JP2010277917A - Heater for heat treatment, and manufacturing method thereof - Google Patents

Heater for heat treatment, and manufacturing method thereof Download PDF

Info

Publication number
JP2010277917A
JP2010277917A JP2009130836A JP2009130836A JP2010277917A JP 2010277917 A JP2010277917 A JP 2010277917A JP 2009130836 A JP2009130836 A JP 2009130836A JP 2009130836 A JP2009130836 A JP 2009130836A JP 2010277917 A JP2010277917 A JP 2010277917A
Authority
JP
Japan
Prior art keywords
heater
heat treatment
calcined body
silicon carbide
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009130836A
Other languages
Japanese (ja)
Inventor
Masabumi Yamakawa
正文 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009130836A priority Critical patent/JP2010277917A/en
Publication of JP2010277917A publication Critical patent/JP2010277917A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heater for heat treatment of which manufacturing process is simple, cost is reduced and rigidity is high. <P>SOLUTION: The heater for heat treatment 1 is provided with a temporary calcined body 3 in which a porous body of silicon carbide is temporarily calcined and a covering material 5 consisting of an insulating material which covers the outer surface of the temporary calcined body 3. Thereby, by covering the porous temporary calcined body 3 with low rigidity with the covering material 5 consisting of insulating material, the heater for heat treatment 1 having high durability and high radiation efficiency, with a simple manufacturing process and reduced cost can be obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は熱処理用ヒータおよびその製造方法に関し、特に、半導体ウエハ及び産業用途での熱処理を施す炭化ケイ素焼結体からなる熱処理用ヒータとその製造方法に関する。   The present invention relates to a heat treatment heater and a manufacturing method thereof, and more particularly to a heat treatment heater composed of a silicon carbide sintered body that performs heat treatment for semiconductor wafers and industrial applications, and a manufacturing method thereof.

従来、炭化ケイ素からなる仮焼体に溶融した金属ケイ素を浸透させて、毛細管現象によって仮焼体に溶融金属ケイ素を吸い上げることによって、この吸い上げた金属ケイ素と仮焼体中の炭素とを反応させて炭化ケイ素を得るヒータ用炭化ケイ素焼結体の製造方法が知られている(例えば、特許文献1参照)。   Conventionally, molten metal silicon is infiltrated into a calcined body made of silicon carbide, and the molten metal silicon is sucked up into the calcined body by a capillary phenomenon, thereby reacting the sucked metal silicon with carbon in the calcined body. A method for manufacturing a silicon carbide sintered body for a heater to obtain silicon carbide is known (see, for example, Patent Document 1).

特開2006−151719号公報JP 2006-151719 A

しかしながら、上述した特許文献1に記載されたヒータでは、製造工程が複雑でかつコストが高いという問題があった。一方、溶融金属ケイ素を浸透させないで得られるヒータでは、剛性が低いという問題があった。   However, the heater described in Patent Document 1 described above has a problem that the manufacturing process is complicated and the cost is high. On the other hand, a heater obtained without impregnating molten metal silicon has a problem of low rigidity.

本発明の目的は、製造工程が簡素でコストが安価であり、剛性が高い熱処理用ヒータおよびその製造方法を提供することにある。   An object of the present invention is to provide a heat treatment heater with a simple manufacturing process, low cost, and high rigidity, and a method for manufacturing the same.

本発明の第1の特徴は、炭化ケイ素の多孔体を仮焼した仮焼体(仮焼体3)と、前記仮焼体の外表面を被覆した、絶縁材料からなる被覆材(被覆材5)とを備えたことを要旨とする。   The first feature of the present invention is that a calcined body (calcined body 3) obtained by calcining a porous body of silicon carbide and a covering material (covering material 5) made of an insulating material covering the outer surface of the calcined body. ).

従って、剛性が低い多孔体の仮焼体を絶縁材からなる被覆材で被覆することによって、耐久性および輻射効率が高く、製造工程がシンプルで低コストの熱処理用ヒータを得ることができる。   Therefore, by coating a porous calcined body having low rigidity with a covering material made of an insulating material, a heat treatment heater having high durability and high radiation efficiency, a simple manufacturing process and low cost can be obtained.

その他の特徴では、前記被覆材(被覆材5)は、シリカからなることを要旨とする。   Another feature is that the covering material (covering material 5) is made of silica.

その他の特徴では、前記炭化ケイ素仮焼体(仮焼体3)に石英ガラス板(石英ガラス板7,9)を接合したことを要旨とする。   Another feature is summarized in that a quartz glass plate (quartz glass plates 7 and 9) is bonded to the silicon carbide calcined body (calcined body 3).

その他の特徴では、本発明に係る熱処理用ヒータの製造方法は、炭化ケイ素粉末を溶媒中に分散させることにより、前記炭化ケイ素粉末を含む混合体からなるスラリーを作製する工程と、前記スラリーを成型し、乾燥させたグリーン体を仮焼して仮焼体(仮焼体3)を作製する工程と、前記仮焼体の外表面を絶縁材である被覆材(被覆材5)で被覆する工程と、を有することを要旨とする。   In another feature, the method for manufacturing a heat treatment heater according to the present invention includes a step of producing a slurry comprising a mixture containing the silicon carbide powder by dispersing the silicon carbide powder in a solvent, and molding the slurry. And calcining the dried green body to produce a calcined body (calcined body 3) and coating the outer surface of the calcined body with a coating material (coating material 5) that is an insulating material. The gist is to have.

その他の特徴では、前記被覆材(被覆材5)は、シリカからなることを要旨とする。   Another feature is that the covering material (covering material 5) is made of silica.

その他の特徴では、前記仮焼体(仮焼体3)を絶縁材で被覆したのち、前記仮焼体に石英ガラス板(石英ガラス板7,9)を接合することを要旨とする。   The other feature is to cover the calcined body (calcined body 3) with an insulating material and then join a quartz glass plate (quartz glass plates 7 and 9) to the calcined body.

本発明に係る熱処理用ヒータおよびその製造方法によれば、耐久性および輻射効率が高く、製造工程がシンプルで低コストの熱処理用ヒータを得ることができる。   According to the heat treatment heater and the method for producing the same according to the present invention, it is possible to obtain a heat treatment heater having high durability, radiation efficiency, a simple production process, and low cost.

本発明の第1実施形態による熱処理用ヒータの断面図である。It is sectional drawing of the heater for heat processing by 1st Embodiment of this invention. 本発明の第2実施形態による熱処理用ヒータの断面図である。It is sectional drawing of the heater for heat processing by 2nd Embodiment of this invention. 本発明の第3実施形態による熱処理用ヒータの断面図である。It is sectional drawing of the heater for heat processing by 3rd Embodiment of this invention. 本発明の第4実施形態による熱処理用ヒータの製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the heater for heat processing by 4th Embodiment of this invention. 実施例における各ヒータに電流を流す時間と抵抗増加率との関係を示すグラフである。It is a graph which shows the relationship between the time which sends an electric current to each heater in an Example, and resistance increase rate. 実施例における比較例1のヒータに電流を流す時間と抵抗増加率との関係を示すグラフである。It is a graph which shows the relationship between the time which flows an electric current through the heater of the comparative example 1 in an Example, and resistance increase rate. 実施例における比較例2のヒータに電流を流す時間と抵抗増加率との関係を示すグラフである。It is a graph which shows the relationship between the time which flows an electric current through the heater of the comparative example 2 in an Example, and resistance increase rate. 実施例における本発明例のヒータに電流を流す時間と抵抗増加率との関係を示すグラフである。It is a graph which shows the relationship between the time which flows an electric current through the heater of the example of this invention in an Example, and resistance increase rate. 実施例におけるヒータの被覆材について、面粗さによる輻射率変化を示すグラフである。It is a graph which shows the emissivity change by surface roughness about the coating material of the heater in an Example. 実施例におけるヒータについて、体積抵抗の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of volume resistance about the heater in an Example.

以下、本発明の実施の形態に係る熱処理用ヒータの詳細を図面に基づいて説明する。ただし、図面は模式的なものであり、各材料層の厚みやその比率などは現実のものとは異なることに留意すべきである。従って、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。   Hereinafter, details of the heat treatment heater according to the embodiment of the present invention will be described with reference to the drawings. However, it should be noted that the drawings are schematic and the thicknesses and ratios of the material layers are different from the actual ones. Accordingly, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, the part from which the relationship and ratio of a mutual dimension differ also in between drawings is contained.

[第1実施形態]
まず、本発明の第1実施形態に係る熱処理用ヒータを説明する。
[First embodiment]
First, the heat treatment heater according to the first embodiment of the present invention will be described.

図1は、本発明の第1実施形態による熱処理用ヒータの断面図である。図1に示すように、本実施形態による熱処理用ヒータ1は、仮焼体3と、該仮焼体3の外表面を被覆する被覆材5とから構成されている。   FIG. 1 is a sectional view of a heat treatment heater according to a first embodiment of the present invention. As shown in FIG. 1, the heat treatment heater 1 according to the present embodiment includes a calcined body 3 and a covering material 5 that covers the outer surface of the calcined body 3.

前記仮焼体3は、炭化ケイ素粉体と炭素粉体とを用いて、鋳込成型、プレス成形、押出成型等の方法によって成形した多孔体を乾燥及び仮焼することで作製することができる。また、炭化ケイ素粉末、分散材、バインダー、可塑剤などを分散させることにより、これらの混合体からなるスラリーを作製し、前記スラリーを鋳込成型し、乾燥させたグリーン体を仮焼して仮焼体を作製することもできる。また、前記スラリーから造粒粉を作製し、前記造粒粉をプレス成型し、乾燥させたグリーン体を仮焼して、仮焼体を作製することもできる。   The calcined body 3 can be produced by drying and calcining a porous body formed by a method such as casting, press molding, or extrusion molding using silicon carbide powder and carbon powder. . Further, by dispersing silicon carbide powder, dispersion material, binder, plasticizer, etc., a slurry made of a mixture of these is prepared, the slurry is cast-molded, and the dried green body is calcined and temporarily fired. A sintered body can also be produced. Moreover, a granulated powder is produced from the slurry, the granulated powder is press-molded, and the dried green body is calcined to produce a calcined body.

仮焼体3の気孔率は、25%以上が好ましく、特に30%〜40%が好ましい。前記被覆材5は、シリカなどの絶縁材料であることが好ましい。   The porosity of the calcined body 3 is preferably 25% or more, particularly preferably 30% to 40%. The covering material 5 is preferably an insulating material such as silica.

以下に、本発明の実施形態による作用効果を説明する。   Below, the effect by embodiment of this invention is demonstrated.

(1)本実施形態による熱処理用ヒータ1は、炭化ケイ素の多孔体を仮焼した仮焼体3と、該仮焼体3の外表面を被覆した絶縁材料からなる被覆材5と、を備えている。従って、剛性が低い多孔体の仮焼体3を絶縁材からなる被覆材5で被覆することによって、耐久性および輻射効率が高く、製造工程がシンプルで低コストの熱処理用ヒータ1を得ることができる。   (1) A heat treatment heater 1 according to the present embodiment includes a calcined body 3 obtained by calcining a porous body of silicon carbide, and a coating material 5 made of an insulating material that coats the outer surface of the calcined body 3. ing. Therefore, by covering the porous calcined body 3 having low rigidity with the covering material 5 made of an insulating material, it is possible to obtain a heat treatment heater 1 having high durability and radiation efficiency, a simple manufacturing process, and low cost. it can.

(2)前記被覆材5は、光透過率の高いシリカからなるため、輻射率が高い熱処理用ヒータ1を得ることができる。   (2) Since the covering material 5 is made of silica having a high light transmittance, the heat treatment heater 1 having a high radiation rate can be obtained.

