JP2010277960A - Nonaqueous electrolyte solution and lithium ion secondary battery - Google Patents

Nonaqueous electrolyte solution and lithium ion secondary battery Download PDF

Info

Publication number
JP2010277960A
JP2010277960A JP2009132089A JP2009132089A JP2010277960A JP 2010277960 A JP2010277960 A JP 2010277960A JP 2009132089 A JP2009132089 A JP 2009132089A JP 2009132089 A JP2009132089 A JP 2009132089A JP 2010277960 A JP2010277960 A JP 2010277960A
Authority
JP
Japan
Prior art keywords
group
general formula
lithium
lithium salt
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009132089A
Other languages
Japanese (ja)
Other versions
JP5487443B2 (en
Inventor
Akihiro Oda
明博 織田
Masayoshi Watanabe
正義 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Yokohama National University NUC filed Critical Hitachi Chemical Co Ltd
Priority to JP2009132089A priority Critical patent/JP5487443B2/en
Publication of JP2010277960A publication Critical patent/JP2010277960A/en
Application granted granted Critical
Publication of JP5487443B2 publication Critical patent/JP5487443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hardly volatile nonaqueous electrolyte solution having low viscosity, which can be used as an electrolyte solution for a lithium ion battery. <P>SOLUTION: The nonaqueous electrolyte solution contains chain ether represented by general formula (I), and lithium salt as an electrolyte. In the general formula (I), R<SB>1</SB>and R<SB>3</SB>are each alkyl group with the total number of carbons of 1 to 4 which may have a substituent, and R<SB>1</SB>and R<SB>3</SB>never become the same group at the same time. R<SB>2</SB>is an alkylene group with the number of carbons from 2 to 4 constituting the main chain and the total number of carbons from 2 to 4 which may have the substituent, and n is an integer of 2 to 6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオン二次電池用の非水電解液、及びリチウムイオン二次電池に関する。   The present invention relates to a non-aqueous electrolyte for a lithium ion secondary battery and a lithium ion secondary battery.

近年多く用いられるようになったリチウム一次電池、リチウム二次電池等の蓄電デバイスにおいては、リチウムイオンが移動することにより充放電が行われる。
これら蓄電デバイスが使われる携帯用機器の小型高性能化に伴って、蓄電デバイスには高エネルギー密度化が求められている。
2. Description of the Related Art In power storage devices such as lithium primary batteries and lithium secondary batteries that have been widely used in recent years, charging and discharging are performed by movement of lithium ions.
Accompanying the miniaturization and high performance of portable devices in which these electricity storage devices are used, energy storage devices are required to have higher energy density.

これらの電池は、リチウム塩を有機溶媒に溶解した電解液が用いられており、有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン等の極性溶媒や、ジメチルカーボネート等の有機溶媒が用いられている。   In these batteries, an electrolytic solution in which a lithium salt is dissolved in an organic solvent is used. As the organic solvent, a polar solvent such as propylene carbonate, ethylene carbonate, and γ-butyrolactone, or an organic solvent such as dimethyl carbonate is used. ing.

これら有機溶媒は揮発性を有し、また可燃性でもあるため、環境への影響や、過熱時の発火の問題等も有する。   Since these organic solvents are volatile and flammable, they also have environmental impacts, ignition problems during overheating, and the like.

上記問題点を解決する手法の一つとして、いわゆる常温溶融塩を用いる手法も提案されている。即ち、常温溶融塩は、イオンに解離可能な塩でありながら常温で液体の化合物であり、また不揮発性のため発火の危険もないため、該常温溶融塩を溶媒とし、リチウム塩をこの常温溶融塩に溶解することによって、揮発性有機溶媒による環境への影響や安全性の問題を低減する方法が提案されている(例えば、特許文献1参照)。   As one of methods for solving the above problems, a method using a so-called room temperature molten salt has also been proposed. That is, a room temperature molten salt is a compound that is dissociable into ions but is a liquid at room temperature, and since it is non-volatile, there is no risk of ignition. Therefore, the room temperature molten salt is used as a solvent and lithium salt is melted at room temperature. There has been proposed a method for reducing environmental problems and safety problems caused by volatile organic solvents by dissolving in a salt (see, for example, Patent Document 1).

また、特定の構造のエーテル化合物を配位子として有するエーテル錯塩が提案されており、難揮発性を示すことが報告されており(例えば、非特許文献1参照)、当該エーテル錯塩を電解液として利用することも考えられる。   In addition, ether complex salts having an ether compound having a specific structure as a ligand have been proposed and reported to exhibit low volatility (for example, see Non-Patent Document 1), and the ether complex salt is used as an electrolytic solution. It can also be used.

特開2004−43407号公報JP 2004-43407 A 特開2005−126339号公報JP 2005-126339 A

Journal of Chemical Physics, Vol.117, P:5929(2002)Journal of Chemical Physics, Vol. 117, P: 5929 (2002)

しかしながら、上記常温溶融塩を電解液に用い、従来リチウムイオン電池の負極活物質に使用されている黒鉛を用いると、常温溶融塩が分解または黒鉛の層間に常温溶融塩を構成するカチオンが挿入されて黒鉛の層状構造が破壊されるという問題があった。また、融点は0℃より低い常温溶融塩は種類が少なく、0℃より低い温度でも使用できる常温溶融塩が少ないという課題があった。
また、前記エーテル錯塩は、高粘度であり、電極またはセパレーターへの含浸性が悪く、電池の作製工程におけるハンドリングが悪いという問題点があった。
However, when the above-mentioned room temperature molten salt is used as the electrolyte, and graphite that is conventionally used as the negative electrode active material of a lithium ion battery, the room temperature molten salt is decomposed or cations constituting the room temperature molten salt are inserted between the graphite layers. There was a problem that the layered structure of graphite was destroyed. Moreover, there were few kinds of room temperature molten salts having a melting point lower than 0 ° C., and there were problems that there were few room temperature molten salts that could be used even at temperatures lower than 0 ° C.
In addition, the ether complex salt has a high viscosity, poor impregnation into electrodes or separators, and poor handling in the battery manufacturing process.

本発明は、前記従来の問題点に鑑み、低粘度で難揮発性の非水電解液を提供することを目的とする。
また、本発明は、低温特性に優れ、また、発火の危険性が少なく安全性の高いリチウムイオン二次電池を提供することを目的とする。
In view of the above-mentioned conventional problems, an object of the present invention is to provide a low-viscosity and hardly volatile non-aqueous electrolyte.
Another object of the present invention is to provide a lithium ion secondary battery that is excellent in low temperature characteristics, has a low risk of ignition, and is highly safe.

本発明者等は上記課題を解決する為に鋭意検討を行った結果、特定の比率の非対称構造の鎖状エーテルとリチウム塩の混合物が、室温においても低粘度の液体であることを見出し、本発明を完成させるに至った。即ち、前記課題を解決する本発明は以下の通りである。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a mixture of a chain ether having a specific structure with an asymmetric structure and a lithium salt is a low-viscosity liquid even at room temperature. The invention has been completed. That is, the present invention for solving the above problems is as follows.

(1)下記一般式(I)で表される鎖状エーテルと、電解質としてリチウム塩を含むことを特徴とする非水電解液。 (1) A nonaqueous electrolytic solution comprising a chain ether represented by the following general formula (I) and a lithium salt as an electrolyte.

Figure 2010277960
(一般式(I)中、R及びRは、置換基を有していてもよい総炭素数1〜4のアルキル基を示し、R及びRが同時に同じ基となることはない。Rは、主鎖を構成する炭素数が2〜4である総炭素数2〜4のアルキレン基を示し、置換基を有していてもよい。nは2〜6の整数である。)
Figure 2010277960
(In general formula (I), R 1 and R 3 represent an alkyl group having 1 to 4 carbon atoms which may have a substituent, and R 1 and R 3 are not the same group at the same time. R 2 represents a C 2-4 alkylene group having 2 to 4 carbon atoms constituting the main chain, and may have a substituent, and n is an integer of 2 to 6. )

(2)前記リチウム塩が下記一般式(II)で表される構造であることを特徴とする前記(1)に記載の非水電解液。 (2) The nonaqueous electrolytic solution according to (1), wherein the lithium salt has a structure represented by the following general formula (II).

