JP2010274430A - Method for heat-treating biaxially oriented polyester film - Google Patents

Method for heat-treating biaxially oriented polyester film Download PDF

Info

Publication number
JP2010274430A
JP2010274430A JP2009126040A JP2009126040A JP2010274430A JP 2010274430 A JP2010274430 A JP 2010274430A JP 2009126040 A JP2009126040 A JP 2009126040A JP 2009126040 A JP2009126040 A JP 2009126040A JP 2010274430 A JP2010274430 A JP 2010274430A
Authority
JP
Japan
Prior art keywords
film
polyester film
heat
biaxially stretched
stretched polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009126040A
Other languages
Japanese (ja)
Other versions
JP5249854B2 (en
Inventor
Toshimi Tatsumi
敏実 辰己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYSTEC CO Ltd
Original Assignee
SYSTEC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYSTEC CO Ltd filed Critical SYSTEC CO Ltd
Priority to JP2009126040A priority Critical patent/JP5249854B2/en
Publication of JP2010274430A publication Critical patent/JP2010274430A/en
Application granted granted Critical
Publication of JP5249854B2 publication Critical patent/JP5249854B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a slackening heat treatment method which enables the efficient obtaining of a biaxially oriented thermoplastic resin film improved in flatness and excellent in thermal dimensional stability. <P>SOLUTION: In this method for heat-treating a biaxially oriented polyester film, a long biaxially oriented polyester film is guided into a heating zone by a pair of sending-out rolls to be heated while being suspended in the heating zone to be allowed to run downward and the biaxially oriented polyester film is reversed in its running direction under the outside area of the heating zone to be guided to a cooling zone and cooled while being allowed to run upward by a pair of the take-off rolls arranged outside the area above the cooling zone. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、二軸延伸ポリエステルフィルムの熱処理方法に関する。さらに詳しくは、平面性が良好で、熱寸法安定性に優れた二軸延伸されたポリエステルフィルムを、効率的に弛緩熱処理方法に関する。   The present invention relates to a heat treatment method for a biaxially stretched polyester film. More specifically, the present invention relates to a relaxation heat treatment method for a biaxially stretched polyester film having good flatness and excellent thermal dimensional stability.

従来、二軸延伸熱可塑性樹脂フィルム、例えば、二軸延伸ポリエステルフィルムは、耐熱性、機械特性、耐薬品性などにおいて優れた性能を発揮するので、多くの用途に使用されている。これら脂フィルムを応用した製品の小型化、軽量化、精度向上などから、フィルムに一層優れた性能が要求されるようになった。特に需要者が目的物に加工する段階で加熱される用途、例えば、メンブレンスイッチ、FPC、熱現像方式の写真感光材料の用途などでは、低熱収縮の樹脂フィルムが要請されている。具体的には、従来、タッチパネル用フィルムでは、熱収縮率が、温度150℃で30分間の加熱で0.5%以下程度でよかったものが、0.1%以下の性能が要請されるようになった。   Conventionally, a biaxially stretched thermoplastic resin film, for example, a biaxially stretched polyester film exhibits excellent performance in heat resistance, mechanical properties, chemical resistance, and the like, and thus has been used in many applications. Due to the reduction in size, weight, and accuracy of products that apply these oil films, higher performance has been required for films. In particular, a resin film having a low heat shrinkage is required in applications where a customer heats up at the stage of processing into an object, for example, membrane switches, FPCs, and heat-developable photographic photosensitive materials. Specifically, in the conventional film for touch panel, the heat shrinkage rate is about 0.5% or less when heated at a temperature of 150 ° C. for 30 minutes, but the performance of 0.1% or less is required. became.

これらの要請に対して、二軸延伸ポリエステルフィルムの製造工程中のオンラインで、熱固定温度を高く設定する手法で結晶化温度を高めたり、縦および横方向に弛緩熱処理したりする方法が行われている。しかし、オンラインにおける処理だけでは、フィルムを十分に低熱収縮化することができないので、フィルム製造後に別工程(オフライン)で、熱弛緩処理する方法が提案され、実用化されている。   In response to these demands, on-line processing of the biaxially stretched polyester film involves a method in which the crystallization temperature is increased by a method of setting a high heat setting temperature, or relaxation heat treatment is performed in the longitudinal and lateral directions. ing. However, since the film cannot be sufficiently heat-shrinked by on-line processing alone, a method of heat relaxation treatment in a separate process (offline) after film production has been proposed and put into practical use.

オフラインで二軸延伸ポリエステルフィルムに熱弛緩処理方法は、多数提案されている。例えば、懸垂状態で連続的に走行させたフィルムを、特定の温度条件下で弛緩することによって熱収縮率を0.1%以下にする方法がある(特許文献1)。さらに、上方に設置した予熱ロールから懸垂状態で連続的に走行させた樹脂フィルムを、熱処理オーブンで特定の温度条件下で加熱し、ついで冷却ロールによって多段階に冷却する方法(特許文献2、特許文献3、特許文献4)などがある。これら特許文献に記載の方法は、フィルムが最高温度に達して延び易くなった状態で、懸垂したフィルム自体の重さ(自重)が負荷され、さらに、冷却ロールによってフィルムを移送するので、フィルムに張力が負荷されるのは避けられず、熱弛緩処理効果が大幅に減じられる。   A number of thermal relaxation treatment methods for biaxially stretched polyester films have been proposed offline. For example, there is a method in which the thermal shrinkage rate is reduced to 0.1% or less by relaxing a film continuously run in a suspended state under a specific temperature condition (Patent Document 1). Furthermore, a method in which a resin film continuously run in a suspended state from a preheating roll installed above is heated in a heat treatment oven under a specific temperature condition and then cooled in multiple stages by a cooling roll (Patent Document 2, Patent) Document 3 and Patent Document 4). In the methods described in these patent documents, the weight of the suspended film itself (self-weight) is loaded in a state in which the film reaches the maximum temperature and becomes easy to extend, and further, the film is transferred by a cooling roll. It is inevitable that a tension is applied, and the heat relaxation effect is greatly reduced.

別の方法として、フィルムを加熱オーブン内で加熱しつつ下方から上方に走行させ、上方で空気圧によって浮上させた状態で走行方向を反転させ、下方に走行させる過程で冷却する方法がある(特許文献5)。この方法では、フィルムが下方から上方に走行させられながら加熱オーブン上部で最高温度まで加熱され、最高温度に達したフィルムに空気圧によって浮上させた最高位置から冷却ロールまでの長さ分のフィルムの自重が負荷されるので、空気圧によって浮上させる部分で樹脂フィルムを引き延ばすように作用する。また、加熱オーブン中で最高温度まで加熱されたフィルムは、浮上させるための空気によって延ばされるので、この際に樹脂フィルムの平面性(しわやたるみがないこと)を維持することが困難になり、熱弛緩処理効果が減じられる。   As another method, there is a method in which the film travels upward from below while being heated in a heating oven, reverses the traveling direction in a state of being lifted by air pressure above and cooled in the course of traveling downward (Patent Document) 5). In this method, the film is heated up to the maximum temperature in the upper part of the heating oven while being moved from the bottom to the top, and the film reaches its maximum temperature by the air pressure and floats by the air from the highest position to the cooling roll. Therefore, it acts to stretch the resin film at the part that floats by air pressure. In addition, since the film heated to the maximum temperature in the heating oven is stretched by the air to float, it becomes difficult to maintain the flatness (no wrinkles or sagging) of the resin film at this time, The heat relaxation treatment effect is reduced.

特公平6−17065号公報Japanese Examined Patent Publication No. 6-17065 特開2001−158053号公報JP 2001-158053 A 特開2001−158054号公報JP 2001-158054 A 特開2001−322166号公報JP 2001-322166 A 特開2002−144421号公報JP 2002-144421 A

本発明者は、かかる状況にあって、従来技術に存在していた諸欠点を排除した熱処理技術を提供すべく鋭意検討した結果、本発明を完成するに至った。すなわち、本発明の目的は、しわやたるみがなく平面性が良好で、熱寸法安定性に優れた二軸延伸ポリエステルフィルムが得られる熱処理方法を提供することにある。   Under such circumstances, the present inventor has intensively studied to provide a heat treatment technique that eliminates various disadvantages existing in the prior art, and as a result, has completed the present invention. That is, an object of the present invention is to provide a heat treatment method capable of obtaining a biaxially stretched polyester film free from wrinkles and sagging and having good flatness and excellent thermal dimensional stability.

上記課題を解決するために、本発明では、二軸延伸ポリエステルフィルムを熱処理する方法において、長尺の二軸延伸ポリエステルフィルムを一対のフィルム送り出しロールで加熱ゾーン内に導き、加熱ゾーン内で懸垂させ下方に走行させる過程で加熱し、加熱ゾーン外の下方で二軸延伸ポリエステルフィルムの走行方向を反転させて冷却ゾーン内に導き、冷却ゾーンの上方外部に配置した一対のフィルム引き取りロールで上方に走行させる過程で冷却することを特徴とする、二軸延伸ポリエステルフィルムの熱処理方法を提供する。   In order to solve the above problems, in the present invention, in a method of heat treating a biaxially stretched polyester film, a long biaxially stretched polyester film is guided into a heating zone by a pair of film feed rolls and suspended in the heating zone. Heating in the process of running downward, reversing the running direction of the biaxially stretched polyester film outside the heating zone, guiding it into the cooling zone, and running up with a pair of film take-up rolls arranged outside the cooling zone And a method for heat-treating the biaxially stretched polyester film, characterized in that the method is cooled in the process.

本発明は、以下に詳細に説明するとおりであり、次のような効果を奏し、その産業上の利用価値は極めて大である。
1.本発明に係るの熱処理方法によれば、しわやたるみがなく平面性の良好な二軸延伸ポリエステルフィルムが得られる。
2.本発明に係る熱処理方法によれば、熱寸法安定性に優れた二軸延伸ポリエステルフィルムた得られる。
The present invention is as described in detail below, has the following effects, and its industrial utility value is extremely large.
1. According to the heat treatment method of the present invention, a biaxially stretched polyester film having good flatness without wrinkles and sagging can be obtained.
2. According to the heat treatment method of the present invention, a biaxially stretched polyester film having excellent thermal dimensional stability can be obtained.

第1図は、本発明に係る熱処理方法を説明する一例の、側面略図である。FIG. 1 is a schematic side view of an example illustrating a heat treatment method according to the present invention.

以下、本発明を詳細に説明する。本発明でポリエステル樹脂とは、芳香族二塩基酸またはそのエステル形成誘導体と、ジオールまたはそのエステル形成誘導体から合成される線状飽和ポリエステルである。ポリエステル樹脂の具体例としては、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4−シクロヘキシレンジメチレンテレフタレート)、ポリエチレン−2,6−ナフタレンジカルボキシレートなどが挙げられ、これらの共重合体またはこれらと小割合の他の樹脂との混合物なども含まれる。これらポリエステルは、成形用として使用される固有粘度が0.35〜0.9dl/gの範囲のものが好適であり、残存単量体やオリゴマーなどの含有量が少ないものほど好ましい。   Hereinafter, the present invention will be described in detail. In the present invention, the polyester resin is a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof. Specific examples of the polyester resin include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene-2,6-naphthalene dicarboxylate, and the like. Also included are polymers or mixtures of these with small proportions of other resins. Among these polyesters, those having an intrinsic viscosity in the range of 0.35 to 0.9 dl / g used for molding are suitable, and those having a smaller content of residual monomers and oligomers are preferred.

上記熱可塑性樹脂には、通常使用される樹脂添加剤を含有させる(配合する)ことができる。含有させる樹脂添加剤としては、フィルムの滑り性改良剤、顔料、熱安定剤、光安定剤、紫外線吸収剤などが挙げられる。フィルム表面の滑り性を改良する目的の滑り性改良剤としては、炭酸カルシウム、カオリン、シリカ、酸化チタン、アルミナ、架橋ポリスチレン粒子、シリコン樹脂粒子などが挙げられる。   The thermoplastic resin may contain (blend) a commonly used resin additive. Examples of the resin additive to be included include a film slipperiness improver, a pigment, a heat stabilizer, a light stabilizer, and an ultraviolet absorber. Examples of the slip property improving agent for improving the slip property of the film surface include calcium carbonate, kaolin, silica, titanium oxide, alumina, crosslinked polystyrene particles, and silicon resin particles.

本発明方法が適用できる二軸延伸ポリエステルフィルムは、従来から知られている方法で製造され二軸延伸フィルムとされ、オンラインで熱固定されたポリエステルフィルムである。原料ポリエステルを乾燥した後、下限を樹脂の融点(Tm℃)とし、上限を(Tm+70℃)とした温度範囲に設定した押出機で溶融し、押出機先端に装着したダイ(例えば、T−ダイ、I−ダイなど)から冷却ドラム上に押出し、急冷して未延伸フィルムを得る。次いで、この未延伸フィルムを縦方向に、樹脂のガラス転移温度(Tg℃)を下限とし、上限を(Tg+70)℃とした温度範囲で、2.5〜5.0倍の倍率で延伸する。さらに、下限を(Tg+70)℃とし、上限をTm℃とした温度範囲で熱固定する工程を経て製造することができる。オンラインでフィルムを熱固定する場合は、フィルムに0.04〜0.60MPaの張力を負荷し、温度が190〜240℃の範囲、処理時間1〜60秒の範囲で熱固定するものとし、処理時間は、温度が高いときは短く、温度が低いときは長くするのが好ましい。フィルムの厚さは、最終用途により異なり、通常は50μm〜500μmの範囲で選ばれる。連続的に製造されたフィルムは、通常、ロール状に巻回されて取り扱われる。   The biaxially stretched polyester film to which the method of the present invention can be applied is a polyester film produced by a conventionally known method to be a biaxially stretched film and heat-set online. After the raw material polyester is dried, a die (for example, T-die) is melted in an extruder set at a temperature range in which the lower limit is the melting point (Tm ° C.) of the resin and the upper limit is (Tm + 70 ° C.). , I-die, etc.) onto a cooling drum and quenched to obtain an unstretched film. Next, the unstretched film is stretched in the longitudinal direction at a magnification of 2.5 to 5.0 times in a temperature range in which the glass transition temperature (Tg ° C.) of the resin is the lower limit and the upper limit is (Tg + 70) ° C. Furthermore, it can be manufactured through a process of heat setting in a temperature range where the lower limit is (Tg + 70) ° C. and the upper limit is Tm ° C. When the film is heat-set online, the film is subjected to a tension of 0.04 to 0.60 MPa, heat-set in a range of 190 to 240 ° C. and a processing time of 1 to 60 seconds. The time is preferably short when the temperature is high and long when the temperature is low. The thickness of the film varies depending on the end use, and is usually selected in the range of 50 μm to 500 μm. A continuously produced film is usually handled by being wound into a roll.

ポリエステルフィルムは、表面処理が施されていてもよい。フィルムの表面処理の種類としては帯電防止処理、紫外線防止処理、表面硬度向上処理、すべり性改良処理などが挙げられ、いずれも従来から知られている処理方法によることができる。   The polyester film may be subjected to a surface treatment. Examples of the surface treatment of the film include an antistatic treatment, an ultraviolet ray prevention treatment, a surface hardness improvement treatment, a slip property improvement treatment, and the like, and any of them can be performed by a conventionally known treatment method.

本発明方法によるときは、オフラインで、フィルムを加熱ゾーンと冷却ゾーンとを走行させて熱処理する。ロール状に巻回されたフィルムを一対のフィルム送り出しロールで加熱ゾーン内に導く。この際、一対のフィルム送り出しロールは、あらかじめTg以下に温度調節しておくのが好ましい。加熱ゾーンでは、フィルムを懸垂させた状態で表裏から加熱し加熱処理する。フィルムの懸垂方向は垂直真下ではなく、後記する反転位置および冷却ゾーンを走行する端部を側面から観察した場合に、放物線に類似した曲線(カテナリー曲線)を形成する角度とするのが好ましい(後記する図1参照)。フィルムを懸垂させた状態で加熱処理を行うことにより、フィルムを十分に熱弛緩(熱収縮)させ、加熱前のフィルム表面に目視観察される「しわ」や「たるみ」をなくして平面性を向上させ、残留歪を少なくすることができる。この加熱ゾーンでの加熱では、加熱処理後の熱収縮率がフィルムの元の寸法の1.0%以下、好ましくは0.5%以下となるように弛緩熱収縮させる。加熱ゾーンの大きさ(幅、長さ、容積など)は、熱処理する原料樹脂フィルムの種類、幅などに依存し、幅20cm〜5m、長さ20cm〜2.5mの範囲で選ぶことができる。加熱ゾーンの容積は、加熱手段が設置されフィルムが走行可能な容積であればよい。   When the method of the present invention is used, the film is heat-treated while traveling in the heating zone and the cooling zone offline. The film wound in a roll shape is guided into the heating zone by a pair of film feed rolls. At this time, the temperature of the pair of film delivery rolls is preferably adjusted to Tg or less in advance. In the heating zone, the film is heated from the front and back in a state where the film is suspended. The hanging direction of the film is not directly below the vertical direction, but is preferably an angle that forms a curve (catenary curve) similar to a parabola when the reversal position described later and the edge running in the cooling zone are observed from the side surface (described later). See FIG. 1). By performing the heat treatment while the film is suspended, the film is sufficiently relaxed (heat-shrinked), eliminating the “wrinkles” and “sagging” that are visually observed on the film surface before heating and improving the flatness. Residual strain can be reduced. In heating in this heating zone, relaxation heat shrinkage is performed so that the heat shrinkage rate after the heat treatment is 1.0% or less, preferably 0.5% or less of the original dimension of the film. The size (width, length, volume, etc.) of the heating zone depends on the type and width of the raw resin film to be heat-treated, and can be selected in the range of 20 cm to 5 m in width and 20 cm to 2.5 m in length. The volume of the heating zone may be a volume where heating means is installed and the film can run.

加熱ゾーンでの加熱手段は、(1)熱風を吹き込む方法、(2)赤外線ヒーターやセラミックヒーターによる方法、(3)熱風を吹き込みとヒーターを組合せる方法などが挙げられる。いずれの方法でも、幅方向の温度分布を均一にすることによって、熱収縮率の幅方向分布を小さくすることができる。熱風を吹き込む方法の場合は、加熱ゾーンの長さに依存するが、熱風ノズルを幅方向および長さ方向に複数均一に並べて配置し、フィルムの両面に上向きに吹き込むのが好ましい。なお、熱風ノズルの風速を調節できるように、各ノズルのごとにノズル内部に吹き込み量調節弁を設置するのが好ましい。熱風を吹き込む方法の場合はさらに、加熱ゾーンを走行させるフィルムのバタツキを最小限に抑える風速とするのが好ましい。ヒーターによる方法の場合には、小さいヒーターを幅方向および長さ方向に複数均一に並べては配置し、各ヒーターごとに温度制御するのが好ましい。ヒーターは遠赤外線放射ヒーターであって、熱容量の小さいものが好ましい。   Examples of the heating means in the heating zone include (1) a method of blowing hot air, (2) a method using an infrared heater or a ceramic heater, and (3) a method of combining hot air blowing with a heater. In any method, by making the temperature distribution in the width direction uniform, the width direction distribution of the heat shrinkage rate can be reduced. In the case of the method of blowing hot air, although depending on the length of the heating zone, it is preferable that a plurality of hot air nozzles are arranged uniformly in the width direction and the length direction and blown upward on both sides of the film. In addition, it is preferable to install a blow amount adjusting valve inside each nozzle so that the wind speed of the hot air nozzle can be adjusted. In the case of the method of blowing hot air, it is further preferable to set the wind speed to minimize the fluttering of the film traveling in the heating zone. In the case of a method using a heater, it is preferable that a plurality of small heaters are arranged uniformly in the width direction and the length direction and the temperature is controlled for each heater. The heater is a far infrared radiation heater and preferably has a small heat capacity.

加熱ゾーンの設定温度は、フィルムを構成する樹脂のTg℃(二次転移温度)との関係は、下限を(Tg+20)℃とし、上限を(Tg+150)℃とする温度範囲で選ぶのが好ましい。設定温度の下限が(Tg+20)℃以下では、フィルムを懸垂させた状態で十分に熱弛緩(熱収縮)させることができず、上限が(Tg+150)℃を超えると温度が高すぎ収縮が大きくなりすぎて、優れた平面性のフィルムが得られない。加熱ゾーンでのフィルムの滞留時間は、フィルムの種類、加熱ゾーンの長さ、加熱ゾーンの設定温度、加熱手段、フィルムの走行速度などに依存して変わり、1〜30秒の範囲で選ぶことができる。フィルムの走行速度は、フィルムの種類、加熱ゾーンの長さ、加熱ゾーンの設定温度、フィルムを走行させる機構などに依存して変わり、5〜30m/分の範囲で選ぶことができる。   The setting temperature of the heating zone is preferably selected in the temperature range in which the lower limit is (Tg + 20) ° C. and the upper limit is (Tg + 150) ° C. with respect to the Tg ° C. (secondary transition temperature) of the resin constituting the film. If the lower limit of the set temperature is (Tg + 20) ° C. or less, the film cannot be sufficiently heat relaxed (heat shrinkage) in a suspended state, and if the upper limit exceeds (Tg + 150) ° C., the temperature is too high and the shrinkage increases. Thus, an excellent flat film cannot be obtained. The residence time of the film in the heating zone varies depending on the type of film, the length of the heating zone, the set temperature of the heating zone, the heating means, the running speed of the film, etc., and can be selected in the range of 1 to 30 seconds. it can. The running speed of the film varies depending on the type of film, the length of the heating zone, the set temperature of the heating zone, the mechanism for running the film, and the like, and can be selected in the range of 5 to 30 m / min.

フィルムは、加熱ゾーン下端の位置で最高温度{(Tg+70)℃以下}に達する。フィルムが加熱ゾーン下端を通過した直後に、加熱されたフィルムに負荷される自重はこの位置で最小となる。しかし、加熱ゾーン下端を通過した直後に走行方向を反転させて冷却ゾーン内に導くので、最高温度に達した時点のフィルムに、懸垂したフィルム自体の重さ(自重)が負荷されるのは瞬間的で、長時間負荷されることがないので、熱弛緩処理効果が減じられることがない。加熱ゾーン内では、熱風は加熱ゾーンの下端から上方に流れながら加熱ゾーン上端部で加熱ゾーンから放出される。この際、熱風が一対のフィルム送り出しロールに直接吹きつけないように遮蔽板を設けるのが好ましい。   The film reaches the maximum temperature {(Tg + 70) ° C. or lower} at the lower end of the heating zone. Immediately after the film has passed the lower end of the heating zone, the dead weight loaded on the heated film is minimal at this position. However, since the direction of travel is reversed immediately after passing through the lower end of the heating zone and guided into the cooling zone, the weight of the suspended film itself (self-weight) is loaded on the film when the maximum temperature is reached. Since it is not loaded for a long time, the heat relaxation effect is not reduced. In the heating zone, hot air is discharged from the heating zone at the upper end of the heating zone while flowing upward from the lower end of the heating zone. At this time, it is preferable to provide a shielding plate so that hot air does not blow directly to the pair of film delivery rolls.

本発明において反転とは、懸垂させた状態で下方に走行させていたフィルムを、放物線に類似した曲線(カテナリー曲線)を形成させて(後記する図1参照)上方に転換させ、冷却ゾーン内に導くことをいう。フィルムを上方へ走行させる方向は、垂直真上ではなく、加熱ゾーン、反転位置および冷却ゾーンを走行する端部を側面から観察したときに、放物線に類似した曲線(カテナリー曲線)を形成する角度とするのが好ましい。冷却ゾーンでは、冷却ゾーンの上方外部に配置した一対の引き取りロールを配置して、フィルムを調節した速度で走行させつつ冷却し、加熱ゾーンで懸垂下で緊張させた状態を固定し、「しわ」や「たるみ」をなくして平面性が向上した低熱収縮率の製品とすることができる。   In the present invention, reversal means that a film that has been running downward in a suspended state is made to form a curve (catenary curve) similar to a parabola (see FIG. 1 to be described later) and is turned upward to enter the cooling zone. It refers to guiding. The direction in which the film travels upward is not directly above the vertical, but an angle that forms a curve (catenary curve) similar to a parabola when the heating zone, the reversal position, and the end running in the cooling zone are observed from the side. It is preferable to do this. In the cooling zone, a pair of take-up rolls arranged above and below the cooling zone are arranged, the film is cooled while running at a controlled speed, and the tensioned state suspended in the heating zone is fixed. And “sagging” can be eliminated, and a product with low heat shrinkage rate and improved flatness can be obtained.

冷却ゾーンでの冷却手段は、(1)フィルム面の両側に水冷板を配置して冷却する方法、(2)水冷板を配置する他に、フィルムの水冷板の間に冷風を吹き込む方法、などが挙げられる。水冷板は、十分な表面積を有するものとし、輻射伝熱によってフィルムを冷却する方法である。水冷板は、フィルムと対向する面する表面には遠赤外線放射塗装を施して吸熱効果を高め、裏面には複写吸熱板を冷却する水冷循環配管を備えたものが好ましい。循環する冷却水は、冷却板が結露しない最低水温に温度制御されて一定水温に保つのが好ましい。冷風は、複数個の冷風ノズルをフィルムの幅方向および長さ方向に均一に並べて配置し、上方向きに吹き込むのが好ましい。なお、冷風ノズルの風速を調節できるように、各ノズルのごとにノズル内部に吹き込み量調節弁を設置するのが好ましい。冷風は、室温の空気かそれ以下に露点温度を下げた乾燥空気が好ましい。冷風は、冷却ゾーンの上側から一対のフィルム引き取りロールに直接吹きつけないように、遮蔽板を設けるのが好ましい。   Examples of the cooling means in the cooling zone include (1) a method in which water-cooled plates are arranged on both sides of the film surface, and (2) a method in which cold air is blown between the water-cooled plates of the film in addition to arranging the water-cooled plates. It is done. The water-cooled plate has a sufficient surface area and is a method of cooling the film by radiant heat transfer. The water-cooled plate preferably has a far-infrared radiation coating on the surface facing the film to enhance the heat-absorbing effect, and has a water-cooled circulation pipe for cooling the copy heat-absorbing plate on the back surface. The circulating cooling water is preferably maintained at a constant water temperature by controlling the temperature to the lowest water temperature at which the cooling plate does not condense. The cold air is preferably arranged by arranging a plurality of cold air nozzles uniformly in the width direction and the length direction of the film and blowing upward. In addition, it is preferable to install a blowing amount adjusting valve inside each nozzle so that the wind speed of the cold air nozzle can be adjusted. The cold air is preferably air at room temperature or dry air having a dew point lowered to below that. It is preferable to provide a shielding plate so that the cold air is not blown directly onto the pair of film take-up rolls from above the cooling zone.

冷却ゾーンでガラス転移点(Tg)の近傍に冷却されたフィルムは、冷却ゾーンの上方外部に配置した一対のフィルム引き取りロールで上方に走行させつつ、連続的に引き取られ、ロール状に巻回される。この際、一対のフィルム引き取りロールの表面温度を、(Tg−10)℃以下となるように温度調節するのが好ましい。フィルムの走行速度は、加熱ゾーンの上方外部に配置した一対のフィルム送り出しロールと冷却ゾーンの上方外部に配置した一対のフィルム引き取りロールとの回転速度によって調節される。走行方向を反転させる部分に滞留するフィルムの長さは、一対のフィルム送り出しロールと一対のフィルム引き取りロールとによって調節できる。走行方向を反転させる部分に滞留するフィルムの下限点を、下限点検出センサーで検出し、冷却ゾーンの上方外部に配置した一対のフィルム引き取りロールに連動させてフィルム走行速度を調節すると、長時間の連続操作ができて好ましい。   The film cooled in the vicinity of the glass transition point (Tg) in the cooling zone is continuously taken up and wound into a roll while being run upward by a pair of film take-up rolls arranged outside the cooling zone. The At this time, it is preferable to adjust the surface temperature of the pair of film take-up rolls so as to be (Tg-10) ° C. or lower. The traveling speed of the film is adjusted by the rotational speed of a pair of film feed rolls arranged outside the heating zone and a pair of film take-up rolls arranged outside the cooling zone. The length of the film staying in the portion that reverses the traveling direction can be adjusted by a pair of film delivery rolls and a pair of film take-up rolls. If the lower limit point of the film staying in the part that reverses the traveling direction is detected by the lower limit point detection sensor and the film traveling speed is adjusted in conjunction with a pair of film take-up rolls arranged outside the cooling zone, The continuous operation is preferable.

以下、本発明を図面に基づいて説明する。図1は、本発明に係る熱処理方法を説明する一例の、側面略図である。図において、1は二軸延伸ポリエステルフィルム、2、3はフィルム送り出しロール、4は加熱ゾーン、5は最高温度に達する位置、6はフィルムの下限点、7はフィルム走行方向反転ゾーン、8は下限点の検出センサー、9、9a、9bは放射温度計で、9aは加熱ゾーン出口でフィルムの最高温度を測定し、9bは冷却ゾーン出口でのフィルム温度を測定する。10はカテナリー(懸垂)曲線、11は冷却ゾーン、12、13はフィルム引き取りロール、14はカテナリ曲線の中心軸である。   Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a schematic side view of an example illustrating a heat treatment method according to the present invention. In the figure, 1 is a biaxially stretched polyester film, 2, 3 is a film feed roll, 4 is a heating zone, 5 is a position where the maximum temperature is reached, 6 is a lower limit point of the film, 7 is a film traveling direction reversal zone, and 8 is a lower limit. The point detection sensors 9, 9a, 9b are radiation thermometers, 9a measures the maximum temperature of the film at the heating zone outlet, and 9b measures the film temperature at the cooling zone outlet. 10 is a catenary curve, 11 is a cooling zone, 12 and 13 are film take-up rolls, and 14 is a central axis of the catenary curve.

本発明に係る熱処理方法が適用できるフィルムは、長尺の二軸延伸ポリエステルフィルムである。短尺のフィルムは、実験室的規模で処理できるので、本発明に係る熱処理方法を適用するには不適当である。図示されていないロール状に巻回され長尺の二軸延伸ポリエステルフィルム(図示されていない)は、通常、一対のフィルム送り出しロール2、3によって、加熱ゾーン4内に導き、加熱ゾーン4内で懸垂させ下方に走行させる。加熱ゾーン4と冷却ゾーン11とは、図1に示したように、側面視においてカタカナのハの字を逆にしたように配置する。フィルムの走行速度は、加熱ゾーン4上方外部に配置した一対のフィルムの送り出しロール2、3と、冷却ゾーン11の上方外部に配置した一対のフィルム引き取りロール12、13を連動させることによって調節できる。   The film to which the heat treatment method according to the present invention can be applied is a long biaxially stretched polyester film. Since short films can be processed on a laboratory scale, they are not suitable for applying the heat treatment method according to the present invention. A long biaxially stretched polyester film (not shown) wound in a roll shape not shown is usually guided into the heating zone 4 by a pair of film feed rolls 2 and 3, Suspend and drive down. As shown in FIG. 1, the heating zone 4 and the cooling zone 11 are arranged such that the letter “K” of the katakana is reversed in a side view. The traveling speed of the film can be adjusted by interlocking the pair of film feed rolls 2 and 3 disposed above and outside the heating zone 4 with the pair of film take-up rolls 12 and 13 disposed above and outside the cooling zone 11.

本発明に係る熱処理方法によって具体的に処理する場合は、次の手順によることができる。フィルムの熱処理を行いながら、9aおよび9bでフィルムの表面温度を測定しつつ、フィルムの移送速度と加熱ゾーンの設定条件、冷却ゾーンの設定条件を調節する。この際、下限点の検出センサー8の信号でフィルムの下限点が一定の位置を保持するように、一対のフィルム送り出しロール2と3の回転速度、一対のフィルム引き取りロール12と13の回転速度を調節し、同時に放射温度計に9bによる測定値がガラス転移点(Tg)になるように制御し、定常操業に移行することができる。このような一連の制御方法を採用することにより、異なる収縮率を有する各種フィルムでも、常に一定の熱弛緩効果を与えることが可能である。   When the treatment is specifically performed by the heat treatment method according to the present invention, the following procedure can be used. While performing heat treatment of the film, the film surface temperature is measured at 9a and 9b, and the film transfer speed, the heating zone setting conditions, and the cooling zone setting conditions are adjusted. At this time, the rotation speed of the pair of film feed rolls 2 and 3 and the rotation speed of the pair of film take-up rolls 12 and 13 are set so that the lower limit point of the film is held at a certain position by the signal of the detection sensor 8 of the lower limit point. At the same time, the radiation thermometer can be controlled so that the measured value by 9b becomes the glass transition point (Tg), and the operation can be shifted to the steady operation. By adopting such a series of control methods, it is possible to always give a certain thermal relaxation effect even with various films having different shrinkage rates.

本発明に係る熱処理方法で使用される熱処理装置は、フィルム送り出しロール2、3とフィルム引き取りロール12、13とは、その中心軸を同一平面状にかつ相互に平行に、かつ、カテナリー曲線(放物線に類似した曲線)の中心軸を中心として対象の位置に配置するが、その高さは必ずしも同一にする必要はない。送り出しロール2と引き取りロール10は、同一素材、同一直径、同一長さとするのが好ましい。送り出しロール2の直径をxとするとき、送り出しロール2と引き取りロール12の向き合う面間の最小間隔を2xとし、送り出しロール2から下限点6までの最小距離を2x以上とするのが好ましい。送り出しロール2と引き取りロール12の向き合う面間の最小間隔、および、送り出しロール2から下限点6までの最小距離が2x未満であると、放物線に類似した曲線の間に、加熱ゾーン4、冷却ゾーン9を設けることができず、好ましくない。送り出しロール2から下限点6までの距離の上限は、装置側からの制限はなく、設備の設置場所の制約、好ましい処理速度などに応じて決めることができる。   In the heat treatment apparatus used in the heat treatment method according to the present invention, the film delivery rolls 2 and 3 and the film take-up rolls 12 and 13 have a central axis in the same plane and parallel to each other, and a catenary curve (parabolic curve). Is arranged at the target position around the central axis of the curve), but the heights are not necessarily the same. The delivery roll 2 and the take-up roll 10 are preferably made of the same material, the same diameter, and the same length. When the diameter of the delivery roll 2 is x, the minimum distance between the facing surfaces of the delivery roll 2 and the take-up roll 12 is preferably 2x, and the minimum distance from the delivery roll 2 to the lower limit point 6 is preferably 2x or more. When the minimum distance between the facing surfaces of the delivery roll 2 and the take-up roll 12 and the minimum distance from the delivery roll 2 to the lower limit point 6 are less than 2x, the heating zone 4 and the cooling zone are between curves similar to a parabola. 9 is not preferable. The upper limit of the distance from the delivery roll 2 to the lower limit point 6 is not limited from the apparatus side, and can be determined according to restrictions on the installation location of equipment, a preferable processing speed, and the like.

以下、本発明を実施例に基づいて説明するが、本発明はその要旨を超えない限り、以下の記載例に限定されるものではない。なお、ポリエステルの特性値、得られたフィルムの特性値は、以下の方法により測定した。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to the following description examples, unless the summary is exceeded. In addition, the characteristic value of polyester and the characteristic value of the obtained film were measured with the following method.

(1)ガラス転移温度(Tg):
試料10mgを、パーキンエルマー社製のDSC(示差走査熱量計)にセットし、試料を300℃の温度で5分間溶融させた後、液体窒素中で急冷し、この急冷した試料を10℃/分の速度で昇温し、ガラス転移温度(Tg)を測定した。
(1) Glass transition temperature (Tg):
10 mg of a sample was set in a DSC (differential scanning calorimeter) manufactured by PerkinElmer, and the sample was melted at a temperature of 300 ° C. for 5 minutes and then rapidly cooled in liquid nitrogen. The rapidly cooled sample was cooled at 10 ° C./min. The glass transition temperature (Tg) was measured.

(2)加熱ゾー内のフィルム温度(℃):
加熱ゾーンの箱型枠のヒーターの影響を受け難い位置に、約0.5mmの小穴を30cmピッチであけ、この小穴から走行中のフィルム温度を放射温度計で測定した。小穴は、温度を測定しないときは蓋して、加熱ゾーン内の温度が冷えないようにした。
(2) Film temperature (° C) in the heating zone:
A small hole of about 0.5 mm was formed at a 30 cm pitch at a position that is not easily affected by the heater of the box frame in the heating zone, and the film temperature during running from the small hole was measured with a radiation thermometer. The small holes were covered when the temperature was not measured so that the temperature in the heating zone did not cool.

(3)冷却ゾーン内のフィルム温度(℃):
冷各ゾーンの箱型枠の温風吹き付けノズルの影響を受け難い位置に、約0.5mmの小穴を30cmピッチであけ、この小穴から走行中のフィルム温度を放射温度計で測定した。小穴は、温度を測定しないときは蓋して、冷却ゾーン内の温度が冷えないようにした。
(3) Film temperature (° C) in the cooling zone:
A small hole of about 0.5 mm was formed at a 30 cm pitch at a position that is not easily affected by the hot air blowing nozzle of the box frame in each cold zone, and the film temperature during traveling was measured from this small hole with a radiation thermometer. The small holes were covered when the temperature was not measured so that the temperature in the cooling zone did not cool.

(4)150℃熱収縮率(%):
熱処理後のフィルムから、走行(長手)方向350mm、幅方向50mmの大きさの試料を切り出し、試料の長手方向の両端近傍300mm間隔に標点を付け、150℃の温度に調節されたオーブン内に端部を拘束しない(自由端として)30分間放置する。放置後に取り出して常温で放置して室温とし、標点間距離を測定した。この際の長さをLmmとし、次式、100×(300−L)/300、によって算出した。
(4) 150 ° C. heat shrinkage (%):
A sample having a size of 350 mm in the running (longitudinal) direction and 50 mm in the width direction is cut out from the heat-treated film, marked at 300 mm intervals in the vicinity of both ends in the longitudinal direction of the sample, and placed in an oven adjusted to a temperature of 150 ° C. Leave the end unconstrained (as a free end) for 30 minutes. After leaving, it was taken out and left at room temperature to reach room temperature, and the distance between the gauge points was measured. The length at this time was taken as Lmm, and the following formula, 100 × (300−L) / 300, was calculated.

(5)フィルムの破談強度(MPa):
JIS C2151に準拠して測定した。
(6)フィルムの平面性:
熱処理後のフィルムから、走行(長手)方向250cm、幅方向100cmの大きさの試料を切り出し、この試料を鏡面状平板上に広げて、波打ち、盛り上がりの状態を目視観察して評価した。
(5) Film breaking strength (MPa):
It measured based on JIS C2151.
(6) Film flatness:
A sample having a size of 250 cm in the running (longitudinal) direction and 100 cm in the width direction was cut out from the heat-treated film, this sample was spread on a mirror-like flat plate, and the state of undulation and swelling was visually observed and evaluated.

[実施例1]
<二軸延伸ポリエチレンテレフタレートフィルム>
市販されている高透明品タイプの二軸延伸ポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、テイジンテトロンフィルム、銘柄:HS)であって、厚さが188μm、走行(長手)方向(MD)の破断強度は190MPa、幅方向(TD)方向の破断強度は220MPaであり、150℃熱収縮率は、MD方向が0.9%、TD方向が0.3%のものである。
[Example 1]
<Biaxially stretched polyethylene terephthalate film>
A commercially available highly transparent biaxially stretched polyethylene terephthalate film (manufactured by Teijin DuPont Films Ltd., Teijin Tetron Film, Brand: HS), with a thickness of 188 μm and a break in the running (longitudinal) direction (MD) The strength is 190 MPa, the breaking strength in the width direction (TD) direction is 220 MPa, and the 150 ° C. heat shrinkage ratio is 0.9% in the MD direction and 0.3% in the TD direction.

<二軸延伸ポリエチレンテレフタレートフィルムの熱処理装置>
縦1000mm、横1600mmであって、発熱容量が600Wの遠赤外線放射ヒーター18個を、縦横に均等間隔で配置・装備したヒーターパネル1面と、縦1000mm、横1600mmであってヒーターに向き合う面側に遠赤外線放射塗料を塗布した遠赤外線反射板を1面準備した。ヒーターパネルと遠赤外線反射パネルを対向して設置し、これらの両パネルの間にフィルムを懸垂させる隙間を設けて図示されていないカバーに固定して加熱ゾーン4とした。加熱ゾーンの遠赤外線反射パネル側のヒーターの影響を受け難い位置に、約5mmの小穴を30cmピッチであけ、この小穴から走行中のフィルム温度を放射温度計で測定可能とした。加熱ゾーン4の上方外部には、一対のフィルム送り出しロール2(直径200mm、長さ1500mm)と3(直径100mm、長さ1500mm)を配置した。加熱ゾーン4の下方の出口部5には放射温度計9aを配置して、走行中のフィルムの最高表面温度を測定可能とし、フィルムの走行速度が変化してもフィルムの最高表面温度が常に一定になるようにヒーターの出力をコントロール可能とした。また、フィルム走行方向反転ゾーン7には、フィルムの下限点6を検出する下限点の検出センサー8を配置し、加熱ゾーンの上方外部に配置した一対のフィルム送り出しロール2と3に連動させてフィルム走行速度を調節可能とした。このようにすることにより、フィルムの収縮率が大きく変わっても常にフィルム走行方向反転ゾーン7の下限点6は一定の位置を保持することができる。
<Heat treatment equipment for biaxially stretched polyethylene terephthalate film>
1 heater panel with 1000 mm in length and 1600 mm in width, 18 far-infrared radiant heaters with a heating capacity of 600 W, arranged and equipped at equal intervals in the length and width, and the surface side that is 1000 mm in length and 1600 mm in width and faces the heater A far-infrared reflector having a far-infrared radiation coating applied thereto was prepared. A heater panel and a far-infrared reflective panel were installed facing each other, a gap for hanging the film was provided between the two panels, and fixed to a cover (not shown) to form a heating zone 4. Small holes of about 5 mm were drilled at a 30 cm pitch at positions that are not easily affected by the heater on the far-infrared reflective panel side of the heating zone, and the film temperature during traveling from these small holes could be measured with a radiation thermometer. A pair of film delivery rolls 2 (diameter 200 mm, length 1500 mm) and 3 (diameter 100 mm, length 1500 mm) were disposed above and outside the heating zone 4. A radiation thermometer 9a is arranged at the outlet 5 below the heating zone 4 so that the maximum surface temperature of the running film can be measured, and the maximum surface temperature of the film is always constant even if the running speed of the film changes. So that the output of the heater can be controlled. In the film traveling direction reversal zone 7, a lower limit detection sensor 8 for detecting the lower limit point 6 of the film is disposed, and the film is linked to a pair of film delivery rolls 2 and 3 disposed above and outside the heating zone. The running speed can be adjusted. By doing in this way, even if the shrinkage rate of the film changes greatly, the lower limit point 6 of the film running direction reversal zone 7 can always keep a constant position.

冷却ゾーン11は、その寸法が加熱ゾーンよりも大きい縦1200mm、横1600mmの水冷式の輻射伝熱吸熱板を二個準備し、水温25℃に保持された冷却水を循環させる構造とした。この輻射伝熱吸熱板2枚が対向する面には、遠赤外線放射塗料を塗布した。これら2枚の冷却板を対向させて設置し、その間にフィルムを走行させる隙間を設けて図示されていないカバーに固定し、冷却ゾーン11とした。冷却ゾーンの冷却輻射伝熱面の冷却に影響を受け難い位置に、約5mmの小穴を30cmピッチであけ、この小穴から走行中のフィルム温度を放射温度計で測定可能とした。加熱ゾーン4の下方のフィルムの走行方向を反転させる部分7で反転させたフィルムを、冷却ゾーン11の上方外部に配置した一対のフィルム引き取りロール12と13で上方に走行可能とした。冷却ゾーン11の出口部では、冷却後のフィルムの温度を放射温度計9bで測定し、その温度がフィルムのTgとなるように、フィルム引き取りロール12と13の速度を制御することとした。   The cooling zone 11 has a structure in which two water-cooled radiant heat transfer heat-absorbing plates, whose dimensions are larger than those of the heating zone, are 1200 mm long and 1600 mm wide, and the cooling water maintained at a water temperature of 25 ° C. is circulated. A far-infrared radiation paint was applied to the surface of the two radiant heat transfer heat absorbing plates facing each other. These two cooling plates were installed facing each other, and a gap for running the film was provided between them and fixed to a cover (not shown) to form a cooling zone 11. Small holes of about 5 mm were drilled at a 30 cm pitch at positions that were not easily affected by cooling of the cooling radiation heat transfer surface in the cooling zone, and the film temperature during traveling could be measured with a radiation thermometer from these small holes. The film reversed at the portion 7 for reversing the traveling direction of the film below the heating zone 4 was allowed to travel upward by a pair of film take-up rolls 12 and 13 disposed outside the cooling zone 11. At the exit of the cooling zone 11, the temperature of the film after cooling was measured with a radiation thermometer 9b, and the speeds of the film take-up rolls 12 and 13 were controlled so that the temperature would be the Tg of the film.

<二軸延伸ポリエステルフィルムの熱処理方法>
ロール状にされた幅1500mmの二軸延伸ポリエステルフィルムを、図1の一対のフィルム送り出しロール2、3から、加熱ゾーン4の中央隙間に懸垂させ下方に送り出した。加熱ゾーンにおいては、赤外線ヒーターで上方では120℃、下方では150℃に設定し、フィルムの走行速度を20m/分としたところ、加熱ゾーン4の先端部分で最高温度150℃であった。
<Heat treatment method of biaxially stretched polyester film>
A roll-shaped biaxially stretched polyester film having a width of 1500 mm was suspended from the pair of film delivery rolls 2 and 3 in FIG. In the heating zone, the temperature was set to 120 ° C. on the upper side with an infrared heater and 150 ° C. on the lower side, and the film running speed was set to 20 m / min.