[第2実施形態]
次いで、本発明の第2実施形態に係る熱処理用ヒータを説明する。ただし、前述した第1実施形態と同一構成部位には、同一符号を付して、説明を省略する。
[Second Embodiment]
Next, a heat treatment heater according to a second embodiment of the present invention will be described. However, the same components as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

図2は、本発明の第2実施形態による熱処理用ヒータの断面図である。   FIG. 2 is a sectional view of a heat treatment heater according to the second embodiment of the present invention.

熱処理用ヒータ11は、外表面をシリカからなる被覆材5で被覆した仮焼体3と、該仮焼体3に被覆材5を介して接合した石英ガラス板7と、から構成されている。なお、石英ガラス板7は、石英ガラス以外に、熱処理時において耐熱性と透過性とを有するガラスであれば適用できる。   The heat treatment heater 11 includes a calcined body 3 whose outer surface is coated with a coating material 5 made of silica, and a quartz glass plate 7 bonded to the calcined body 3 via the coating material 5. The quartz glass plate 7 can be applied to any glass other than quartz glass that has heat resistance and transparency during heat treatment.

以下に、本発明の実施形態による作用効果を説明する。   Below, the effect by embodiment of this invention is demonstrated.

(1)前記炭化ケイ素仮焼体3に、光透過率の高い石英ガラス板7を接合しているため、輻射率の高さを維持しつつ耐久性が更に向上する。   (1) Since the quartz glass plate 7 having a high light transmittance is joined to the silicon carbide calcined body 3, the durability is further improved while maintaining a high radiation rate.

[第3実施形態]
次いで、本発明の第3実施形態に係る熱処理用ヒータを説明する。ただし、前述した第1および第2実施形態と同一構成部位には、同一符号を付して、説明を省略する。
[Third embodiment]
Next, a heat treatment heater according to a third embodiment of the present invention will be described. However, the same components as those in the first and second embodiments described above are denoted by the same reference numerals and description thereof is omitted.

図3は、本発明の第3実施形態による熱処理用ヒータの断面図である。   FIG. 3 is a sectional view of a heat treatment heater according to a third embodiment of the present invention.

熱処理用ヒータ21は、仮焼体3と、該仮焼体3の上面の上に載置された石英ガラス板7と、該仮焼体3の下面の下に配置された石英ガラス板9と、仮焼体の外周面の外側に設けられた融着剤10と、から構成されている。即ち、仮焼体3は上下から一対の石英ガラス板7,9で挟持されており、かつ、融着剤10によって覆っている。   The heater 21 for heat treatment includes a calcined body 3, a quartz glass plate 7 placed on the upper surface of the calcined body 3, and a quartz glass plate 9 disposed under the lower surface of the calcined body 3. The fusing agent 10 is provided outside the outer peripheral surface of the calcined body. That is, the calcined body 3 is sandwiched between a pair of quartz glass plates 7 and 9 from above and below and is covered with the adhesive 10.

以下に、本発明の実施形態による作用効果を説明する。   Below, the effect by embodiment of this invention is demonstrated.

(1)前記炭化ケイ素仮焼体3に、光透過率の高い石英ガラス板7,9を接合しているため、輻射率の高さを維持しつつ耐久性が更に向上する。   (1) Since the quartz glass plates 7 and 9 having a high light transmittance are joined to the silicon carbide calcined body 3, the durability is further improved while maintaining a high radiation rate.

[第4実施形態]
次いで、本発明の第4実施形態に係る熱処理用ヒータの製造方法を説明する。ただし、前述した第1〜第3実施形態と同一構成部位には、同一符号を付して、説明を省略する。
[Fourth embodiment]
Next, a method for manufacturing a heat treatment heater according to a fourth embodiment of the present invention will be described. However, the same components as those in the first to third embodiments described above are denoted by the same reference numerals and description thereof is omitted.

図4は、本実施形態による熱処理用ヒータの製造工程を示すフロー図である。図4に示すように、本実施形態による熱処理用ヒータの製造方法は、炭化ケイ素粉末を溶媒中に分散させることにより、炭化ケイ素粉末を含む混合体からなるスラリーを作製する工程と、前記スラリーを成型し、乾燥させたグリーン体を仮焼して仮焼体3を作製する工程と、該仮焼体3の外表面を絶縁材である被覆材5で被覆する工程と、を少なくとも有する。この方法によって製造された熱処理用ヒータ1は、図1に示す構造をしている。以下、鋳込成型を用いた製造方法を説明するが、成型方法は、これに限らず、プレス成形、押出成型等でも可能である。   FIG. 4 is a flowchart showing the manufacturing process of the heat treatment heater according to the present embodiment. As shown in FIG. 4, the manufacturing method of the heater for heat treatment according to the present embodiment includes a step of producing a slurry composed of a mixture containing silicon carbide powder by dispersing silicon carbide powder in a solvent, It includes at least a step of preparing the calcined body 3 by calcining the green body that has been molded and dried, and a step of coating the outer surface of the calcined body 3 with a coating material 5 that is an insulating material. A heat treatment heater 1 manufactured by this method has a structure shown in FIG. Hereinafter, a manufacturing method using cast molding will be described, but the molding method is not limited to this, and press molding, extrusion molding, or the like is also possible.

(1)混合体のスラリーを作製する工程
まず、炭化ケイ素粉末を溶媒中に分散させて、炭化ケイ素粉末を含む混合体からなるスラリーを作製する。具体的には、スラリーは、炭化ケイ素粉末、分散材、バインダー、可塑剤などを分散させることにより、これらの混合体から作製する。
(1) Step of preparing slurry of mixture First, silicon carbide powder is dispersed in a solvent to prepare a slurry made of a mixture containing silicon carbide powder. Specifically, the slurry is prepared from a mixture of these by dispersing silicon carbide powder, a dispersion material, a binder, a plasticizer, and the like.

次に、ミキサー、遊星ボールミルなどの攪拌混合手段を用いて、6時間〜48時間、特に12時間〜24時間に渡って攪拌混合を行う。攪拌混合が十分に行われていないと、グリーン体中に気孔が均一分散されなくなるからである。   Next, stirring and mixing are performed for 6 hours to 48 hours, particularly 12 hours to 24 hours using a stirring and mixing means such as a mixer or a planetary ball mill. This is because if the stirring and mixing are not sufficiently performed, the pores are not uniformly dispersed in the green body.

(2)グリーン体を得る工程
得られたスラリーを鋳込み成形用型に流し込む。その後、放置、脱型した後、40℃〜60℃の温度条件下で加熱乾燥又は自然乾燥して溶媒を除去する。このようにして規定寸法のグリーン体、即ちスラリーから溶媒を除去して均一な気孔が内在する炭化ケイ素成形体が得られる。
(2) Step of obtaining a green body The obtained slurry is poured into a casting mold. Then, after leaving and demolding, the solvent is removed by heating or natural drying under a temperature condition of 40 ° C to 60 ° C. In this manner, a green body having a predetermined size, that is, a silicon carbide molded body in which uniform pores are present by removing the solvent from the slurry is obtained.

(3)仮焼工程
得られたグリーン体を真空雰囲気下1500℃〜1950℃まで12〜18時間程度かけて昇温する。加熱温度が1500℃未満だと脱脂が不十分になる。昇温速度は、配合物中のバインダーの急激な熱分解による爆裂を防止するため100℃/1hr以下とする。そして、一定の温度に達した後、真空雰囲気下その温度条件に30分間保持することで仮焼体3が得られる。
(4)被覆工程
前記仮焼体3の外表面を、例えばスラリー状にした絶縁材である被覆材5で被覆することによって仮焼体3の外表面を被覆材5で被覆することができる。
(3) Calcination step The obtained green body is heated from 1500 ° C. to 1950 ° C. in a vacuum atmosphere over a period of about 12 to 18 hours. When the heating temperature is less than 1500 ° C., degreasing becomes insufficient. The temperature increase rate is set to 100 ° C./1 hr or less in order to prevent explosion due to rapid thermal decomposition of the binder in the compound. Then, after reaching a certain temperature, the calcined body 3 is obtained by maintaining the temperature for 30 minutes in a vacuum atmosphere.
(4) Coating process The outer surface of the calcined body 3 can be coated with the coating material 5 by coating the outer surface of the calcined body 3 with a coating material 5 which is, for example, a slurry-like insulating material.

以下に、本発明の実施形態による作用効果を説明する。   Below, the effect by embodiment of this invention is demonstrated.

(1)本実施形態による熱処理用ヒータの製造方法は、炭化ケイ素粉末を溶媒中に分散させることにより、これらの混合体からなるスラリーを作製する工程と、前記スラリーを成型し、乾燥させたグリーン体を仮焼して仮焼体3を作製する工程と、該仮焼体3の外表面を絶縁材である被覆材5で被覆する工程と、を有する。従って、剛性が低い多孔体の仮焼体3を絶縁材からなる被覆材5で被覆することによって、耐久性および輻射効率が高く、製造工程がシンプルで低コストの熱処理用ヒータを得ることができる。   (1) The manufacturing method of the heater for heat treatment according to the present embodiment includes a step of producing a slurry composed of a mixture of these by dispersing silicon carbide powder in a solvent, and a green obtained by molding and drying the slurry. And calcining the body to prepare the calcined body 3, and covering the outer surface of the calcined body 3 with a covering material 5 which is an insulating material. Accordingly, by covering the porous calcined body 3 having a low rigidity with the coating material 5 made of an insulating material, a heat treatment heater with high durability and radiation efficiency, a simple manufacturing process and a low cost can be obtained. .

(2)前記被覆材5は、光透過率の高いシリカからなるため、輻射率が高い熱処理用ヒータ1を得ることができる。   (2) Since the covering material 5 is made of silica having a high light transmittance, the heat treatment heater 1 having a high radiation rate can be obtained.

[第5実施形態]
次いで、本発明の第4実施形態に係る熱処理用ヒータの製造方法を説明する。ただし、前述した第1〜第4実施形態と同一構成部位には、同一符号を付して、説明を省略する。
[Fifth Embodiment]
Next, a method for manufacturing a heat treatment heater according to a fourth embodiment of the present invention will be described. However, the same components as those in the first to fourth embodiments described above are denoted by the same reference numerals and description thereof is omitted.

本実施形態では、第4実施形態に係る熱処理用ヒータに対して石英ガラス板を接合している。   In this embodiment, a quartz glass plate is joined to the heat treatment heater according to the fourth embodiment.

即ち、第4実施形態では、仮焼体3の外表面を絶縁材である被覆材5で被覆したが、図2に示すように、この仮焼体3の上側および下側の少なくとも一方側に石英ガラス板7を接合する工程を追加する。なお、石英ガラス板7は、石英ガラス以外に、熱処理時において耐熱性と透過性とを有するガラスであれば適用できる。   That is, in 4th Embodiment, although the outer surface of the calcined body 3 was coat | covered with the coating | covering material 5 which is an insulating material, as shown in FIG. A step of joining the quartz glass plate 7 is added. The quartz glass plate 7 can be applied to any glass other than quartz glass that has heat resistance and transparency during heat treatment.

以下に、本発明の実施形態による作用効果を説明する。   Below, the effect by embodiment of this invention is demonstrated.

(1)前記炭化ケイ素仮焼体3に、光透過率の高い石英ガラス板7を接合するため、輻射率の高さを維持しつつ耐久性が更に向上する。   (1) Since the quartz glass plate 7 having a high light transmittance is joined to the silicon carbide calcined body 3, the durability is further improved while maintaining a high radiation rate.

なお、前述した実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。   It should not be understood that the description and the drawings, which form part of the disclosure of the above-described embodiments, limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、前記第3実施形態では、仮焼体3の周囲を融着剤10によって被覆したが、石英ガラス板によって被覆しても良い。   For example, in the said 3rd Embodiment, although the circumference | surroundings of the calcined body 3 were coat | covered with the fusion agent 10, you may coat | cover with a quartz glass plate.

次いで、本発明を実施例を通して更に具体的に説明する。   Next, the present invention will be described more specifically through examples.

図5は、実施例における各ヒータに電流を流す時間と抵抗増加率との関係を示すグラフである。   FIG. 5 is a graph showing the relationship between the time during which a current is passed through each heater and the resistance increase rate in the example.

図5において、実線Aは本発明例によるヒータを示し、一点鎖線Bは従来の仮焼体にSi溶浸させて、シリカコーティングを施したヒータを示し、破線Cは従来の仮焼体にSiを含浸させたヒータを示す。この図5のグラフに示すように、実線Aの本発明例によるヒータが最も長時間経過後に抵抗増加が少ないことが判明した。   In FIG. 5, a solid line A indicates a heater according to the present invention, a one-dot chain line B indicates a heater in which Si is infiltrated into a conventional calcined body, and a silica coating is applied. The heater impregnated with is shown. As shown in the graph of FIG. 5, it has been found that the heater according to the example of the present invention indicated by the solid line A has a small increase in resistance after the longest time.

図6は実施例における比較例1のヒータに電流を流す時間と抵抗増加率との関係を示すグラフ、図7は実施例における比較例2のヒータに電流を流す時間と抵抗増加率との関係を示すグラフ、および、図8は実施例における本発明例のヒータに電流を流す時間と抵抗増加率との関係を示すグラフである。   FIG. 6 is a graph showing the relationship between the current flowing time through the heater of Comparative Example 1 and the resistance increase rate in the embodiment, and FIG. 7 is the relationship between the current flowing time through the heater of Comparative Example 2 in the embodiment and the resistance increase rate. FIG. 8 is a graph showing the relationship between the time during which a current is passed through the heater according to the present invention and the resistance increase rate in Examples.

これらのグラフからも、本発明例によるヒータが長時間経過した後も、抵抗値は、上昇傾向を示すが、抵抗率変化は少ないことが判明した。   Also from these graphs, it was found that, even after the heater according to the example of the present invention had passed for a long time, the resistance value showed an increasing tendency, but the resistivity change was small.

図9は、実施例におけるヒータの被覆材について、面粗さによる輻射率変化を示すグラフである。   FIG. 9 is a graph showing a change in emissivity due to surface roughness for the heater covering material in the example.

太い実線で示すXはRaが1.5であり、一点鎖線で示すYはRaが1.0であり、点線で示すZはRaが0.2であり、細い実線で示すWはRaが0.025であった。このグラフに示すように、面粗さが大きくなるほど輻射率が高くなることが判明した。   X indicated by a thick solid line has an Ra of 1.5, Y indicated by an alternate long and short dash line has an Ra of 1.0, Z indicated by a dotted line has an Ra of 0.2, and W indicated by a thin solid line has an Ra of 0 0.025. As shown in this graph, it has been found that the emissivity increases as the surface roughness increases.

図10は、実施例におけるヒータについて、体積抵抗の温度依存性を示すグラフである。このグラフに示すように、温度を高くするほど体積抵抗率が低くなることが判明した。   FIG. 10 is a graph showing the temperature dependence of the volume resistance of the heater in the example. As shown in this graph, it has been found that the volume resistivity decreases as the temperature increases.

1,11,21 熱処理用ヒータ
3 仮焼体
5 被覆材
7,9 石英ガラス板
1,11,21 Heater for heat treatment 3 Calcined body 5 Coating material 7, 9 Quartz glass plate

Claims (6)

炭化ケイ素の多孔体を仮焼した仮焼体と、
前記仮焼体の外表面を被覆した絶縁材料からなる被覆材と
を備えたことを特徴とする熱処理用ヒータ。
A calcined body obtained by calcining a porous body of silicon carbide;
A heat treatment heater comprising: a covering material made of an insulating material covering an outer surface of the calcined body.
前記被覆材は、シリカからなることを特徴とする請求項1に記載の熱処理用ヒータ。   The heater for heat treatment according to claim 1, wherein the covering material is made of silica. 前記仮焼体に石英ガラス板を接合したことを特徴とする請求項1または2に記載の熱処理用ヒータ。   The heater for heat treatment according to claim 1 or 2, wherein a quartz glass plate is joined to the calcined body. 炭化ケイ素粉末を溶媒中に分散させることにより、前記炭化ケイ素粉末を含む混合体からなるスラリーを作製する工程と、
前記スラリーを成型し、乾燥させたグリーン体を仮焼して仮焼体を作製する工程と、
前記仮焼体の外表面を絶縁材である被覆材で被覆する工程と
を有することを特徴とする熱処理用ヒータの製造方法。
Producing a slurry comprising a mixture containing the silicon carbide powder by dispersing the silicon carbide powder in a solvent;
Forming the slurry and calcining the dried green body to produce a calcined body;
And a step of coating the outer surface of the calcined body with a coating material that is an insulating material.
前記被覆材は、シリカからなることを特徴とする請求項4に記載の熱処理用ヒータの製造方法。   The said coating | covering material consists of silica, The manufacturing method of the heater for heat processing of Claim 4 characterized by the above-mentioned. 前記仮焼体を絶縁材で被覆したのち、前記仮焼体に石英ガラス板を接合することを特徴とする請求項4または5に記載の熱処理用ヒータの製造方法。   6. The method for manufacturing a heat treatment heater according to claim 4, wherein after the calcined body is coated with an insulating material, a quartz glass plate is joined to the calcined body.
JP2009130836A 2009-05-29 2009-05-29 Heater for heat treatment, and manufacturing method thereof Pending JP2010277917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009130836A JP2010277917A (en) 2009-05-29 2009-05-29 Heater for heat treatment, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130836A JP2010277917A (en) 2009-05-29 2009-05-29 Heater for heat treatment, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2010277917A true JP2010277917A (en) 2010-12-09

Family

ID=43424688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130836A Pending JP2010277917A (en) 2009-05-29 2009-05-29 Heater for heat treatment, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2010277917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175545A1 (en) * 2012-05-22 2013-11-28 ニチアス株式会社 Heating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175545A1 (en) * 2012-05-22 2013-11-28 ニチアス株式会社 Heating device
CN104335676A (en) * 2012-05-22 2015-02-04 霓佳斯株式会社 Heating device
US10143042B2 (en) 2012-05-22 2018-11-27 Nichias Corporation Heating device

Similar Documents

Publication Publication Date Title
CN1980720B (en) Porous ceramic body and method for production thereof
KR100756619B1 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body
KR100961921B1 (en) Electrostatic chuck and method of manufacturing the same
TWI589177B (en) Ceramic heater and method for producing the same
JP2012504092A (en) Method for producing porous SiC material
KR20020073257A (en) Ceramic sintered bodies and a method of producing the same
KR20140011508A (en) Particle-stabilized ceramic foams coated on ceramic materials and the method for manufacturing the same
JP6512401B2 (en) Reaction sintered silicon carbide member
JP2010277917A (en) Heater for heat treatment, and manufacturing method thereof
JPH07108348A (en) Production of air permeable durable mold
CN104667762A (en) Manufacturing method for seamless metal pipe
JP4471692B2 (en) Method for manufacturing container for melting silicon having release layer
JP2019156653A (en) SILICON MELTING CRUCIBLE, METHOD OF PRODUCING SILICON MELTING CRUCIBLE, AND METHOD OF PRODUCING REACTION SINTERED SiC
CN104072190A (en) Preparation method of SiC porous ceramic
JP5092135B2 (en) Porous material and method for producing the same
JP2010280529A (en) Method for manufacturing crucible for polycrystalline silicon production
JP2002226285A (en) Lightweight ceramic member and method for manufacturing the same
JP7221498B2 (en) Ceramic filter and its manufacturing method
CN112135701B (en) Ceramic filter and method for manufacturing the same
JP2003048783A (en) Alumina ceramics joined body and method for manufacturing the same
JP2014067834A (en) Electrostatic chuck and manufacturing method of the same
TW201425267A (en) Porous ceramic heat sink fin and preparation method thereof
CN107805071B (en) Preparation method of titanium-trialuminum-carbon-mullite composite ceramic with low glass wettability
JP5053206B2 (en) Method of forming quartz glass material using mold material
JP6319579B2 (en) Firing jig and method for producing firing jig