Figure 2010277960
(一般式(II)中、n、mは0〜5の整数を示す。)
Figure 2010277960
(In general formula (II), n and m represent integers of 0 to 5.)

(3)前記一般式(II)で表されるリチウム塩が、ビス(トリフルオロメタンスルホニル)アミドリチウムであることを特徴とする前記(1)又は(2)に記載の非水電解液。 (3) The nonaqueous electrolytic solution according to (1) or (2), wherein the lithium salt represented by the general formula (II) is bis (trifluoromethanesulfonyl) amidolithium.

(4)前記リチウム塩がLiPF、LiBF、LiCFSO、LiSbF、LiN(CSO及びLiClOからなる群より選ばれる少なくとも一種であることを特徴とする前記(1)に記載の非水電解液。 (4) The lithium salt is at least one selected from the group consisting of LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiSbF 6 , LiN (C 2 F 5 SO 2 ) 2 and LiClO 4. (1) Nonaqueous electrolyte solution.

(5)前記一般式(I)で表される鎖状エーテルにおいて、Rがメチル基であり、Rがエチレン基であり、nが3であり、かつRがエチル基、n−プロピル基、及びn−ブチル基から選ばれる少なくとも一種であることを特徴とする前記(1)〜(4)のいずれかに記載の非水電解液。 (5) In the chain ether represented by the general formula (I), R 1 is a methyl group, R 2 is an ethylene group, n is 3, and R 3 is an ethyl group, n-propyl. The nonaqueous electrolytic solution according to any one of (1) to (4), which is at least one selected from a group and an n-butyl group.

(6)前記一般式(I)で表される鎖状エーテルにおいて、Rがメチル基であり、Rがエチレン基であり、nが4であり、かつRがエチル基であることを特徴とする前記(1)〜(4)のいずれかに記載の非水電解液。 (6) In the chain ether represented by the general formula (I), R 1 is a methyl group, R 2 is an ethylene group, n is 4, and R 3 is an ethyl group. The nonaqueous electrolytic solution according to any one of (1) to (4), which is characterized in that

(7)前記一般式(I)で表される鎖状エーテル(A)と前記リチウム塩(B)とのモル比率A/Bが0.5〜2であることを特徴とする前記(1)〜(6)のいずれかに記載の非水電解液。 (7) The molar ratio A / B between the chain ether (A) represented by the general formula (I) and the lithium salt (B) is 0.5 to 2, (1) The nonaqueous electrolytic solution according to any one of to (6).

(8)前記モル比率A/Bが1であることを特徴とする前記(7)に記載の非水電解液。 (8) The non-aqueous electrolyte according to (7), wherein the molar ratio A / B is 1.

(9)前記(1)〜(8)のいずれかに記載の非水電解液を用いてなるリチウムイオン二次電池。 (9) A lithium ion secondary battery using the nonaqueous electrolytic solution according to any one of (1) to (8).

本発明によれば、リチウムイオン電池用電解液として使用し得る、低粘度で難揮発性の非水電解液を提供することができる。
また、本発明によれば、低温特性に優れ、また、発火の危険性が少ない安全性の高いリチウムイオン二次電池を提供することができる。
According to the present invention, it is possible to provide a low-viscosity, hardly volatile non-aqueous electrolyte that can be used as an electrolyte for a lithium ion battery.
In addition, according to the present invention, it is possible to provide a highly safe lithium ion secondary battery having excellent low temperature characteristics and low risk of ignition.

本発明の非水電解液は、下記一般式(I)で表される鎖状エーテルと、電解質としてリチウム塩を含むことを特徴としている。   The nonaqueous electrolytic solution of the present invention is characterized by containing a chain ether represented by the following general formula (I) and a lithium salt as an electrolyte.

Figure 2010277960
(一般式(I)中、R及びRは、置換基を有していてもよい総炭素数1〜4のアルキル基を示し、R及びRが同時に同じ基となることはない。Rは、主鎖を構成する炭素数が2〜4である総炭素数2〜4のアルキレン基を示し、置換基を有していてもよい。nは2〜6の整数である。)
Figure 2010277960
(In general formula (I), R 1 and R 3 represent an alkyl group having 1 to 4 carbon atoms which may have a substituent, and R 1 and R 3 are not the same group at the same time. R 2 represents a C 2-4 alkylene group having 2 to 4 carbon atoms constituting the main chain, and may have a substituent, and n is an integer of 2 to 6. )

(鎖状エーテル)
本発明に係る鎖状エーテルは前記一般式(I)で表されるが、一般式(I)中、R、Rは、置換基を有していてもよい総炭素数が1〜4のアルキル基を示し、同時に同じ基となることはない。前記置換基としては、フッ素、塩素等のハロンゲン基、ニトリル基、ケトン基、アルケニル基等が挙げられる。
(Chain ether)
The chain ether according to the present invention is represented by the general formula (I). In the general formula (I), R 1 and R 3 each have 1 to 4 carbon atoms which may have a substituent. The alkyl group is not simultaneously represented by the same group. Examples of the substituent include a halogenon group such as fluorine and chlorine, a nitrile group, a ketone group, and an alkenyl group.

一般式(I)で表される鎖状エーテルは非対称構造であり、非対称構造とすることで低融点かつ低粘度となる傾向がある。   The chain ether represented by the general formula (I) has an asymmetric structure, and the asymmetric structure tends to have a low melting point and a low viscosity.

又はRとして示される、置換基を有していてもよい総炭素数1〜4のアルキル基として具体的には、メチル基、エチル基、n−プロピル基、sec−プロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基等の無置換アルキル基;モノフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基等のフルオロアルキル基;トリクロロメチル基、2−クロロエチル基、ペンタクロロエチル基等のクロロアルキル基;等を挙げることができる。 Specific examples of the optionally substituted alkyl group having 1 to 4 carbon atoms represented by R 1 or R 3 include a methyl group, an ethyl group, an n-propyl group, a sec-propyl group, n -Unsubstituted alkyl group such as butyl group, sec-butyl group, tert-butyl group; fluoroalkyl group such as monofluoromethyl group, trifluoromethyl group, pentafluoroethyl group; trichloromethyl group, 2-chloroethyl group, penta A chloroalkyl group such as a chloroethyl group;

炭素数が多くなりすぎると、粘度が上昇する傾向が強いため、前記R又はRが炭素数5以上のアルキル基では、高粘度かつ低イオン伝導性となり、やはり本発明の目的である、良好な粘度及びイオン伝導度の非水電解液を得ることが困難となる。従って、R、Rとしては、メチル基又はエチル基、プロピル基、ブチル基であることが好ましく、さらにはメチル基、エチル基であることが好ましい。 When the number of carbon atoms too large, a strong tendency to viscosity increases, in the R 1 or R 3 is C 5 or greater alkyl group having a carbon becomes high viscosity and low ion conductivity, which is also object of the present invention, It becomes difficult to obtain a non-aqueous electrolyte with good viscosity and ionic conductivity. Therefore, R 1 and R 3 are preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and more preferably a methyl group or an ethyl group.

前記一般式(I)において、Rは、置換基を有していてもよい、総炭素数が2〜4のアルキレン基であり、その主鎖を構成する炭素数は2〜4である。上記Rにおける主鎖の炭素数が1である化合物は、安定性が低く、室温付近では安定な化合物として得ることができない傾向がある。他方、主鎖の炭素数が5以上では、化学的安定性が低くなるばかりでなく、イオン伝導度も低下する傾向がある。Rとして特に好ましくは、主鎖を構成する炭素数が2のものである。 In the general formula (I), R 2 may have a substituent, the total number of carbon atoms is an alkylene group having 2 to 4 carbon atoms constituting the main chain is 2 to 4. The compound having 1 carbon in the main chain in R 2 has a low stability and tends not to be obtained as a stable compound near room temperature. On the other hand, when the number of carbon atoms in the main chain is 5 or more, not only the chemical stability is lowered but also the ionic conductivity tends to be lowered. R 2 is particularly preferably one having 2 carbon atoms constituting the main chain.

また、Rは、総炭素数が2〜4であれば置換されていてもよい(総炭素数は、置換基を有する場合には、該置換基の炭素原子も含む数である)。総炭素数が5以上では、やはりイオン伝導度が充分なものとならない傾向がある。なお、前記置換基としては、アルキル基、フッ素、塩素等のハロンゲン基、アリル基、アリール基、エーテル基、エステル基、カルボキシル基、ニトリル基等が挙げられる。 R 2 may be substituted if the total carbon number is 2 to 4 (the total carbon number is the number including the carbon atom of the substituent when it has a substituent). If the total number of carbon atoms is 5 or more, the ionic conductivity tends to be insufficient. Examples of the substituent include a halogen group such as an alkyl group, fluorine, and chlorine, an allyl group, an aryl group, an ether group, an ester group, a carboxyl group, and a nitrile group.

として好適な基としては、エチレン基、トリメチレン基、テトラメチレン基等の無置換アルキレン基;イソプロピレン基、イソブチレン基等のアルキル置換アルキレン基、テトラフルオロエチレン基、1,1−ジフルオロエチレン基、ヘキサフルオロトリメチレン基等のフルオロアルキレン基;テトラクロロエチレン基、1,2−ジクロロエチレン基、1,1−ジクロロエチレン基等のクロロアルキレン基等を挙げることができる。 R 2 is preferably an unsubstituted alkylene group such as an ethylene group, trimethylene group or tetramethylene group; an alkyl-substituted alkylene group such as an isopropylene group or isobutylene group, a tetrafluoroethylene group or a 1,1-difluoroethylene group. And fluoroalkylene groups such as hexafluorotrimethylene group; chloroalkylene groups such as tetrachloroethylene group, 1,2-dichloroethylene group and 1,1-dichloroethylene group.

上記一般式(I)において、nは2〜6の整数を示す。nが1であると、難燃性の効果が得られ難い傾向がある。また、nが6を超えると非水電解液の粘度が高くなる傾向があり、非水電解液の電極への浸透性が低下する傾向がある。また、低イオン伝導性となりレート特性が低下する傾向がある。nを2〜6とすることで、イオン導電性塩と相互作用できるエーテル中の酸素原子の数が増えるため、融点が低くなる傾向が有る。   In the said general formula (I), n shows the integer of 2-6. When n is 1, the flame retardancy effect tends to be hardly obtained. On the other hand, when n exceeds 6, the viscosity of the non-aqueous electrolyte tends to increase, and the permeability of the non-aqueous electrolyte to the electrode tends to decrease. In addition, the ionic conductivity tends to be low and the rate characteristics tend to decrease. By setting n to 2 to 6, the number of oxygen atoms in the ether that can interact with the ion conductive salt increases, so that the melting point tends to be low.

前記一般式(I)で表される鎖状エーテルにおいて、Rがメチル基であり、Rがエチレン基であり、nが3であり、かつRがエチル基、n−プロピル基、及びn−ブチル基から選ばれる少なくとも一種であることが、低粘度化でき、また、様々なリチウム塩と組み合わせても常温で液体となる傾向がある点で好ましい。 In the chain ether represented by the general formula (I), R 1 is a methyl group, R 2 is an ethylene group, n is 3, and R 3 is an ethyl group, an n-propyl group, and It is preferable that at least one selected from n-butyl groups can reduce the viscosity, and even when combined with various lithium salts, it tends to be liquid at room temperature.

また、前記一般式(I)で表される鎖状エーテルにおいて、Rがメチル基であり、Rがエチレン基であり、nがn=4であり、かつRがエチル基であることが、低粘度化の点で好ましい。 In the chain ether represented by the general formula (I), R 1 is a methyl group, R 2 is an ethylene group, n is n = 4, and R 3 is an ethyl group. Is preferable in terms of lowering the viscosity.

本発明に係る一般式(I)で表される鎖状エーテルとして具体的には、下記化合物を例示することができる。   Specific examples of the chain ether represented by the general formula (I) according to the present invention include the following compounds.

Figure 2010277960
Figure 2010277960

Figure 2010277960
Figure 2010277960

Figure 2010277960
Figure 2010277960

Figure 2010277960
Figure 2010277960

一般式(I)で表される鎖状エーテルの製造方法は特に制限されるものではないが、強塩基存在下において、アルコール類とハロゲン化物とを反応させて得ることができる。強塩基としてはNaH、アルキルリチウムなどを挙げることができる。また、アルコール類としては、トリエチレングリコールモノメチルエーテル、テトラエチレングリコールモノメチルエーテル、ペンタエチレングリコールモノメチルエーテルなどを挙げることができる。ハロゲン化物としては、ブロモエタン、1−ブロモプロパン、1−ブロモブタン、1−ブロモプロペン、1−ブロモブテン、ヨードエタン、1−ヨードプロパン、1−ヨードプロペン、1−ヨードブタン、1−ヨードブテンなどを挙げることができる。   The production method of the chain ether represented by the general formula (I) is not particularly limited, but can be obtained by reacting an alcohol with a halide in the presence of a strong base. Examples of strong bases include NaH and alkyl lithium. Examples of alcohols include triethylene glycol monomethyl ether, tetraethylene glycol monomethyl ether, and pentaethylene glycol monomethyl ether. Examples of the halide include bromoethane, 1-bromopropane, 1-bromobutane, 1-bromopropene, 1-bromobutene, iodoethane, 1-iodopropane, 1-iodopropene, 1-iodobutane, 1-iodobutene and the like. .

電解液を構成するエーテルの沸点又は引火点が高いほど、リチウム電池又はリチウムイオン電池として使用した際の発火の危険性が低くなる傾向があるため好ましい。そのため、本発明で用いられる鎖状エーテルは、沸点が100℃以上であることが好ましく、200℃以上であることがさらに好ましい。   The higher the boiling point or flash point of the ether constituting the electrolytic solution is preferable because the risk of ignition when used as a lithium battery or a lithium ion battery tends to decrease. Therefore, the chain ether used in the present invention preferably has a boiling point of 100 ° C. or higher, and more preferably 200 ° C. or higher.

(電解質)
本発明の非水電解液は、電解質としてリチウム塩を含む。当該リチウム塩としては、リチウム電池又はリチウムイオン電池の作動電圧範囲で安定なリチウム塩であれば、特に制限はないが、下記一般式(II)で表される構造であるものが好ましい。
(Electrolytes)
The nonaqueous electrolytic solution of the present invention contains a lithium salt as an electrolyte. The lithium salt is not particularly limited as long as it is a stable lithium salt within the operating voltage range of a lithium battery or a lithium ion battery, but a lithium salt having a structure represented by the following general formula (II) is preferable.

Figure 2010277960
(一般式(II)中、n、mは0〜5の整数を示す。)
Figure 2010277960
(In general formula (II), n and m represent integers of 0 to 5.)

本発明で用いられるリチウム塩として、具体的には、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、トリフルオロメタンスルホン酸リチウム(LiCFSO)等が挙げられる。特に、一般式(II)で表されるものとしては、リチウムビス(トリフルオロメタンスルホニル)アミド(LiN(SOCF)、リチウムビス(ペンタフルオロエタンスルホニル)アミド(LiN(SO)等が挙げられる。
これらのリチウム塩は、1種単独で用いることも、2種以上混合して用いることもできる。
Specific examples of the lithium salt used in the present invention include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), and lithium trifluoromethanesulfonate. (LiCF 3 SO 3 ) and the like. In particular, those represented by the formula (II), lithium bis (trifluoromethanesulfonyl) amide (LiN (SO 2 CF 3) 2), lithium bis (pentafluoroethane sulfonyl) amide (LiN (SO 2 C 2 F 5 ) 2 ) and the like.
These lithium salts can be used singly or in combination of two or more.

なお、前記鎖状エーテルとリチウム塩との混合物の融点が室温よりも高く、室温(約25℃)において固体である場合、有機溶媒に溶解して使用することができる。
また、前記鎖状エーテルとリチウム塩との混合物が室温で液体であっても、粘度を下げる目的及びリチウム電池特性を向上するために有機溶媒を添加して用いてもよい。
In addition, when the melting point of the mixture of the chain ether and the lithium salt is higher than room temperature and is solid at room temperature (about 25 ° C.), it can be used by dissolving in an organic solvent.
Even if the mixture of the chain ether and the lithium salt is liquid at room temperature, an organic solvent may be added for the purpose of lowering the viscosity and improving the lithium battery characteristics.

上記有機溶媒としては、リチウム塩を溶解可能であるとともに、リチウム電池又はリチウムイオン電池の作動電圧範囲で安定なものであれば、特に制限はない。
有機溶媒の具体例としては、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、3−メチル−1,3−オキサゾリン−2−オン等のラクトン類;N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルアセトアミド、N−メチルピロリジノン等のアミド類;ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、エチレンカーボネート、スチレンカーボネート、ビニレンカーボネート等のカーボネート類;1,3−ジメチル−2−イミダゾリジノン等のイミダゾリジノン類又はこれらの各種有機溶媒の水素原子やアルキル基がフルオロアルキル基に置換されたフッ素系溶媒等が挙げられる。
これらの非水系有機溶媒は、1種単独で用いてもよく、2種以上を混合して用いてもよい。
The organic solvent is not particularly limited as long as it can dissolve a lithium salt and is stable in the operating voltage range of a lithium battery or a lithium ion battery.
Specific examples of the organic solvent include lactones such as γ-butyrolactone, γ-valerolactone, δ-valerolactone, 3-methyl-1,3-oxazolin-2-one; N-methylformamide, N, N-dimethyl Amides such as formamide, N-methylacetamide, N-methylpyrrolidinone; carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, propylene carbonate, ethylene carbonate, styrene carbonate, vinylene carbonate; 1,3-dimethyl-2- Examples thereof include imidazolidinones such as imidazolidinone or fluorine-based solvents in which hydrogen atoms or alkyl groups of these various organic solvents are substituted with fluoroalkyl groups.
These non-aqueous organic solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.

中でも、誘電率が大きく、電気化学的安定範囲及び使用温度範囲が広く、且つ安全性に優れるものが好ましく、例えば、エチレンカーボネート又はプロピレンカーボネートを主成分として含む混合溶媒や、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、γ―ブチロラクトン、フッ素化プロピレンカーボネート、フッ素化エチレンカーボネート、及びフッ素化γ−ブチロラクトンから選ばれる少なくとも1種の溶媒を用いることが好ましい。   Among them, those having a large dielectric constant, a wide range of electrochemical stability and use temperature, and excellent safety are preferable. For example, a mixed solvent containing ethylene carbonate or propylene carbonate as a main component, ethylene carbonate, propylene carbonate, It is preferable to use at least one solvent selected from vinylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, γ-butyrolactone, fluorinated propylene carbonate, fluorinated ethylene carbonate, and fluorinated γ-butyrolactone.

本発明の非水電解液を製造する方法は特に制限はないが、前記鎖状エーテル(A)と前記リチウム塩(B)を特定の混合比率で反応させ、混合物を得ることにより製造する方法が反応の容易さから好適である。   The method for producing the non-aqueous electrolyte of the present invention is not particularly limited, but there is a method for producing the mixture by reacting the chain ether (A) and the lithium salt (B) at a specific mixing ratio. It is preferable because of the ease of reaction.

鎖状エーテル(A)とリチウム塩(B)の混合モル比率A/Bは、0.8≦(A/B)≦5であることが好ましく、0.5≦(A/B)≦2が更に好ましく、1が更に好ましい。この比率が0.5未満であると高粘度となり、セパレーター及び電極への含浸性が低下して、電池の性能が十分に発揮できない可能性が有る。この比率が2を超えると、リチウム塩の濃度が低下してイオン伝導性が低下し,電池の性能が低下する恐れがある。   The mixing molar ratio A / B of the chain ether (A) and the lithium salt (B) is preferably 0.8 ≦ (A / B) ≦ 5, and 0.5 ≦ (A / B) ≦ 2. More preferably, 1 is more preferable. If this ratio is less than 0.5, the viscosity becomes high, impregnation into the separator and the electrode is lowered, and the battery performance may not be sufficiently exhibited. If this ratio exceeds 2, the concentration of the lithium salt is lowered, the ionic conductivity is lowered, and the battery performance may be lowered.

上記電解液の製造において、反応温度や時間は特に限定はない。一般的には、攪拌下、用いる原料鎖状エーテルの沸点以下の温度で、鎖状エーテルとリチウム塩、及び必要により有機溶媒とを混合し、数分〜数時間で反応は完結するため、本発明においても適宜反応時間、反応温度を調整すればよい。
なお、反応が完了して混合物が得られたことの確認は、粘度確認により行うことができる。一定時間後に粘度の変化がないことによって確認できる。
In the production of the electrolytic solution, the reaction temperature and time are not particularly limited. Generally, under stirring, the chain ether, lithium salt, and, if necessary, an organic solvent are mixed at a temperature below the boiling point of the starting chain ether to be used, and the reaction is completed within a few minutes to several hours. In the invention, the reaction time and the reaction temperature may be adjusted as appropriate.
In addition, confirmation that reaction was completed and the mixture was obtained can be performed by viscosity confirmation. This can be confirmed by no change in viscosity after a certain time.

上記電解液は、粘度が200000mPa・s以下であることが好ましく、3000mPa・sであることがより好ましい。ここで粘度とは、粘弾性測定装置(ANTON Paar株式会社製「Physica MCR301」)を用いて測定した30℃での粘度をさす。粘度を上記範囲とするには、鎖状エーテルやリチウム塩を適宜選択する、鎖状エーテルとリチウム塩との混合比率を調整する、又は電解液に有機溶媒を添加する等で達成できる。   The electrolytic solution preferably has a viscosity of 200000 mPa · s or less, and more preferably 3000 mPa · s. Here, the viscosity refers to a viscosity at 30 ° C. measured using a viscoelasticity measuring device (“Physica MCR301” manufactured by ANTON Paar Co., Ltd.). Viscosity can be controlled within the above range by appropriately selecting a chain ether or a lithium salt, adjusting a mixing ratio of the chain ether and the lithium salt, or adding an organic solvent to the electrolytic solution.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、既述の本発明の非水電解液を用いてなることを特徴とし、例えば、負極と正極とをセパレータを介して対向して配置し、本発明の非水電解液を注入することにより得ることができる。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present invention is characterized by using the non-aqueous electrolyte solution of the present invention described above. For example, a negative electrode and a positive electrode are arranged to face each other via a separator, and the non-aqueous electrolyte of the present invention is used. It can be obtained by injecting a water electrolyte.

正極に含まれる正極活物質としては、LiCoO、LiNiO、LiMnO、LiMn等のリチウムと遷移金属との複合酸化物、MnO、V等の遷移金属酸化物、MoS、TiS等の遷移金属硫化物、ポリアセチレン、ポリアセン、ポリアニリン、ポリピロール、ポリチオフェン等の導電性高分子化合物、ポリ(2,5−ジメルカプト−1,3,4−チアジアゾール)等のジスルフィド化合物等が用いられる。 Examples of the positive electrode active material included in the positive electrode include composite oxides of lithium and transition metals such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 , transition metal oxides such as MnO 2 and V 2 O 5 , MoS 2, transition metal sulfides such as TiS, polyacetylene, polyacene, polyaniline, polypyrrole, conductive polymer compounds such as polythiophene, poly (2,5-dimercapto-1,3,4-thiadiazole) disulfide compounds such like are used It is done.

負極に含まれる負極活物質としては、リチウム金属、リチウムアルミニウム合金等のリチウム合金、リチウムを吸蔵・放出できる炭素質材料、黒鉛、フェノール樹脂、フラン樹脂等のコークス類、炭素繊維、ガラス状炭素、熱分解炭素、活性炭等が用いられる。   As the negative electrode active material contained in the negative electrode, lithium alloys such as lithium metal and lithium aluminum alloy, carbonaceous materials capable of occluding and releasing lithium, cokes such as graphite, phenolic resin, and furan resin, carbon fiber, glassy carbon, Pyrolytic carbon, activated carbon, etc. are used.

電極活物質を用いて帯電デバイス用電極を作製する際に、バインダーと共に導電助剤を用いることが好ましく、用いられる導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック等のカーボンブラック、天然黒鉛、熱膨張黒鉛、炭素繊維、導電性カーボン、酸化ルテニウム、酸化チタン、アルミニウム、ニッケル等の金属繊維等が用いられる。これらの中でも、少量の配合で所望の導電性を確保できるアセチレンブラック、ケッチェンブラックが好ましい。
なお、導電助剤は、電極活物質に対して、通常0.5〜50質量%程度配合されるが、1〜30質量%配合することがより好ましい。
When producing an electrode for a charging device using an electrode active material, it is preferable to use a conductive aid together with a binder. Examples of the conductive aid used include carbon black such as acetylene black and ketjen black, natural graphite, and the like. Further, metal fibers such as thermally expanded graphite, carbon fiber, conductive carbon, ruthenium oxide, titanium oxide, aluminum, and nickel are used. Among these, acetylene black and ketjen black that can ensure desired conductivity with a small amount of blend are preferable.
In addition, although a conductive support agent is normally mix | blended about 0.5-50 mass% with respect to an electrode active material, it is more preferable to mix | blend 1-30 mass%.

帯電デバイス用電極を作製する際に導電助剤と共に用いられるバインダーとしては、公知の各種バインダーを用いることができる。
例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、カルボキシメチルセルロース、フルオロオレフィン共重合体架橋ポリマー、スチレン−ブタジエン共重合体、ポリアクリロニトリル、ポリビニルアルコール、ポリアクリル酸、ポリイミド、石油ピッチ、石炭ピッチ、フェノール樹脂等が挙げられる。
なお、帯電デバイス用電極の作製において、N−メチルピロリドン、N,N−ジメチルホルムアミド、ジメチルアセトアミド、水、アルコール類等の塗工溶媒を用いることも好ましい。
Various publicly known binders can be used as the binder used together with the conductive aid when producing the electrode for the charging device.
For example, polytetrafluoroethylene, polyvinylidene fluoride, carboxymethyl cellulose, fluoroolefin copolymer crosslinked polymer, styrene-butadiene copolymer, polyacrylonitrile, polyvinyl alcohol, polyacrylic acid, polyimide, petroleum pitch, coal pitch, phenol resin, etc. Is mentioned.
In the production of the charging device electrode, it is also preferable to use a coating solvent such as N-methylpyrrolidone, N, N-dimethylformamide, dimethylacetamide, water, and alcohols.

帯電デバイスに用いるセパレーターとしても、公知の各種セパレーターを用いることができる。具体例としては、紙製、ポリプロピレン製、ポリエチレン製、ガラス繊維製セパレーター等が挙げられる。   Various known separators can also be used as the separator used in the charging device. Specific examples include paper, polypropylene, polyethylene, glass fiber separators, and the like.

ただし、電解液が高粘度である場合には、ポリプロピレン製やポリエチレン製のものを用いると濡れ性が悪くなる可能性があるため、ポリプロピレンやポリエチレン多孔体の表面をシラン且つプリング剤や樹脂等によって処理したセパレーターを用いることでセパレーターへの濡れ性を向上させることができる。   However, when the electrolyte solution has a high viscosity, the use of polypropylene or polyethylene may deteriorate the wettability, so the surface of the polypropylene or polyethylene porous body is made of silane and a pulling agent or resin. By using the treated separator, the wettability to the separator can be improved.

本発明のリチウムイオン二次電池の構造は、特に限定されないが、通常、正極および負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群としたりし、これら極板群を外装体中に封入した構造とするのが一般的である。   Although the structure of the lithium ion secondary battery of the present invention is not particularly limited, usually, a positive electrode and a negative electrode, and a separator provided as necessary, are wound into a flat spiral to form a wound electrode group, In general, these are laminated as a flat plate to form a laminated electrode plate group, or the electrode plate group is enclosed in an exterior body.

本発明のリチウムイオン二次電池は、特に限定されないが、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池などとして使用される。   The lithium ion secondary battery of the present invention is not particularly limited, but is used as a paper-type battery, a button-type battery, a coin-type battery, a laminated battery, a cylindrical battery, a rectangular battery, or the like.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に制限するものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(合成例1)
〜鎖状エーテル(1)の合成〜

Figure 2010277960
(Synthesis Example 1)
~ Synthesis of chain ether (1) ~
Figure 2010277960

4g(0.1mol)の水素化ナトリウム(純度60%、残分40%はミネラルオイル)(和光純薬株式会社製)をジメチルホルムアミド(和光純薬株式会社製)20mlに溶解し、次いで、8.2g(0.05mol)のトリエチレングリコールモノメチルエーテル(シグマ アルドリッチ ジャパン株式会社製)をジメチルホルムアミド(和光純薬株式会社製)100mlに溶解させたものを滴下して加えた。次いで5.45g(0.05mol)のブロモエタン(東京化成工業株式会社製)をジメチルホルムアミド(和光純薬株式会社製)100mlに溶解させたものを滴下して加え、室温で24時間反応させた。次いで純水100mL加え、100mLのクロロホルム(和光純薬株式会社製)で5回抽出させ、蒸留によって精製して、無色透明の液体7.65gを得た。   4 g (0.1 mol) of sodium hydride (purity 60%, balance 40% is mineral oil) (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 20 ml of dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.), then 8 0.2 g (0.05 mol) of triethylene glycol monomethyl ether (manufactured by Sigma Aldrich Japan Co., Ltd.) dissolved in 100 ml of dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise. Subsequently, 5.45 g (0.05 mol) of bromoethane (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 100 ml of dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise and reacted at room temperature for 24 hours. Subsequently, 100 mL of pure water was added, extracted 5 times with 100 mL of chloroform (manufactured by Wako Pure Chemical Industries, Ltd.), and purified by distillation to obtain 7.65 g of a colorless and transparent liquid.

テトラメチルシランを基準物質としてNMR(日本電子株式会社製「AL400」)を用いて構造を同定したところ、H−NMR:δ 3.65−3.47ppm(m,14H), 3.36ppm(s,3H), 1.19ppm(t,3H) であった。 When the structure was identified using NMR (“AL400” manufactured by JEOL Ltd.) using tetramethylsilane as a reference substance, 1 H-NMR: δ 3.65-3.47 ppm (m, 14H), 3.36 ppm ( s, 3H), 1.19 ppm (t, 3H).

(合成例2)
〜鎖状エーテル(2)の合成〜

Figure 2010277960
(Synthesis Example 2)
~ Synthesis of chain ether (2) ~
Figure 2010277960

合成例1においてブロモエタンの代わりに、1−ブロモプロパン(東京化成工業株式会社製)を6.15g(0.05mol)用いた以外は同様にして合成した。合成例1と同様に構造を同定したところ、H−NMR:δ 3.66−3.53ppm(m,14H), 3.41ppm(m,2H), 3.37ppm(s,3H),1.83(m、2H) 0.90ppm(t,3H) であった。 Synthesis was performed in the same manner as in Synthesis Example 1 except that 6.15 g (0.05 mol) of 1-bromopropane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of bromoethane. When the structure was identified in the same manner as in Synthesis Example 1, 1 H-NMR: δ 3.66-3.53 ppm (m, 14H), 3.41 ppm (m, 2H), 3.37 ppm (s, 3H), 1 .83 (m, 2H) 0.90 ppm (t, 3H).

(合成例3)
〜鎖状エーテル(3)の合成〜

Figure 2010277960
(Synthesis Example 3)
~ Synthesis of chain ether (3) ~
Figure 2010277960

合成例1においてクロロエタンの代わりに、1−ブロモブタン(和光純薬株式会社製)を6.85g(0.05mol)用いた以外は同様にして合成した。合成例1と同様に構造を同定したところ、H−NMR:δ 3.65−3.53ppm(m,14H), 3.43ppm(m,2H), 3.40ppm(s,3H), 0.92ppm(t,3H) であった。 Synthesis was conducted in the same manner as in Synthesis Example 1 except that 6.85 g (0.05 mol) of 1-bromobutane (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of chloroethane. When the structure was identified in the same manner as in Synthesis Example 1, 1 H-NMR: δ 3.65-3.53 ppm (m, 14H), 3.43 ppm (m, 2H), 3.40 ppm (s, 3H), 0 92 ppm (t, 3H).

(合成例4)
〜鎖状エーテル(4)の合成〜

Figure 2010277960
(Synthesis Example 4)
~ Synthesis of chain ether (4) ~
Figure 2010277960

合成例1においてトリエチレングリコールモノメチルエーテルの代わりに、テトラエチレングリコールモノメチルエーテル(和光純薬株式会社製)を10.4g用いた以外は同様にして合成した。合成例1と同様に構造を同定したところ、H−NMR:δ 3.64−3.48ppm(m,18H), 3.18ppm(s,3H), 1.19ppm(t,3H) であった。 Synthesis was performed in the same manner as in Synthesis Example 1 except that 10.4 g of tetraethylene glycol monomethyl ether (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of triethylene glycol monomethyl ether. When the structure was identified in the same manner as in Synthesis Example 1, 1 H-NMR: δ 3.64-3.48ppm (m, 18H), 3.18ppm (s, 3H), 1.19ppm (t, 3H) met It was.

[実施例1]
合成例1で合成した鎖状エーテル(1)2.88g(0.015mol)に、リチウム塩として、リチウムビス(トリフルオロメタンスルホニル)アミド(森田化学工業株式会社製)を4.31g(0.015mol)加えてアルゴン雰囲気下室温で24時間攪拌し、無色透明の非水電解液(1)を得た。
[Example 1]
To 2.88 g (0.015 mol) of the chain ether (1) synthesized in Synthesis Example 1, 4.31 g (0.015 mol) of lithium bis (trifluoromethanesulfonyl) amide (Morita Chemical Co., Ltd.) was used as the lithium salt. In addition, the mixture was stirred at room temperature under an argon atmosphere for 24 hours to obtain a colorless and transparent nonaqueous electrolytic solution (1).

[実施例2]
合成例2で合成した鎖状エーテル(2)3.09g(0.015mol)に、リチウム塩として、リチウムビス(トリフルオロメタンスルホニル)アミドを4.31g(0.015mol)加えてアルゴン雰囲気下室温で24時間攪拌し、無色透明の非水電解液(2)を得た。
[Example 2]
To the chain ether (2) synthesized in Synthesis Example 2 (3.09 g, 0.015 mol), 4.31 g (0.015 mol) of lithium bis (trifluoromethanesulfonyl) amide was added as a lithium salt, and the mixture was added at room temperature under an argon atmosphere. The mixture was stirred for 24 hours to obtain a colorless and transparent nonaqueous electrolytic solution (2).

[実施例3]
合成例3で合成した鎖状エーテル(3)3.30g(0.015mol)に、リチウム塩として、リチウムビス(トリフルオロメタンスルホニル)アミドを4.31g(0.015mol)加えてアルゴン雰囲気下室温で24時間攪拌し、無色透明の非水電解液(3)を得た。
[Example 3]
To 3.30 g (0.015 mol) of the chain ether (3) synthesized in Synthesis Example 3, 4.31 g (0.015 mol) of lithium bis (trifluoromethanesulfonyl) amide was added as a lithium salt at room temperature under an argon atmosphere. The mixture was stirred for 24 hours to obtain a colorless and transparent non-aqueous electrolyte (3).

[実施例4]
合成例4で合成した鎖状エーテル(4)3.54g(0.015mol)に、リチウム塩として、リチウムビス(トリフルオロメタンスルホニル)アミドを4.31g(0.015mol)加えてアルゴン雰囲気下室温で24時間攪拌し、無色透明の非水電解液(4)を得た。
[Example 4]
To the chain ether (4) synthesized in Synthesis Example 4 (3.54 g, 0.015 mol), 4.31 g (0.015 mol) of lithium bis (trifluoromethanesulfonyl) amide was added as a lithium salt at room temperature under an argon atmosphere. The mixture was stirred for 24 hours to obtain a colorless and transparent nonaqueous electrolytic solution (4).

[実施例5]
合成例1で合成した鎖状エーテル(4)3.54g(0.015mol)に、リチウム塩として、リチウムテトラフルオロボレートを1.41g(0.015mol)加えてアルゴン雰囲気下室温で24時間攪拌し、無色透明の非水電解液(5)を得た。
[Example 5]
1.43 g (0.015 mol) of lithium tetrafluoroborate as a lithium salt was added to 3.54 g (0.015 mol) of the chain ether (4) synthesized in Synthesis Example 1, and the mixture was stirred at room temperature for 24 hours under an argon atmosphere. A colorless and transparent nonaqueous electrolytic solution (5) was obtained.

[比較例1]
4.85g(17mmol)のリチウムビス(トリフルオロメタンスルホニル)イミドに、3.03g(17mmol)のトリエチレングリコールジメチルエーテル(東京化成工業(株)製)を加えてアルゴン雰囲気下室温で24時間攪拌し、無色透明の液体を得て、これを非水電解液(6)とした。
[Comparative Example 1]
To 4.85 g (17 mmol) of lithium bis (trifluoromethanesulfonyl) imide, 3.03 g (17 mmol) of triethylene glycol dimethyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at room temperature for 24 hours under an argon atmosphere. A colorless and transparent liquid was obtained and used as a nonaqueous electrolytic solution (6).

[比較例2]
4.85g(17mmol)のリチウムビス(トリフルオロメタンスルホニル)イミドに、3.77g(17mmol)のテトラエチレングリコールジメチルエーテル(東京化成工業(株)製)を加えてアルゴン雰囲気下室温で24時間攪拌し、無色透明の液体を得て、これを非水電解液(7)とした。
[Comparative Example 2]
To 4.85 g (17 mmol) of lithium bis (trifluoromethanesulfonyl) imide, 3.77 g (17 mmol) of tetraethylene glycol dimethyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at room temperature for 24 hours under an argon atmosphere. A colorless and transparent liquid was obtained, and this was designated as a nonaqueous electrolytic solution (7).

[比較例3]
3.77(17mmol)のテトラエチレングリコールジメチルエーテルに、リチウムテトラフルオロボレートを1.59g(17mmol)加えてアルゴン雰囲気下室温で40℃にて24時間攪拌した。その結果、白色固体を得た。
[Comparative Example 3]
1.59 g (17 mmol) of lithium tetrafluoroborate was added to 3.77 (17 mmol) of tetraethylene glycol dimethyl ether, and the mixture was stirred at 40 ° C. for 24 hours in an argon atmosphere at room temperature. As a result, a white solid was obtained.

<電解液の評価>
(融点の測定)
実施例1〜5の非水電解液(1)〜(5)及び比較例1及び2の電解液(6)、(7)について、示差熱量分析装置(セイコーインスツルメンツ株式会社製「DDS−220」)を用いて、−150℃から10℃/minで100℃まで測定した。
<Evaluation of electrolyte>
(Measurement of melting point)
For the non-aqueous electrolytes (1) to (5) of Examples 1 to 5 and the electrolytes (6) and (7) of Comparative Examples 1 and 2, a differential calorimetric analyzer (“DDS-220” manufactured by Seiko Instruments Inc.) ) Was measured from −150 ° C. to 100 ° C. at 10 ° C./min.

(粘度の測定)
実施例1〜5の非水電解液(1)〜(5)及び比較例1及び2の非水電解液(6)、(7)について、粘弾性測定装置(ANTON Paar株式会社製「Physica MCR301」)を用いて30℃での粘度を測定した。結果を表1に示す。
(Measurement of viscosity)
About the non-aqueous electrolytes (1) to (5) of Examples 1 to 5 and the non-aqueous electrolytes (6) and (7) of Comparative Examples 1 and 2, viscoelasticity measuring device ("Physica MCR301" manufactured by ANTON Paar Co., Ltd.) )) Was used to measure the viscosity at 30 ° C. The results are shown in Table 1.

(イオン伝導率の測定)
実施例1〜5の非水電解液(1)〜(5)及び比較例1及び2の非水電解液(6)、(7)について、電気伝導率計(東亜DKK製「CG511B」)を用いて30℃でのイオン伝導率を測定した。結果を表1に示す。
(Measurement of ionic conductivity)
For the non-aqueous electrolytes (1) to (5) of Examples 1 to 5 and the non-aqueous electrolytes (6) and (7) of Comparative Examples 1 and 2, an electric conductivity meter (“CG511B” manufactured by Toa DKK) was used. Used to measure the ionic conductivity at 30 ° C. The results are shown in Table 1.

Figure 2010277960
Figure 2010277960

[実施例6]
(リチウムイオン二次電池用正極の作製)
正極活物質としてマンガン酸リチウム(アルドリッチ製)と、導電性カーボン(電気化学工業株式会社製「デンカブラック」)と、バインダー樹脂としてポリフッ化ビニリデン(株式会社クレハ製「PVDF#1120」)と、塗工溶媒としてN−メチルピロリドン(以下、NMP)とを、活物質:導電性カーボン:バインダー樹脂:NMP=94:3:3:28(重量比)の割合で混合してペースト状にし、アルミ集電箔(日本蓄電器工業株式会社製「20CB」)に塗布し、80℃で4時間乾燥させた後、圧延してリチウムイオン二次電池用正極電極を得た。
[Example 6]
(Preparation of positive electrode for lithium ion secondary battery)
Lithium manganate (manufactured by Aldrich) as a positive electrode active material, conductive carbon (“Denka Black” manufactured by Denki Kagaku Kogyo Co., Ltd.), polyvinylidene fluoride (“PVDF # 1120” manufactured by Kureha Co., Ltd.) as a binder resin, N-methylpyrrolidone (hereinafter referred to as NMP) as a working solvent is mixed in a ratio of active material: conductive carbon: binder resin: NMP = 94: 3: 3: 28 (weight ratio) to form a paste, and aluminum It apply | coated to electric foil (Nippon Electric Power Co., Ltd. make "20CB"), after making it dry at 80 degreeC for 4 hours, it rolled and obtained the positive electrode for lithium ion secondary batteries.

(リチウムイオン二次電池の作製)
対極として厚さ1mmの金属リチウムを用い、また作用極として前記で得られた正極電極を用い、両極をセパレーター(セルガード株式会社製「セルガード#2300」)を介して対向させた。実施例1で調製した非水電解液(1)を用い、通常の方法によってリチウムイオン二次電池を作製した。
(Production of lithium ion secondary battery)
Metal lithium having a thickness of 1 mm was used as the counter electrode, and the positive electrode obtained as described above was used as the working electrode, and both electrodes were opposed to each other via a separator (“Celguard # 2300” manufactured by Celguard Co., Ltd.). Using the nonaqueous electrolytic solution (1) prepared in Example 1, a lithium ion secondary battery was produced by a usual method.

(リチウムイオン二次電池の評価)
対極(リチウム極)に対し、0.1Cに相当する電流で4.2Vまで充電した。
放電はリチウム極に対して0.1Cに相当する電流で2.5Vまで行い、初期(初回)放電容量を測定した。上記初期測定は25℃で行った。これを2サイクル行った後、0℃に温度を下げて同様の測定を行い、放電容量を測定した。結果を表2に示す。
(Evaluation of lithium ion secondary battery)
The counter electrode (lithium electrode) was charged to 4.2 V with a current corresponding to 0.1 C.
Discharge was performed up to 2.5 V with a current corresponding to 0.1 C with respect to the lithium electrode, and the initial (initial) discharge capacity was measured. The initial measurement was performed at 25 ° C. After performing this two cycles, the temperature was lowered to 0 ° C. and the same measurement was performed to measure the discharge capacity. The results are shown in Table 2.

[比較例4]
比較例1で用いた非水電解液を用いた以外は、実施例6と同様にしてリチウムイオン二次電池を作製し、評価した。結果を表2に示す。
[Comparative Example 4]
A lithium ion secondary battery was prepared and evaluated in the same manner as in Example 6 except that the nonaqueous electrolytic solution used in Comparative Example 1 was used. The results are shown in Table 2.

Figure 2010277960
Figure 2010277960

表1に示されるように、実施例1〜3の非水電解液の融点は低く、また、実施例4及び5の非水電解液は融点が-150℃であるか、又は過冷却状態であり、幅広い温度で液体状態が安定であることがわかる。また、対称構造のエーテル化合物を用いた場合、リチウム塩にリチウムビス(トリフルオロメタンスルホニル)イミドを用いた場合(比較例2)は、室温で液体であるものの、リチウムテトラフルオロボレートを用いた場合(比較例3)は固体であった。それに対して、非対称構造のエーテル化合物を用いた場合、リチウムテトラフルオロボレートを用いても、常温で液体であり、非対称構造のエーテルを用いることで、種々のリチウム塩と組み合わせても液体を得ることができることがわかった。
また、実施例6及び比較例4から分かるように、本発明の非水電解液を用いたリチウムイオン二次電池は低温特性にも優れることが分かる。
As shown in Table 1, the non-aqueous electrolytes of Examples 1 to 3 have a low melting point, and the non-aqueous electrolytes of Examples 4 and 5 have a melting point of −150 ° C. or in a supercooled state. It can be seen that the liquid state is stable over a wide range of temperatures. When a symmetrical ether compound is used, when lithium bis (trifluoromethanesulfonyl) imide is used as the lithium salt (Comparative Example 2), it is liquid at room temperature, but when lithium tetrafluoroborate is used ( Comparative Example 3) was a solid. In contrast, when an ether compound with an asymmetric structure is used, even if lithium tetrafluoroborate is used, it is liquid at room temperature, and by using an asymmetric structure ether, a liquid can be obtained even when combined with various lithium salts. I found out that
Further, as can be seen from Example 6 and Comparative Example 4, it can be seen that the lithium ion secondary battery using the non-aqueous electrolyte of the present invention is also excellent in low temperature characteristics.

Claims (9)

下記一般式(I)で表される鎖状エーテルと、電解質としてリチウム塩を含むことを特徴とする非水電解液。
Figure 2010277960
(一般式(I)中、R及びRは、置換基を有していてもよい総炭素数1〜4のアルキル基を示し、R及びRが同時に同じ基となることはない。Rは、主鎖を構成する炭素数が2〜4である総炭素数2〜4のアルキレン基を示し、置換基を有していてもよい。nは2〜6の整数である。)
A nonaqueous electrolytic solution comprising a chain ether represented by the following general formula (I) and a lithium salt as an electrolyte.
Figure 2010277960
(In general formula (I), R 1 and R 3 represent an alkyl group having 1 to 4 carbon atoms which may have a substituent, and R 1 and R 3 are not the same group at the same time. R 2 represents a C 2-4 alkylene group having 2 to 4 carbon atoms constituting the main chain, and may have a substituent, and n is an integer of 2 to 6. )
前記リチウム塩が下記一般式(II)で表される構造であることを特徴とする請求項1に記載の非水電解液。
Figure 2010277960
(一般式(II)中、n、mは0〜5の整数を示す。)
The non-aqueous electrolyte according to claim 1, wherein the lithium salt has a structure represented by the following general formula (II).
Figure 2010277960
(In general formula (II), n and m represent integers of 0 to 5.)
前記一般式(II)で表されるリチウム塩が、ビス(トリフルオロメタンスルホニル)アミドリチウムであることを特徴とする請求項1又は2に記載の非水電解液。 3. The nonaqueous electrolytic solution according to claim 1, wherein the lithium salt represented by the general formula (II) is bis (trifluoromethanesulfonyl) amidolithium. 前記リチウム塩がLiPF、LiBF、LiCFSO、LiSbF、LiN(CSO及びLiClOからなる群より選ばれる少なくとも一種であることを特徴とする請求項1に記載の非水電解液。 The lithium salt is at least one selected from the group consisting of LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiSbF 6 , LiN (C 2 F 5 SO 2 ) 2 and LiClO 4. The non-aqueous electrolyte described. 前記一般式(I)で表される鎖状エーテルにおいて、Rがメチル基であり、Rがエチレン基であり、nが3であり、かつRがエチル基、n−プロピル基、及びn−ブチル基から選ばれる少なくとも一種であることを特徴とする請求項1〜4のいずれか1項に記載の非水電解液。 In the chain ether represented by the general formula (I), R 1 is a methyl group, R 2 is an ethylene group, n is 3, and R 3 is an ethyl group, an n-propyl group, and The nonaqueous electrolytic solution according to claim 1, wherein the nonaqueous electrolytic solution is at least one selected from n-butyl groups. 前記一般式(I)で表される鎖状エーテルにおいて、Rがメチル基であり、Rがエチレン基であり、nが4であり、かつRがエチル基であることを特徴とする請求項1〜4のいずれか1項に記載の非水電解液。 In the chain ether represented by the general formula (I), R 1 is a methyl group, R 2 is an ethylene group, n is 4, and R 3 is an ethyl group. The non-aqueous electrolyte of any one of Claims 1-4. 前記一般式(I)で表される鎖状エーテル(A)と前記リチウム塩(B)とのモル比率A/Bが0.5〜2であることを特徴とする請求項1〜6のいずれか1項に記載の非水電解液。   The molar ratio A / B between the chain ether (A) represented by the general formula (I) and the lithium salt (B) is 0.5 to 2, The non-aqueous electrolyte solution according to claim 1. 前記モル比率A/Bが1であることを特徴とする請求項7に記載の非水電解液。   The non-aqueous electrolyte according to claim 7, wherein the molar ratio A / B is 1. 請求項1〜8のいずれか1項に記載の非水電解液を用いてなるリチウムイオン二次電池。   The lithium ion secondary battery which uses the nonaqueous electrolyte solution of any one of Claims 1-8.
JP2009132089A 2009-06-01 2009-06-01 Non-aqueous electrolyte and lithium ion secondary battery Expired - Fee Related JP5487443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132089A JP5487443B2 (en) 2009-06-01 2009-06-01 Non-aqueous electrolyte and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132089A JP5487443B2 (en) 2009-06-01 2009-06-01 Non-aqueous electrolyte and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2010277960A true JP2010277960A (en) 2010-12-09
JP5487443B2 JP5487443B2 (en) 2014-05-07

Family

ID=43424725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132089A Expired - Fee Related JP5487443B2 (en) 2009-06-01 2009-06-01 Non-aqueous electrolyte and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5487443B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016091926A (en) * 2014-11-10 2016-05-23 日立化成株式会社 Flame-retardant nonaqueous electrolyte, and lithium ion secondary battery
JP2018113267A (en) * 2018-04-18 2018-07-19 日立化成株式会社 Separator
WO2020145338A1 (en) * 2019-01-09 2020-07-16 日立化成株式会社 Electrolytic solution, electrolyte slurry composition, and secondary cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750175A (en) * 1993-08-04 1995-02-21 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous solvent electrolyte secondary battery
WO2000016427A1 (en) * 1998-09-11 2000-03-23 Mitsui Chemicals Inc. Nonaqueous electrolytic liquid and secondary batter with nonaqueous electrolytic liquid
JP2001093572A (en) * 1999-09-27 2001-04-06 Hitachi Ltd Non-aqueous electrolyte secondary battery, and electric vehicle, hybrid vehicle and power storage system using same
JP2007141496A (en) * 2005-11-15 2007-06-07 Samsung Sdi Co Ltd Lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750175A (en) * 1993-08-04 1995-02-21 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous solvent electrolyte secondary battery
WO2000016427A1 (en) * 1998-09-11 2000-03-23 Mitsui Chemicals Inc. Nonaqueous electrolytic liquid and secondary batter with nonaqueous electrolytic liquid
JP2001093572A (en) * 1999-09-27 2001-04-06 Hitachi Ltd Non-aqueous electrolyte secondary battery, and electric vehicle, hybrid vehicle and power storage system using same
JP2007141496A (en) * 2005-11-15 2007-06-07 Samsung Sdi Co Ltd Lithium secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013027420; 吉田和生,外: '溶融Glyme-Li塩錯体のリチウムイオン液体としての評価と電池特性' 第49回電池討論会 講演要旨集 , 20081105, 第273頁, (社)電気化学会電池技術委員会 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016091926A (en) * 2014-11-10 2016-05-23 日立化成株式会社 Flame-retardant nonaqueous electrolyte, and lithium ion secondary battery
JP2018113267A (en) * 2018-04-18 2018-07-19 日立化成株式会社 Separator
WO2020145338A1 (en) * 2019-01-09 2020-07-16 日立化成株式会社 Electrolytic solution, electrolyte slurry composition, and secondary cell
JP2020113386A (en) * 2019-01-09 2020-07-27 日立化成株式会社 Electrolyte, electrolytic slurry composition and secondary battery

Also Published As

Publication number Publication date
JP5487443B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5605221B2 (en) Nonaqueous electrolyte for secondary battery and secondary battery
JP5493288B2 (en) Electrolytic solution and secondary battery using the same
JP5274562B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery
US20130071731A1 (en) Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery
US20030190531A1 (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
JP5134770B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same
JP2006216361A (en) Electrolytic solution for lithium battery
KR20080042119A (en) Electrolyte composition
JP2010050076A (en) Separator for electrochemical element, lithium battery or lithium ion battery using this, and manufacturing method of separator for electrochemical element
WO2011136226A1 (en) Non-aqueous electrolyte solution for secondary battery, and secondary battery
JPWO2019180945A1 (en) Electrolytes for power storage devices and non-aqueous electrolytes
JP2011040311A (en) Electrolyte for secondary battery, and lithium ion secondary battery
JP2006236829A (en) Ionic liquid, nonaqueous electrolyte for electricity accumulation device and electricity accumulation device
WO2006109443A1 (en) Nonaqueous electrolyte solution for battery and nonaqueous electrolyte secondary battery comprising same
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
WO2021166771A1 (en) Electrolytic solution for secondary cell containing cyclic phosphoric acid ester
JP6315644B2 (en) Secondary battery
JP2005267857A (en) Organic electrolyte, and organic electrolyte battery using the same
JP2010050021A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
TWI694630B (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP5487443B2 (en) Non-aqueous electrolyte and lithium ion secondary battery
JP6097708B2 (en) Electrolyte and secondary battery using the same
JP2016091926A (en) Flame-retardant nonaqueous electrolyte, and lithium ion secondary battery
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5487443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees