JP2010278244A - Light emitting diode and reflection type light emitting diode - Google Patents

Light emitting diode and reflection type light emitting diode Download PDF

Info

Publication number
JP2010278244A
JP2010278244A JP2009129377A JP2009129377A JP2010278244A JP 2010278244 A JP2010278244 A JP 2010278244A JP 2009129377 A JP2009129377 A JP 2009129377A JP 2009129377 A JP2009129377 A JP 2009129377A JP 2010278244 A JP2010278244 A JP 2010278244A
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting diode
emitting elements
element mount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009129377A
Other languages
Japanese (ja)
Inventor
Yoshio Inokoshi
良夫 猪越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pearl Lighting Co Ltd
Original Assignee
Pearl Lighting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pearl Lighting Co Ltd filed Critical Pearl Lighting Co Ltd
Priority to JP2009129377A priority Critical patent/JP2010278244A/en
Publication of JP2010278244A publication Critical patent/JP2010278244A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long life light emitting diode that emits mixed color light with high luminance. <P>SOLUTION: In a light emitting diode structure, the light emitting diode 1 includes a plurality of light emitting elements 91, 92, and 93 with different luminescent colors and a transparent resin 96 which covers the circumference of a plurality of light emitting elements with dispersed light-dispersing granules 95 having a mean grain size of 0.050 to 0.5 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、混色性に優れた光を高輝度に発光する発光ダイオード及び反射型発光ダイオードに関する。   The present invention relates to a light emitting diode and a reflective light emitting diode that emit light having excellent color mixing properties with high luminance.

白色発光する発光ダイオードとして、特許第2927279号公報(特許文献1)に記載されているように、発光ダイオード構造の青色発光素子の周囲をYAG蛍光体を分散させた樹脂で覆い、青色発光素子の光にてYAG蛍光体を黄色発光させ、元の青色光と黄色光との混色にて擬似白色光を放出させるようにした発光ダイオードが知られている。   As a light emitting diode emitting white light, as described in Japanese Patent No. 2927279 (Patent Document 1), a blue light emitting element having a light emitting diode structure is covered with a resin in which a YAG phosphor is dispersed, and the blue light emitting element There is known a light emitting diode in which a YAG phosphor emits yellow light by light and pseudo white light is emitted by mixing the original blue light and yellow light.

また、特許第3541709号公報(特許文献2)に記載されているように、モールド樹脂にYAG蛍光体を分散させたもので青色発光素子をモールドし、青色発光素子が放出する光にてYAG蛍光体を発光させることで擬似白色光を放出させるようにした発光ダイオードも知られている。   Further, as described in Japanese Patent No. 3541709 (Patent Document 2), a YAG phosphor is dispersed in a mold resin, a blue light emitting element is molded, and YAG fluorescence is emitted by light emitted from the blue light emitting element. A light emitting diode that emits pseudo white light by emitting light from the body is also known.

さらに、特開平11―87784号公報(特許文献3)に記載されているように、青色発光素子をモールド樹脂にてモールドし、モールド樹脂の表面をYAG蛍光体を含有させた透光性被覆シートにて被覆し、青色発光素子が放出する光にてYAG蛍光体を発光させることで白色光を放出させるようにした発光ダイオードも知られている。   Furthermore, as described in Japanese Patent Application Laid-Open No. 11-87784 (Patent Document 3), a blue light emitting element is molded with a mold resin, and the surface of the mold resin contains a YAG phosphor. A light emitting diode is also known which emits white light by emitting YAG phosphor with light emitted from a blue light emitting element.

これらのいずれの白色発光ダイオードにあっても、YAG蛍光体を使用し、青色発光素子の放出する光にて発光させることで白色光を得るようにしているが、色むら等が発生し、他の色の蛍光体を混合させるあるいは着色剤をさらに分散させて色補正する等、RGB3色光の混色による完全な白色光は得られない問題点があった。   In any of these white light emitting diodes, YAG phosphors are used and light is emitted by the light emitted from the blue light emitting element, so that white light is obtained. There is a problem that complete white light cannot be obtained by mixing RGB three-color light, such as mixing phosphors of the above colors or color correction by further dispersing a colorant.

また、紫外線を発光させ、3色蛍光体に照射して白色光を得る発光ダイオードも知られているが、強力な紫外線が発生して周囲の部材を劣化させ、装置寿命を短くしてしまう問題点があった。   Light emitting diodes that emit white light and emit white light by irradiating three-color phosphors are also known, but the problem is that strong ultraviolet light is generated and the surrounding members deteriorate, shortening the device life. There was a point.

特許第2927279号公報Japanese Patent No. 2927279 特許第3541709号公報Japanese Patent No. 3541709 特開平11―87784号公報Japanese Patent Application Laid-Open No. 11-87784

本発明は、上述した従来の技術的な課題に鑑みてなされたもので、蛍光体フリーにして光放出方向を揃え、輝度の高い混色光が放出できる長寿命の発光ダイオード及び反射型発光ダイオードを提供することを目的とする。   The present invention has been made in view of the above-described conventional technical problems. A long-life light emitting diode and a reflective light emitting diode capable of emitting phosphor-free, aligned light emission directions, and emitting mixed color light with high luminance are provided. The purpose is to provide.

本発明は、発光ダイオード構造で、発光色の異なる複数個の発光素子と、前記複数個の発光素子の周囲を被覆する、0.050μm〜0.5μmの平均粒度の光分散性粉粒を分散させた透明樹脂とを備えた発光ダイオードを特徴とする。   The present invention has a light-emitting diode structure in which a plurality of light-emitting elements having different emission colors and a light-dispersible powder having an average particle size of 0.050 μm to 0.5 μm covering the periphery of the plurality of light-emitting elements are dispersed. And a light-emitting diode including the transparent resin.

また、本発明は、内部に凹面形状の反射面を有する本体に対して、前記反射面の開口部側中央に素子マウント部が位置するように素子マウント側リードを設置し、前記素子マウント部に隣接してワイヤ接続部が位置するように複数本のワイヤ接続側リードを設置し、発光ダイオード構造で、発光色の異なる複数個の発光素子を前記素子マウント側リードの素子マウント部にマウントし、前記複数個の発光素子それぞれと前記複数本のワイヤ接続側リードのワイヤ接続部それぞれとの間にワイヤを接続し、前記複数個の発光素子の周囲を、0.050μm〜0.5μmの平均粒度の光分散性粉粒を分散させた第1の透明樹脂にて被覆し、前記複数個の発光素子、ワイヤ、これらを被覆する前記第1の透明樹脂、前記素子マウント側リード及び前記複数本のワイヤ接続側リードを第2の透明樹脂にて前記本体の反射面上に固定した反射型発光ダイオードを特徴とする。   Further, the present invention provides an element mount-side lead installed on the element mount portion so that the element mount portion is located in the center of the reflection surface on the opening side with respect to the main body having a concave reflection surface inside. A plurality of wire connection side leads are installed so that the wire connection part is located adjacent to each other, and a plurality of light emitting elements having different emission colors are mounted on the element mount part of the element mount side lead in a light emitting diode structure, A wire is connected between each of the plurality of light emitting elements and each of the wire connecting portions of the plurality of wire connection side leads, and an average particle size of 0.050 μm to 0.5 μm is disposed around the plurality of light emitting elements. The light-dispersible powder particles are coated with a first transparent resin, the plurality of light emitting elements, wires, the first transparent resin covering these, the element mount side lead, and the above A reflection type light emitting diode in which a plurality of wire connection side leads are fixed on a reflection surface of the main body with a second transparent resin.

本発明の発光ダイオードによれば、発光色の異なる複数個の発光素子の周囲を、0.050μm〜0.5μmの平均粒度の光分散性粉粒を分散させた透明樹脂にて被覆したので、各発光素子からの異なる色の光は光分散性粉粒によりレイリー散乱とミー散乱の境界での光波長依存性のない散乱を受けたRGB3色の光の散乱が発生し、かつ、光分散性粉粒にて遮光されることもなく、一様に混色した混色光としての白色光を放出することができる。しかも本発明の粒度での光分散粉粒によれば、RGB各色での光強度が広散乱角で反転する領域がなく、したがって、本発明の発光ダイオードによれば、発光素子にRGB3色の発光素子を採用した場合には、3色混色による広視野角での自然光に近い白色光を放出することができるようになる。   According to the light-emitting diode of the present invention, the periphery of a plurality of light-emitting elements having different emission colors is coated with a transparent resin in which light-dispersible powder particles having an average particle size of 0.050 μm to 0.5 μm are dispersed. Light of different colors from each light-emitting element is scattered by light-dispersible powder particles, and the light of three colors of RGB that has been scattered without light wavelength dependency at the boundary between Rayleigh scattering and Mie scattering, and light dispersibility White light as uniformly mixed color light can be emitted without being blocked by powder particles. In addition, according to the light-dispersed powder particles having the particle size of the present invention, there is no region where the light intensity of each RGB color is reversed at a wide scattering angle. Therefore, according to the light-emitting diode of the present invention, the light-emitting element emits light of three colors of RGB. When the element is employed, white light close to natural light at a wide viewing angle by mixing three colors can be emitted.

本発明の第1の実施の形態の反射型発光ダイオードの斜視図。The perspective view of the reflection type light emitting diode of the 1st Embodiment of this invention. 上記実施の形態の反射型発光ダイオードの断面図。Sectional drawing of the reflection type light emitting diode of the said embodiment. 上記実施の形態の反射型発光ダイオードの製造において使用するリードフレームの一部破断した平面図。The top view which fractured | ruptured the lead frame used in manufacture of the reflection type light emitting diode of the said embodiment. 上記実施の形態の反射型発光ダイオードの製造過程において対を成す素子マウント側リードと3本1組のワイヤ接続側リードに発光素子を取り付け、ワイヤをボンディングした状態の斜視図。The perspective view of the state which attached the light emitting element to the element mount side lead and the wire connection side lead which make a pair in the manufacturing process of the reflection type light emitting diode of the said embodiment, and bonded the wire. 上記実施の形態の反射型発光ダイオードの製造過程において対を成す素子マウント側リードと3本1組のワイヤ接続側リードに発光素子を取り付け、ワイヤをボンディングした後、光分散性樹脂を混入した第1の透明樹脂にて発光素子マウント部分を被覆した状態の斜視図。In the manufacturing process of the reflection type light emitting diode according to the above embodiment, the light emitting element is attached to the pair of element mount side lead and the set of three wire connection side leads which are paired. The perspective view of the state which coat | covered the light emitting element mount part with 1 transparent resin. 上記実施の形態の反射型発光ダイオードの製造において使用する凹状ケースの斜視図。The perspective view of the concave case used in manufacture of the reflection type light emitting diode of the said embodiment. 上記実施の形態の反射型発光ダイオードの製造において対を成す素子マウント側リードと3本1組のワイヤ接続側リードの凹状ケースへの組み付け工程から透明樹脂の充填・硬化工程、リードの折り曲げ工程に至るまでの製造工程図。From the process of assembling the element mount side lead and the set of three wire connection side leads, which form a pair in the manufacturing of the reflective light emitting diode of the above embodiment, into the concave case, from the filling and curing process of the transparent resin, and the bending process of the lead Manufacturing process diagram up to. 上記実施の形態の反射型発光ダイオードの一部破断せる拡大断面図。FIG. 3 is an enlarged cross-sectional view in which the reflective light-emitting diode according to the embodiment is partially broken. 上記実施の形態の反射型発光ダイオードのRGB3色LEDそれぞれの光強度の散乱角依存特性を示すグラフ。The graph which shows the scattering angle dependence characteristic of each light intensity | strength of RGB three color LED of the reflection type light emitting diode of the said embodiment. 本発明の比較例の反射型発光ダイオードのRGB3色LEDそれぞれの光強度の散乱角依存特性を示すグラフ。The graph which shows the scattering angle dependence characteristic of the light intensity of each RGB3 color LED of the reflection type light emitting diode of the comparative example of this invention. 本発明の実験例の発光状態の写真。The photograph of the light emission state of the experiment example of this invention. 本発明の第2の実施の形態のSMD発光ダイオードの断面図。Sectional drawing of the SMD light emitting diode of the 2nd Embodiment of this invention.

以下、本発明の実施の形態を図に基づいて詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施の形態)図1、図2に示すように、本発明の第1の実施の形態の反射型発光ダイオード1は、本体である凹状ケース6、この凹状ケース6の反射面2の上方を横切るように対置された素子マウント側リード7と3本の平行なワイヤ接続側リード81,82,83、素子マウント側リード7の上片7aのケース中心側先端の素子マウント部に搭載された、発光ダイオード構造で発光色がそれぞれR、G、Bである3個の発光素子91,92,93を備えている。また、これらの素子マウント側リード7と3ワイヤ接続側リード81,82,83、発光素子91,92,93は、凹状ケース6の凹部に充填された透明樹脂13にてモールドされている。   (First Embodiment) As shown in FIGS. 1 and 2, a reflective light emitting diode 1 according to a first embodiment of the present invention includes a concave case 6 as a main body, and a reflective surface 2 of the concave case 6. Mounted on the element mount portion at the tip of the case center side of the upper piece 7a of the element mount side lead 7 and the three parallel wire connection side leads 81, 82, 83, and the element mount side lead 7, which are placed so as to cross the upper side of the element The light emitting diode structure includes three light emitting elements 91, 92, and 93 having emission colors of R, G, and B, respectively. The element mount side lead 7, the three wire connection side leads 81, 82, 83 and the light emitting elements 91, 92, 93 are molded with the transparent resin 13 filled in the concave portion of the concave case 6.

図4に詳しく示すように、素子マウント側リード7の上片7aのケース中心側先端の素子マウント部7fにRGB3色の発光ダイオード構造の発光素子91,92,93がマウントされている。これらの発光素子91,92,93それぞれには、ワイヤ101,102,103それぞれの一端が接続され、ワイヤ101,102,103の他端はワイヤ接続側リード81,82,83それぞれの上片8aの先端のワイヤ接続部81f,82f,83fに接続されている。これらの発光素子91,92,93は、放物面状の反射面の焦点位置若しくは焦点から少しずれた焦点近傍の位置に位置設定されている。   As shown in detail in FIG. 4, light emitting elements 91, 92, and 93 having a light emitting diode structure of three colors of RGB are mounted on the element mount portion 7f at the tip of the case mount side of the upper piece 7a of the element mount side lead 7. One end of each of the wires 101, 102, 103 is connected to each of the light emitting elements 91, 92, 93, and the other end of each of the wires 101, 102, 103 is the upper piece 8a of each of the wire connection side leads 81, 82, 83. Are connected to the wire connecting portions 81f, 82f, 83f at the tip of the wire. These light emitting elements 91, 92, and 93 are set at the focal position of the parabolic reflecting surface or at a position near the focal point that is slightly deviated from the focal point.

また、図5に詳しく示すように、3色の発光素子91,92,93の全体は、ワイヤ101,102,103それぞれが接続された状態で、後述する電気絶縁性樹脂の光分散性粉粒95を分散させた第1の透明樹脂96を滴下し硬化させることで被覆してある。光分散性粉粒95は、例えばアクリル樹脂、ナイロン樹脂、ポリカーボネート樹脂のような電気絶縁性があり、平均粒度が0.05μm〜0.5μmの微小樹脂粉粒である。第1の透明樹脂96は、例えば、エポキシ樹脂やシリコン系樹脂のような電気絶縁性を備えた透明樹脂である。   Further, as shown in detail in FIG. 5, the light emitting elements 91, 92, and 93 of the three colors are in a state where the wires 101, 102, and 103 are connected to each other, and a light-dispersible powder particle of an electrically insulating resin described later. The first transparent resin 96 in which 95 is dispersed is dropped and cured to coat. The light dispersible powder particles 95 are fine resin particles having electrical insulation properties such as acrylic resin, nylon resin, and polycarbonate resin, and having an average particle size of 0.05 μm to 0.5 μm. The first transparent resin 96 is a transparent resin having electrical insulation properties such as an epoxy resin or a silicon resin, for example.

図6に示すように、凹状ケース6は、その上面側に放物凹曲面状の凹部が形成されていて、この凹部底面にアルミニウム若しくは銀蒸着することで反射面2が形成されている。また凹状ケース6の周囲の壁部3の一方の上縁部に溝4が形成され、対向する他方の上縁部に溝51,52,53が形成されている。   As shown in FIG. 6, the concave case 6 is formed with a parabolic concave curved concave portion on the upper surface side, and the reflective surface 2 is formed by depositing aluminum or silver on the concave bottom surface. A groove 4 is formed on one upper edge of the wall 3 around the concave case 6, and grooves 51, 52, 53 are formed on the other upper edge facing each other.

図1、図2に示すように、素子マウント側リード7は、凹状ケース6の反射面2の上方を横切り、凹状ケース6の壁側面及び底面に沿うように狭幅の上片7a、広幅の垂直片7b、広幅の下片7cが折り曲げられてこの凹状ケース6の片側に取り付けられている。3本のワイヤ接続側リード81,82,83は、素子マウント側リード7と対置され、同様に狭幅の上片81a,82a,83a、やや広幅の垂直片81b,82b,83b、このやや広幅の垂直片81b,82b,83bと等幅の下片81c,82c,83cが折り曲げられて凹状ケース6に取り付けられている。   As shown in FIGS. 1 and 2, the element mount side lead 7 crosses the upper surface of the reflective surface 2 of the concave case 6, and has a narrow upper piece 7 a and a wide width along the wall side surface and bottom surface of the concave case 6. The vertical piece 7 b and the wide lower piece 7 c are bent and attached to one side of the concave case 6. The three wire connection side leads 81, 82, 83 are opposed to the element mount side lead 7. Similarly, the narrow upper pieces 81 a, 82 a, 83 a, the slightly wider vertical pieces 81 b, 82 b, 83 b, the slightly wider width Vertical pieces 81b, 82b, 83b and equal-width lower pieces 81c, 82c, 83c are bent and attached to the concave case 6.

素子マウント側リード7、3本のワイヤ接続側リード81,82,83それぞれの狭幅の上片7a,81a,82a,83aの折り曲げ基部7a’,81a’,82a’,83a’が凹状ケース6の溝4,51,52,53それぞれに嵌合され、凹状ケース6の溝4,51,52,53の外部でリード7,81,82,83それぞれの広幅の垂直片7b,81b,82b,83bが凹状ケース6の側面に沿い、かつリード7,81,82,83それぞれの広幅の下片7c,81c,82c,83cが凹状ケース6の底面に接している。   The element mount side lead 7 and the bent base portions 7a ', 81a', 82a ', 83a' of the narrow upper pieces 7a, 81a, 82a, 83a of the three wire connection side leads 81, 82, 83 are concave case 6 Are respectively fitted to the grooves 4, 51, 52, 53 of the concave case 6, and outside the grooves 4, 51, 52, 53 of the concave case 6, the wide vertical pieces 7b, 81b, 82b of the leads 7, 81, 82, 83, respectively. 83 b is along the side surface of the concave case 6, and the lower wide pieces 7 c, 81 c, 82 c, 83 c of the leads 7, 81, 82, 83 are in contact with the bottom surface of the concave case 6.

凹状ケース6の溝4,51,52,53それぞれにおいて、リード7,81,82,83それぞれの折り曲げ基部7a’,81a’,82a’,83a’の嵌合部分の上面側から凹状ケース6の上縁面までの段差を塞ぐようにその段差部分に小さなUV硬化性樹脂を詰めて硬化させて堰止め11,121,122,123とし、同時にリード7,81,82,83それぞれの上片7a,81a,82a,83aの折り曲げ基部7a’,81a’,82a’,83a’を固定している。そして、凹状ケース6の凹部内に、例えば、カチオン重合型透明エポキシ樹脂のような透明エポキシ樹脂もしくは透明シリコン樹脂のようなモールド用の第2の透明樹脂13を凹状ケース6の上縁面に達する深さに充填して硬化させることで、素子マウント側リード7、ワイヤ接続側リード81,82,83の上片7a,81a,82a,83a、発光素子91,92,93、これらの全体を被覆している光混色用の第1の透明樹脂96、ワイヤ101,102,103を第2の透明樹脂13の中に埋没させた状態で固定している。   In each of the grooves 4, 51, 52, 53 of the concave case 6, the concave case 6 is formed from the upper surface side of the fitting portion of the bent base portions 7 a ′, 81 a ′, 82 a ′, 83 a ′ of the leads 7, 81, 82, 83. The step portion is filled with a small UV curable resin so as to block the step up to the upper edge surface and cured to form the weirs 11, 121, 122, 123, and at the same time, the upper pieces 7a of the leads 7, 81, 82, 83, respectively. , 81a, 82a, 83a are fixed to the bent bases 7a ′, 81a ′, 82a ′, 83a ′. Then, for example, a transparent epoxy resin such as a cationic polymerization type transparent epoxy resin or a second transparent resin 13 for molding such as a transparent silicon resin reaches the upper edge surface of the concave case 6 in the concave portion of the concave case 6. By filling and curing to the depth, the element mount side lead 7, the wire connection side leads 81, 82, 83 upper pieces 7 a, 81 a, 82 a, 83 a, the light emitting elements 91, 92, 93, all of which are covered The first transparent resin 96 for light color mixing and the wires 101, 102, and 103 are fixed in a state of being buried in the second transparent resin 13.

図2に示すように、上記構成の反射型発光ダイオード1は、図示していない基板上にこの反射型発光ダイオード1を載置し、底部両側のリード7,81,82,83の下片7c,81c,82c,83cそれぞれを半田にてプラス端子、マイナス端子に接続して固定する。そしてこのマウント状態で、それらのプラス端子、マイナス端子に通電することで発光素子91,92,93に両側のリード7,81,82,83それぞれを通じて通電して発光させる。発光素子91,92,93からの光は、図2において矢印線で示すように大部分が下方に出て放物曲面の反射面2にて反射され、ほぼ平行光線となって凹状ケース6の上面からそれに垂直な方向に出光する。このため、この反射型発光ダイオード1では、光の向きが揃い指向性が強い光、したがって光が当たるところでの輝度が高い光を得ることができる。   As shown in FIG. 2, the reflection type light emitting diode 1 having the above-described configuration is such that the reflection type light emitting diode 1 is placed on a substrate (not shown) and the lower pieces 7c of the leads 7, 81, 82, 83 on both sides of the bottom. , 81c, 82c, 83c are connected and fixed to the positive terminal and the negative terminal with solder. In this mounted state, the positive terminals and the negative terminals are energized, whereby the light emitting elements 91, 92, 93 are energized through the respective leads 7, 81, 82, 83 on both sides to emit light. The light from the light emitting elements 91, 92, 93 is mostly emitted downward and reflected by the parabolic curved reflecting surface 2 as shown by the arrow line in FIG. It emits light from the top surface in the direction perpendicular to it. For this reason, in the reflection type light emitting diode 1, it is possible to obtain light having the same direction of light and strong directivity, and thus light having high luminance where the light strikes.

加えて、本実施の形態の反射型発光ダイオード1の場合、3色発光素子91,92,93を光混色用の第1の透明樹脂96にて被覆しているので、次のメカニズムにより自然光に近い、しかも高輝度の白色光を得ることができる。   In addition, in the case of the reflective light-emitting diode 1 of the present embodiment, the three-color light-emitting elements 91, 92, 93 are covered with the first transparent resin 96 for light color mixing, so that natural light is emitted by the following mechanism. Close and high brightness white light can be obtained.

図8に示すように、第1の透明樹脂96には光分散性粉粒95が分散、混入させてある。第1の透明樹脂96はエポキシ樹脂であるが、これに代えて、シリコン系樹脂を用いることもできる。光分散性粉粒95は、アクリル、ポリカーボネートあるいはナイロンのような電気絶縁性の樹脂粉粒であり、その粉体の平均粒度は0.05μm〜0.5μmである。   As shown in FIG. 8, light-dispersible powder particles 95 are dispersed and mixed in the first transparent resin 96. The first transparent resin 96 is an epoxy resin, but a silicon-based resin can be used instead. The light dispersible particles 95 are electrically insulating resin particles such as acrylic, polycarbonate, or nylon, and the average particle size of the powder is 0.05 μm to 0.5 μm.

光の散乱には0.1μm以下の微小粒子によるレイリー散乱、レイリー散乱させる粒子よりも粒子径が大きい0.1〜1.0μmの微小粒子によるミー散乱、さらに大きな1μm以上の粒子径の粒子による回折散乱がある。レイリー散乱は、光の波長よりも小さい粒子、平均粒度が0.05μm以下の微小粒子によって起こる。晴天時の日中の青空は太陽光が大気中の空気粒子によりレイリー散乱され、波長の短い青色の光が観察者の方に多く散乱される結果である。他方、光の波長に近い粒子径の粒子、0.1μm〜1.0μm径の粒子により起こる散乱はミー散乱であり、赤色の光が強く見られる。そして光の波長よりも大きな粒子径の粒子、1.0μm以上の粒子による散乱は回折散乱であり、光の波長に依存しない。霧は空中の大粒径の水蒸気による光波長に依存しない回折散乱の結果である。   For light scattering, Rayleigh scattering by microparticles of 0.1 μm or less, Mie scattering by microparticles of 0.1 to 1.0 μm, which is larger than the particles to be Rayleigh scattered, and by particles having a larger particle diameter of 1 μm or more There is diffraction scattering. Rayleigh scattering is caused by particles smaller than the wavelength of light and fine particles having an average particle size of 0.05 μm or less. The blue sky during the daytime in fine weather is the result of sunlight being Rayleigh scattered by air particles in the atmosphere and a lot of blue light with a short wavelength being scattered toward the observer. On the other hand, scattering caused by particles having a particle diameter close to the wavelength of light and particles having a diameter of 0.1 μm to 1.0 μm is Mie scattering, and red light is strongly observed. Scattering by particles having a particle diameter larger than the wavelength of light and particles having a diameter of 1.0 μm or more is diffraction scattering and does not depend on the wavelength of light. Fog is the result of diffraction scattering that is independent of the wavelength of light by water vapor with a large particle size in the air.

このような光の散乱特性を考察した場合、光の波長よりも大きな粒子径の粒子による回折散乱の場合だけでなく、青色が強く出るレイリー散乱と赤色が強く出るミー散乱との境界の領域の粒子径の粒子でも光の波長に依存しない散乱が起こる。つまり、平均粒度が0.05μm〜0.5μmの粒子によれば光の波長に依存しない散乱を起こすことができ、RGB各色の光を任意の方向に図9に示すようにほぼ同程度の光強度を持つ光の散乱が散乱角±90°の広範囲で得ることができる。したがって、観察者の目にはどの方向から見てもRGB3色が均等に混色した結果としての白色光が観察されることになる。   Considering such light scattering characteristics, not only the case of diffraction scattering by particles having a particle diameter larger than the wavelength of light, but also the boundary region between Rayleigh scattering where blue is strong and Mie scattering where red is strong. Scattering that does not depend on the wavelength of light occurs even with particles of a particle size. That is, according to the particles having an average particle size of 0.05 μm to 0.5 μm, scattering independent of the wavelength of the light can be caused, and light of each color of RGB is almost the same as shown in FIG. Scattering of light with intensity can be obtained over a wide range of scattering angle ± 90 °. Accordingly, the observer sees white light as a result of the uniform mixing of the three RGB colors from any direction.

図10には、比較例としての回折散乱の結果を示す。すなわち、図10の結果からも明らかなように、回折散乱領域での光の散乱は散乱角±15°を越えた領域ではRGB3色の光強度が反転している。この結果から、回折散乱の領域ではRGB3色は正面から見ているときには白色光を観察できるが、±15°の範囲を越えると、光強度の反転により赤の強い光が観察されるようになることがわかる。   FIG. 10 shows the result of diffraction scattering as a comparative example. That is, as is clear from the results of FIG. 10, the light intensity of the RGB three colors is reversed in the region where the scattering angle exceeds ± 15 °. From this result, white light can be observed when the RGB three colors are viewed from the front in the diffraction scattering region, but when the range of ± 15 ° is exceeded, strong red light is observed due to inversion of the light intensity. I understand that.

(実験例)図11の写真に示す態様にて、第1の透明樹脂96の種類、光分散性樹脂95の平均粒度、混入割合を変えて実験を行い、RGB3色発光素子91,92,93とそれを被覆している第1の透明樹脂96の部分を外から観察した。   (Experimental example) In the embodiment shown in the photograph of FIG. 11, the experiment was performed by changing the type of the first transparent resin 96, the average particle size of the light-dispersible resin 95, and the mixing ratio, and RGB three-color light emitting elements 91, 92, 93. A portion of the first transparent resin 96 covering the same was observed from the outside.

(1)第1の透明樹脂96にはシリコン樹脂を用い、これに光分散性粉粒95として、メタクリル樹脂粉末(平均粒度0.1μm)を20wt%混入したもの。第1の透明樹脂は、信越化学工業社製、信越シリコーンKJR−9022/C−9022=10:1であり、メタクリル樹脂粉末は、積水化成品工業社製である。   (1) A silicon resin is used for the first transparent resin 96, and 20 wt% of methacrylic resin powder (average particle size of 0.1 μm) is mixed in as a light-dispersible powder particle 95. The first transparent resin is manufactured by Shin-Etsu Chemical Co., Ltd., Shin-Etsu Silicone KJR-9022 / C-9022 = 10: 1, and the methacrylic resin powder is manufactured by Sekisui Plastics.

(2)第1の透明樹脂96にはシリコン樹脂を用い、これに光分散性粉粒95として、メタクリル樹脂粉末(平均粒度0.1μm)を30wt%混入したもの。樹脂製品は(1)のものと同様である。   (2) A silicon resin is used for the first transparent resin 96, and 30 wt% of methacrylic resin powder (average particle size 0.1 μm) is mixed in as a light-dispersible powder particle 95. The resin product is the same as that of (1).

(3)第1の透明樹脂96にはシリコン樹脂を用い、これに光分散性粉粒95として、シリコン樹脂粉末(平均粒度0.5μm)を40wt%混入したもの。第1の透明樹脂は、信越化学工業社製、信越シリコーンKJR−9022/C−9022=10:1であり、シリコン樹脂粉末は、宇部日東化成社製である。   (3) A silicon resin is used for the first transparent resin 96, and 40 wt% of a silicon resin powder (average particle size 0.5 μm) is mixed as the light-dispersible powder particles 95. The first transparent resin is manufactured by Shin-Etsu Chemical Co., Ltd., Shin-Etsu Silicone KJR-9022 / C-9022 = 10: 1, and the silicon resin powder is manufactured by Ube Nitto Kasei.

(4)第1の透明樹脂96にはシリコン樹脂を用い、これに光分散性粉粒95として、シリコン樹脂粉末(平均粒度0.5μm)を50wt%混入したもの。樹脂製品は(3)のものと同様である。   (4) A silicon resin is used for the first transparent resin 96, and 50 wt% of silicon resin powder (average particle size 0.5 μm) is mixed as the light-dispersible powder particles 95 therein. The resin product is the same as that of (3).

この実験結果から、(2)のものが白色混合化がもっとも良好であった。(1)のものでは中央部に白色光が広く見られたが、それと共にその周辺の一方に青色光が、反対側に赤色光が認められた。また(3)のものでも(1)と同様に白色光と共に青色光、赤色光が周囲に見られた。そして(4)のものでは、全体的にぼやけた発光であるが、白色光と共に青色光、赤色光が認められた。   From this experimental result, the mixture of white color (2) was the best. In the case of (1), white light was widely observed in the central portion, but at the same time, blue light was observed on one side of the periphery and red light was observed on the opposite side. In the case of (3), blue light and red light were seen in the surroundings together with white light as in (1). In the case of (4), although the light emission was blurred as a whole, blue light and red light were recognized together with white light.

本実施の形態の反射型発光ダイオード1では、第1の透明樹脂96の表面全体の白色光が図2において矢印にて示したように放物面となった反射面2に放出され、反射面2にて反射されて平行光に近い状態に向きが揃えられ、この凹状ケース6の開口部から前方に配光性の高い白色光として放出されていく。そこで、上記の実験結果を踏まえ、光源部分を(2)のものにした場合、本実施の形態の反射型発光ダイオード1では、光の向きが揃い指向性が強い白色光、したがって光が当たるところでは輝度の高い白色光を得ることができると共に、この光を斜めから観察してもRGB3色がきれいに混合した白色光を観察することができた。   In the reflective light emitting diode 1 of the present embodiment, white light on the entire surface of the first transparent resin 96 is emitted to the reflective surface 2 that is a paraboloid as indicated by arrows in FIG. The light is reflected at 2 and aligned in a state close to parallel light, and is emitted from the opening of the concave case 6 to the front as white light with high light distribution. Therefore, based on the above experimental results, when the light source portion is the one of (2), in the reflection type light emitting diode 1 of the present embodiment, the white light having a uniform direction and strong directivity, and therefore the light hits. Was able to obtain white light with high luminance, and even when this light was observed obliquely, white light in which the RGB three colors were mixed neatly could be observed.

次に、上記の構造を有する反射型発光ダイオード1の製造方法について、図3〜図7を用いて説明する。大量生産においては、図3に示すような良導電性の材料、例えば、銅(Cu)を主成分として98%〜99%含み、若干の鉄(Fe)、硫黄(S)を含み、さらに2〜6μm厚に銀メッキが施された薄板を材料とし、これにエッチングあるいは打ち抜き加工にて一辺から素子マウント側リード7が延出し、それとは反対辺から1箇所3本のワイヤ接続側リード81,82,83が延出し、両側に対向して多数横並びになるように形成されたリードフレーム20を使用する。   Next, a manufacturing method of the reflective light emitting diode 1 having the above structure will be described with reference to FIGS. In mass production, a highly conductive material as shown in FIG. 3, for example, containing 98% to 99% of copper (Cu) as a main component, including some iron (Fe) and sulfur (S), and 2 The element mount side lead 7 is extended from one side by etching or stamping, and three wire connection side leads 81, one from the opposite side. A lead frame 20 is used in which 82 and 83 extend so that a large number of them are arranged side by side on both sides.

素子マウント側リード7の形状は、狭幅の上片7a、広幅の垂直片7b、広幅の下片7cそれぞれになる部分が形成されている。3本のワイヤ接続側リード81,82,83それぞれは、狭幅の上片81a,82a,83、広幅の垂直片81b,82b,83b、同様に広幅の下片81c,82c,83cそれぞれになる部分が形成されている。尚、図3において、素子マウント側リード7とワイヤ接続側リード81,82,33それぞれの下片7c,81c,82c,83cとなる部分の端部に相当する位置に形成されている扁平楕円形の穴21,22は、破断線23,24にて切断加工する時の切断抵抗を小さくするためのものである。   The element mount side lead 7 has a narrow upper piece 7a, a wide vertical piece 7b, and a wide lower piece 7c. Each of the three wire connection side leads 81, 82, 83 becomes narrow upper pieces 81a, 82a, 83, wide vertical pieces 81b, 82b, 83b, and similarly wide lower pieces 81c, 82c, 83c, respectively. A part is formed. In FIG. 3, a flat oval shape is formed at a position corresponding to the end portion of each of the element mount side lead 7 and the wire connection side leads 81, 82, and 33 and the lower pieces 7 c, 81 c, 82 c, and 83 c. The holes 21 and 22 are for reducing the cutting resistance when cutting along the break lines 23 and 24.

このようなリードフレーム20において、素子マウント側リード7と3本1組のワイヤ接続側リード81,82,83とで対を成す各対のリード7,81〜83に対して、素子マウント側リード7の上片先端の素子マウント部7fに3個の発光素子91,92,93をマウントし、それぞれの発光素子91,92,93とワイヤ接続側リード81,82,83それぞれの先端のワイヤ接続部81f,82f,83fとの間にワイヤボンディングを行う。すなわち、図4に示したように素子マウント側リード7の上片7aの先端の素子マウント部7fの下面側に3個の発光素子91,92,93を銀ペーストにて固着し、続いてこの固着された発光素子91,92,93それぞれとワイヤ接続側リード81,82,83の上片81a,82a,83aの先端のワイヤ接続部81f,82f,83fそれどれとの間にワイヤボンディングを行って例えば金線のようなワイヤ101,102,103それぞれを接続する。   In such a lead frame 20, the element mount side lead is compared with each pair of leads 7, 81 to 83 which are paired with the element mount side lead 7 and a set of three wire connection side leads 81, 82, 83. Three light emitting elements 91, 92, 93 are mounted on the element mounting portion 7 f at the top end of the upper piece 7, and wire connection at the tip of each of the light emitting elements 91, 92, 93 and the wire connection side leads 81, 82, 83 is performed. Wire bonding is performed between the portions 81f, 82f, and 83f. That is, as shown in FIG. 4, three light emitting elements 91, 92, 93 are fixed with silver paste on the lower surface side of the element mount portion 7f at the tip of the upper piece 7a of the element mount side lead 7, and subsequently this Wire bonding is performed between each of the fixed light emitting elements 91, 92, 93 and the wire connection portions 81f, 82f, 83f at the tips of the upper pieces 81a, 82a, 83a of the wire connection side leads 81, 82, 83. For example, wires 101, 102, 103 such as gold wires are connected.

この後、図5に示すように、各素子マウント側リード7の上片先端の素子マウント部7fにマウントされ、ワイヤ101,102,103それぞれが接続された3色の発光素子91,92,93の全体に対して、上述した光分散性粉粒95が混入された第1の透明樹脂96を滴下した後に硬化させることで被覆する。   Thereafter, as shown in FIG. 5, the light emitting elements 91, 92, 93 of three colors mounted on the element mounting portion 7f at the top end of each element mounting side lead 7 and connected to the wires 101, 102, 103, respectively. The whole is covered with the first transparent resin 96 mixed with the above-described light-dispersible powder particles 95 after being dropped.

続いて、リードフレーム20の対を成す素子マウント側リード7と1組3本のワイヤ接続側リード81,82,83とを凹状ケース6それぞれに取り付ける。その手順は、図7に示してある。すなわち、図7(a)に示すように、3個の発光素子91,92,93を搭載し、ワイヤボンディングにてワイヤ101,102,103が接続された対を成す素子マウント側リード7とワイヤ接続側リード81,82,83とは、上下を逆さまにして狭幅の上片7a,81a,82a,83aに相当する部分それぞれを凹状ケース6の溝4,51,52,53に嵌合させる。これにより、凹状ケース6の内部においては狭幅の上片7a,81a,82a,83aに相当する部分が反射面2の上方に位置し、凹状ケース6の外部に広幅の垂直片7b,81b,82b,83b、下片7c,81c,82c,83cそれぞれに相当する部分が位置することになる。そして、凹状ケース6の溝4,51,52,53それぞれには、対を成す素子マウント側リード7と3本のワイヤ接続側リード81,82,83それぞれの折り曲げ基部7a’,81a’82a’,83a’が嵌合する。   Subsequently, the element mount side lead 7 forming a pair of lead frames 20 and a set of three wire connection side leads 81, 82, 83 are attached to each of the concave cases 6. The procedure is shown in FIG. That is, as shown in FIG. 7 (a), three light emitting elements 91, 92, 93 are mounted, and the element mount side lead 7 and the wire forming a pair to which the wires 101, 102, 103 are connected by wire bonding. The connection-side leads 81, 82, 83 are turned upside down and the portions corresponding to the narrow upper pieces 7 a, 81 a, 82 a, 83 a are fitted into the grooves 4, 51, 52, 53 of the concave case 6. . Thereby, inside the concave case 6, the portions corresponding to the narrow upper pieces 7 a, 81 a, 82 a, 83 a are located above the reflecting surface 2, and the wide vertical pieces 7 b, 81 b, 82b and 83b and the parts corresponding to the lower pieces 7c, 81c, 82c and 83c are located. Further, the grooves 4, 51, 52, 53 of the concave case 6 have respective bent base portions 7a ′, 81a′82a ′ of the paired element mount side lead 7 and the three wire connection side leads 81, 82, 83. , 83a ′ are fitted.

次に、図7(b)に示すように、凹状ケース6の溝4,51,52,53それぞれにおいて、対を成す素子マウント側リード7と3本のワイヤ接続側リード81,82,83それぞれの折り曲げ基部7a’,81a’82a’,83a’の嵌合部分の上面側から凹状ケース6の上面までの段差を塞ぐようにその段差部分に小さなUV硬化性樹脂を詰めて硬化させて堰止め11,121,122,123を形成する。   Next, as shown in FIG. 7B, in each of the grooves 4, 51, 52, 53 of the concave case 6, a pair of element mount side leads 7 and three wire connection side leads 81, 82, 83, respectively. The stepped portions 7a ′, 81a′82a ′, 83a ′ are filled with a small UV curable resin so as to block the step from the upper surface side of the fitting portion to the upper surface of the concave case 6 and cured. 11, 121, 122, 123 are formed.

続いて、図7(c)に示すように、硬化触媒を含む高粘度の透明エポキシ樹脂や透明シリコン樹脂のような透明樹脂13を凹状ケース6の凹部にその上縁面まで充填し、80〜130℃での雰囲気炉で硬化させて狭幅の上片7a,81a,82a,83aに相当する部分と発光素子91,92,93、発光素子91,92,93の全体を覆っている光混色用の第1の透明樹脂96、ワイヤ101,102,103を凹状ケース6と一体化する。   Subsequently, as shown in FIG. 7C, a transparent resin 13 such as a high-viscosity transparent epoxy resin or a transparent silicone resin containing a curing catalyst is filled in the concave portion of the concave case 6 up to its upper edge surface. Light color mixture covering the light emitting elements 91, 92, 93 and the entire light emitting elements 91, 92, 93 by curing in an atmosphere furnace at 130 ° C and corresponding to the narrow upper pieces 7a, 81a, 82a, 83a The first transparent resin 96 and the wires 101, 102, 103 are integrated with the concave case 6.

このようにして凹状ケース6に対して、素子マウント側リード7と3本のワイヤ接続側リード81,82,83の上片7a,81a,82a,83aに相当する部分を透明樹脂13にて固定した後、リードフレーム20を切断線23,24の部分で切断し、個々の素子マウント側リード7と3本のワイヤ接続側リード81,82,83をリードフレーム20から切り離す。   In this way, the portion corresponding to the element mount side lead 7 and the upper pieces 7a, 81a, 82a, 83a of the three wire connection side leads 81, 82, 83 is fixed to the concave case 6 with the transparent resin 13. After that, the lead frame 20 is cut along the cutting lines 23 and 24, and the individual element mount side lead 7 and the three wire connection side leads 81, 82, and 83 are separated from the lead frame 20.

次に、図7(d)に示すように、対を成す素子マウント側リード7と3本のワイヤ接続側リード81,82,83の凹状ケース6より外側に出ている部分に曲げ加工を施す。この曲げ加工では、広幅の垂直片7b,81b,82b,83bに相当する部分を、それに繋がる折り曲げ基部7a’,81a’,82a’,83a’を凹状ケース6の側面に沿うように図において下側に折り曲げることで垂直にし、さらに、凹状ケース6の底面に下片7c,81c,82c,83cに相当する部分が接するように内側に折り曲げる。こうして、対を成す素子マウント側リード7と3本のワイヤ接続側リード81,82,83それぞれが狭幅の上片7a,81a,82a,83aと広幅の垂直片7b,81b,82b,83bと広幅の下片7c,81c,82c,83cとを折り曲げて曲げ加工が完了する。この曲げ加工が完了すると、図1、図2に示した反射型発光ダイオード1が完成する。   Next, as shown in FIG. 7 (d), bending is performed on the portion of the element mount side lead 7 and the three wire connection side leads 81, 82, 83 that are paired and protruding outside the concave case 6 as shown in FIG. . In this bending process, the portions corresponding to the wide vertical pieces 7b, 81b, 82b, 83b are arranged so that the bent base portions 7a ′, 81a ′, 82a ′, 83a ′ connected to the vertical pieces 7b, 81b, 82b, 83b are along the side surfaces of the concave case 6 in the figure. It is bent to the side so that it is vertical, and further bent inward so that portions corresponding to the lower pieces 7c, 81c, 82c, 83c are in contact with the bottom surface of the concave case 6. Thus, the element mount side lead 7 and the three wire connection side leads 81, 82, 83 forming a pair are respectively formed as a narrow upper piece 7 a, 81 a, 82 a, 83 a and a wide vertical piece 7 b, 81 b, 82 b, 83 b. The wide lower pieces 7c, 81c, 82c, 83c are bent to complete the bending process. When this bending process is completed, the reflection type light emitting diode 1 shown in FIGS. 1 and 2 is completed.

尚、この後、必要に応じて、対を成す素子マウント側リード7、ワイヤ接続側リード81,82,83それぞれの下片7c,81c,82c,83cは凹状ケース6の底面に対して半田にて固定することがある。   After that, if necessary, the lower pieces 7c, 81c, 82c, and 83c of the element mount side lead 7 and the wire connection side leads 81, 82, and 83 which form a pair are soldered to the bottom surface of the concave case 6. May be fixed.

このように本実施の形態の反射型発光ダイオード1では、図2において矢印線で示すように大部分が下方に出て放物曲面の反射面2にて反射され、ほぼ平行光線となって凹状ケース6の上面からそれに垂直な方向に出光する。このため、本実施の形態の反射型発光ダイオード1では、光の向きが揃い指向性が強い光、したがって光が当たるところでは輝度の高い光を得ることができる。加えて、本実施の形態の反射型発光ダイオード1の場合、3色発光素子91,92,93を光分散性樹脂95を混入した第1の透明樹脂96にて被覆しているので、自然光に近い、しかも高輝度の白色光を得ることができる。   As described above, in the reflection type light emitting diode 1 of the present embodiment, as shown by the arrow line in FIG. Light exits from the upper surface of the case 6 in a direction perpendicular thereto. For this reason, in the reflective light emitting diode 1 of the present embodiment, light having a uniform direction and strong directivity, and therefore high brightness light can be obtained where the light hits. In addition, in the case of the reflective light emitting diode 1 of the present embodiment, the three-color light emitting elements 91, 92, and 93 are covered with the first transparent resin 96 mixed with the light dispersible resin 95, so Close and high brightness white light can be obtained.

尚、上記実施の形態では素子マウント側リード7の素子マウント部7fに3個の発光素子91,92,93を搭載し、それらを同時に発光させるために3本1組のワイヤ接続側リード81,82,83それぞれを設けたが、発光素子の個数は3個に限定されるものではなく、発光色の異なる2個の発光素子であってもよく、その場合には、2個の異なる色を均等に混色した混色光を高輝度に発光させることができる。この場合、発光素子の個数に応じて、その数と同本数のワイヤ接続側リードを設けることになる。   In the above-described embodiment, three light emitting elements 91, 92, 93 are mounted on the element mount portion 7f of the element mount side lead 7, and a set of three wire connection side leads 81, 82 and 83 are provided, but the number of light emitting elements is not limited to three, and may be two light emitting elements having different light emission colors. Evenly mixed color light can be emitted with high brightness. In this case, the same number of wire connection side leads as the number of light emitting elements are provided.

さらに、本発明の実施の形態によれば、反射面2を凹状ケースの凹部の底面に設ける例で説明したが、モールドなどの技術を用いて透明樹脂とリードフレームとを予め一体成形し、凹状ケースの凹部に対する嵌合面となる透明樹脂の底面側に反射面2を形成する構成であってもよい。また、リード7,81,82,83を固定し、白色発光させることができる構造であれば、箱形の凹状ケース6は必ずしも必要ではない。   Furthermore, according to the embodiment of the present invention, the example in which the reflecting surface 2 is provided on the bottom surface of the concave portion of the concave case has been described. However, the transparent resin and the lead frame are integrally formed in advance using a technique such as molding, and the concave shape is obtained. The structure which forms the reflective surface 2 in the bottom face side of transparent resin used as the fitting surface with respect to the recessed part of a case may be sufficient. Further, the box-shaped concave case 6 is not necessarily required as long as the leads 7, 81, 82, 83 are fixed and white light can be emitted.

(第2の実施の形態)上記第1の実施の形態は反射型発光ダイオード1についてのものであったが、この例に限定されるものではなく、本発明の白色化発光メカニズムは、他のタイプの発光ダイオードにも利用できる。例えば、図12に示すように、SMD発光ダイオード200においても、RGB3色発光素子91,92,93をリード7にマウントし、その周囲を上記実施の形態と同様の光分散性粉粒95を混入した第1の透明樹脂96にて被覆し、これを発光ダイオード光源とすることで、自然光に近い白色光を発光するSMD発光ダイオードを構成することができる。2は反射面、6はケース、81,82,83それぞれはワイヤ接続側リード、101,102,103はワイヤを示している。   (Second Embodiment) Although the first embodiment described above is for the reflective light emitting diode 1, the present invention is not limited to this example. It can also be used for light emitting diodes of the type. For example, as shown in FIG. 12, also in the SMD light emitting diode 200, RGB three-color light emitting elements 91, 92, 93 are mounted on the lead 7, and the light dispersible powder particles 95 similar to those in the above embodiment are mixed in the periphery. By covering with the first transparent resin 96 and using this as a light emitting diode light source, an SMD light emitting diode that emits white light close to natural light can be configured. 2 is a reflecting surface, 6 is a case, 81, 82, and 83 are wire connection side leads, and 101, 102, and 103 are wires.

本実施の形態にあっても、複数の色光が一様に混色した発光色の光を発光ダイオードから放出することができる。   Even in the present embodiment, light of an emission color obtained by uniformly mixing a plurality of color lights can be emitted from the light emitting diode.

尚、本発明は、上記のような反射型発光ダイオード、SMD発光ダイオードだけではなく、一般的な砲弾型の発光ダイオードに対しても適用できる。   The present invention can be applied not only to the reflection type light emitting diode and the SMD light emitting diode as described above but also to a general bullet type light emitting diode.

1 反射型発光ダイオード
2 反射面
3 壁部
4,5 溝
6 凹状ケース
7 素子マウント側リード
81,82,83 ワイヤ接続側リード
7a,81a,82a,83a 上片
7b,81b,82b,83b 垂直片
7c,81c,82c,83c 下片
7f 素子マウント部
13 モールド樹脂
81f,82f,83f ワイヤ接続部
91,92,93 発光素子
95 光分散性粉粒
96 第1の透明樹脂
101,102,103 ワイヤ
200 SMD発光ダイオード
DESCRIPTION OF SYMBOLS 1 Reflection type light emitting diode 2 Reflecting surface 3 Wall part 4, 5 Groove 6 Concave case 7 Element mount side lead 81, 82, 83 Wire connection side lead 7a, 81a, 82a, 83a Upper piece 7b, 81b, 82b, 83b Vertical piece 7c, 81c, 82c, 83c Lower piece 7f Element mounting part 13 Mold resin 81f, 82f, 83f Wire connection part 91, 92, 93 Light emitting element 95 Light dispersible powder 96 First transparent resin 101, 102, 103 Wire 200 SMD light emitting diode

Claims (4)

発光ダイオード構造で、発光色の異なる複数個の発光素子と、
前記複数個の発光素子の周囲を被覆する、0.050μm〜0.5μmの平均粒度の光分散性粉粒を分散させた透明樹脂とを備えたことを特徴とする発光ダイオード。
With a light emitting diode structure, a plurality of light emitting elements with different emission colors,
A light-emitting diode, comprising: a transparent resin in which light-dispersible powder particles having an average particle size of 0.050 μm to 0.5 μm are coated to cover the plurality of light-emitting elements.
前記複数個の発光素子は、R,G,B3色それぞれを色光を発光する3個の発光素子であることを特徴とする請求項1に記載の発光ダイオード。   2. The light emitting diode according to claim 1, wherein the plurality of light emitting elements are three light emitting elements that emit color lights of R, G, and B colors, respectively. 内部に凹面形状の反射面を有する本体に対して、前記反射面の開口部側中央に素子マウント部が位置するように素子マウント側リードを設置し、
前記素子マウント部に隣接してワイヤ接続部が位置するように複数本のワイヤ接続側リードを設置し、
発光ダイオード構造で、発光色の異なる複数個の発光素子を前記素子マウント側リードの素子マウント部にマウントし、
前記複数個の発光素子それぞれと前記複数本のワイヤ接続側リードのワイヤ接続部それぞれとの間にワイヤを接続し、
前記複数個の発光素子の周囲を、0.050μm〜0.5μmの平均粒度の光分散性粉粒を分散させた第1の透明樹脂にて被覆し、
前記複数個の発光素子、ワイヤ、これらを被覆する前記第1の透明樹脂、前記素子マウント側リード及び前記複数本のワイヤ接続側リードを第2の透明樹脂にて前記本体の反射面上に固定したことを特徴とする反射型発光ダイオード。
For the main body having a concave reflecting surface inside, the element mount side lead is installed so that the element mounting portion is located in the center of the opening side of the reflecting surface,
Installing a plurality of wire connection side leads so that the wire connection portion is located adjacent to the element mount portion,
In the light emitting diode structure, a plurality of light emitting elements having different emission colors are mounted on the element mount portion of the element mount side lead,
A wire is connected between each of the plurality of light emitting elements and each of the wire connection portions of the plurality of wire connection side leads,
The periphery of the plurality of light emitting elements is covered with a first transparent resin in which light-dispersible powder particles having an average particle size of 0.050 μm to 0.5 μm are dispersed,
The plurality of light emitting elements, wires, the first transparent resin covering them, the element mount side leads, and the plurality of wire connection side leads are fixed on the reflecting surface of the main body with a second transparent resin. A reflective light emitting diode characterized by the above.
前記素子マウント側リードの素子マウント部にはR,G,B3色それぞれを色光を発光する3個の発光素子を搭載したことを特徴とする請求項3に記載の反射型発光ダイオード。   4. The reflective light emitting diode according to claim 3, wherein three light emitting elements for emitting R, G, and B colors are mounted on the element mount portion of the element mount side lead.
JP2009129377A 2009-05-28 2009-05-28 Light emitting diode and reflection type light emitting diode Pending JP2010278244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009129377A JP2010278244A (en) 2009-05-28 2009-05-28 Light emitting diode and reflection type light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009129377A JP2010278244A (en) 2009-05-28 2009-05-28 Light emitting diode and reflection type light emitting diode

Publications (1)

Publication Number Publication Date
JP2010278244A true JP2010278244A (en) 2010-12-09

Family

ID=43424937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009129377A Pending JP2010278244A (en) 2009-05-28 2009-05-28 Light emitting diode and reflection type light emitting diode

Country Status (1)

Country Link
JP (1) JP2010278244A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014045140A (en) * 2012-08-28 2014-03-13 Sumitomo Osaka Cement Co Ltd Optical semiconductor light-emitting device, luminaire, and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014045140A (en) * 2012-08-28 2014-03-13 Sumitomo Osaka Cement Co Ltd Optical semiconductor light-emitting device, luminaire, and display device

Similar Documents

Publication Publication Date Title
US10043954B2 (en) Lighting device with a phosphor layer on a peripheral side surface of a light-emitting element and a reflecting layer on an upper surface of the light-emitting element and on an upper surface of the phosphor layer
JP6323217B2 (en) Light emitting device
JP3768864B2 (en) Surface mount type light emitting diode and manufacturing method thereof
JP2012134531A (en) Light emitting device
JP2004296882A (en) Semiconductor light emitting device
CN103579466A (en) Light emitting device
JP2006237264A (en) Light emitting device and lighting apparatus
JP5978572B2 (en) Light emitting device
JP5724183B2 (en) Light emitting device
EP3018720B1 (en) Light emitting device package
JP2008071793A (en) Optical semiconductor device and its manufacturing method
JP2005064111A (en) High luminance light emitting diode
KR100868204B1 (en) Light emitting diode using light diffusion material and method for fabricating the same
KR20180093989A (en) LED device adopting color tuning filtering using multiple neodymium and fluorine compounds
US20090189171A1 (en) Light emitting diode package
JP2010278244A (en) Light emitting diode and reflection type light emitting diode
CN105874620B (en) Deep molded reflective device cup body as complete LED encapsulation
TW201403870A (en) Light emitting diode element and manufacturing mathod thereof
JP2010087015A (en) Reflection type light emitting diode
KR101655464B1 (en) Light emitting device package, method for fabricating the same and lighting system including the same
JP2021034426A (en) Light-emitting device and manufacturing method thereof
JP2007207939A (en) Light emitting device
JP7082280B2 (en) Light emitting device
US20220068894A1 (en) Light emitting device
JP7256418B2 (en) light emitting device