フィルム送り出しロールとフィルム引き取りロールの最短の面間距離を320mmとし、フィルム送り出しロールの高さからフィルムの下限点6までの長さを1300mmとし、ここでフィルム走行方向を反転させ、フィルムを一対のフィルム引き取りロール12と13に導き、走行速度を5m/分として引き取った。この冷却ゾーン11における冷却水の設定温度は25℃とした。引き取りロール12と13に達した際のフィルム温度は、70℃であり、この後フィルムは引き取りロールで冷却された後に図示されていない複数のロールの間を走行させてロール状に巻回した。   The shortest distance between the film delivery roll and the film take-up roll is 320 mm, and the length from the height of the film delivery roll to the lower limit point 6 of the film is 1300 mm. The film was drawn to film take-up rolls 12 and 13 and taken at a running speed of 5 m / min. The set temperature of the cooling water in the cooling zone 11 was 25 ° C. The film temperature when reaching the take-up rolls 12 and 13 was 70 ° C. After that, the film was cooled by the take-up roll and then ran between a plurality of rolls (not shown) and wound into a roll.

<熱処理後のフィルムの特性>
得られた熱処理フィルムについて、前記した評価方法に記載した方法で測定した150℃熱収縮率は、縦方向が0.06%、横方向が0.04%であり、目視観察した平面性は極めて良好であった。
<Characteristics of film after heat treatment>
About the obtained heat-treated film, the 150 ° C. thermal shrinkage measured by the method described in the evaluation method described above is 0.06% in the vertical direction and 0.04% in the horizontal direction, and the flatness visually observed is extremely high. It was good.

[実施例2]
<二軸延伸ポリエチレンテレフタレートフィルム>
市販されている高透明品タイプの二軸延伸ポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、商品名:テイジンテトロンフィルム、銘柄:HSL)であって、厚さが188μm、走行(長手)方向(MD)の破断強度は190MPa、幅方向(TD)方向の破断強度は200MPaであり、150℃熱収縮率は、MD方向が0.4%、TD方向が−0.1%のものである。
[Example 2]
<Biaxially stretched polyethylene terephthalate film>
A commercially available highly transparent biaxially stretched polyethylene terephthalate film (manufactured by Teijin DuPont Films Ltd., trade name: Teijin Tetron Film, brand: HSL) with a thickness of 188 μm and a running (longitudinal) direction (MD ) Has a breaking strength of 190 MPa, a breaking strength in the width direction (TD) direction of 200 MPa, and a 150 ° C. heat shrinkage ratio is 0.4% in the MD direction and −0.1% in the TD direction.

<二軸延伸ポリエステルフィルムの熱処理方法、熱処理後のフィルムの特性>
上記フィルムにつき、実施例1において使用したのと同じ熱処理装置を使用し、同例におけると同様の条件で熱処理を行った。得られた熱処理フィルムについて、前記した評価方法に記載した方法で測定した150℃熱収縮率は、縦方向が0.04%、横方向が0.03%であり、目視観察した平面性は極めて良好であった。
<The heat processing method of a biaxially stretched polyester film, the characteristic of the film after heat processing>
About the said film, the same heat processing apparatus as used in Example 1 was used, and it heat-processed on the conditions similar to the same example. About the obtained heat-treated film, the 150 ° C. heat shrinkage ratio measured by the method described in the above evaluation method is 0.04% in the vertical direction and 0.03% in the horizontal direction, and the flatness visually observed is extremely high. It was good.

[実施例3]
<二軸延伸ポリエチレンテレフタレートフィルム>
市販されている二軸延伸ポリエチレンテレフタレートフィルム(東洋紡績株式会社、商品名:コスモシャイン、銘柄名:A4100)であって、厚さが188μmであって、MD方向の引張強さが179MPa、TD方向の引張強さが197MPa、150℃熱収縮率は、MD方向が0.90%、TD方向が0.70%のものである。
[Example 3]
<Biaxially stretched polyethylene terephthalate film>
A commercially available biaxially stretched polyethylene terephthalate film (Toyobo Co., Ltd., trade name: Cosmo Shine, brand name: A4100) having a thickness of 188 μm, a tensile strength in the MD direction of 179 MPa, and a TD direction The tensile strength is 197 MPa, and the thermal shrinkage at 150 ° C. is 0.90% in the MD direction and 0.70% in the TD direction.

<二軸延伸ポリエステルフィルムの熱処理方法、熱処理後のフィルムの特性>
上記フィルムにつき、実施例1において使用したのと同じ熱処理装置を使用し、同例におけると同様の条件で熱処理を行った。得られた熱処理フィルムについて、前記した評価方法に記載した方法で測定した150℃熱収縮率は、縦方向が0.07%、横方向が0.06%であり、目視観察した平面性は極めて良好であった。
<The heat processing method of a biaxially stretched polyester film, the characteristic of the film after heat processing>
About the said film, the same heat processing apparatus as used in Example 1 was used, and it heat-processed on the conditions similar to the same example. About the obtained heat-treated film, the 150 ° C. heat shrinkage ratio measured by the method described in the above evaluation method is 0.07% in the vertical direction and 0.06% in the horizontal direction, and the flatness visually observed is extremely high. It was good.

本発明に係る方法で熱処理された二軸延伸ポリエステルフィルムは、平面性が良好で、熱寸法安定性に優れているので、メンブレンスイッチ、タッチパネルスイッチ、FPC、熱現像方式の写真感光材料の用途に好適である。   Since the biaxially stretched polyester film heat-treated by the method according to the present invention has good flatness and excellent thermal dimensional stability, it is suitable for use in membrane switches, touch panel switches, FPCs, and heat-developable photographic photosensitive materials. Is preferred.

1:二軸延伸ポリエステルフィルム
2、3:フィルム送り出しロール
4:加熱ゾーン
5:最高温度に達する位置
6:フィルムの下限点
7:フィルム走行方向反転ゾーン
8:下限点の検出センサー
9:放射温度計
9a:フィルムの最高温度測定用放射温度計
9b:フィルムの冷却温度測定用放射温度計
10:カテナリー曲線
11:冷却ゾーン
12、13:フィルム引き取りロール
14:カテナリー曲線の中心軸
1: Biaxially stretched polyester film 2, 3: Film feed roll 4: Heating zone 5: Maximum temperature position 6: Film lower limit point 7: Film running direction reversal zone 8: Lower limit detection sensor 9: Radiation thermometer 9a: Radiation thermometer for maximum film temperature measurement 9b: Radiation thermometer for film cooling temperature measurement 10: Catenary curve 11: Cooling zone 12, 13: Film take-up roll 14: Central axis of catenary curve

Claims (5)

二軸延伸ポリエステルフィルムを熱処理する方法において、長尺の二軸延伸ポリエステルフィルムを一対のフィルム送り出しロールで加熱ゾーン内に導き、加熱ゾーン内で懸垂させ下方に走行させる過程で加熱し、加熱ゾーン外の下方で二軸延伸ポリエステルフィルムの走行方向を反転させて冷却ゾーン内に導き、冷却ゾーンの上方外部に配置した一対のフィルム引き取りロールで上方に走行させる過程で冷却することを特徴とする、二軸延伸ポリエステルフィルムの熱処理方法。   In the method of heat-treating a biaxially stretched polyester film, a long biaxially stretched polyester film is introduced into a heating zone with a pair of film feed rolls, heated in the process of being suspended in the heating zone and traveling downward, outside the heating zone The direction of the biaxially stretched polyester film is reversed in the lower direction of the film, guided into the cooling zone, and cooled in the process of traveling upward with a pair of film take-up rolls arranged outside the cooling zone. A heat treatment method for an axially stretched polyester film. フィルムが加熱ゾーン下端を通過した直後であって、最高温度に加熱されたフィルムに負荷される自重が最小となる位置で、走行方向を反転させる、請求項1に記載の二軸延伸ポリエステルフィルムの熱処理方法。   The biaxially stretched polyester film according to claim 1, wherein the running direction is reversed immediately after the film has passed the lower end of the heating zone and at a position where the dead weight applied to the film heated to the maximum temperature is minimized. Heat treatment method. 二軸延伸ポリエステルフィルムを、フィルムが走行する端部を側面から観察したときに、カテナリー曲線を形成するように走行させる、請求項1または請求項2に記載の二軸延伸ポリエステルフィルムの熱処理方法。   The heat processing method of the biaxially stretched polyester film according to claim 1 or 2, wherein the biaxially stretched polyester film is caused to travel so as to form a catenary curve when an end portion where the film travels is observed from a side surface. フィルム送り出しロールとフィルム引き取りロールとは、その中心軸を相互に平行に、かつ、カテナリー曲線の中心軸を中心として対象に配置されてなる、請求項3に記載の二軸延伸ポリエステルフィルムの熱処理方法。   The method for heat-treating a biaxially stretched polyester film according to claim 3, wherein the film feeding roll and the film take-up roll are arranged so that the central axes thereof are parallel to each other and the central axis of the catenary curve is the center. . 二軸延伸ポリエステルフィルムの走行方向を反転させる下限点を、下限点の検出センサーで検出し、上方外部に配置した一対の引き取りロールに連動させてフィルム走行速度を調節する、請求項1ないし請求項4のいずれか一項に記載の二軸延伸ポリエステルフィルムの熱処理方法。   The lower limit point for reversing the traveling direction of the biaxially stretched polyester film is detected by a detection sensor for the lower limit point, and the film traveling speed is adjusted in conjunction with a pair of take-up rolls arranged on the upper outside. 5. A heat treatment method for a biaxially stretched polyester film according to claim 4.
JP2009126040A 2009-05-26 2009-05-26 Heat treatment method for biaxially stretched polyester film Expired - Fee Related JP5249854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009126040A JP5249854B2 (en) 2009-05-26 2009-05-26 Heat treatment method for biaxially stretched polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009126040A JP5249854B2 (en) 2009-05-26 2009-05-26 Heat treatment method for biaxially stretched polyester film

Publications (2)

Publication Number Publication Date
JP2010274430A true JP2010274430A (en) 2010-12-09
JP5249854B2 JP5249854B2 (en) 2013-07-31

Family

ID=43421853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009126040A Expired - Fee Related JP5249854B2 (en) 2009-05-26 2009-05-26 Heat treatment method for biaxially stretched polyester film

Country Status (1)

Country Link
JP (1) JP5249854B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080721A1 (en) * 2011-12-01 2013-06-06 株式会社康井精機 Annealing method and annealing device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146301A (en) * 1984-12-19 1986-07-04 Daicel Chem Ind Ltd Membrane and its preparation
JPH01275031A (en) * 1988-04-27 1989-11-02 Teijin Ltd Method of heat treating biaxially oriented polyester film
JPH06114848A (en) * 1992-10-05 1994-04-26 Arumetsukusu:Kk Device for continuously drying film material
JP2001322166A (en) * 2000-05-15 2001-11-20 Teijin Ltd Method for heat-treating biaxially stretched polyester film
JP2002001810A (en) * 2000-06-21 2002-01-08 Teijin Ltd Method for relaxation heat treating biaxially oriented polyester film
JP2002018947A (en) * 2000-07-11 2002-01-22 Teijin Ltd Biaxially oriented polyester film and method for manufacturing the same
JP2002018945A (en) * 2000-07-11 2002-01-22 Teijin Ltd Method for manufacturing biaxially oriented polyester film
JP2002018946A (en) * 2000-07-11 2002-01-22 Teijin Ltd Easily adhesive biaxially oriented polyester film and method for manufacturing the same
JP2002144421A (en) * 2000-11-13 2002-05-21 Teijin Ltd Method for heat treating biaxially stretched polyester film
JP2003523850A (en) * 2000-02-25 2003-08-12 ソリユテイア・ヨーロツプ・ソシエテ・アノニム Method and apparatus for relieving stress in intermediate sheet
JP2004311750A (en) * 2003-04-08 2004-11-04 Teijin Dupont Films Japan Ltd Base film for working semiconductor wafer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146301A (en) * 1984-12-19 1986-07-04 Daicel Chem Ind Ltd Membrane and its preparation
JPH01275031A (en) * 1988-04-27 1989-11-02 Teijin Ltd Method of heat treating biaxially oriented polyester film
JPH06114848A (en) * 1992-10-05 1994-04-26 Arumetsukusu:Kk Device for continuously drying film material
JP2003523850A (en) * 2000-02-25 2003-08-12 ソリユテイア・ヨーロツプ・ソシエテ・アノニム Method and apparatus for relieving stress in intermediate sheet
JP2001322166A (en) * 2000-05-15 2001-11-20 Teijin Ltd Method for heat-treating biaxially stretched polyester film
JP2002001810A (en) * 2000-06-21 2002-01-08 Teijin Ltd Method for relaxation heat treating biaxially oriented polyester film
JP2002018947A (en) * 2000-07-11 2002-01-22 Teijin Ltd Biaxially oriented polyester film and method for manufacturing the same
JP2002018945A (en) * 2000-07-11 2002-01-22 Teijin Ltd Method for manufacturing biaxially oriented polyester film
JP2002018946A (en) * 2000-07-11 2002-01-22 Teijin Ltd Easily adhesive biaxially oriented polyester film and method for manufacturing the same
JP2002144421A (en) * 2000-11-13 2002-05-21 Teijin Ltd Method for heat treating biaxially stretched polyester film
JP2004311750A (en) * 2003-04-08 2004-11-04 Teijin Dupont Films Japan Ltd Base film for working semiconductor wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080721A1 (en) * 2011-12-01 2013-06-06 株式会社康井精機 Annealing method and annealing device
JP2013111970A (en) * 2011-12-01 2013-06-10 Yasui Seiki:Kk Annealing method and annealing apparatus

Also Published As

Publication number Publication date
JP5249854B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
CN107428965B (en) Heat-shrinkable polyester film and package
EP0748273B1 (en) Method of making biaxially oriented thermoplastic films
JP5662317B2 (en) Polyester film and method for producing the same
TW201400271A (en) Heat shrinkable polyester-based film and packaging article
TWI793292B (en) heat shrinkable polyester film
US6368532B1 (en) Method of producing biaxially stretched polyester film
JP5249854B2 (en) Heat treatment method for biaxially stretched polyester film
JP5257022B2 (en) Polyethylene terephthalate resin film and method for producing the same
US3124834A (en) Apparatus for stretching thermoplastic
JP2008290388A (en) Method of manufacturing biaxially stretched thermoplastic resin film, and base film for optical film
JP5119469B2 (en) Polyethylene terephthalate resin film for releasing polarizing plate and method for producing the same
TWI668118B (en) Polyester film and vapor-deposited polyester film
JP3676156B2 (en) Heat treatment method for biaxially stretched polyester film
JP2002144421A (en) Method for heat treating biaxially stretched polyester film
JP2010099946A (en) Method for manufacturing thermoplastic resin film
JP4914240B2 (en) Heat treatment method for odd-shaped long shaped body
TWI744345B (en) Polyester film, laminate and packaging bag
JP2001322166A (en) Method for heat-treating biaxially stretched polyester film
JP2009131979A (en) Biaxially oriented polyethylene terephthalate film and manufacturing method therefor
JP5391569B2 (en) Biaxially stretched polyethylene terephthalate resin film
JP2003251693A (en) Method for relaxation heat treatment of biaxially oriented polyester film
JP2001158053A (en) Method for heat-treating biaxially stretched polyester film
JP5143445B2 (en) Heat treatment method for odd-shaped long shaped body
JP2008254414A (en) Polyethylene terephthalate resin film roll and method for manufacturing the same
JP2009143041A (en) Biaxially-stretched polyethylene naphthalate resin film, and process for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees