOc)付近に設定され、また、吸気バルブ4の閉時期(IVC)は閉時期(IVCc)付近に設定され、排気バルブ5の閉時期(EVC)は閉時期(EVCc)付近に設定されるものである。 Accordingly, the opening timing (IVO) of the intake valve 4 is set near the opening timing (IVOc), and the closing timing (IVC) of the intake valve 4 is set near the closing timing (IVCc), and the closing timing of the exhaust valve 5 is set. (EVC) is set near the closing timing (EVCc).
 また、VCR機構3による機械膨張比(εE)は、停止される時の内燃機関の状態に依存し、内燃機関の停止条件に至る直前の機械膨張比(εE)の位置に応じて、内燃機関の停止時の機械膨張比(εE)が概ね決まることになる。これは、VCR機構3が機械的に安定するデフォルト位置を持たないためである。したがって、「εEmax」~「εEmin」の間の停止移行開始する時点の位置にばらついて設定されることになる。これも、実際には、VCR機構3変換制御信号を遮断すれば良い。吸気側VTC機構1A、排気側VTC機構1B、及びVCR機構3による設定が終了するとエンドに抜けて次の内燃機関の始動を待つことになる。 Further, the mechanical expansion ratio (εE) by the VCR mechanism 3 depends on the state of the internal combustion engine when it is stopped, and depends on the position of the mechanical expansion ratio (εE) immediately before reaching the stop condition of the internal combustion engine. The mechanical expansion ratio (εE) at the time of stoppage is almost determined. This is because the VCR mechanism 3 does not have a default position that is mechanically stable. Accordingly, the position is set to vary depending on the position at the start of the stop transition between “εEmax” and “εEmin”. In practice, the VCR mechanism 3 conversion control signal may be cut off. When the settings by the intake-side VTC mechanism 1A, the exhaust-side VTC mechanism 1B, and the VCR mechanism 3 are completed, the process goes to the end and waits for the start of the next internal combustion engine.
 次に、この状態から内燃機関の運転を再開する場合の制御フローを図5Bに基づき説明する。この制御フローもコントローラ22に内蔵されているマイクロコンピュータで実行されるものである。 Next, a control flow when the operation of the internal combustion engine is resumed from this state will be described with reference to FIG. 5B. This control flow is also executed by a microcomputer built in the controller 22.
 ≪ステップS20≫まず、ステップS20においては、内燃機関を始動する機関始動情報や、内燃機関の運転条件情報を読み込む。内燃機機関を始動する機関始動情報としては、代表的にはキーオン信号、或いはスタータ起動信号があり、また、内燃機関の運転条件情報を示す信号としては数多くあるが、本実施形態では、内燃機関の回転数情報、吸気量情報、水温情報、要求負荷情報(アクセル開度)等があり、更に排気側VTC機構1Bや吸気側VTC機構1Aの実位置情報等がある。このステップS20で各種情報を読み込むとステップS21に移行する。 << Step S20 >> First, in step S20, engine start information for starting the internal combustion engine and operating condition information for the internal combustion engine are read. The engine start information for starting the internal combustion engine is typically a key-on signal or a starter activation signal, and there are many signals indicating the operating condition information of the internal combustion engine. There are rotational speed information, intake air volume information, water temperature information, required load information (accelerator opening), and the like, and further, actual position information of the exhaust side VTC mechanism 1B and the intake side VTC mechanism 1A. If various information is read in this step S20, it will transfer to step S21.
 ≪ステップS21≫ステップS21においては、機関始動条件かどうかを判断する。この判断は、例えば、キーオン信号、或いはスタータ起動信号を監視しておけばよく、スタータ起動信号が入力されないとリターンに抜けて次の起動タイミングを待つことになる。一方、スタータ起動信号が入力されると、機関始動条件と判断してステップS22に移行する。 << Step S21 >> In step S21, it is determined whether the engine start condition is satisfied. For this determination, for example, a key-on signal or a starter activation signal may be monitored. If no starter activation signal is input, the process returns to return and waits for the next activation timing. On the other hand, when the starter activation signal is input, the engine start condition is determined and the process proceeds to step S22.
 ≪ステップS22≫ステップS22においては、吸気側VTC機構1A、及び排気側VTC機構1Bにデフォルト位置に移行するように、変換制御信号が吸気側VTC機構1Aの位相制御用油圧アクチュエータ2A、及び排気側VTC機構1Bの位相制御用油圧アクチュエータ2Bに出力される。また、VCR機構3の圧縮比制御アクチュエータ49にも変換制御信号が出力される。つまり、始動に対応するために、図4の「(A)冷機始動時」に示すバルブ開閉時期特性、及びピストン位置特性になるように制御するものである。 << Step S22 >> In step S22, the conversion control signal is transferred to the default position to the intake side VTC mechanism 1A and the exhaust side VTC mechanism 1B, and the phase control hydraulic actuator 2A and the exhaust side of the intake side VTC mechanism 1A. It is output to the phase control hydraulic actuator 2B of the VTC mechanism 1B. A conversion control signal is also output to the compression ratio control actuator 49 of the VCR mechanism 3. That is, in order to respond to the start, control is performed so that the valve opening / closing timing characteristics and the piston position characteristics shown in “(A) Cold start” in FIG. 4 are obtained.
 したがって、吸気バルブ4の開時期(IVO)は開時期(IVOc)に設定され、また、吸気バルブ4の閉時期(IVC)は閉時期(IVCc)に設定され、排気バルブ5の閉時期(EVC)は閉時期(EVCc)に設定される。更に、機械膨張比(εE)は機械圧縮比(εEmin)に設定される。そして、変換制御信号を吸気側VTC機構1Aの位相制御用油圧アクチュエータ2A、及び排気側VTC機構1Bの位相制御用油圧アクチュエータ2Bに出力し、また、VCR機構3の圧縮比制御アクチュエータ49に変換制御信号を出力すると、ステップS23、ステップS24に移行する。 Accordingly, the opening timing (IVO) of the intake valve 4 is set to the opening timing (IVOc), the closing timing (IVC) of the intake valve 4 is set to the closing timing (IVCc), and the closing timing (EVC) of the exhaust valve 5 is set. ) Is set to the closing timing (EVCc). Further, the mechanical expansion ratio (εE) is set to the mechanical compression ratio (εEmin). Then, the conversion control signal is output to the phase control hydraulic actuator 2A of the intake side VTC mechanism 1A and the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B, and the conversion control is performed to the compression ratio control actuator 49 of the VCR mechanism 3. When the signal is output, the process proceeds to step S23 and step S24.
 ≪ステップS23、ステップS24≫ステップS23においては、スタータモータによってクランキングを開始し、その後にステップ24にて回転数Neが所定クランクング回転数に達したかどうかを判定している。回転数Neが所定クランキング回転に達すると、各機構とも目標位置に変換されたとして、ステップS25に移行する。 << Step S23, Step S24 >> In step S23, cranking is started by the starter motor, and then it is determined in step 24 whether the rotational speed Ne has reached a predetermined cranking rotational speed. When the rotational speed Ne reaches the predetermined cranking rotation, it is determined that each mechanism has been converted to the target position, and the process proceeds to step S25.
 ≪ステップS25≫ステップS25においては、スタータモータの回転に合せて内燃機関を始動するため燃料噴射弁や点火装置へ駆動信号を供給する。そして、燃料噴射弁や点火装置へ駆動信号を供給により機関が始動するとステップS26に移行する。 << Step S25 >> In step S25, a drive signal is supplied to the fuel injection valve and the ignition device in order to start the internal combustion engine in accordance with the rotation of the starter motor. When the engine is started by supplying a drive signal to the fuel injection valve and the ignition device, the process proceeds to step S26.
 ≪ステップS26≫ステップS26においては、内燃機関の機関温度(冷却水温度)を検出して所定温度Toを超えたかどうかを判断する。所定温度Toを超えていなければ冷機状態と判断して、再度ステップS25に戻って実行し、所定温度Toを超えるまでこのループを継続する。 << Step S26 >> In step S26, the engine temperature (cooling water temperature) of the internal combustion engine is detected to determine whether or not a predetermined temperature To has been exceeded. If the temperature does not exceed the predetermined temperature To, it is determined that the engine is in the cold state, and the process returns to step S25 to execute again, and this loop is continued until the temperature exceeds the predetermined temperature To.
 尚、ステップS25~ステップS26を実行している間(所定温度Toに達するまでの間)は、吸気バルブ4の開閉時期(IVO、IVC)、排気バルブ5の閉時期(EVO、EVC)、及び機械膨張比(εE)は、図4(A)に示す通りの動作が行われるようになっている。すなわち、この間、冷機始動運転時にテールパイプから排出される排気エミッション(排気有害成分)が大幅に抑制されるのである。そして、内燃機関の暖機が進行して所定温度Toを超えると、冷機状態から暖機が完了したと判断してステップS27に移行する。 During the execution of steps S25 to S26 (until the predetermined temperature To is reached), the opening / closing timing of the intake valve 4 (IVO, IVC), the closing timing of the exhaust valve 5 (EVO, EVC), and With respect to the mechanical expansion ratio (εE), an operation as shown in FIG. 4 (A) is performed. That is, during this time, exhaust emission (exhaust harmful components) discharged from the tail pipe during the cold start operation is greatly suppressed. When the warm-up of the internal combustion engine proceeds and exceeds the predetermined temperature To, it is determined that the warm-up has been completed from the cold state, and the process proceeds to step S27.
 ≪ステップS27≫ステップS27においては、暖機が完了した時点での変換制御信号が、吸気側VTC機構1Aの位相制御用油圧アクチュエータ2A、及び排気側VTC機構1Bの位相制御用油圧アクチュエータ2Bに出力される。また、VCR機構3の圧縮比制御アクチュエータ49にも変換制御信号が出力される。図4(B)に示す例は、「(B)暖機後低負荷時」の例として、暖機後のアイドル状態を示している。 << Step S27 >> In step S27, the conversion control signal when the warm-up is completed is output to the phase control hydraulic actuator 2A of the intake side VTC mechanism 1A and the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B. Is done. A conversion control signal is also output to the compression ratio control actuator 49 of the VCR mechanism 3. The example shown in FIG. 4B shows an idle state after warm-up as an example of “(B) low load after warm-up”.
 したがって、吸気バルブ4の開時期(IVO)は開時期(IVOi)に設定され、また、吸気バルブ4の閉時期(IVC)は閉時期(IVCi)に設定され、排気バルブ5の閉時期(EVC)は閉時期(EVCi)に設定される。更に、機械膨張比(εE)は機械膨張比(εEmax)に設定される。 Therefore, the opening timing (IVO) of the intake valve 4 is set to the opening timing (IVOi), the closing timing (IVC) of the intake valve 4 is set to the closing timing (IVCi), and the closing timing (EVC) of the exhaust valve 5 is set. ) Is set to the closing timing (EVCi). Further, the mechanical expansion ratio (εE) is set to the mechanical expansion ratio (εEmax).
 そして、変換制御信号を吸気側VTC機構1Aの位相制御用油圧アクチュエータ2A、及び排気側VTC機構1Bの位相制御用油圧アクチュエータ2Bに出力し、また、VCR機構3の圧縮比制御アクチュエータ49に変換制御信号を出力すると、ステップS28に移行する。 Then, the conversion control signal is output to the phase control hydraulic actuator 2A of the intake side VTC mechanism 1A and the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B, and the conversion control is performed to the compression ratio control actuator 49 of the VCR mechanism 3. When the signal is output, the process proceeds to step S28.
 ≪ステップS28≫ステップS28においては、内燃機関の負荷が暖機後低負荷の領域を超えたかどうかの判断を行なっている。内燃機関の負荷が暖機後低負荷の領域を超えていない場合は、リターンに抜けて次の起動タイミングを待つようになっている。尚、この場合は、「実行フラグ」等を利用してステップS20~ステップ26の制御ステップを実行することなく、ステップS27の制御ステップを実行するようにプログラムが作られている。つまり、ステップS27の処理の後に「実行フラグ」を立て、次の起動タイミングでこの「実行フラグ」が立っていると、ステップS27に移行するようになっている。 << Step S28 >> In step S28, it is determined whether or not the load of the internal combustion engine has exceeded the low load range after warming up. When the load of the internal combustion engine does not exceed the low load region after warming up, the routine returns to return and waits for the next start timing. In this case, the program is created so as to execute the control step of step S27 without executing the control steps of step S20 to step 26 using the “execution flag” or the like. That is, when the “execution flag” is set after the process of step S27 and this “execution flag” is set at the next activation timing, the process proceeds to step S27.
 一方、ステップS28において、内燃機関の負荷が暖機後低負荷の領域を超えていると判断された場合は、ステップS29に移行する。 On the other hand, when it is determined in step S28 that the load of the internal combustion engine exceeds the low load region after warming up, the process proceeds to step S29.
 ≪ステップS29≫ステップS29においては、負荷に対応した変換制御信号が、吸気側VTC機構1Aの位相制御用油圧アクチュエータ2A、及び排気側VTC機構1Bの位相制御用油圧アクチュエータ2Bに出力される。また、VCR機構3の圧縮比制御アクチュエータ49にも変換制御信号が出力される。 << Step S29 >> In step S29, a conversion control signal corresponding to the load is output to the phase control hydraulic actuator 2A of the intake side VTC mechanism 1A and the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B. A conversion control signal is also output to the compression ratio control actuator 49 of the VCR mechanism 3.
 「(C)暖機後中荷時」の場合は、吸気バルブ4の開時期(IVO)は開時期(IVOm)に設定され、また、吸気バルブ4の閉時期(IVC)は閉時期(IVCm)に設定され、排気バルブ5の閉時期(EVC)は閉時期(EVCm)に設定される。更に、機械膨張比(εE)は機械圧縮比(εEmax)に設定される。 In the case of “(C) mid-load after warm-up”, the opening timing (IVO) of the intake valve 4 is set to the opening timing (IVOm), and the closing timing (IVC) of the intake valve 4 is set to the closing timing (IVCm). ) And the closing timing (EVC) of the exhaust valve 5 is set to the closing timing (EVCm). Further, the mechanical expansion ratio (εE) is set to the mechanical compression ratio (εEmax).
 また、「(D)暖機後高荷時」の場合は、吸気バルブ4の開時期(IVO)は開時期(IVOh)に設定され、また、吸気バルブ4の閉時期(IVC)は閉時期(IVCh)に設定され、排気バルブ5の閉時期(EVC)は閉時期(EVCh)に設定される。更に、機械膨張比(εE)は機械圧縮比(εEmin)に設定される。 In the case of “(D) high load after warm-up”, the opening timing (IVO) of the intake valve 4 is set to the opening timing (IVOh), and the closing timing (IVC) of the intake valve 4 is the closing timing. (IVCh) is set, and the closing timing (EVC) of the exhaust valve 5 is set to the closing timing (EVCh). Further, the mechanical expansion ratio (εE) is set to the mechanical compression ratio (εEmin).
 そして、変換制御信号を吸気側VTC機構1Aの位相制御用油圧アクチュエータ2A、及び排気側VTC機構1Bの位相制御用油圧アクチュエータ2Bに出力し、また、VCR機構3の圧縮比制御アクチュエータ49に変換制御信号を出力すると、エンドに抜けて次の起動タイミングを待つことになる。 Then, the conversion control signal is output to the phase control hydraulic actuator 2A of the intake side VTC mechanism 1A and the phase control hydraulic actuator 2B of the exhaust side VTC mechanism 1B, and the conversion control is performed to the compression ratio control actuator 49 of the VCR mechanism 3. When the signal is output, the process ends and waits for the next activation timing.
 以上説明した通り、本実施形態によれば、冷間始動時にVCR機構によって、小さな機械膨張比に設定することで、排気ガスの温度を上昇して排気ガス浄化用触媒を早期に暖機して、排気ガス浄化用触媒の転化効率を向上することができる。 As described above, according to the present embodiment, by setting a small mechanical expansion ratio by the VCR mechanism at the time of cold start, the exhaust gas purification catalyst is warmed up early by raising the temperature of the exhaust gas. In addition, the conversion efficiency of the exhaust gas purifying catalyst can be improved.
 また、吸気側VTC機構によって、吸気バルブの閉時期(IVC)を下死点(BDC)付近に制御することで、有効圧縮比を大きくして燃焼改善効果を高めることができる。その結果、排気ガス中の排気有害成分自体の発生量を低減でき、上述の排ガス浄化用触媒での排気有害成分の転化効率の向上と併せ、更にテールパイプから排出される排気ガス中の排気有害成分を低減できるようになる。 Further, by controlling the intake valve closing timing (IVC) near the bottom dead center (BDC) by the intake side VTC mechanism, the effective compression ratio can be increased and the combustion improvement effect can be enhanced. As a result, it is possible to reduce the amount of harmful exhaust components themselves in the exhaust gas, and in addition to improving the conversion efficiency of exhaust harmful components in the exhaust gas purification catalyst described above, the exhaust harmful components in the exhaust gas discharged from the tailpipe are further reduced. Components can be reduced.
 更に、吸気バルブの開時期(IVO)から、上死点(TDC)に至るまでの間、排気行程末期の未燃HCや未燃PM(粒子状物質)を多く含む燃焼ガスが、ピストンに押し上げられることにより吸気系に戻されて、吸気系を撹拌することにより燃焼改善効果を更に高めることが可能となる。これに加えて、未燃HCや未燃PMを含む燃焼ガスは次の吸気行程で再度筒内に導入されるので、未燃HCや未燃PMが再燃焼されることで、内燃機関の排気ガス中の排気有害成分を更に低減することができる。 Furthermore, the combustion gas containing a large amount of unburned HC and unburned PM (particulate matter) at the end of the exhaust stroke is pushed up to the piston from the opening timing (IVO) of the intake valve to the top dead center (TDC). By returning to the intake system, the combustion improvement effect can be further enhanced by stirring the intake system. In addition to this, the combustion gas containing unburned HC and unburned PM is reintroduced into the cylinder in the next intake stroke. Exhaust harmful components in the gas can be further reduced.
 次に本発明の第2の実施形態について説明する。第1の実施形態では、VCR機構による得られる機械圧縮比(εC)と機械膨張比(εE)は夫々等しいものであったが、本実施形態では機械圧縮比(εC)と機械膨張比(εE)を異なる値に制御できるVCR機構を用いている。 Next, a second embodiment of the present invention will be described. In the first embodiment, the mechanical compression ratio (εC) and the mechanical expansion ratio (εE) obtained by the VCR mechanism are equal, but in this embodiment, the mechanical compression ratio (εC) and the mechanical expansion ratio (εE) ) Is controlled using different values.
 以下、このVCR機構を説明の都合から「異種VCR機構」と表記する。尚、この異種VCR機構は、本出願人が出願した特開2016-17489号公報等に記載されているので、ここでは詳細な説明を省略する。また、本実施形態では、吸気側VTC機構、及び排気側VTC機構は、第1の実施形態と同様のものが用いられ、同様の動作が行われるものである。したがって、これらの説明も必要がない場合は省略する。 Hereinafter, this VCR mechanism is referred to as a “heterogeneous VCR mechanism” for convenience of explanation. The heterogeneous VCR mechanism is described in Japanese Patent Application Laid-Open No. 2016-17489 filed by the applicant of the present application, and therefore detailed description thereof is omitted here. In the present embodiment, the intake side VTC mechanism and the exhaust side VTC mechanism are the same as those in the first embodiment, and the same operation is performed. Therefore, when these explanations are not necessary, they are omitted.
 本実施形態になる異種VCR機構3による、機械膨張比(εE)と機械圧縮比(εC)との可変範囲を図6に示し、異種VCR機構3の機械膨張比(εE)と機械圧縮比(εC)の変化特性を図7に示している。 FIG. 6 shows a variable range of the mechanical expansion ratio (εE) and the mechanical compression ratio (εC) by the heterogeneous VCR mechanism 3 according to the present embodiment, and the mechanical expansion ratio (εE) and the mechanical compression ratio ( The change characteristic of εC) is shown in FIG.
 図6において、制御位置(A)では、最小の機械膨張比(εEmin)の「9.0」に対して、機械圧縮比は最大機械圧縮比(εCmax)の「10.5」に設定され、制御位置(B)では、最大の機械膨張比(εEmax)の「10.0」に対して、機械圧縮比は最小機械圧縮比(εCmin)の「10.0」と同じ値に設定されている。このように、機械膨張比(εE)と機械圧縮比(εC)は異なってに設定することができ、しかも、最小の機械膨張比(εEmin)~最大の機械膨張比(εEmax)、及び最小の機械圧縮比(εCmin)~最大の機械圧縮比(εCmax)の可変範囲で連続的に変更できる構成となっている。尚、この値は例示的なものであり、内燃機関の容量等によって適切な値が選択できる。 In FIG. 6, at the control position (A), the mechanical compression ratio is set to “10.5” of the maximum mechanical compression ratio (εCmax) with respect to “9.0” of the minimum mechanical expansion ratio (εEmin). In the control position (B), the mechanical compression ratio is set to the same value as “10.0” of the minimum mechanical compression ratio (εCmin) with respect to “10.0” of the maximum mechanical expansion ratio (εEmax). . Thus, the mechanical expansion ratio (εE) and the mechanical compression ratio (εC) can be set differently, and the minimum mechanical expansion ratio (εEmin) to the maximum mechanical expansion ratio (εEmax), and the minimum The configuration is such that it can be continuously changed within a variable range from the mechanical compression ratio (εCmin) to the maximum mechanical compression ratio (εCmax). This value is exemplary, and an appropriate value can be selected depending on the capacity of the internal combustion engine.
 したがって、図6からわかるように、第1の実施形態では、機械膨張比(εE)及び機械圧縮比(εC)は、「εEmin=εCmin」、「εEmax=εCmax」の関係であったが、本実施形態では、機械膨張比(εE)及び機械圧縮比(εC)は、「εEmin<εCmin」、「εEmax<εCmax」の関係となっている。また、「εEmax=εCmin」の関係となっている。 Therefore, as can be seen from FIG. 6, in the first embodiment, the mechanical expansion ratio (εE) and the mechanical compression ratio (εC) have a relationship of “εEmin = εCmin” and “εEmax = εCmax”. In the embodiment, the mechanical expansion ratio (εE) and the mechanical compression ratio (εC) have a relationship of “εEmin <εCmin” and “εEmax <εCmax”. Further, the relationship is “εEmax = εCmin”.
 そして、本実施形態では冷機始動時(制御位置(A))には、実施例1と同様に、機械膨張比(εE)は最小の機械膨張比(εEmin)に設定されるが、機械圧縮比(εC)は最大の機械圧縮比(εCmax)に設定されるようになっている。これにより、冷機始動時の始動性や排気有害成分の低減効果は、第1の実施形態に比べて向上することができる。 In this embodiment, at the time of cold start (control position (A)), the mechanical expansion ratio (εE) is set to the minimum mechanical expansion ratio (εEmin) as in the first embodiment. (εC) is set to the maximum mechanical compression ratio (εCmax). Thereby, the startability at the time of cold machine start-up and the reduction effect of exhaust harmful components can be improved as compared with the first embodiment.
 すなわち、吸気側VTC機構1Aによって吸気バルブ4の閉時期(IVCc)は、下死点(BDC)付近に制御されて有効圧縮比が大きくなっているが、これに加えて、異種VCR機構3によって機械圧縮比(εC)そのものが高く設定されているので、総合的な有効圧縮比を更に大きく設定できる。これによって、冷機始動時における燃焼改善効果を高めることができ、その結果、始動燃焼の安定性や、冷機始動時の排気有害成分の浄化性を更に高めることができる。 That is, the closing timing (IVCc) of the intake valve 4 is controlled near the bottom dead center (BDC) by the intake side VTC mechanism 1A, and the effective compression ratio is increased. Since the mechanical compression ratio (εC) itself is set high, the overall effective compression ratio can be set even larger. Thereby, the combustion improvement effect at the time of cold start can be enhanced, and as a result, the stability of the start combustion and the purification of exhaust harmful components at the cold start can be further enhanced.
 もちろん、第1の実施形態と同様に機械膨張比(εE)が最小の機械膨張比(εEmin)となっているので、排気ガスの温度が上昇して排気ガス浄化用触媒の暖機を促進できることは第1の実施形態と同様である。 Of course, since the mechanical expansion ratio (εE) is the minimum mechanical expansion ratio (εEmin) as in the first embodiment, it is possible to increase the temperature of the exhaust gas and promote the warm-up of the exhaust gas purification catalyst. Is the same as in the first embodiment.
 次に、吸気側VTC機構1A、排気側VTC機構1B、及び異種VCR機構3の制御動作を、内燃機関の停止時から全負荷に至るまで運転領域毎に説明する。図7は第2の実施形態になる可変動作システムの主要なパラメータである、吸気バルブ4の開時期(IVO)、排気バルブ5の閉時期(EVC)、吸気バルブ4の閉時期(IVC)、機械膨張比(εE)、機械圧縮比(εC)の制御特性を示したものである。尚、機械膨張比(εE)、機械圧縮比(εC)以外のパラメータは、第1の実施形態と同様である。 Next, control operations of the intake-side VTC mechanism 1A, the exhaust-side VTC mechanism 1B, and the heterogeneous VCR mechanism 3 will be described for each operation region from when the internal combustion engine is stopped until full load is reached. FIG. 7 shows the main parameters of the variable operation system according to the second embodiment, which are the intake valve 4 opening timing (IVO), the exhaust valve 5 closing timing (EVC), the intake valve 4 closing timing (IVC), The control characteristics of mechanical expansion ratio (εE) and mechanical compression ratio (εC) are shown. Parameters other than the mechanical expansion ratio (εE) and the mechanical compression ratio (εC) are the same as those in the first embodiment.
 まず、「(0)停止時」においては、吸気側VTC機構1A、排気側VTC機構1Bは機械的安定位置である上述のデフォルト位置に安定している。具体的には、吸気バルブの開閉時期(IVOc、IVCc)と、排気バルブの開閉時期(EVOc、EVCc)に略一致する位置へと移行しており、これは第1の実施形態と同様である。 First, when “(0) is stopped”, the intake-side VTC mechanism 1A and the exhaust-side VTC mechanism 1B are stable at the above-described default positions, which are mechanically stable positions. Specifically, the intake valve opening / closing timing (IVOc, IVCc) and the exhaust valve opening / closing timing (EVOc, EVCc) are shifted to a position that substantially coincides with this, which is the same as in the first embodiment. .
 ここで、異種VCR機構3の方も、第1の実施形態とは異なり、デフォルト位置(前記制御位置(A))に移行して行く。本実施形態の場合は、冷機始動時に有利なように、機械膨張比(εE)を最小の機械膨張比(εEmin)に設定するだけでなく、機械圧縮比(εC)を最大の機械圧縮比(εCmax)に設定している。 Here, unlike the first embodiment, the heterogeneous VCR mechanism 3 also moves to the default position (the control position (A)). In the case of this embodiment, not only is the mechanical expansion ratio (εE) set to the minimum mechanical expansion ratio (εEmin), but also the mechanical compression ratio (εC) is set to the maximum mechanical compression ratio ( εCmax).
 次に、「(A)冷機始動時」においては、吸気側VTC機構1Aによって吸気バルブ4の開閉時期(IVOc、IVCc)と、排気側VTC機構1Bによって排気バルブ5の開閉時期(EVOc、EVCc)とに制御される。これは第1の実施形態と同様である。 Next, in “(A) cold start”, the intake valve 4 is opened and closed (IVOc, IVCc) by the intake side VTC mechanism 1A, and the exhaust valve 5 is opened and closed (EVOc, EVCc) by the exhaust side VTC mechanism 1B. And controlled. This is the same as in the first embodiment.
 一方、異種VCR機構3の方は、前記制御位置(A)が継続され、最小の機械膨張比(εEmin)と最大の機械圧縮比(εCmax)に制御されている。ここで、機械圧縮比(εC)が最大の機械圧縮比(εCmax)に設定されているので、有効圧縮比を更に大きく設定できる。これによって、冷機始動時における燃焼改善効果を高めることができ、その結果、始動燃焼の安定性や、冷機始動時の排気有害成分の浄化性を更に高めることができる。 On the other hand, the control position (A) of the heterogeneous VCR mechanism 3 is continued and controlled to the minimum mechanical expansion ratio (εEmin) and the maximum mechanical compression ratio (εCmax). Here, since the mechanical compression ratio (εC) is set to the maximum mechanical compression ratio (εCmax), the effective compression ratio can be set larger. Thereby, the combustion improvement effect at the time of cold start can be enhanced, and as a result, the stability of the start combustion and the purification of exhaust harmful components at the cold start can be further enhanced.
 尚、本実施形態の異種VCR機構3について、固定機能を備える締結ピンによってデフォルト位置に固定する構成を採用すると、機関停止時の機械膨張比(εE)と機械圧縮比(εC)を冷機始動時の要求位置と一致させることができるので、始動時の最初から適切な機械膨張比(εE)と機械圧縮比(εC)を得ることができる。これによって、副次的であるが、異種VCR機構3の変換に必要とする油圧エネルギも少なくでき、異種VCR機構3に関しても油圧アクチュエ-タであっても良好な始動制御が可能になる。ちなみに、第1の実施形態のVCR機構3に関しても、同様に復帰用に付勢スプリングを設け、同様に固定機能を備える締結ピンによってデフォルト位置に固定する構成とすれば、同様の効果を得ることができる。 In addition, when the configuration in which the dissimilar VCR mechanism 3 of the present embodiment is fixed to the default position by a fastening pin having a fixing function, the mechanical expansion ratio (εE) and the mechanical compression ratio (εC) when the engine is stopped are set at the time of cold start. Therefore, it is possible to obtain appropriate mechanical expansion ratio (εE) and mechanical compression ratio (εC) from the beginning at the time of starting. As a result, although it is a secondary, the hydraulic energy required for the conversion of the heterogeneous VCR mechanism 3 can be reduced, and good start control can be performed even for the heterogeneous VCR mechanism 3 even if it is a hydraulic actuator. By the way, with respect to the VCR mechanism 3 of the first embodiment as well, the same effect can be obtained if a biasing spring is similarly provided for the return and is fixed to the default position by a fastening pin having a fixing function. Can do.
 次に、暖機が完了したアイドルを含む「(B)暖機後低負荷時」においては、図6の制御位置(B)に示すように、機械膨張比(εE)が、最小の機械膨張比(εEmin)から最大の機械膨張比(εEmax)に移行し、機械圧縮比(εC)が、最大の機械圧縮比(εCmax)から最小の機械圧縮比(εCmin)に移行する。ここで、「(B)暖機後低負荷時」(本実施形態ではアイドル時)においては、最大の機械膨張比(εEmax)と最小の機械圧縮比(εCmin)の値は等しく、例えば、「εEmax=εCmin=10.0」に設定されている。 Next, in “(B) at the time of low load after warm-up” including the idle when the warm-up is completed, as shown in the control position (B) of FIG. 6, the mechanical expansion ratio (εE) is the minimum mechanical expansion. The ratio (εEmin) shifts to the maximum mechanical expansion ratio (εEmax), and the mechanical compression ratio (εC) shifts from the maximum mechanical compression ratio (εCmax) to the minimum mechanical compression ratio (εCmin). Here, in “(B) low load after warm-up” (in the present embodiment, when idling), the maximum mechanical expansion ratio (εEmax) and the minimum mechanical compression ratio (εCmin) are equal. For example, “ εEmax = εCmin = 10.0 ”.
 更に、「(B)暖機後低負荷時」から負荷が上昇しても、「(C)暖機後中負荷時」、「(D)暖機後高負荷時」に示すように、最大の機械膨張比(εEmax)、最小の機械圧縮比(εCmin)が維持されて変化しないようになっている。つまり、暖機後は負荷の大きさによらず、平均的な(一般的な)機械圧縮比(εC)及び機械膨張比(εE)に維持される。これによって、負荷(トルク)の急変があった場合でも、これに追従して異種VCR機構3を高応答で変換させる必要がなく、大きな駆動エネルギを必要とする異種VCR機構3を変換させなくて済むので、変換遅れに起因する過渡性能の不安定化を回避することができる。 Furthermore, even if the load increases from “(B) Low load after warm-up”, as shown in “(C) Medium load after warm-up” and “(D) High load after warm-up” The mechanical expansion ratio (εEmax) and the minimum mechanical compression ratio (εCmin) are maintained so as not to change. That is, after warm-up, the average (general) mechanical compression ratio (εC) and mechanical expansion ratio (εE) are maintained regardless of the magnitude of the load. As a result, even if there is a sudden change in load (torque), it is not necessary to convert the heterogeneous VCR mechanism 3 with high response following this, and it is not necessary to convert the heterogeneous VCR mechanism 3 that requires large drive energy. Therefore, instability of transient performance due to conversion delay can be avoided.
 尚、暖機後の低負荷から高負荷にかけての吸気側VTC機構1Aによる吸気バルブの開閉時期(IVO、IVC)、及び排気側VTC機構1Bによる排気バルブの開閉時期(EVO、EIVC)の変換特性は、第1の実施形態と同様である。したがって、アイドルを含む「(B)暖機後低負荷」では、バルブオーバーラップ量が「略0」に設定され、「(C)暖機後中負荷」では、ネガティブバルブオーバーラップ(NVOLm)に設定され、「(D)暖機後高負荷」では、ポジティブバルブオーバーラップ(PVOLh)に設定される。これらの制御による効果は、第1の実施形態と同様であるので説明は省略する。 The conversion characteristics of the intake valve opening / closing timing (IVO, IVC) by the intake-side VTC mechanism 1A and the exhaust valve opening / closing timing (EVO, EIVC) by the exhaust-side VTC mechanism 1B from the low load to the high load after warm-up. Is the same as in the first embodiment. Accordingly, the valve overlap amount is set to “substantially 0” for “(B) low load after warm-up” including idle, and negative valve overlap (NVOLm) is set for “(C) medium load after warm-up”. In “(D) high load after warm-up”, the positive valve overlap (PVOLh) is set. Since the effects of these controls are the same as in the first embodiment, description thereof is omitted.
 以上の説明からわかる通り、本発明におけるVCR機構は、機械圧縮比と機械膨張比が常に同じ値で制御される形式でも良いし、機械圧縮比と機械膨張比が異なった値に制御できる形式でも良いものである。また、吸気側VTC機構、及び排気側VTC機構は、油圧式の位相可変型でも良いし、電動式の可変位相型であっても良いものである。更には、リフトを制御できる機構を併設したものを使用しても良いものである。 As can be seen from the above description, the VCR mechanism in the present invention may be a type in which the mechanical compression ratio and the mechanical expansion ratio are always controlled with the same value, or a type in which the mechanical compression ratio and the mechanical expansion ratio can be controlled to different values. It ’s good. The intake-side VTC mechanism and the exhaust-side VTC mechanism may be a hydraulic phase variable type or an electric variable phase type. Furthermore, a mechanism provided with a mechanism capable of controlling the lift may be used.
 以上述べた通り、本発明は、少なくとも4サイクル方式の内燃機関で機械圧縮比及び機械膨張比を制御する可変圧縮比機構、及び吸気バルブの開閉時期の位相を制御する吸気側可変動弁機構を備え、冷機始動時において、可変圧縮比機構によって、ピストン位置を機械膨張比が略最小となる位置に設定し、また、吸気側可変動弁機構によって、暖機後低負荷時に比べて、吸気バルブの閉時期を下死点付近に設定すると共に、吸気バルブの開時期を上死点前となる位置に設定する、構成を採用したものである。 As described above, the present invention includes a variable compression ratio mechanism that controls the mechanical compression ratio and the mechanical expansion ratio in an at least four-cycle internal combustion engine, and an intake side variable valve mechanism that controls the phase of the opening / closing timing of the intake valve. At the time of cold start, the piston position is set to a position where the mechanical expansion ratio becomes substantially minimum by the variable compression ratio mechanism, and the intake valve is set by the intake side variable valve mechanism compared with the low load after warm-up. Is set near the bottom dead center, and the opening timing of the intake valve is set to a position before the top dead center.
 これによれば、冷機始動時において機械膨張比が小さくなることによる排気ガスの温度の上昇が図れ、早期に排気ガス浄化用触媒の暖機を行なって排気有害成分転化性能を向上できるので、排気ガス中の排気有害成分の排出量を低減できる。 According to this, the exhaust gas temperature can be increased by reducing the mechanical expansion ratio at the time of cold start, and the exhaust gas purification catalyst can be warmed up early to improve the exhaust gas harmful component conversion performance. It is possible to reduce emissions of harmful exhaust components in gas.
 また、これに伴って吸気バルブの閉時期が下死点に近いことから有効圧縮比の向上が図れ、燃焼改善効果を高めることができる。その結果、排気ガス中の排気有害成分自体の発生量を低減でき、上述の排ガス浄化用触媒での排気有害成分の転化率の向上と併せ、更にテールパイプから排出される排気ガス中の排気有害成分を低減できるようになる。 Also, since the closing timing of the intake valve is close to the bottom dead center, the effective compression ratio can be improved and the combustion improvement effect can be enhanced. As a result, the amount of harmful exhaust components themselves in the exhaust gas can be reduced. In addition to improving the conversion rate of harmful exhaust components in the exhaust gas purification catalyst described above, exhaust harmful components in the exhaust gas discharged from the tailpipe are further reduced. Components can be reduced.
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Moreover, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

Claims (12)

  1.  少なくとも、4サイクル方式の内燃機関のピストンの位置を変更して機械圧縮比及び機械膨張比を制御する可変圧縮比機構、及び吸気バルブの開閉時期の位相を制御する吸気側可変動弁機構、及び前記可変圧縮比機構と前記吸気側可変動弁機構を制御する制御手段を備え、冷機始動時においては、
     前記可変圧縮比機構によって、前記ピストンの位置を機械膨張比が略最小となる位置に設定し、
     また、前記吸気側可変動弁機構によって、暖機後低負荷時に比べて、前記吸気バルブの閉時期(IVC)を下死点(BDC)付近に設定すると共に、前記吸気バルブの開時期(IVO)を上死点(TDC)前の進角側となる位置(以下、吸気バルブ始動位置と表記する)に設定することを特徴とする内燃機関の可変動作システム。
    A variable compression ratio mechanism that controls the mechanical compression ratio and the mechanical expansion ratio by changing the position of the piston of at least a four-cycle internal combustion engine; and an intake side variable valve mechanism that controls the phase of the opening and closing timing of the intake valve; Control means for controlling the variable compression ratio mechanism and the intake side variable valve mechanism, and at the time of cold start,
    By the variable compression ratio mechanism, the position of the piston is set to a position where the mechanical expansion ratio is substantially minimum,
    Further, the intake side variable valve mechanism sets the closing timing (IVC) of the intake valve near the bottom dead center (BDC) and the opening timing (IVO) of the intake valve as compared with the low load after warm-up. ) Is set to a position on the advance side before top dead center (TDC) (hereinafter referred to as an intake valve start position).
  2.  請求項1に記載の内燃機関の可変動作システムにおいて、
     前記排気バルブの開閉時期の位相を制御する排気側可変動弁機構を有し、また前記排気側可変動弁機構は前記制御手段によって制御されると共に、冷機始動時においては、
     前記排気側可変動弁機構によって、前記排気バルブの閉時期(EVC)を予め定めた最進角位置より所定角だけ遅角させ、上死点(TDC)を越えて遅角した位置(以下、排気バルブ始動位置と表記する)に制御することを特徴とする内燃機関の可変動作システム。
    The internal combustion engine variable operation system according to claim 1,
    It has an exhaust side variable valve mechanism that controls the phase of the opening and closing timing of the exhaust valve, and the exhaust side variable valve mechanism is controlled by the control means, and at the time of cold start,
    By the exhaust side variable valve mechanism, the closing timing (EVC) of the exhaust valve is retarded by a predetermined angle from a predetermined most advanced angle position, and a position retarded beyond the top dead center (TDC) (hereafter, A variable operation system for an internal combustion engine that is controlled to an exhaust valve start position).
  3.  請求項2に記載の内燃機関の可変動作システムにおいて、
     前記可変圧縮比機構の機械膨張比が略最小となる位置は、前記ピストンの圧縮上死点の位置が、前記可変圧縮比機構の可変範囲における最高位置よりも低い位置であることを特徴とする内燃機関の可変動作システム。
    The variable operation system for an internal combustion engine according to claim 2,
    The position at which the mechanical expansion ratio of the variable compression ratio mechanism is substantially minimum is such that the position of the compression top dead center of the piston is lower than the highest position in the variable range of the variable compression ratio mechanism. Variable operating system for internal combustion engines.
  4.  請求項3に記載の内燃機関の可変動作システムにおいて、
     前記可変圧縮比機構は、冷機始動時における機械圧縮比と機械膨張比を同じ値に設定するか、或いは冷機始動時における機械圧縮比を機械膨張比より大きな値に設定することを特徴とする内燃機関の可変動作システム。
    The variable operation system for an internal combustion engine according to claim 3,
    The variable compression ratio mechanism is characterized in that the mechanical compression ratio and the mechanical expansion ratio at the time of cold start are set to the same value, or the mechanical compression ratio at the time of the cold start is set to a value larger than the mechanical expansion ratio. Variable operating system of the engine.
  5.  請求項2に記載の内燃機関の可変動作システムにおいて、
     前記内燃機関を停止する場合に前記制御手段は、前記可変圧縮比機構、前記吸気側可変動弁機構、及び排気動弁機構への変換制御信号を遮断し、
     前記変換制御信号が遮断されると前記可変圧縮比機構は、停止される時の機械膨張比を維持するように前記ピストンの位置を設定し、
     前記変換制御信号が遮断されると前記吸気側可変動弁機構は、前記吸気バルブの開閉時期を前記吸気バルブ始動位置の付近に設定し、
     前記変換制御信号が遮断されると前記排気側可変動弁機構は、前記排気バルブの開閉時期を前記排気バルブ始動位置の付近に設定することを特徴とする内燃機関の可変動作システム。
    The variable operation system for an internal combustion engine according to claim 2,
    When stopping the internal combustion engine, the control means shuts off the conversion control signal to the variable compression ratio mechanism, the intake side variable valve mechanism, and the exhaust valve mechanism,
    When the conversion control signal is interrupted, the variable compression ratio mechanism sets the position of the piston so as to maintain the mechanical expansion ratio when stopped.
    When the conversion control signal is interrupted, the intake side variable valve mechanism sets the opening / closing timing of the intake valve in the vicinity of the intake valve start position,
    When the conversion control signal is cut off, the exhaust side variable valve mechanism sets the opening / closing timing of the exhaust valve in the vicinity of the exhaust valve starting position.
  6.  請求項5に記載の内燃機関の可変動作システムにおいて、
     前記可変圧縮比機構、前記吸気側可変動弁機構、及び前記排気側可変動弁機構は夫々の位置を機械的な固定機能によって固定されることを特徴とする内燃機関の可変動作システム。
    The variable operation system for an internal combustion engine according to claim 5,
    A variable operation system for an internal combustion engine, wherein the variable compression ratio mechanism, the intake side variable valve mechanism, and the exhaust side variable valve mechanism are fixed at positions by a mechanical fixing function.
  7.  請求項1に記載の内燃機関の可変動作システムにおいて、
     冷機始動後に前記内燃機関の温度が所定温度まで上昇した場合は、
     前記可変圧縮比機構は、機械膨張比が略最小となる位置から機械膨張比が更に大きくなる位置に前記ピストンの位置を変更し、
     前記吸気側可変動弁機構は、前記吸気バルブの閉時期(IVC)を、冷機始動時に比べて下死点(BDC)から離れる遅角側に移動させることを特徴とする内燃機関の可変動作システム。
    The internal combustion engine variable operation system according to claim 1,
    When the temperature of the internal combustion engine rises to a predetermined temperature after the cold start,
    The variable compression ratio mechanism changes the position of the piston from a position where the mechanical expansion ratio is substantially minimum to a position where the mechanical expansion ratio is further increased,
    The intake-side variable valve mechanism moves the closing timing (IVC) of the intake valve to a retard side that is farther from the bottom dead center (BDC) than when the cold engine is started. .
  8.  4サイクル方式の内燃機関のピストンの位置を変更して機械圧縮比及び機械膨張比を制御する可変圧縮比機構と、吸気バルブの開閉時期の位相を制御する吸気側可変動弁機構と、前記可変圧縮比機構と前記吸気側可変動弁機構を制御するための制御手段と、を備えた内燃機関の可変動作システムの制御装置であって、冷機始動時においては、
     前記制御手段は、
     前記ピストンの位置を機械膨張比の可変範囲の最大値より小さい値となる位置に設定するように前記可変圧縮比機構を制御し、
     また、暖機後低負荷状態に比べて、前記吸気バルブの閉時期(IVC)を下死点(BDC)付近に設定すると共に、前記吸気バルブの開時期(IVO)を上死点(TDC)前の進角側となる位置に設定するように前記吸気側可変動弁機構を制御することを特徴とする内燃機関の可変動作システムの制御装置。
    A variable compression ratio mechanism that controls the mechanical compression ratio and the mechanical expansion ratio by changing the position of a piston of a four-cycle internal combustion engine, an intake side variable valve mechanism that controls the phase of the opening and closing timing of the intake valve, and the variable A control device for a variable operation system of an internal combustion engine comprising a compression ratio mechanism and a control means for controlling the intake side variable valve mechanism, and at the time of cold start,
    The control means includes
    Controlling the variable compression ratio mechanism to set the position of the piston to a position that is smaller than the maximum value of the variable range of the mechanical expansion ratio;
    Further, the intake valve closing timing (IVC) is set near the bottom dead center (BDC) and the intake valve opening timing (IVO) is set to the top dead center (TDC) compared to the low load state after warm-up. A control apparatus for a variable operation system of an internal combustion engine, wherein the intake side variable valve mechanism is controlled so as to be set to a position that is a front advance side.
  9.  請求項8に記載の内燃機関の可変動作システムの制御装置において、
     冷機始動後に前記内燃機関の温度が所定温度まで上昇した後の暖機後低負荷状態においては、
     前記制御手段は、
     冷機始動時の機械膨張比となる位置から機械膨張比が更に大きくなる位置に前記ピストンの位置を変更するように前記可変圧縮比機構を制御し、
     また、前記吸気バルブの閉時期(IVC)を、冷機始動時に比べて下死点(BDC)から離れる遅角側に移動させるように前記吸気側可変動弁機構を制御することを特徴とする内燃機関の可変動作システムの制御装置。
    The control device for a variable operation system for an internal combustion engine according to claim 8,
    In a low load state after warm-up after the temperature of the internal combustion engine rises to a predetermined temperature after cold start,
    The control means includes
    Controlling the variable compression ratio mechanism so as to change the position of the piston from a position that becomes a mechanical expansion ratio at the time of cold start to a position where the mechanical expansion ratio is further increased;
    Further, the intake side variable valve mechanism is controlled so as to move the closing timing (IVC) of the intake valve to a retarded side that is farther from the bottom dead center (BDC) than when the cold engine is started. Control device for variable operation system of engine.
  10.  請求項9に記載の内燃機関の可変動作システムの制御装置において、
     前記内燃機関の温度が所定温度まで上昇した後の暖機後全負荷状態においては、
     前記制御手段は、
     前記暖機後低負荷状態の機械膨張比となる位置から機械膨張比が小さくなる位置に前記ピストンの位置を変更するように前記可変圧縮比機構を制御し、
     また、前記吸気バルブの閉時期(IVC)を、前記暖機後低負荷状態に比べて下死点(BDC)に近づく進角側に移動させるように前記吸気側可変動弁機構を制御することを特徴とする内燃機関の可変動作システムの制御装置。
    The control device for a variable operation system for an internal combustion engine according to claim 9,
    In the full load state after warming up after the temperature of the internal combustion engine rises to a predetermined temperature,
    The control means includes
    Controlling the variable compression ratio mechanism so as to change the position of the piston from a position where the mechanical expansion ratio in the low load state after warm-up becomes a position where the mechanical expansion ratio becomes small;
    Further, the intake side variable valve mechanism is controlled so that the closing timing (IVC) of the intake valve is moved to the advance side closer to the bottom dead center (BDC) than in the low load state after warm-up. A control device for a variable operation system of an internal combustion engine.
  11.  請求項8に記載の内燃機関の可変動作システムの制御装置において、
     前記暖機後低負荷状態は、暖機後のアイドル状態であることを特徴とする内燃機関の可変動作システムの制御装置。
    The control device for a variable operation system for an internal combustion engine according to claim 8,
    The control apparatus for a variable operation system of an internal combustion engine, wherein the low load state after warm-up is an idle state after warm-up.
  12.  請求項10に記載の内燃機関の可変動作システムの制御装置において、
     前記暖機後全負荷状態は、アクセル開度が全開状態であることを特徴とする内燃機関の可変動作システムの制御装置。
    The control apparatus for a variable operation system for an internal combustion engine according to claim 10,
    The control apparatus for a variable operation system for an internal combustion engine, wherein the full load state after warm-up is an accelerator opening degree in a fully open state.
PCT/JP2018/014656 2017-05-18 2018-04-06 Internal combustion engine variable operation system and control device therefor WO2018211853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-098584 2017-05-18
JP2017098584A JP2018193929A (en) 2017-05-18 2017-05-18 Variable operation system for internal combustion engine and control method for the same

Publications (1)

Publication Number Publication Date
WO2018211853A1 true WO2018211853A1 (en) 2018-11-22

Family

ID=64274168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014656 WO2018211853A1 (en) 2017-05-18 2018-04-06 Internal combustion engine variable operation system and control device therefor

Country Status (2)

Country Link
JP (1) JP2018193929A (en)
WO (1) WO2018211853A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106609A (en) * 2006-10-23 2008-05-08 Hitachi Ltd Start control device of internal combustion engine
JP2010168939A (en) * 2009-01-21 2010-08-05 Toyota Motor Corp High expansion ratio internal combustion engine
JP2011220349A (en) * 2011-08-11 2011-11-04 Hitachi Automotive Systems Ltd Variable valve system and variable valve device of internal combustion engine
JP2016017489A (en) * 2014-07-10 2016-02-01 日立オートモティブシステムズ株式会社 Internal combustion engine control unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106609A (en) * 2006-10-23 2008-05-08 Hitachi Ltd Start control device of internal combustion engine
JP2010168939A (en) * 2009-01-21 2010-08-05 Toyota Motor Corp High expansion ratio internal combustion engine
JP2011220349A (en) * 2011-08-11 2011-11-04 Hitachi Automotive Systems Ltd Variable valve system and variable valve device of internal combustion engine
JP2016017489A (en) * 2014-07-10 2016-02-01 日立オートモティブシステムズ株式会社 Internal combustion engine control unit

Also Published As

Publication number Publication date
JP2018193929A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
US7451739B2 (en) Ignition timing control system and method for internal combustion engine, and engine control unit
JP4957611B2 (en) Control method for internal combustion engine
US7509932B2 (en) Control apparatus for controlling internal combustion engines
JP4124224B2 (en) Control device for four-cycle premixed compression self-ignition internal combustion engine
JP6320882B2 (en) Variable combustion system for internal combustion engine
US7444999B2 (en) Control system and method for internal combustion engine
US20200232325A1 (en) Variable operation system for internal combustion engine, and control device therefor
JP5182377B2 (en) Control device for internal combustion engine
JP2007239555A (en) Internal combustion engine
JP5104474B2 (en) Internal combustion engine control method and apparatus
JP6666232B2 (en) Variable system for internal combustion engine and control method thereof
JP4419800B2 (en) Engine starter
WO2018211853A1 (en) Internal combustion engine variable operation system and control device therefor
JP2007162664A (en) Valve operation angle variable control device for internal combustion engine
JP5092956B2 (en) Method for controlling internal combustion engine for vehicle and internal combustion engine system
WO2018159298A1 (en) Variable valve system for internal combustion engine and variable valve mechanism control device
JPWO2019003326A1 (en) Control method and control device for internal combustion engine
JP5169682B2 (en) Method for controlling internal combustion engine and internal combustion engine system
WO2020009006A1 (en) Variable valve system for internal combustion engine, and control device for variable valve system for internal combustion engine
JP5012565B2 (en) Internal combustion engine control method and internal combustion engine system
WO2020008941A1 (en) Internal combustion engine control system and control device for same
JP2019044754A (en) Variable operation system of internal combustion engine and its control device
JP5136332B2 (en) Method for controlling internal combustion engine and internal combustion engine system
JP5104473B2 (en) Internal combustion engine control method and apparatus
JP2017180170A (en) Exhaust device of engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802077

Country of ref document: EP

Kind code of ref document: A1