JP2010279853A - Apparatus and method of manufacturing solid lubricant coated metal sheet - Google Patents

Apparatus and method of manufacturing solid lubricant coated metal sheet Download PDF

Info

Publication number
JP2010279853A
JP2010279853A JP2009132992A JP2009132992A JP2010279853A JP 2010279853 A JP2010279853 A JP 2010279853A JP 2009132992 A JP2009132992 A JP 2009132992A JP 2009132992 A JP2009132992 A JP 2009132992A JP 2010279853 A JP2010279853 A JP 2010279853A
Authority
JP
Japan
Prior art keywords
solid lubricant
lubricant
metal plate
head
coated metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009132992A
Other languages
Japanese (ja)
Other versions
JP5449868B2 (en
Inventor
Naoya Fujiwara
直也 藤原
Takashi Oyama
高志 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009132992A priority Critical patent/JP5449868B2/en
Publication of JP2010279853A publication Critical patent/JP2010279853A/en
Application granted granted Critical
Publication of JP5449868B2 publication Critical patent/JP5449868B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and method of manufacturing a solid lubricant coated metallic plate in which the clogging of a coating nozzle caused by the solidification of a solid lubricant is fully eliminated to enhance a working efficiency, the distribution of the solid lubricant applied onto the metal sheet is uniformed to improve the quality of the solid lubricant coated metal sheet. <P>SOLUTION: The manufacturing apparatus for manufacturing the solid lubricant coated metal sheet by an electrostatic coating method includes: a coating nozzle 2 having a head 5 composed of an electrical insulating medium, an ejecting path 6 formed in the head 5 to eject the solid lubricant L, a lubricant supply pipe 7 communicating with the ejecting path 6 to supply the solid lubricant L and composed of the electrical insulating medium, and an electrode 8 impressing negative charge to the solid lubricant L in the ejecting path 6; a lubricant supply path 3 communicating with the lubricant supply pipe 7 to supply the solid lubricant L; and a heater 4 arranged between the coating nozzle 2 and a metal sheet 10 to be in parallel to the coating nozzle 2, and also arranged provided in a position where the short circuit with the coating nozzle 2 due to the discharge does not occur. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、固体潤滑剤で被覆された固体潤滑剤被覆金属板を製造するための製造装置および製造方法に関するものであり、特に、静電塗布法により固体潤滑剤を金属板に被覆する製造装置および製造方法に関する。   The present invention relates to a manufacturing apparatus and a manufacturing method for manufacturing a solid lubricant-coated metal plate coated with a solid lubricant, and in particular, a manufacturing apparatus for coating a metal plate with a solid lubricant by an electrostatic coating method. And a manufacturing method.

固体潤滑剤被覆金属板は、熱延鋼板、冷延鋼板などの金属板の片面もしくは両面に、室温で固体の潤滑剤を被覆したもので、金属板に優れたプレス成形性(潤滑性)が付与されたものである。   Solid lubricant coated metal plates are made by coating one or both surfaces of a metal plate such as a hot-rolled steel plate or a cold-rolled steel plate with a solid lubricant at room temperature. The metal plate has excellent press formability (lubricity). It has been granted.

一般に金属板のプレス加工は、自動車や家電製品、事務機器等の工業製品から、飲料缶、流し台や浴槽などの日用品の製造に至るまで、非常に広い分野で利用されており、塑性加工の中で重要な位置を占めている。通常、プレス加工が施される際は、潤滑不良による金型や金属板表面の傷つきを防止する目的で、プレス油(潤滑油)を塗布して成形性(潤滑性・加工性)を高めることが行われている。   In general, press working of metal plates is used in a very wide range of fields, from industrial products such as automobiles, home appliances, and office equipment to manufacturing daily necessaries such as beverage cans, sinks, and bathtubs. It occupies an important position. Normally, when press working is performed, press oil (lubricating oil) is applied to improve moldability (lubricity and workability) in order to prevent scratches on the mold and metal plate surface due to poor lubrication. Has been done.

しかし、近年では、例えば、自動車軽量化ニーズなどに応えるため、熱延鋼板、冷延鋼板などに比べプレス加工の難しい、合金化溶融亜鉛めっき鋼板、高張力(ハイテン)鋼板、めっき鋼板、ステンレス鋼板、アルミニウム板、アルミニウム合金板、チタン板、銅板などを適用する事例が増えており、こうした難加工材の成形性向上に対するニーズが増大している。   However, in recent years, for example, in order to meet the needs for reducing the weight of automobiles, it is difficult to press compared to hot-rolled steel sheets, cold-rolled steel sheets, etc. Examples of applying aluminum plates, aluminum alloy plates, titanium plates, copper plates, and the like are increasing, and the need for improving the formability of such difficult-to-process materials is increasing.

そこで、優れた成形性が期待できる潤滑性に優れた固体潤滑剤被覆層を予め金属板表面に形成する方法が知られている。これは金属板供給元である素材メーカーにおいて、予め被覆層を金属板表面に形成(所謂プレコート)した後に供給するものである。固体潤滑剤は、塑性加工時において被加工物と金型の界面に存在し、その摩擦係数を低減するとともに、焼き付きなどを防止することにより成形性を向上させる役割を担っており、通常の液体油などに比べ、より過酷な加工条件の下でも加工界面に存在・残留して潤滑機能を発現し続けるため、高い加工性が得られる特徴を有している。しかしながら、この固体潤滑剤は、文字通り室温では固体であるため、金属板にこれを塗布する場合、従来の液体油のような取り扱いをすることができないという問題がある。   Therefore, a method is known in which a solid lubricant coating layer excellent in lubricity that can be expected to have excellent formability is previously formed on the surface of a metal plate. In this case, a material manufacturer that is a metal plate supplier supplies a coating layer after forming a coating layer on the surface of the metal plate in advance (so-called precoat). Solid lubricant is present at the interface between the workpiece and the mold during plastic processing, and plays a role in improving the formability by reducing its friction coefficient and preventing seizure. Compared to oil, etc., it is present and remains at the machining interface even under severer machining conditions and continues to exhibit a lubricating function. However, since this solid lubricant is literally solid at room temperature, there is a problem that when it is applied to a metal plate, it cannot be handled like conventional liquid oil.

固体潤滑剤の金属板への塗布方法として、例えば溶剤に固体潤滑剤を溶解させた塗布液を作製したのち、スプレー塗装やロールコータなどで金属板に塗布後、加熱して溶媒を除去し冷却して、固体潤滑剤被覆金属板を得る方法(塗装法)が知られている。この塗装法では、溶媒除去のために金属板を加熱する必要があり、加熱炉の設置のため、広い敷地や高額の初期投資費用が必要となるだけでなく、その運転に際しランニングコストが嵩むほか、大量のエネルギー消費やVOC発生など環境負荷が大きくなる問題があった。   As a method of applying a solid lubricant to a metal plate, for example, after preparing a coating solution in which the solid lubricant is dissolved in a solvent, apply the spray to the metal plate with a spray coater or roll coater, and then heat to remove the solvent and cool it. A method (coating method) for obtaining a solid lubricant-coated metal plate is known. In this painting method, it is necessary to heat the metal plate to remove the solvent, and the installation of the heating furnace requires not only a large site and high initial investment cost, but also increases the running cost for the operation. There has been a problem that the environmental load becomes large, such as a large amount of energy consumption and generation of VOC.

また、他の方法として、固体潤滑剤を加熱溶融させて液状化し、この状態のまま静電塗布法を適用して金属板に塗布する方法(静電塗布法)がある。この静電塗布法によれば、溶融した固体潤滑剤は金属板に接触すると直ちに冷却固化し、固体潤滑剤被覆層を形成する特徴がある。このため、塗装法では必須であった溶媒除去のための加熱炉が不要となるため、設備設置スペースや初期投資額、ランニングコストなどのコストダウンが図れるほか、使用エネルギーやVOC発生量を大幅に削減でき、環境負荷を軽減できる利点がある。   As another method, there is a method (electrostatic coating method) in which a solid lubricant is heated and melted to be liquefied and applied to a metal plate by applying an electrostatic coating method in this state. According to this electrostatic coating method, the molten solid lubricant is cooled and solidified as soon as it comes into contact with the metal plate, thereby forming a solid lubricant coating layer. This eliminates the need for a heating furnace to remove the solvent, which was essential in the painting method. This reduces the installation space, initial investment, and running costs, as well as significantly reduces the energy used and the amount of VOC generated. There is an advantage that it can be reduced and the environmental load can be reduced.

前記したように、金属板への固体潤滑剤被覆層の形成において、静電塗布法は塗装法に比べ、幾つかの優位点を有している。しかしながら、静電塗布法を適用するに際しては、固体潤滑剤を加熱溶融させて液体状態にて供給する必要がある。このため固体潤滑剤用の静電塗布装置は、潤滑剤タンクや潤滑剤供給管など固体潤滑剤の噴出流路を、その融解ピーク温度以上の温度に保持しておく必要がある。   As described above, the electrostatic coating method has several advantages over the coating method in forming the solid lubricant coating layer on the metal plate. However, when applying the electrostatic coating method, it is necessary to heat and melt the solid lubricant and supply it in a liquid state. For this reason, it is necessary for the electrostatic coating apparatus for a solid lubricant to keep the solid lubricant ejection flow path such as the lubricant tank and the lubricant supply pipe at a temperature equal to or higher than the melting peak temperature.

例えば、固体潤滑剤の温度を保持する方法として、特許文献1には、噴出ヘッドから噴出される直前の固体潤滑剤を加熱する方法が記載されている。また、特許文献2には、ノズルヘッド(噴出ヘッド)の外側を熱交換器用パイプで被覆して潤滑剤を加熱する方法、ノズルヘッド(噴出ヘッド)内に熱風を導入して固体潤滑剤を加熱する方法が記載されている。さらに、特許文献3には、熱交換器により加熱した空気で帯電したオイルミスト(固体潤滑剤)を静電塗油装置内に搬送せしめる方法が記載されている。そして、静電塗油装置の周囲に覆いを設け、その内部に熱風などを送り込んで保温することで固体潤滑剤の凝固を防止する方法も考えられる。   For example, as a method of maintaining the temperature of the solid lubricant, Patent Document 1 describes a method of heating the solid lubricant immediately before being ejected from the ejection head. Patent Document 2 discloses a method of heating the lubricant by covering the outside of the nozzle head (jet head) with a heat exchanger pipe, and heating the solid lubricant by introducing hot air into the nozzle head (jet head). How to do is described. Furthermore, Patent Document 3 describes a method of transporting oil mist (solid lubricant) charged with air heated by a heat exchanger into an electrostatic oil coating apparatus. And the method of preventing coagulation | solidification of a solid lubricant by providing a cover around the electrostatic oiling apparatus, sending hot air etc. in the inside, and keeping heat is also considered.

実開平05−76544号公報Japanese Utility Model Publication No. 05-76544 特開2006−150217号公報JP 2006-150217 A 特開2009−34594号公報JP 2009-34594 A

しかしながら、特許文献1に記載の方法では、噴出量(金属板への塗布量)が多い場合は固体潤滑剤の温度の維持が比較的容易であるが、塗布量が少ない場合には噴出ヘッドに固体潤滑剤を供給する際の放熱の影響を無視できず、固体潤滑剤の温度が低下してしまい、噴出ヘッド内の潤滑剤供給管の途中で固体潤滑剤が凝固する。その結果、潤滑剤供給管が閉塞し、作業効率が低下するという問題があった。   However, in the method described in Patent Document 1, it is relatively easy to maintain the temperature of the solid lubricant when the ejection amount (application amount to the metal plate) is large. The influence of heat dissipation when supplying the solid lubricant cannot be ignored, the temperature of the solid lubricant decreases, and the solid lubricant solidifies in the middle of the lubricant supply pipe in the ejection head. As a result, there is a problem that the lubricant supply pipe is blocked and the working efficiency is lowered.

また、特許文献2に記載の方法では、以下のような問題があった。静電塗布に際しては、ノズルヘッド内の電極によって固体潤滑剤に高電圧を印加する。そのため、熱交換器用パイプでノズルヘッドを被覆する方法では、電極と熱交換器用パイプの距離が近接していると(100mm未満)、電極と熱交換器用パイプとの間で放電による短絡が生じ、固体潤滑剤の静電霧化が停止する問題がある。また、熱風を導入する方法では、ノズルヘッドの先端部分は熱風導入部から離れているうえ、外気に晒されるので、固体潤滑剤の温度が融解ピーク温度以下の温度に低下しやすく、固体潤滑剤が凝固してノズルヘッド先端部に蓄積する。その結果、ノズルヘッドが閉塞し、作業効率が低下する。   Further, the method described in Patent Document 2 has the following problems. In electrostatic coating, a high voltage is applied to the solid lubricant by an electrode in the nozzle head. Therefore, in the method of covering the nozzle head with the heat exchanger pipe, if the distance between the electrode and the heat exchanger pipe is close (less than 100 mm), a short circuit occurs between the electrode and the heat exchanger pipe, There is a problem that electrostatic atomization of the solid lubricant stops. Further, in the method of introducing hot air, the tip portion of the nozzle head is separated from the hot air introducing portion and exposed to the outside air, so that the temperature of the solid lubricant is likely to drop to a temperature below the melting peak temperature, and the solid lubricant Solidifies and accumulates at the tip of the nozzle head. As a result, the nozzle head is blocked and work efficiency is reduced.

さらに、特許文献3に記載の方法では、空気の流れが顕著に発生するため、その影響を受けて、ミスト化された固体潤滑剤の塗布量にはらつきが生じる。その結果、金属板に塗布される固体潤滑剤の分布が均質でなくなり、固体潤滑剤被覆金属板の品質が低下するという問題があった。   Furthermore, in the method described in Patent Document 3, since the air flow is remarkably generated, the influence of the air flow causes variation in the amount of applied solid lubricant. As a result, there is a problem that the distribution of the solid lubricant applied to the metal plate is not uniform, and the quality of the solid lubricant-coated metal plate is deteriorated.

そこで、本発明は、このような問題を解決すべく創案されたもので、その目的は、固体潤滑剤の凝固に起因した塗布ノズルの閉塞を一掃することができ、作業効率を向上できると共に、金属板へ塗布される固体潤滑剤の分布を均質にでき、固体潤滑剤被覆金属板の品質を向上することができる固体潤滑剤被覆金属板の製造装置および製造方法を提供することにある。   Therefore, the present invention was devised to solve such a problem, the purpose of which can wipe out the blockage of the coating nozzle due to the solidification of the solid lubricant, can improve the work efficiency, An object of the present invention is to provide an apparatus and a method for manufacturing a solid lubricant-coated metal plate that can make the distribution of the solid lubricant applied to the metal plate uniform and improve the quality of the solid lubricant-coated metal plate.

前記課題を解決するために、本発明に係る固体潤滑剤被覆金属板の製造装置は、静電塗布法によって固体潤滑剤被覆金属板を製造する固体潤滑剤被覆金属板の製造装置であって、搬送される正の電荷を持った金属板と対向する位置に設置される電気絶縁物からなるヘッドと、前記ヘッドの内部に形成され前記金属板側に開口して溶融状態の前記固体潤滑剤を噴出させる噴出流路と、前記噴出流路に連通して溶融状態の前記固体潤滑剤を供給する電気絶縁物からなる潤滑剤供給管と、前記噴出流路に供給される溶融状態の前記固体潤滑剤に負の電荷を印加する電極とを有する塗布ノズルと、前記潤滑剤供給管に連通して、溶融手段によって溶融状態となった前記固体潤滑剤を供給する潤滑剤供給流路と、前記塗布ノズルと前記金属板の間に前記塗布ノズルと並行して設けられ、かつ、前記塗布ノズルとの間で放電による短絡が生じない位置に設けられる加熱ヒータとを備えることを特徴とする。   In order to solve the above-mentioned problem, a solid lubricant-coated metal sheet manufacturing apparatus according to the present invention is a solid lubricant-coated metal sheet manufacturing apparatus that manufactures a solid lubricant-coated metal sheet by electrostatic coating, A head made of an electrical insulator installed at a position opposite to a metal plate having a positive charge to be conveyed, and the solid lubricant in a molten state formed inside the head and opened to the metal plate side An ejection flow path to be ejected; a lubricant supply pipe made of an electrical insulator that communicates with the ejection flow path and supplies the molten solid lubricant; and the molten solid lubrication supplied to the ejection flow path An application nozzle having an electrode for applying a negative charge to the agent, a lubricant supply channel that communicates with the lubricant supply pipe and supplies the solid lubricant that has been melted by the melting means, and the application Between the nozzle and the metal plate It provided in parallel with the fabric nozzles, and characterized in that it comprises a heater provided at a position where a short circuit due to the discharge does not occur between the coating nozzle.

前記構成によれば、所定位置に設けられた加熱ヒータを備えることによって、塗布ノズルが加温されるため、潤滑剤供給流路によって潤滑剤供給管およびヘッド内部に形成された噴出流路に供給された溶融状態の固体潤滑剤の温度低下が抑制される。その結果、固体潤滑剤が潤滑剤供給管内部および噴出流路で凝固することが抑制される。また、加熱ヒータと塗布ノズルとの間で放電による短絡も生じないため、安定した静電塗布が可能となる。なお、従来の製造装置にように、ヘッドの加温手段として熱風を用いないため、空気の流れに起因して固体潤滑剤の塗布量がばらつくことがない。   According to the above configuration, since the application nozzle is heated by providing the heater provided at a predetermined position, the lubricant is supplied to the lubricant supply pipe and the ejection flow path formed inside the head by the lubricant supply flow path. The temperature drop of the melted solid lubricant is suppressed. As a result, the solid lubricant is suppressed from solidifying in the lubricant supply pipe and in the ejection flow path. Moreover, since a short circuit due to discharge does not occur between the heater and the application nozzle, stable electrostatic application is possible. In addition, since hot air is not used as the heating means of the head as in the conventional manufacturing apparatus, the amount of solid lubricant applied does not vary due to the flow of air.

本発明に係る固体潤滑剤被覆金属板の製造方法は、静電塗布法によって固体潤滑剤被覆金属板を製造する固体潤滑剤被覆金属板の製造方法であって、前記の固体潤滑剤被覆金属板の製造装置を用い、前記加熱ヒータで前記塗布ノズルをJISK7121に準拠して測定された前記固体潤滑剤の融解ピーク温度以上、かつ、JISK7201に準拠して測定された前記ヘッドおよび前記潤滑剤供給管を構成する電気絶縁物の連続使用温度以下に加熱しながら、前記塗布ノズルから前記金属板に向けて溶融状態の前記固体潤滑剤を噴出させることで、前記金属板の表面に固体潤滑剤被覆層を形成することを特徴とする。   The method for producing a solid lubricant-coated metal plate according to the present invention is a method for producing a solid lubricant-coated metal plate for producing a solid lubricant-coated metal plate by an electrostatic coating method. The above-described head and the lubricant supply pipe measured in accordance with JISK7201 and at least the melting peak temperature of the solid lubricant measured in accordance with JISK7121 at the coating nozzle with the heater. The solid lubricant coating layer is applied to the surface of the metal plate by ejecting the solid lubricant in a molten state from the coating nozzle toward the metal plate while heating to a temperature lower than the continuous use temperature of the electrical insulator constituting It is characterized by forming.

前記方法によれば、前記製造装置を用いることによって、潤滑剤供給流路によって潤滑剤供給管および噴出流路に供給された溶融状態の固体潤滑剤の温度低下が抑制される。その結果、固体潤滑剤が潤滑剤供給管内部および噴出流路で凝固することが抑制される。また、加熱ヒータと塗布ノズルとの間で放電による短絡も生じないため、固体潤滑剤の塗布量のばらつきが少なく、安定した静電塗布ができる。なお、従来の製造方法のように、塗布ノズルの加熱に熱風を使用しないため、空気の流れに起因して固体潤滑剤の塗布量がはらつくことがない。さらに、溶融状態の固体潤滑剤を金属板の表面に塗布する際に、塗布ノズルが所定の温度範囲で加熱されることによって、溶融状態の固体潤滑剤の温度低下がさらに抑制されるため、固体潤滑剤の凝固がさらに抑制される。   According to the method, by using the manufacturing apparatus, a temperature drop of the molten solid lubricant supplied to the lubricant supply pipe and the ejection flow path by the lubricant supply flow path is suppressed. As a result, the solid lubricant is suppressed from solidifying in the lubricant supply pipe and in the ejection flow path. In addition, since a short circuit due to discharge does not occur between the heater and the application nozzle, there is little variation in the amount of solid lubricant applied, and stable electrostatic application can be performed. It should be noted that unlike the conventional manufacturing method, hot air is not used to heat the application nozzle, so that the amount of solid lubricant applied does not vary due to the flow of air. Further, when the molten solid lubricant is applied to the surface of the metal plate, the temperature of the molten solid lubricant is further suppressed by heating the application nozzle in a predetermined temperature range. Solidification of the lubricant is further suppressed.

本発明に係る固体潤滑剤被覆金属板の製造装置および製造方法によれば、溶融状態の固体潤滑剤の凝固が抑制されるため、塗布ノズルの閉塞を一掃することができ、作業効率を向上できる。また、固体潤滑剤の塗布量にはらつきが生じないため、金属板へ塗布される固体潤滑剤の分布が均質となり、固体潤滑剤被覆金属板の品質が向上できる。   According to the manufacturing apparatus and the manufacturing method of the solid lubricant-coated metal plate according to the present invention, since solidification of the solid lubricant in the molten state is suppressed, the blockage of the coating nozzle can be eliminated, and the working efficiency can be improved. . Further, since the coating amount of the solid lubricant does not vary, the distribution of the solid lubricant applied to the metal plate becomes uniform, and the quality of the solid lubricant-coated metal plate can be improved.

本発明に係る固体潤滑剤被覆金属板の製造装置の構成を示す斜視図である。It is a perspective view which shows the structure of the manufacturing apparatus of the solid lubricant covering metal plate which concerns on this invention. 本発明に係る固体潤滑剤被覆金属板の製造方法の概略を示す図1の製造装置の断面図である。It is sectional drawing of the manufacturing apparatus of FIG. 1 which shows the outline of the manufacturing method of the solid lubricant covering metal plate which concerns on this invention.

本発明に係る固体潤滑剤被覆金属板の製造装置および製造方法について説明する。
固体潤滑剤被覆金属板の製造装置および製造方法は、静電塗布法によって固体潤滑剤被覆金属板を製造する製造装置および製造方法である。ここで、静電塗布法とは、固体潤滑剤を加熱して溶融状態とし、その溶融状態の固体潤滑剤を金属板の表面に静電作用を利用して塗布する塗布方法で、金属板の表面(片面または両面)に固体潤滑剤からなる固体潤滑剤被覆層が形成される。
The manufacturing apparatus and manufacturing method of the solid lubricant coated metal plate according to the present invention will be described.
The manufacturing apparatus and manufacturing method for a solid lubricant-coated metal plate are a manufacturing apparatus and a manufacturing method for manufacturing a solid lubricant-coated metal plate by an electrostatic coating method. Here, the electrostatic coating method is a coating method in which a solid lubricant is heated to a molten state, and the molten solid lubricant is applied to the surface of the metal plate using electrostatic action. A solid lubricant coating layer made of a solid lubricant is formed on the surface (one side or both sides).

固体潤滑剤とは、通常の保管・使用環境において固体状態が保持された潤滑剤であって、JIS K7121で規定される融解ピーク温度が40℃以上のもの、すなわち、40℃以上で溶融状態となるものをいう。
固体潤滑剤の化学的組成に特に制限はないが、静電塗布法による固体潤滑剤被覆金属板の製造装置では、製造装置の部品として樹脂部品を使うことがあり、加熱温度が120℃を超える場合には、部品に高耐熱性樹脂やセラミックスを使わなければならなくなるので、固体潤滑剤の融解ピーク温度は120℃以下であることが好ましい。
The solid lubricant is a lubricant that is maintained in a solid state in a normal storage / use environment, and has a melting peak temperature defined by JIS K7121 of 40 ° C. or higher, that is, a molten state at 40 ° C. or higher. Say what.
There is no particular restriction on the chemical composition of the solid lubricant, but in the production equipment for the solid lubricant coated metal sheet by the electrostatic coating method, resin parts may be used as parts of the production equipment, and the heating temperature exceeds 120 ° C. In such a case, a high heat-resistant resin or ceramics must be used for the part, and therefore the melting peak temperature of the solid lubricant is preferably 120 ° C. or lower.

さらに、固体潤滑剤を溶融させた際の電気抵抗値が、30MΩcm以上であることが好ましい。電気抵抗値が30MΩcm未満の場合、静電塗布法による金属板の表面への固体潤滑剤被覆層の形成が困難となりやすいため好ましくない。電気抵抗値の好ましい上限値は、固体潤滑剤被覆金属板の製造装置を構成する材料に依存する。すなわち、固体潤滑剤の電気抵抗値が、製造装置の高電圧印加部分(塗布ノズル2、図1、図2参照)の固有抵抗率(例えば、塗布ノズル2がポリアセタール等の樹脂材料で構成されている場合、1×1010Ωcm)を超える場合、装置自体の絶縁破壊が生じて塗布ができなくなるため、好ましくない。 Furthermore, the electric resistance value when the solid lubricant is melted is preferably 30 MΩcm or more. When the electrical resistance value is less than 30 MΩcm, it is not preferable because it is difficult to form a solid lubricant coating layer on the surface of the metal plate by electrostatic coating. The preferable upper limit value of the electric resistance value depends on the material constituting the manufacturing apparatus for the solid lubricant-coated metal plate. That is, the electrical resistance value of the solid lubricant is a specific resistivity (for example, the coating nozzle 2 is made of a resin material such as polyacetal) of the high voltage application portion of the manufacturing apparatus (see the coating nozzle 2, see FIG. 1 and FIG. 2). If it exceeds 1 × 10 10 Ωcm, it is not preferable because the dielectric breakdown of the device itself occurs and the coating cannot be performed.

固体潤滑剤を静電塗布する金属板に特に制限はなく、自動車部品等に使用される合金化溶融亜鉛めっき鋼板、熱延鋼板、冷延鋼板、高張力鋼板、めっき鋼板、ステンレス鋼板、アルミニウム板、アルミニウム合金板、チタン板、銅板等を例示することができる。しかしながら、金属板の材質は、プレス加工時の潤滑性、加工性を高めるために潤滑剤が塗布される金属板であれば前記の材質に限定されない。   There are no particular restrictions on the metal plate to which the solid lubricant is electrostatically applied. Alloyed hot-dip galvanized steel plate, hot-rolled steel plate, cold-rolled steel plate, high-tensile steel plate, plated steel plate, stainless steel plate, aluminum plate used for automobile parts, etc. An aluminum alloy plate, a titanium plate, a copper plate and the like can be exemplified. However, the material of the metal plate is not limited to the above material as long as it is a metal plate to which a lubricant is applied in order to improve lubricity and workability during press working.

金属板は、製品(固体潤滑剤被覆金属板)の用途にもよるが、通常、板厚が0.1〜3.0mm、板幅が100〜2000mmのコイルまたは板が使用される。そして、金属板は、コイル通板やコンベア装置等の搬送手段によって、後記する固体潤滑剤被覆金属板の製造装置(塗布ノズル)の直下に搬送される。なお、通常、コイルや搬送手段は接地されているため、金属板は正の電荷を持つ。   Although the metal plate depends on the application of the product (solid lubricant-coated metal plate), a coil or plate having a plate thickness of 0.1 to 3.0 mm and a plate width of 100 to 2000 mm is usually used. And a metal plate is conveyed just under the manufacturing apparatus (coating nozzle) of the solid lubricant coating | coated metal plate mentioned later by conveyance means, such as a coil passage plate and a conveyor apparatus. In general, since the coil and the conveying means are grounded, the metal plate has a positive charge.

<固体潤滑剤被覆金属板の製造装置(以下、製造装置と称す)>
図1、図2に示すように、製造装置1は、塗布ノズル2と、潤滑剤供給流路3と、加熱ヒータ4とを備える。
<Production device for solid lubricant coated metal plate (hereinafter referred to as production device)>
As shown in FIGS. 1 and 2, the manufacturing apparatus 1 includes an application nozzle 2, a lubricant supply channel 3, and a heater 4.

(塗布ノズル)
塗布ノズル2は、搬送される正の電荷を持った金属板10に向けて、負の電荷を持った溶融状態の固体潤滑剤Lを噴出させるためのものである。
そして、塗布ノズル2は、金属板10と対向する位置に設置されるヘッド5と、ヘッド5の内部に形成され金属板10側に開口して溶融状態の固体潤滑剤Lを金属板10に向けて噴出させる噴出流路6と、噴出流路6に連通して噴出流路6に溶融状態の固体潤滑剤Lを供給する潤滑剤供給管7と、噴出流路6に供給される溶融状態の固体潤滑剤Lに負の電荷を印加する電極8とを有する。また、潤滑剤供給管7および電極8は、ヘッド5の側部に噴出流路6に連通するように配置されている。図面では、潤滑剤供給管7と電極8が、互いに対向する側部に配置されているが、同一の側部に配置されていてもよい。
(Application nozzle)
The application nozzle 2 is for ejecting a molten solid lubricant L having a negative charge toward the transported metal plate 10 having a positive charge.
The application nozzle 2 has a head 5 installed at a position facing the metal plate 10, and is formed inside the head 5 and opens toward the metal plate 10 to direct the molten solid lubricant L to the metal plate 10. An ejection flow path 6 to be ejected, a lubricant supply pipe 7 which communicates with the ejection flow path 6 and supplies a molten solid lubricant L to the ejection flow path 6, and a molten state supplied to the ejection flow path 6 And an electrode 8 for applying a negative charge to the solid lubricant L. The lubricant supply pipe 7 and the electrode 8 are arranged on the side of the head 5 so as to communicate with the ejection flow path 6. In the drawing, the lubricant supply pipe 7 and the electrode 8 are disposed on the side portions facing each other, but may be disposed on the same side portion.

ヘッド5は、その内部に形成される噴出流路6に供給される溶融状態の固体潤滑剤Lに、電極8によって電荷が印加されるため、電極8との間で放電による短絡が生じないように電気絶縁物で構成される。そして、電気絶縁物としては樹脂材料が好ましく、具体的には所謂エンジニアリングプラスチック、またはスーパーエンジニアリングプラスチックと呼称される高耐熱性の樹脂材料であることが好ましく、より具体的にはポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ポリアセタールなどを適用することができる。   In the head 5, electric charges are applied by the electrode 8 to the molten solid lubricant L supplied to the ejection flow path 6 formed in the head 5, so that a short circuit due to discharge does not occur between the head 5 and the electrode 5. It consists of electrical insulators. The electrical insulator is preferably a resin material, specifically a high heat resistance resin material called a so-called engineering plastic or super engineering plastic, more specifically a polyether ether ketone, Polytetrafluoroethylene, polyacetal and the like can be applied.

噴出流路6の形状は、溶融状態の固体潤滑剤Lが金属板10に向けて噴出できれば、特に限定されるものではなく、固体潤滑剤Lの溶融粘度に応じて決めればよい。   The shape of the ejection channel 6 is not particularly limited as long as the molten solid lubricant L can be ejected toward the metal plate 10, and may be determined according to the melt viscosity of the solid lubricant L.

潤滑剤供給管7は加熱ヒータによって固体潤滑剤Lの融解ピーク温度以上の温度で保持されている。その形状は、溶融状態の固体潤滑剤Lを噴出流路6に供給できれば、特に限定されるものではなく、固体潤滑剤Lの塗布量や金属板10の幅、搬送速度などから算出される固体潤滑剤Lの供給量に応じて決めればよい。また、潤滑剤供給管7は、固体潤滑剤Lに負の電荷を印加する電極8と近接するため、電極8との間で放電による短絡が生じないように電気絶縁物で構成される。潤滑剤供給管7を構成する電気絶縁物としては、ヘッド5を構成する電気絶縁物として例示したものが適用でき、ヘッド5と同種の電気絶縁物で構成してもよいし、異種の電気絶縁物で構成してもよい。さらに、潤滑剤供給管7は、例えば、噴出流路6が複数に区分けされている場合には、複数本に分岐されたものであってもよい。   The lubricant supply pipe 7 is held at a temperature equal to or higher than the melting peak temperature of the solid lubricant L by a heater. The shape is not particularly limited as long as the solid lubricant L in a molten state can be supplied to the ejection flow path 6, and the solid is calculated from the application amount of the solid lubricant L, the width of the metal plate 10, the conveyance speed, and the like. What is necessary is just to determine according to the supply amount of the lubricant L. Further, since the lubricant supply pipe 7 is close to the electrode 8 that applies a negative charge to the solid lubricant L, the lubricant supply pipe 7 is made of an electrical insulator so as not to cause a short circuit due to discharge. As the electrical insulator constituting the lubricant supply pipe 7, those exemplified as the electrical insulator constituting the head 5 can be applied, and it may be composed of the same type of electrical insulator as the head 5, or different types of electrical insulation. You may comprise. Furthermore, the lubricant supply pipe 7 may be branched into a plurality of pipes, for example, when the ejection flow path 6 is divided into a plurality of sections.

電極8は、図示しない電源に接続されるもので、噴出流路6に供給される溶融状態の固体潤滑剤Lに負の電荷を印加できれば、電極の種類は特に限定されない。そして、電極8に通電される電圧は、後記するように、固体潤滑剤Lを均一粒径の微粒子として霧化するために、−50〜−80kVであることが好ましく、更に好ましくは−60〜−70kVである。   The electrode 8 is connected to a power source (not shown), and the type of the electrode is not particularly limited as long as a negative charge can be applied to the molten solid lubricant L supplied to the ejection flow path 6. The voltage applied to the electrode 8 is preferably −50 to −80 kV, more preferably −60 to − in order to atomize the solid lubricant L as fine particles having a uniform particle size, as will be described later. -70 kV.

塗布ノズル2は、ヘッド5を互いに対向する一対のヘッド部5a、5bで構成し、そのヘッド部5a、5bの間に電極8と接続された導電性材料からなるシム9を備え、ヘッド部5a、5bとシム9を金属製の固定ネジ14等で固定して、ヘッド部5a、5bとシム9とで噴出流路6を形成してもよい。さらに、図示しないが、シム9に複数の溝部を設けることによって、噴出流路6を複数の流路に区分けしてもよい。このようなシム9を備えることによって、溶融状態の固体潤滑剤Lに負の電荷を印加しやすくなる。   The coating nozzle 2 includes a pair of head portions 5a and 5b facing each other, and a shim 9 made of a conductive material connected to the electrode 8 between the head portions 5a and 5b. 5b and the shim 9 may be fixed with a metal fixing screw 14 or the like, and the ejection flow path 6 may be formed by the head portions 5a and 5b and the shim 9. Further, although not shown, the ejection flow path 6 may be divided into a plurality of flow paths by providing the shim 9 with a plurality of grooves. By providing such a shim 9, it becomes easy to apply a negative charge to the solid lubricant L in a molten state.

塗布ノズル2(ヘッド5)の長さBは、金属板10の板幅以上であることが好ましい。長さBが、金属板10の板幅未満であると、金属板10の幅方向での端部に固体潤滑剤被覆層11が形成されにくくなる。   The length B of the application nozzle 2 (head 5) is preferably equal to or greater than the plate width of the metal plate 10. When the length B is less than the plate width of the metal plate 10, the solid lubricant coating layer 11 is hardly formed on the end portion in the width direction of the metal plate 10.

(潤滑剤供給流路)
潤滑剤供給流路3は、潤滑剤供給管7と連通し、溶融手段によって溶融状態となった固体潤滑剤Lを潤滑剤供給管7に供給するもので、例えば、電気絶縁物であるゴム等からなるパイプで構成される。なお、潤滑剤供給流路3の端部を、潤滑剤供給管7として使用してもよい。溶融手段は、固体潤滑剤Lを融解ピーク温度以上に加熱して溶融状態にするもので、例えば、電熱ヒータ等である。
(Lubricant supply flow path)
The lubricant supply flow path 3 communicates with the lubricant supply pipe 7 and supplies the solid lubricant L melted by the melting means to the lubricant supply pipe 7. For example, rubber that is an electrical insulator or the like It consists of a pipe consisting of Note that the end of the lubricant supply channel 3 may be used as the lubricant supply pipe 7. The melting means heats the solid lubricant L to the melting peak temperature or higher to bring it into a molten state, and is, for example, an electric heater.

潤滑剤供給流路3には、図示しないが、溶融状態の固体潤滑剤Lを貯留するための潤滑剤タンク、溶融状態の固体潤滑剤Lを潤滑剤供給管7に送液するための潤滑剤ポンプ等が備えられている。また、潤滑剤供給流路3には、図示しないが、溶融状態の固体潤滑剤Lの流量を制御する制御弁、圧力を一定に保つためのリリーフ弁を備えてもよい。さらに、溶融状態の固体潤滑剤Lの温度低下を防止するために、塗布ノズル2(ヘッド部5b)より100mm以上離れた位置に於いては、潤滑剤供給流路3(パイプ)の外側に電熱ヒータ等を巻き付けてもよい。   Although not shown in the drawing, the lubricant supply channel 3 is a lubricant tank for storing the molten solid lubricant L, and a lubricant for feeding the molten solid lubricant L to the lubricant supply pipe 7. A pump and the like are provided. Further, the lubricant supply flow path 3 may be provided with a control valve for controlling the flow rate of the molten solid lubricant L and a relief valve for keeping the pressure constant, although not shown. Further, in order to prevent the temperature of the molten solid lubricant L from being lowered, electric heating is performed outside the lubricant supply flow path 3 (pipe) at a position 100 mm or more away from the coating nozzle 2 (head portion 5b). A heater or the like may be wound.

(加熱ヒータ)
加熱ヒータ4は、塗布ノズル2およびヘッド部5b付近の潤滑剤供給管7を加熱して、噴出流路6および潤滑剤供給管7内の固体潤滑剤Lの溶融状態を維持するためのもので、具体的には、塗布ノズル2のヘッド5および潤滑剤供給管7の温度を固体潤滑剤Lの融解ピーク温度以上に保温するためのもので、塗布ノズル2と金属板10の間に、塗布ノズル2の長さB方向に並行して設けられ、かつ、塗布ノズル2との間で放電による短絡が生じない位置に設けられる。また、加熱ヒータ4は、塗布ノズル2の片側(潤滑剤供給管7接続側)または両側に設けられている。
(Heating heater)
The heater 4 heats the lubricant supply pipe 7 in the vicinity of the coating nozzle 2 and the head portion 5b, and maintains the molten state of the solid lubricant L in the ejection flow path 6 and the lubricant supply pipe 7. Specifically, the temperature of the head 5 and the lubricant supply pipe 7 of the application nozzle 2 is maintained at a temperature equal to or higher than the melting peak temperature of the solid lubricant L, and is applied between the application nozzle 2 and the metal plate 10. It is provided in parallel with the length B direction of the nozzle 2 and is provided at a position where no short circuit occurs due to discharge with the coating nozzle 2. Further, the heater 4 is provided on one side (lubricant supply pipe 7 connection side) or both sides of the coating nozzle 2.

加熱ヒータ4の設置位置、すなわち、塗布ノズル2(電極8やシム9に接続された金属製の固定ネジ14など)との間で放電による短絡が生じない位置とは、距離D1が100mm以上である位置が好ましい。加熱ヒータ4の設置位置が近すぎる場合(距離D1が100mm未満の場合)、静電塗布に際して高電圧が通電された電極8やシム9と加熱ヒータ4との間で放電による短絡が生じる可能性が高くなるため好ましくない。加熱ヒータ4の設置位置の上限は特に定めないが、D1が大きくなるに伴い、塗布ノズル2(ヘッド5および潤滑剤供給管7)への加熱効率は低下するため、放電による短絡が生じない範囲内でD1を小さくすることが好ましい。   The installation position of the heater 4, that is, the position where no short circuit due to discharge occurs between the coating nozzle 2 (such as the metal fixing screw 14 connected to the electrode 8 and the shim 9) is a distance D 1 of 100 mm or more. Some positions are preferred. When the installation position of the heater 4 is too close (when the distance D1 is less than 100 mm), there is a possibility that a short circuit occurs due to discharge between the electrode 8 or shim 9 to which a high voltage is applied during electrostatic application and the heater 4. Is unfavorable because of the high. The upper limit of the installation position of the heater 4 is not particularly defined, but the heating efficiency to the coating nozzle 2 (head 5 and lubricant supply pipe 7) decreases as D1 increases, so that a short circuit due to discharge does not occur. Of these, it is preferable to reduce D1.

加熱ヒータ4の具体的な設置位置は、塗布ノズル2(ヘッド5)からの距離D1が150mm以下である位置がさらに好ましい。距離D1が150mm超えると塗布ノズル(ヘッド5および潤滑剤供給管7)への加熱効率が低下しやすい。すなわち、加熱ヒータ4は、放電による短絡が生じない位置で、塗布ノズル5(ヘッド5および潤滑剤供給管7)の温度がJISK7121に準拠して測定された固体潤滑剤Lの融解ピーク温度以上、かつ、JISK7201に準拠して測定されたヘッド5および潤滑剤供給管7を構成する電気絶縁物の連続使用温度以下となる位置に配置する。   The specific installation position of the heater 4 is more preferably a position where the distance D1 from the coating nozzle 2 (head 5) is 150 mm or less. When the distance D1 exceeds 150 mm, the heating efficiency to the application nozzle (head 5 and lubricant supply pipe 7) tends to be lowered. That is, the heater 4 is at a position where a short circuit due to discharge does not occur, and the temperature of the coating nozzle 5 (head 5 and lubricant supply pipe 7) is equal to or higher than the melting peak temperature of the solid lubricant L measured according to JISK7121. And it arrange | positions in the position used as below the continuous use temperature of the electrical insulator which comprises the head 5 and the lubricant supply pipe | tube 7 which were measured based on JISK7201.

加熱ヒータ4の有効長Aは、少なくとも塗布ノズル2(ヘッド5)の長さBと同等以上であることが好ましい。加熱ヒータ4の有効長さAが塗布ノズル2(ヘッド5)の長さBより短い場合には、特に塗布ノズル2(ヘッド5)の端部の加熱効率が低下するため好ましくない。なお、加熱ヒータ4は1本である必要はなく、複数本のものを組み合わせて使用してもよく、その合計有効長Aが塗布ノズル2(ヘッド5)の長さBと同等以上となっていればよい。   The effective length A of the heater 4 is preferably at least equal to or longer than the length B of the application nozzle 2 (head 5). When the effective length A of the heater 4 is shorter than the length B of the application nozzle 2 (head 5), the heating efficiency at the end of the application nozzle 2 (head 5) is particularly lowered, which is not preferable. The heater 4 need not be one, and a plurality of heaters may be used in combination, and the total effective length A is equal to or greater than the length B of the application nozzle 2 (head 5). Just do it.

加熱ヒータ4は、その種類に特に制限はなく、任意のものが使用できるが、価格や加熱(発熱)効率などの経済性を考慮すると、棒状の赤外線ヒータを適用することが好ましい。また、加熱ヒータ4の周囲には、加熱を必要としない方向に、図示しない反射板やフード等を備えて、指向性を付与することが加熱効率の向上のために好ましい。   The type of the heater 4 is not particularly limited, and any type can be used, but it is preferable to apply a rod-shaped infrared heater in consideration of economics such as price and heating (heat generation) efficiency. Further, it is preferable to provide a directivity by providing a reflector or a hood (not shown) around the heater 4 in a direction that does not require heating, in order to improve heating efficiency.

本発明に係る製造装置1は、図示しないが、塗布ノズル5を金属板に対して上下に移動させる、具体的には、塗布ノズル5の先端から金属板10の表面までの距離D2を50〜600mmの範囲内で変化させる上下駆動部をさらに備えるものであってもよい。製造装置1が上下駆動部を備えることによって、固体潤滑剤Lの静電霧化状況に応じて、成膜条件を調整することが可能となる。   Although not shown, the manufacturing apparatus 1 according to the present invention moves the coating nozzle 5 up and down with respect to the metal plate. Specifically, the distance D2 from the tip of the coating nozzle 5 to the surface of the metal plate 10 is set to 50 to 50. A vertical drive unit that changes within a range of 600 mm may be further provided. By providing the manufacturing apparatus 1 with the vertical drive unit, the film forming conditions can be adjusted according to the state of electrostatic atomization of the solid lubricant L.

<固体潤滑剤被覆金属板の製造方法>
図2に示すように、固体潤滑剤被覆金属板12の製造方法は、前記製造装置1を用い、加熱ヒータ4で塗布ノズル2を所定温度に加熱しながら、塗布ノズル2から金属板10に向けて溶融状態の固体潤滑剤Lを噴出させることで、金属板10の表面に固体潤滑剤被覆層11を形成することを特徴とする。
<Method for producing solid lubricant-coated metal plate>
As shown in FIG. 2, the manufacturing method of the solid lubricant-coated metal plate 12 uses the manufacturing apparatus 1 and directs the coating nozzle 2 from the coating nozzle 2 toward the metal plate 10 while heating the coating nozzle 2 to a predetermined temperature. Then, the solid lubricant coating layer 11 is formed on the surface of the metal plate 10 by ejecting the solid lubricant L in a molten state.

前記製造方法では、加熱ヒータ4で塗布ノズル2が加熱されるため、ヘッド5(噴出流路6)および潤滑剤供給管7の温度低下がなく、潤滑剤供給流路3から供給された固体潤滑剤Lの溶融状態が維持される。そして、溶融状態の固体潤滑剤Lは、ヘッド5(噴出流路6)から金属板10に向けて噴出する。このとき、噴出流路6の固体潤滑剤Lは、電極8によって負の電荷が印加されているため、同一極性の反発によって均一粒径の微粒子として霧化され、金属板10に向けて噴霧される。そして、噴霧された負の電荷を持った固体潤滑剤Lは、正の電荷を持った金属板10の表面に静電作用によって結合し、固体潤滑剤被覆層11を形成し、固体潤滑剤被覆金属板12が製造される。   In the manufacturing method, since the application nozzle 2 is heated by the heater 4, the temperature of the head 5 (jet channel 6) and the lubricant supply pipe 7 is not lowered, and solid lubrication supplied from the lubricant supply channel 3. The molten state of the agent L is maintained. The molten solid lubricant L is ejected from the head 5 (ejection channel 6) toward the metal plate 10. At this time, since the solid lubricant L in the ejection flow path 6 is negatively charged by the electrode 8, it is atomized as fine particles having a uniform particle diameter by repulsion with the same polarity and sprayed toward the metal plate 10. The The sprayed solid lubricant L having a negative charge is bonded to the surface of the metal plate 10 having a positive charge by electrostatic action to form a solid lubricant coating layer 11, and the solid lubricant coating is formed. The metal plate 12 is manufactured.

金属板10は、通常、接地されたコンベア装置(図示せず)等で搬送されるため、正の電荷を持つこととなる。また、金属板10の搬送速度は、固体潤滑剤被覆層11の厚さによって決定され、通常、5〜80m/分である。そして、固体潤滑剤被覆層11の厚さは、固体潤滑剤Lの付着量で管理され、金属板10の片面あたり0.2〜2.0g/mが好ましい。付着量が0.2g/m未満であると、固体潤滑剤被覆金属板12の成形性の向上が確認できないため好ましくない。一方、2.0g/mを超えると、コストアップとなるうえ、固体潤滑剤被覆金属板12の脱膜性、溶接性、接着性が悪化するほか、これ以上厚くしても成形性の向上が期待できないため好ましくない。 Since the metal plate 10 is usually conveyed by a grounded conveyor device (not shown) or the like, it has a positive charge. Moreover, the conveyance speed of the metal plate 10 is determined by the thickness of the solid lubricant coating layer 11, and is usually 5 to 80 m / min. The thickness of the solid lubricant coating layer 11 is controlled by the amount of solid lubricant L attached, and is preferably 0.2 to 2.0 g / m 2 per side of the metal plate 10. When the adhesion amount is less than 0.2 g / m 2, it is not preferable because improvement in formability of the solid lubricant-coated metal plate 12 cannot be confirmed. On the other hand, if it exceeds 2.0 g / m 2 , the cost will be increased, and the film removal property, weldability, and adhesiveness of the solid lubricant coated metal plate 12 will be deteriorated. Is not preferable because it cannot be expected.

前記製造方法では、塗布ノズル2は加熱ヒータ4で所定温度に加熱される。そして、塗布ノズル2、具体的には、ヘッド5および潤滑剤供給管7の温度は、JISK7121に準拠して測定された固体潤滑剤Lの融解ピーク温度以上、かつ、JISK7201に準拠して測定された塗布ノズル2(ヘッド5および潤滑剤供給管7)を構成する電気絶縁物の連続使用温度以下である。また、溶融粘度は200mPa・s以下であることが好ましい。   In the manufacturing method, the coating nozzle 2 is heated to a predetermined temperature by the heater 4. The temperatures of the coating nozzle 2, specifically, the head 5 and the lubricant supply pipe 7 are measured in accordance with the melting peak temperature of the solid lubricant L measured according to JISK7121 and according to JISK7201. Further, the temperature is not higher than the continuous use temperature of the electrical insulator constituting the coating nozzle 2 (the head 5 and the lubricant supply pipe 7). The melt viscosity is preferably 200 mPa · s or less.

塗布ノズル2(ヘッド5および潤滑剤供給管7)の温度が融解ピーク温度未満であると、固体潤滑剤Lの温度低下に伴う凝固が発生し、塗布ノズル2が閉塞する。また、温度が連続使用温度を超えると、塗布ノズル2(ヘッド5および潤滑剤供給管7)が熱劣化し、交換が必要となる。   If the temperature of the coating nozzle 2 (the head 5 and the lubricant supply pipe 7) is lower than the melting peak temperature, solidification accompanying the temperature drop of the solid lubricant L occurs, and the coating nozzle 2 is blocked. When the temperature exceeds the continuous use temperature, the coating nozzle 2 (head 5 and lubricant supply pipe 7) is thermally deteriorated and needs to be replaced.

なお、融解ピーク温度は、市販の示差走査熱量計を使用して、試料重量約10mg、昇温速度10℃/分の条件にて測定すればよい。溶融粘度は、市販の回転粘度計などを使用して、固体潤滑剤Lを融解ピーク温度以上の一定温度に保持しながら、その溶融粘度を測定すればよい。連続使用温度は、例えば、電気絶縁物としてポリエーテルエーテルケトンを使用する場合には250℃、ポリテトラフルオロエチレンを使用する場合には260℃である。固体潤滑剤Lの電気抵抗値(30MΩcm以上)は、これを溶融ピーク温度以上に加熱し融解させた状態において、静電テスタE EMIV型(旭サナック製)で測定した。   The melting peak temperature may be measured using a commercially available differential scanning calorimeter under conditions of a sample weight of about 10 mg and a heating rate of 10 ° C./min. The melt viscosity may be measured using a commercially available rotational viscometer or the like while maintaining the solid lubricant L at a constant temperature equal to or higher than the melting peak temperature. The continuous use temperature is, for example, 250 ° C. when using polyetheretherketone as an electrical insulator, and 260 ° C. when using polytetrafluoroethylene. The electric resistance value (30 MΩcm or more) of the solid lubricant L was measured with an electrostatic tester E EMIV type (manufactured by Asahi Sunac) in a state where the solid lubricant L was heated to the melting peak temperature or higher and melted.

塗布ノズル2(ヘッド5および潤滑剤供給管7)の温度測定・制御方法には特に制限はないが、塗布ノズル2との間の放電による短絡を防止するため、例えば、放射温度計など非接触型の温度計を適用して、塗布ノズル2(ヘッド5および潤滑剤供給管7)の温度を管理することが好ましく、ヘッド5のみの温度管理でもよい。この温度データをもとに、加熱ヒータ4の供給電力量を手動もしくは自動調整する等、公知の技術を適用して温度制御を行うことが好ましい。   The temperature measurement / control method of the application nozzle 2 (head 5 and lubricant supply pipe 7) is not particularly limited, but in order to prevent a short circuit due to discharge with the application nozzle 2, for example, non-contact such as a radiation thermometer. It is preferable to manage the temperature of the application nozzle 2 (the head 5 and the lubricant supply pipe 7) by applying a thermometer of the mold, or the temperature management of only the head 5 may be used. Based on this temperature data, it is preferable to control the temperature by applying a known technique such as manually or automatically adjusting the amount of power supplied to the heater 4.

以下に、実施例を挙げて本発明をより具体的に説明する。
(実施例)
図1、図2に示す製造装置を使用し、アルミニウム板(幅150mm、長さ200mm)に対し固体潤滑剤の静電塗布を実施した。
Hereinafter, the present invention will be described more specifically with reference to examples.
(Example)
The manufacturing apparatus shown in FIGS. 1 and 2 was used, and electrostatic coating of a solid lubricant was performed on an aluminum plate (width 150 mm, length 200 mm).

固体潤滑剤は、ドライコート2−90(クエーカ・ケミカル社製、融解ピーク温度:約48℃、70℃における溶融粘度:11mPa・s、電気抵抗値:130MΩcm)を使用した。
潤滑剤供給流路は、内径6mmのステンレス製パイプで構成し、固体潤滑剤を溶解(80℃で加熱溶解)、保持(70℃保持)できる潤滑剤タンクを備えるものを使用した。そして、パイプ外側を電熱ヒータで被覆して、潤滑剤タンクから送液される固体潤滑剤の温度が70℃に保持できるようにした。
As the solid lubricant, dry coat 2-90 (manufactured by Quaker Chemical Co., Ltd., melting peak temperature: about 48 ° C., melt viscosity at 70 ° C .: 11 mPa · s, electric resistance value: 130 MΩcm) was used.
The lubricant supply flow path was made of a stainless steel pipe having an inner diameter of 6 mm, and used was equipped with a lubricant tank capable of dissolving (heating and dissolving at 80 ° C.) and holding (holding at 70 ° C.) a solid lubricant. The outside of the pipe was covered with an electric heater so that the temperature of the solid lubricant fed from the lubricant tank could be maintained at 70 ° C.

塗布ノズルのヘッドには、ポリアセタール製(デルリン(登録商標))のヘッド(長さB:200mm)を使用した。塗布ノズルから距離D1=120mm離した位置に、塗布ノズル(ヘッド)に並行して両側に棒状の赤外線ヒータ(有効長A:200mm)を設置し、赤外線ヒータは電圧調節器(スライダック)を介して電源に接続した。   A head (length B: 200 mm) made of polyacetal (Delrin (registered trademark)) was used as the head of the coating nozzle. Bar-shaped infrared heaters (effective length A: 200 mm) are installed on both sides in parallel with the application nozzle (head) at a position away from the application nozzle by a distance D1 = 120 mm, and the infrared heater is connected via a voltage regulator (slidac). Connected to power.

塗布ノズル(ヘッド)の温度は、非接触式の放射温度計にて計測し、その表面温度が70℃となるよう、電圧調節器にて温度調整した。   The temperature of the coating nozzle (head) was measured with a non-contact type radiation thermometer, and the temperature was adjusted with a voltage regulator so that the surface temperature was 70 ° C.

そして、潤滑剤供給流路から塗布ノズル(潤滑剤供給管)への潤滑剤供給量を約3g/分、アルミニウム板の搬送速度を約20m/分に調節して、アルミニウム板の片面に固体潤滑剤を静電塗布した。なお、電極の電圧は65kV、電流値は10μAとした。   Solid lubricant is applied to one side of the aluminum plate by adjusting the amount of lubricant supplied from the lubricant supply channel to the application nozzle (lubricant supply pipe) to about 3 g / min and the conveyance speed of the aluminum plate to about 20 m / min. The agent was applied electrostatically. The electrode voltage was 65 kV and the current value was 10 μA.

(比較例1)
加熱ヒータを取り付けないことを除いて、実施例に準じた方法、装置にて、アルミニウム板の片面に固体潤滑剤を静電塗布した。
(比較例2)
赤外線ヒータの取り付け位置(距離D1)が100mm未満であることを除いて、実施例に準じた方法、装置にて、アルミニウム板の片面に固体潤滑剤を静電塗布した。
(Comparative Example 1)
A solid lubricant was electrostatically applied to one side of an aluminum plate by the method and apparatus according to the example except that the heater was not attached.
(Comparative Example 2)
A solid lubricant was electrostatically applied to one surface of an aluminum plate by the method and apparatus according to the example except that the attachment position (distance D1) of the infrared heater was less than 100 mm.

その結果、実施例においては、アルミニウム板の片面に、潤滑剤付着量:1.0g/mで固体潤滑剤被覆層が形成された。
また、比較例1においては、固体潤滑剤の供給直後、および、電圧印加を開始した直後は、固体潤滑剤のミスト化ができた。しかしながら、すぐにヘッド(塗布ノズル)への固体潤滑剤の凝固付着が始まり、間もなく潤滑剤供給管(塗布ノズル)内で固体潤滑剤が凝固し、塗布ノズルが閉塞した。その結果、アルミニウム板の表面に固体潤滑剤被覆層を形成することができなかった。
比較例2においては、電圧印加直後に赤外線ヒータと塗布ノズルとの間に放電による短絡が発生し、固体潤滑剤の霧化ができず、アルミニウム板の表面に固体潤滑剤被覆層を形成することができなかった。
As a result, in the example, a solid lubricant coating layer was formed on one surface of the aluminum plate with a lubricant adhesion amount of 1.0 g / m 2 .
In Comparative Example 1, the solid lubricant was misted immediately after the supply of the solid lubricant and immediately after the voltage application was started. However, the solid lubricant began to solidify and adhere to the head (coating nozzle) immediately, and the solid lubricant coagulated in the lubricant supply pipe (coating nozzle) soon and the coating nozzle was blocked. As a result, a solid lubricant coating layer could not be formed on the surface of the aluminum plate.
In Comparative Example 2, a short circuit occurs due to electric discharge between the infrared heater and the coating nozzle immediately after voltage application, the solid lubricant cannot be atomized, and a solid lubricant coating layer is formed on the surface of the aluminum plate. I could not.

1 製造装置
2 塗布ノズル
3 潤滑剤供給流路
4 加熱ヒータ
5 ヘッド
6 噴出流路
7 潤滑剤供給管
8 電極
9 シム
10 金属板
11 固体潤滑剤被覆層
12 固体潤滑剤被覆金属板
13 インダクトバー
14 固定ネジ
L 固体潤滑剤
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 2 Coating nozzle 3 Lubricant supply flow path 4 Heater 5 Head 6 Ejection flow path 7 Lubricant supply pipe 8 Electrode 9 Shim 10 Metal plate 11 Solid lubricant coating layer 12 Solid lubricant coating metal plate 13 Induct bar 14 Fixing screw L Solid lubricant

Claims (2)

静電塗布法によって固体潤滑剤被覆金属板を製造する固体潤滑剤被覆金属板の製造装置であって、
搬送される正の電荷を持った金属板と対向する位置に設置される電気絶縁物からなるヘッドと、前記ヘッドの内部に形成され前記金属板側に開口して溶融状態の前記固体潤滑剤を噴出させる噴出流路と、前記噴出流路に連通して溶融状態の前記固体潤滑剤を供給する電気絶縁物からなる潤滑剤供給管と、前記噴出流路に供給される溶融状態の前記固体潤滑剤に負の電荷を印加する電極とを有する塗布ノズルと、
前記潤滑剤供給管に連通して、溶融手段によって溶融状態となった前記固体潤滑剤を供給する潤滑剤供給流路と、
前記塗布ノズルと前記金属板の間に前記塗布ノズルと並行して設けられ、かつ、前記塗布ノズルとの間で放電による短絡が生じない位置に設けられる加熱ヒータとを備えることを特徴とする固体潤滑剤被覆金属板の製造装置。
An apparatus for producing a solid lubricant-coated metal plate for producing a solid lubricant-coated metal plate by an electrostatic coating method,
A head made of an electrical insulator installed at a position opposite to a metal plate having a positive charge to be conveyed, and the solid lubricant in a molten state formed inside the head and opened to the metal plate side An ejection flow path to be ejected; a lubricant supply pipe made of an electrical insulator that communicates with the ejection flow path and supplies the molten solid lubricant; and the molten solid lubrication supplied to the ejection flow path An application nozzle having an electrode for applying a negative charge to the agent;
A lubricant supply channel that communicates with the lubricant supply pipe and supplies the solid lubricant that has been melted by the melting means;
A solid lubricant comprising: a heater provided between the coating nozzle and the metal plate in parallel with the coating nozzle and provided at a position where a short circuit due to discharge does not occur between the coating nozzle and the coating nozzle. Production equipment for coated metal plates.
静電塗布法によって固体潤滑剤被覆金属板を製造する固体潤滑剤被覆金属板の製造方法であって、
請求項1に記載された固体潤滑剤被覆金属板の製造装置を用い、前記加熱ヒータで前記塗布ノズルをJISK7121に準拠して測定された前記固体潤滑剤の融解ピーク温度以上、かつ、JISK7201に準拠して測定された前記ヘッドおよび前記潤滑剤供給管を構成する電気絶縁物の連続使用温度以下に加熱しながら、前記塗布ノズルから前記金属板に向けて溶融状態の前記固体潤滑剤を噴出させることで、前記金属板の表面に固体潤滑剤被覆層を形成することを特徴とする固体潤滑剤被覆金属板の製造方法。
A method for producing a solid lubricant-coated metal sheet by producing a solid lubricant-coated metal sheet by an electrostatic coating method,
The apparatus for producing a solid lubricant coated metal sheet according to claim 1, wherein the application nozzle is measured with the heater in accordance with JIS K7121, and the solid lubricant has a melting peak temperature or higher and conforms to JISK7201. The solid lubricant in a molten state is ejected from the coating nozzle toward the metal plate while being heated below the continuous use temperature of the electrical insulator constituting the head and the lubricant supply pipe measured in the above manner. A method for producing a solid lubricant-coated metal plate, comprising forming a solid lubricant coating layer on the surface of the metal plate.
JP2009132992A 2009-06-02 2009-06-02 Manufacturing apparatus and manufacturing method for solid lubricant coated metal sheet Expired - Fee Related JP5449868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132992A JP5449868B2 (en) 2009-06-02 2009-06-02 Manufacturing apparatus and manufacturing method for solid lubricant coated metal sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132992A JP5449868B2 (en) 2009-06-02 2009-06-02 Manufacturing apparatus and manufacturing method for solid lubricant coated metal sheet

Publications (2)

Publication Number Publication Date
JP2010279853A true JP2010279853A (en) 2010-12-16
JP5449868B2 JP5449868B2 (en) 2014-03-19

Family

ID=43537108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132992A Expired - Fee Related JP5449868B2 (en) 2009-06-02 2009-06-02 Manufacturing apparatus and manufacturing method for solid lubricant coated metal sheet

Country Status (1)

Country Link
JP (1) JP5449868B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150020236A (en) 2012-02-03 2015-02-25 가부시키가이샤 고베 세이코쇼 Aluminum sheet for forming
US20230109435A1 (en) * 2021-10-05 2023-04-06 Compass Systems & Sales, LLC Method and apparatus for dispersing oil
CN116713155A (en) * 2023-08-09 2023-09-08 山东舜晟冲压科技股份有限公司 Surface smearing device for metal stamping

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626951U (en) * 1985-06-26 1987-01-16
JPH05212322A (en) * 1991-09-27 1993-08-24 Nordson Corp Device for discharging electrically conductive coating material
JPH0588668U (en) * 1991-10-23 1993-12-03 日本電気ホームエレクトロニクス株式会社 Quantitative discharge device with external heater
JP2004068034A (en) * 2002-08-01 2004-03-04 Yoshio Miyamoto Nozzle apparatus and intermetallic compound formation apparatus
JP2004230209A (en) * 2003-01-28 2004-08-19 Casio Comput Co Ltd Solution-jet device
JP2006150217A (en) * 2004-11-29 2006-06-15 Lui Kk High viscosity electrostatic blade type application nozzle
JP2006281454A (en) * 2005-03-31 2006-10-19 Seiko Epson Corp Liquid droplet delivering apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626951U (en) * 1985-06-26 1987-01-16
JPH05212322A (en) * 1991-09-27 1993-08-24 Nordson Corp Device for discharging electrically conductive coating material
JPH0588668U (en) * 1991-10-23 1993-12-03 日本電気ホームエレクトロニクス株式会社 Quantitative discharge device with external heater
JP2004068034A (en) * 2002-08-01 2004-03-04 Yoshio Miyamoto Nozzle apparatus and intermetallic compound formation apparatus
JP2004230209A (en) * 2003-01-28 2004-08-19 Casio Comput Co Ltd Solution-jet device
JP2006150217A (en) * 2004-11-29 2006-06-15 Lui Kk High viscosity electrostatic blade type application nozzle
JP2006281454A (en) * 2005-03-31 2006-10-19 Seiko Epson Corp Liquid droplet delivering apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150020236A (en) 2012-02-03 2015-02-25 가부시키가이샤 고베 세이코쇼 Aluminum sheet for forming
US20230109435A1 (en) * 2021-10-05 2023-04-06 Compass Systems & Sales, LLC Method and apparatus for dispersing oil
US20230381796A1 (en) * 2021-10-05 2023-11-30 Compass Systems & Sales, LLC Method and apparatus for dispersing oil
CN116713155A (en) * 2023-08-09 2023-09-08 山东舜晟冲压科技股份有限公司 Surface smearing device for metal stamping
CN116713155B (en) * 2023-08-09 2023-11-03 潍坊市经济学校 Surface smearing device for metal stamping

Also Published As

Publication number Publication date
JP5449868B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
TWI432603B (en) Nozzle used in cold sprayer and cold sprayer device using the same
JP5449868B2 (en) Manufacturing apparatus and manufacturing method for solid lubricant coated metal sheet
CA2035609A1 (en) Plastic powder coated metal strip
US20150354049A1 (en) Method of coating a substrate
JP2006263740A (en) Method and apparatus for supplying lubricating oil in cold rolling
JP3357318B2 (en) Coating plant
JP5251247B2 (en) Manufacturing equipment of surface-treated steel sheet and manufacturing method thereof
EP2900770B1 (en) Use of an electrostatic coating composition in powder form as protective coating against oxidation and/or as lubricant in the forging of metal substrates
JP5848617B2 (en) Amorphous plate and manufacturing method thereof
JP4700537B2 (en) Metal strip plating method
KR100899125B1 (en) Apparatus for coupling a shaft of port roll for melted metal plating
EP3481578B1 (en) Fluid-cooled contact tip assembly for metal welding
JP6010554B2 (en) Method and apparatus for manufacturing amorphous plate
GB1600543A (en) Method and apparatus for continuous manufacture of a coated material
CN102695820B (en) Method for manufacturing tin electroplated steel plate
CN110325659B (en) Continuous hot-dip metal plating device and hot-dip metal plating method using same
KR101690312B1 (en) Apparatus and method for induction heating of metal ink coated steel plate
JP2650248B2 (en) Continuous metal plating equipment for steel sheets
JP5983450B2 (en) Molten metal coating equipment
CN214812149U (en) Roller coating equipment
KR100815818B1 (en) Apparatus for continuous metal coating of strip and method for continuous metal coating of strip using the same
CN105689242A (en) Spraying method for aluminum alloy profile frame used for automobile
US20120269982A1 (en) Method for electrochemical coating
JP2017519626A (en) Electrostatic spraying system
JPH02310358A (en) Method for hot-dipping metallic strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5449868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees