JP2001322166A - Method for heat-treating biaxially stretched polyester film - Google Patents

Method for heat-treating biaxially stretched polyester film

Info

Publication number
JP2001322166A
JP2001322166A JP2000141324A JP2000141324A JP2001322166A JP 2001322166 A JP2001322166 A JP 2001322166A JP 2000141324 A JP2000141324 A JP 2000141324A JP 2000141324 A JP2000141324 A JP 2000141324A JP 2001322166 A JP2001322166 A JP 2001322166A
Authority
JP
Japan
Prior art keywords
film
biaxially stretched
stretched polyester
temperature
polyester film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000141324A
Other languages
Japanese (ja)
Inventor
Shinji Numazawa
伸二 沼澤
Akira Goto
陽 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2000141324A priority Critical patent/JP2001322166A/en
Publication of JP2001322166A publication Critical patent/JP2001322166A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for heat-treating a biaxially stretched polyester film wherein a biaxially stretched polyester film having good flatness and improved thermal dimensional stability can be efficiently obtained. SOLUTION: In the method for heat-treating a biaxially stretched polyester film, during the time while the biaxially stretched polyester film, in the suspended form, is moved from a preheating roll towards a cooling roll, a maximum temperature Tmax defined by the following expression (1) is reached, while the film is subjected to a relaxed heat treatment by excessively feeding the film under conditions that the following expression (2) is satisfied, Tg+50<=Tma<=Tg+150 (1), 3/L<=N<=30/L (2), wherein in the expression (1), Tmax is film maximum temperature ( deg.C) and Tg is secondary transition point temperature ( deg.C), in the expression (2), N denotes the number of vertical wrinkles (1/m)/ unit width of the film, and L denotes the free length of the film (m).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二軸延伸ポリエステ
ルフィルムの熱処理方法に関し、更に詳しくは二軸延伸
されたポリエステルフィルムの弛緩熱処理による熱処方
法に関する。
The present invention relates to a heat treatment method for a biaxially stretched polyester film, and more particularly to a heat treatment method for a biaxially stretched polyester film by relaxation heat treatment.

【0002】[0002]

【従来の技術】二軸延伸ポリエステルフィルムは耐熱
性、機械特性、耐薬品性等にバランスの良い性能を示
し、種々の用途で使用されている。特に二次加工の行程
やユーザの使用段階で加熱を受ける用途、例えば、メン
ブレンスイッチ、FPC、熱現像方式の写真感光材料用
途などでは、低熱収縮のフィルムが要望されている。
2. Description of the Related Art Biaxially stretched polyester films exhibit well-balanced performance in heat resistance, mechanical properties, chemical resistance and the like, and are used in various applications. In particular, in applications that are heated during the secondary processing step or in the stage of use by the user, such as membrane switches, FPCs, and heat-developable photographic photosensitive materials, low heat shrink films are demanded.

【0003】これらの要請に対して、二軸延伸ポリエス
テルフィルムの製造工程中で熱固定温度を高く設定する
ことで結晶化度を上げたり、縦および横方向に弛緩熱処
理を施すことが行われている。しかし、オンラインの処
理だけでは充分に低熱収縮化することができないため、
二軸延伸ポリエステルフィルムを製造後さらにオフライ
ンで弛緩熱処理することが行われてきた。
[0003] In response to these demands, during the manufacturing process of a biaxially stretched polyester film, a high heat setting temperature is set to increase the degree of crystallinity, or a relaxation heat treatment in the longitudinal and transverse directions is performed. I have. However, the on-line processing alone cannot sufficiently reduce the heat shrinkage,
After the production of the biaxially stretched polyester film, further relaxation heat treatment has been carried out offline.

【0004】弛緩熱処理には種々の方法があり、例えば
懸垂状態で連続的に走行させたフィルムを特定の温度条
件下で弛緩することで熱収縮率を0.1%以下にする方
法が提案されている(特開平1−275031号公
報)。しかしこの方法でフィルムの熱収縮率を0.1%
以下にするにはフィルムが弛んでしまう寸前まで張力を
低く設定しなければならず、このような張力を安定して
測定することが難しく、再現性にも問題がある。フィル
ムの張力を測る方法としては、ダンサーロールやロード
セルによってフィルムの反力を測定する方法が良く採ら
れるが、ロールがフリーでなくては正確な張力が測れな
いため、ロールとの滑りによる傷がフィルムに入ること
が懸念される。そのため張力検出装置の設置をせず、製
品を採る前に熱収縮率を測定し弛緩率を調整する方法が
採られるが、この方法では生産性を高くできない問題が
ある。
There are various methods for relaxation heat treatment. For example, a method has been proposed in which a film continuously run in a suspended state is relaxed under a specific temperature condition to reduce the heat shrinkage to 0.1% or less. (Japanese Patent Laid-Open No. 1-275031). However, this method reduces the heat shrinkage of the film by 0.1%.
In order to achieve the following, it is necessary to set the tension low just before the film is loosened, and it is difficult to measure such tension stably, and there is a problem in reproducibility. As a method of measuring the tension of the film, a method of measuring the reaction force of the film with a dancer roll or a load cell is often used, but since the accurate tension cannot be measured unless the roll is free, scratches caused by slipping with the roll may be caused. Concerns about entering the film. Therefore, a method of measuring a heat shrinkage rate and adjusting a relaxation rate before taking a product without installing a tension detecting device is adopted. However, this method has a problem that productivity cannot be increased.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は上記の
問題を解消し、平面性が良好で、熱寸法安定性に優れた
二軸延伸ポリエステルフィルムを効率よく得るための弛
緩熱処理方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a relaxation heat treatment method for efficiently obtaining a biaxially oriented polyester film having good flatness and excellent thermal dimensional stability. It is to be.

【0006】[0006]

【課題を解決するための手段】上記の課題は、二軸延伸
ポリエステルフィルムを懸垂した状態で予熱ロールから
冷却ロールに向かって走行させる間に式(1)で示され
る最高温度Tmaxに到達させ、かつ式(2)を満足す
る条件で過供給することにより該フィルムを弛緩熱処理
することを特徴とする二軸延伸ポリエステルフィルムの
熱処理方法により達成される。
The object of the present invention is to allow a biaxially stretched polyester film to reach a maximum temperature Tmax represented by the formula (1) while running from a preheating roll toward a cooling roll in a suspended state, In addition, this is achieved by a heat treatment method for a biaxially stretched polyester film, wherein the film is subjected to a relaxation heat treatment by over-feeding under conditions satisfying the formula (2).

【0007】[0007]

【数2】 Tg+50≦Tmax≦Tg+150・・・(1) (式(1)で、Tmaxはフィルム最高温度(℃)、T
gはポリエステルの二次転移温度(℃)を表わす。) 3/L≦N≦30/L・・・(2) (式(2)で、Nはフィルム単位幅当たりの縦しわの本
数(1/m)、Lはフィルム自由長(m)を表わす。)
Tg + 50 ≦ Tmax ≦ Tg + 150 (1) (In the formula (1), Tmax is the maximum film temperature (° C.), T
g represents the second order transition temperature (° C.) of the polyester. 3 / L ≦ N ≦ 30 / L (2) (in the formula (2), N represents the number of vertical wrinkles per unit width of the film (1 / m), and L represents the free length (m) of the film). .)

【0008】[0008]

【発明の実施の形態】以下、図面を参照しながら本発明
をさらに説明する。図1は本発明の1つの実施形態を表
す弛緩熱処理装置の1例である。図1で、1は二軸延伸
ポリエステルフィルム、2はフィルムの縦しわ、3は予
熱ロール、4は冷却ロール、5は熱処理オーブンであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be further described below with reference to the drawings. FIG. 1 is an example of a relaxation heat treatment apparatus representing one embodiment of the present invention. In FIG. 1, 1 is a biaxially stretched polyester film, 2 is a vertical wrinkle of the film, 3 is a preheating roll, 4 is a cooling roll, and 5 is a heat treatment oven.

【0009】図2は懸垂状態のフィルムの断面図であ
る。図2で、21は二軸延伸ポリエステルフィルム、2
2はフィルムの縦しわである。
FIG. 2 is a sectional view of the film in a suspended state. In FIG. 2, 21 is a biaxially stretched polyester film, 2
2 is a vertical wrinkle of the film.

【0010】本発明で言う懸垂した状態でフィルムを走
行させるというのは、図1に示したように予熱ロールか
ら冷却ロールに向かって、重力方向に走行させることで
ある。重力方向に走行させることで、フィルム自重の処
理張力への影響を小さくすることができる。また懸垂状
態の走行は、重力と走行方向が同一のため低張力下でも
安定してフィルムを搬送することが可能である。
Running the film in the suspended state as referred to in the present invention means running the film in the direction of gravity from the preheating roll to the cooling roll as shown in FIG. By running in the direction of gravity, the influence of the film's own weight on the processing tension can be reduced. In the suspended state, since the gravity and the traveling direction are the same, the film can be stably transported even under a low tension.

【0011】弛緩熱処理時のフィルムの最高温度(Tm
ax)は、通常120℃以上220℃以下、好ましくは
135℃以上200℃以下であり、150℃以上180
℃以下がさらに好ましい。この温度範囲以下では低熱収
縮率化が困難となり、これより高い温度では平面性を乱
しやすく、ともに発明の目的が達成できない。
The maximum temperature (Tm) of the film during the relaxation heat treatment
ax) is usually from 120 ° C to 220 ° C, preferably from 135 ° C to 200 ° C, and from 150 ° C to 180 ° C.
C. or lower is more preferable. Below this temperature range, it is difficult to reduce the heat shrinkage. At higher temperatures, the flatness tends to be disturbed, and the objects of the invention cannot be achieved.

【0012】このような温度制御は熱処理オーブン内に
熱風を吹き込んでもよく、赤外線ヒーターのような輻射
熱によって加熱してもよい。いずれの方法でも幅方向の
温度分布を良くすることが熱収縮の幅方向分布を小さく
するために好ましい。このために熱風ノズルの風速を幅
方向に調整できるようにノズル内部に弁を設置する等の
工夫をしておくことが好ましい。輻射加熱においては幅
方向に複数のヒーターを並べて個別に制御することが好
ましい。熱風を使用する場合はフィルムのバタツキを最
小限に抑えるため、風速は10m/s以下にするのがよ
い。
For such temperature control, hot air may be blown into the heat treatment oven, or heating may be performed by radiant heat such as an infrared heater. In either method, it is preferable to improve the temperature distribution in the width direction in order to reduce the width distribution of the heat shrinkage. For this purpose, it is preferable to devise a method such as installing a valve inside the nozzle so that the wind speed of the hot air nozzle can be adjusted in the width direction. In radiant heating, it is preferable to arrange a plurality of heaters in the width direction and control them individually. When using hot air, the wind speed is preferably 10 m / s or less in order to minimize flapping of the film.

【0013】フィルムに波シワが入った状態で急激に冷
却されるとシワが固定されフィルムの平面性を乱す。こ
の急冷を防ぐために熱処理オーブン後の冷却ロールと冷
却ロールに触れる直前のフィルムの温度差をある範囲内
に収めることが有効である。冷却ロールの表面と冷却ロ
ールに触れる直前のフィルムの温度差を20℃以内にす
ればシワは固定されず良好な平面性のフィルムが得られ
る。この温度差は10℃以内にするのがさらに好まし
い。冷却ロールの幅方向の温度分布を均一化するため
に、ロール内にスパイラル状の水路を設けることは有効
である。
When the film is rapidly cooled while having wrinkles, the wrinkles are fixed and the flatness of the film is disturbed. In order to prevent this rapid cooling, it is effective to keep the temperature difference between the cooling roll after the heat treatment oven and the film just before touching the cooling roll within a certain range. If the temperature difference between the surface of the cooling roll and the film immediately before touching the cooling roll is within 20 ° C., wrinkles are not fixed and a good flat film can be obtained. More preferably, this temperature difference is within 10 ° C. In order to make the temperature distribution in the width direction of the cooling roll uniform, it is effective to provide a spiral water passage in the roll.

【0014】低熱収縮率のフィルムを得る条件は温度だ
けでなく、フィルム張力が適正な範囲内であることであ
る。この範囲を下回るとロール搬送系でフィルムが蛇行
し安定に処理ができず、この範囲を上回ると低熱収縮率
のフィルムを得ることができない。単位断面積当たりの
張力(応力)は通常、0.04〜0.60MPaであれ
ばよく、好ましくは0.08〜0.40MPa、さらに
好ましくは0.10〜0.20MPaである。
The conditions for obtaining a film having a low heat shrinkage ratio are that not only the temperature but also the film tension be within an appropriate range. Below this range, the film will meander in the roll transport system and cannot be processed stably, and above this range, a film with a low heat shrinkage cannot be obtained. The tension (stress) per unit sectional area may be usually 0.04 to 0.60 MPa, preferably 0.08 to 0.40 MPa, and more preferably 0.10 to 0.20 MPa.

【0015】フィルムの縦応力とフィルムの縦しわの本
数にはある一定の関係が有り、縦応力が高いほど縦しわ
の本数が増加する。また、予熱ロールから冷却ロール間
のフィルム自由長(L)が長いほど縦しわの本数は減
る。各種のフィルムについて実験を行った結果、式2に
示す範囲に縦しわ本数を管理すれば、メンブレンスイッ
チや光感光材料用途のフィルムに対しても使用可能な低
熱収縮率のフィルムを得られることがわかった。フィル
ム単位幅当たりの縦しわの本数は、下記式(3)の範囲
であることが更に好ましい。
There is a certain relationship between the longitudinal stress of the film and the number of longitudinal wrinkles of the film. The higher the longitudinal stress, the greater the number of longitudinal wrinkles. Also, the number of vertical wrinkles decreases as the free film length (L) between the preheating roll and the cooling roll increases. As a result of conducting experiments on various films, if the number of vertical wrinkles is controlled within the range shown in Equation 2, it is possible to obtain a film having a low heat shrinkage that can be used for films for membrane switches and photosensitive materials. all right. The number of vertical wrinkles per unit width of the film is more preferably in the range of the following formula (3).

【0016】[0016]

【数3】5/L≦N≦10/L・・・(3) (式(3)で、Nはフィルム単位幅当たりの縦しわの本
数(1/m)、Lはフィルム自由長(m)を表わす。)
5 / L ≦ N ≦ 10 / L (3) (where, N is the number of vertical wrinkles per unit width of the film (1 / m), and L is the free length of the film (m). ).)

【0017】二軸延伸ポリエステルフィルムを熱処理す
る際には温度、張力とともに、熱処理の時間も熱収縮に
影響を及ぼす。熱処理時間は、熱処理時のフィルム最高
温度Tmax−20℃〜Tmaxの範囲に1〜60秒間
保持することが好ましく、2〜30秒間が更に好まし
く、4〜10秒間が特に好ましい。
When heat-treating the biaxially oriented polyester film, the heat treatment time affects the heat shrinkage as well as the temperature and tension. The heat treatment time is preferably maintained at a film maximum temperature Tmax of -20 ° C to Tmax during the heat treatment for 1 to 60 seconds, more preferably 2 to 30 seconds, and particularly preferably 4 to 10 seconds.

【0018】本発明におけるポリエステルとは、芳香族
二塩基酸またはそのエステル形成性誘導体とジオールま
たはそのエステル形成性誘導体とから合成される線状飽
和ポリエステルである。ポリエステルの具体例として、
ポリエチレンテレフタレート、ポリエチレンイソフタレ
ート、ポリブチレンテレフタレート、ポリ(1,4―シ
クロヘキシレンジメチレンテレフタレート)、ポリエチ
レン―2,6―ナフタレンジカルボキシレート等が例示
でき、これらの共重合またはこれらと小割合の他樹脂と
のブレンド物等も含まれる。
The polyester in the present invention is a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof. As a specific example of polyester,
Examples thereof include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylene dimethylene terephthalate), polyethylene 2,6-naphthalenedicarboxylate, and the like. Blends with resins are also included.

【0019】ポリエステルには、フイルムの滑り性、加
工性などの点から滑剤例えば炭酸カルシウム、カオリ
ン、シリカ、酸化チタン、アルミナ、架橋ポリスチレン
粒子、シリコン樹脂粒子などの添加微粒子及び(また
は)触媒残渣の析出微粒子等を含有させることが好まし
い。また、他の添加剤例えば顔料、安定剤、紫外線吸収
剤等を必要に応じて含有させることができる。
Polyester may contain additional fine particles and / or catalyst residues such as lubricants such as calcium carbonate, kaolin, silica, titanium oxide, alumina, crosslinked polystyrene particles, and silicone resin particles in view of film slipperiness and processability. It is preferable to include precipitated fine particles and the like. Further, other additives such as a pigment, a stabilizer, an ultraviolet absorber and the like can be contained as necessary.

【0020】本発明で用いる二軸延伸・熱固定したポリ
エステルフイルムは、従来から知られている方法で製造
することができる。例えば、上記ポリエステルを乾燥後
ポリマー融点(Tm℃)ないし(Tm+70)℃の温度
で溶融し、ダイ(例えばT―ダイ、I―ダイ等)から冷
却ドラムに押出し、急冷して固有粘度0.35〜0.9
dl/gの未延伸フイルムを得、該未延伸フイルムを縦
方向に(Tg−10)〜(Tg+70)℃の温度(ただ
し、Tgはポリエステルの二次転移温度である)で2.
5〜5.0倍の倍率で延伸し、次いでテンタにて横方向
にTg〜(Tg+70)℃の温度で2.5〜5.0倍の
倍率で延伸し、更に(Tg+70)℃〜Tm℃の温度で
熱固定することで製造することができる。また、ポリエ
チレンテレフタレートフイルムについては190〜24
0℃で熱固定するのが好ましい。熱固定時間は1〜60
秒が好ましい。
The biaxially stretched and heat-set polyester film used in the present invention can be produced by a conventionally known method. For example, after drying the above polyester, it is melted at a polymer melting point (Tm ° C.) to (Tm + 70) ° C., extruded from a die (for example, T-die, I-die, etc.) to a cooling drum, quenched, and cooled to an intrinsic viscosity of 0.35. ~ 0.9
1. An unstretched film of dl / g is obtained, and the unstretched film is longitudinally heated at a temperature of (Tg-10) to (Tg + 70) ° C. (where Tg is the secondary transition temperature of the polyester).
The film is stretched at a magnification of 5 to 5.0 times, and then stretched in a transverse direction with a tenter at a temperature of Tg to (Tg + 70) ° C at a magnification of 2.5 to 5.0 times, and further (Tg + 70) ° C to Tm ° C. It can be manufactured by heat-setting at a temperature of Further, for polyethylene terephthalate film, 190 to 24
It is preferable to heat set at 0 ° C. Heat fixing time is 1-60
Seconds are preferred.

【0021】[0021]

【実施例】以下、実施例によって本発明をさらに説明す
る。尚、各特性は下記の方法で測定した。
The present invention will be further described with reference to the following examples. In addition, each characteristic was measured by the following method.

【0022】(1) 120℃熱収縮率測定方法 低張力熱処理後の支持体を、測定方向250mm×幅5
0mmに裁断する。これに200mm間隔に孔を2点開
け、25℃60%RHで12時間以上調湿後ピンゲージ
を用いて測定する(この長さをL1とする)。この後1
20℃に加熱した厚み10mmの平滑なステンレス板に
15秒間押しつける。この後25℃60%RHで12時
間以上調湿後再びピンゲージを用いて測長する(この長
さをL2とする)。下記式に基づき熱寸法変化率を求め
る。
(1) Method of measuring heat shrinkage at 120 ° C. The support having been subjected to the low tension heat treatment is placed in a measuring direction of 250 mm × width 5 mm.
Cut to 0 mm. Two holes are formed at intervals of 200 mm, and after measuring the humidity at 25 ° C. and 60% RH for 12 hours or more, measurement is performed using a pin gauge (this length is defined as L 1 ). After this one
It is pressed against a smooth stainless steel plate having a thickness of 10 mm heated to 20 ° C. for 15 seconds. Thereafter, the humidity is adjusted at 25 ° C. and 60% RH for 12 hours or more, and the length is measured again using a pin gauge (this length is referred to as L 2 ). The thermal dimensional change rate is determined based on the following equation.

【0023】[0023]

【数4】 120℃熱収縮率(%)=100×(L2−L1)/L1 これを支持体の幅方向に5等分した点において測定す
る。この平均値をMD方向(縦方向)の120℃熱収縮
率とし、5点の最大値と最小値の差の絶対値を120℃
熱収縮量率のレンジとする。
Equation 4] 120 ° C. Heat shrinkage (%) = 100 × (L 2 -L 1) / L 1 which is measured at 5 points obtained by equally dividing the width direction of the support. The average value is defined as a heat shrinkage of 120 ° C. in the MD direction (longitudinal direction).
The range of the heat shrinkage rate is set.

【0024】(2) 150℃熱収縮率 測定方向350mm、幅50mmのサンプルを切り出
し、該サンプルの長手方向の両端近傍300mm間隔に
標点を付け、150℃の温度に調整されたオーブンに自
由端で30分放置する。これを取り出し室温で調整後、
標点間距離を測長(この長さをL3(mm)とする)
し、下記式にて熱収縮率を求める。
(2) Heat shrinkage at 150 ° C. A sample having a size of 350 mm in a measuring direction of 350 mm and a width of 50 mm was cut out, and marked at 300 mm intervals near both ends in the longitudinal direction of the sample. And leave for 30 minutes. Take this out and adjust it at room temperature.
Measures the distance between gauge points (this length is L 3 (mm))
Then, the heat shrinkage is calculated by the following equation.

【0025】[0025]

【数5】150℃熱収縮率(%)=100×(300−
3)/300
## EQU5 ## Thermal shrinkage (%) at 150 ° C. = 100 × (300−
L 3) / 300

【0026】(3) 110℃熱収縮率 測定方向350mm、幅50mmのサンプルを切り出
し、該サンプルの長手方向の両端近傍300mm間隔に
標点を付け、110℃の温度に調整されたオーブンに自
由端で30分放置する。これを取り出し室温で調整後、
標点間距離を測長(この長さをL4(mm)とする)
し、下記式にて熱収縮率を求める。
(3) Heat shrinkage at 110 ° C. A sample having a length of 350 mm and a width of 50 mm was cut out from the sample, and marked points were placed at intervals of 300 mm near both ends in the longitudinal direction of the sample. And leave for 30 minutes. Take this out and adjust it at room temperature.
Measures the distance between gauge points (this length is L 4 (mm))
Then, the heat shrinkage is calculated by the following equation.

【0027】[0027]

【数6】110℃熱収縮率(%)=100×(300−
4)/300
[Formula 6] 110 ° C. heat shrinkage (%) = 100 × (300−
L 4 ) / 300

【0028】(4) フイルムの平面性 幅1000mm、長さ2500mmのサンプルを切り出
し、このサンプルを平板上に広げて波打ち、盛り上がり
の状態を限度見本と照らし合わせて目視により評価し
た。
(4) Film flatness A sample having a width of 1000 mm and a length of 2500 mm was cut out, spread out on a flat plate, and was corrugated. The state of the swell was visually evaluated against a limit sample.

【0029】(5) オーブン内のフィルム温度測定方
法 オーブンの壁面に内部のヒーターの影響を受けない位置
に測定用の穴を概略0.5mピッチにあけ、そこから内
部フィルムの温度を放射温度計で測定した。測定時以外
は穴に蓋をすることでオーブン内の温度が冷えないよう
にした。
(5) Method of Measuring Film Temperature in Oven A hole for measurement is made at a pitch of about 0.5 m at a position on the wall of the oven which is not affected by an internal heater, and the temperature of the internal film is measured therefrom using a radiation thermometer. Was measured. The temperature in the oven was kept from cooling by covering the hole except during the measurement.

【0030】(6) フィルム張力測定方法 オーブンをでてから冷却ロールまでの位置にロードセル
付きのガイドロールを設置し、張力を測定した。該ガイ
ドロールは張力測定時のみフィルムに接触させ、不使用
時は退避する構造とした。
(6) Method of Measuring Film Tension A guide roll with a load cell was installed at a position from the oven to the cooling roll, and the tension was measured. The guide roll was configured to be in contact with the film only when measuring the tension and to retract when not in use.

【0031】(7) 二次転移温度(Tg) 試料10mgをパーキンエルマー社製のDSC装置(示
差走査熱量計)にセットし、試料を300℃の温度で5
分間溶融した後、液体窒素中で急冷し、この急冷試料を
10℃/分で昇温して二次転移温度Tgを測定した。
(7) Secondary transition temperature (Tg) A sample (10 mg) was set in a DSC device (differential scanning calorimeter) manufactured by PerkinElmer, and the sample was heated at a temperature of 300 ° C. for 5 minutes.
After melting for 1 minute, the sample was quenched in liquid nitrogen, and the quenched sample was heated at a rate of 10 ° C./min to measure the secondary transition temperature Tg.

【0032】[実施例1]固有粘度(o−クロロフェノ
ール溶液にて35℃で測定)0.65dl/gのポリエ
チレンテレフタレート(Tg:70℃)のペレットを1
80℃で5時間乾燥した後に、270〜300℃に加熱
された押出機に供給し、押し出し成形ダイによりシート
状に成形した。さらにこのフィルムを表面温度25℃の
冷却ドラム上に静電気で密着固化させて、未延伸フィル
ムを得た。次いで未延伸フィルムを、80〜100℃の
加熱ロール群で加熱し縦方向に3.4倍一段階で縦延伸
し、20〜50℃のロール群で冷却し、続いて、テンタ
へ導き、該フィルムの両端をクリップで把持しながら、
90℃に加熱された熱風雰囲気中で予熱し、95℃の熱
風雰囲気中で横方向に3.6倍に横延伸した。
Example 1 A pellet of polyethylene terephthalate (Tg: 70 ° C.) having an intrinsic viscosity of 0.65 dl / g (measured at 35 ° C. in an o-chlorophenol solution) was used as one pellet.
After drying at 80 ° C. for 5 hours, the mixture was supplied to an extruder heated to 270 to 300 ° C. and formed into a sheet by an extrusion die. Further, this film was adhered and solidified on a cooling drum having a surface temperature of 25 ° C. by static electricity to obtain an unstretched film. Next, the unstretched film is heated by a heating roll group at 80 to 100 ° C., stretched longitudinally by 3.4 times in one step in a longitudinal direction, cooled by a roll group at 20 to 50 ° C., and subsequently led to a tenter. While holding both ends of the film with clips,
It was preheated in a hot-air atmosphere heated to 90 ° C., and was stretched transversely 3.6 times in a hot-air atmosphere of 95 ° C.

【0033】こうして二軸延伸されたフィルムをそのま
ま、テンタ中で引続き、235℃の熱処理を行い、熱処
理後一旦180℃まで冷却し、熱風を吹き出さないゾー
ンにて熱固定されたフィルムのエッジ部を切り放した
後、引き取り速度を1.5%減じて弛緩し、180℃か
ら110℃までの徐冷しテンタから取出し、室温で自然
に90℃まで冷えたフィルムを75℃の引き取りロール
で引き取り、室温〜50℃の領域まで冷えたフィルムを
巻き取った。得られた厚さ100μmの二軸延伸フィル
ムの150℃熱収縮率は縦方向が0.4%,横方向が
0.1%であった。また110℃の熱収縮率を測定する
と、縦方向が0.2%,横方向が0.05%であった。
The film thus biaxially stretched is continuously subjected to a heat treatment at 235 ° C. as it is in a tenter. After the heat treatment, the film is once cooled to 180 ° C., and is heat-fixed in a zone where hot air is not blown off. Is cut off, the take-off speed is reduced by 1.5%, relaxed, gradually cooled from 180 ° C. to 110 ° C., taken out from the tenter, and the film naturally cooled to 90 ° C. at room temperature is taken up by a take-up roll at 75 ° C. The film cooled to room temperature to 50 ° C. was wound. The thermal shrinkage at 150 ° C. of the obtained biaxially stretched film having a thickness of 100 μm was 0.4% in the vertical direction and 0.1% in the horizontal direction. When the heat shrinkage at 110 ° C. was measured, it was 0.2% in the vertical direction and 0.05% in the horizontal direction.

【0034】得られた二軸延伸フィルムを1500mm
幅にスリットし、図1に示した本発明の方法によって弛
緩熱処理を行った。オーブン5の長さが4m、フィルム
1の搬送速度15m/min、予熱ロール温度を調整す
ることで、予熱ロール3から離れた直後のフィルム温度
を125℃とし、オーブン内に設けた赤外線ヒーターの
温度を調整することで、オーブン5内でフィルムの最高
温度を150℃、冷却ロール4直前の位置でのフィルム
温度を120℃とした。放射温度計によってオーブン外
から温度測定用穴を通してフィルム温度を測定すると、
オーブン内でフィルムが130〜150℃の範囲になっ
ている時間は3.5秒であった。フィルムの弛緩率を
0.46%とし、その時のオーブン出口のフィルム縦し
わ本数は5本(N=5本)であった。その後フィルムを
表面温度110℃の冷却ロール4によって冷却した。
The obtained biaxially stretched film is 1500 mm
It was slit to a width and subjected to relaxation heat treatment by the method of the present invention shown in FIG. By adjusting the length of the oven 5 to 4 m, the transport speed of the film 1 at 15 m / min, and the temperature of the preheating roll, the temperature of the film immediately after leaving the preheating roll 3 is 125 ° C., and the temperature of the infrared heater provided in the oven The maximum temperature of the film in the oven 5 was set to 150 ° C., and the film temperature immediately before the cooling roll 4 was set to 120 ° C. When measuring the film temperature through the temperature measurement hole from outside the oven with a radiation thermometer,
The time for the film to be in the range of 130-150 ° C. in the oven was 3.5 seconds. The relaxation rate of the film was 0.46%, and the number of vertical wrinkles in the film at the outlet of the oven was 5 (N = 5). Thereafter, the film was cooled by a cooling roll 4 having a surface temperature of 110 ° C.

【0035】得られた熱処理フィルムの150℃熱収縮
率は縦方向が0.06%、横方向が0.04%、120
℃熱収縮率は縦方向が0.015%、横方向が−0.0
27%(マイナスの値は膨張率を表わす)であり良好、
平面性も良好レベルであった。
The thermal shrinkage of the obtained heat-treated film at 150 ° C. was 0.06% in the vertical direction, 0.04% in the horizontal direction, and 120%.
° C heat shrinkage is 0.015% in the vertical direction and -0.0 in the horizontal direction.
27% (negative value indicates expansion rate), good
The flatness was also at a good level.

【0036】[実施例2]実施例1と同様の方法で二軸
延伸ポリエチレンテレフタレートフィルムを得た。得ら
れた二軸延伸フィルムを1500mm幅にスリットし、
図1に示した本発明の方法によって弛緩熱処理を行っ
た。オーブン5の長さが2.5m、フィルム1の搬送速
度7m/min、予熱ロール温度を調整することで、予
熱ロール3から離れた直後のフィルム温度を100℃と
し、オーブン内に設けた赤外線ヒーターの温度を調整す
ることで、オーブン5内でフィルムの最高温度を150
℃、オーブンを出た冷却ロール4直前の位置でのフィル
ム温度Tf1を105℃とした。オーブン内でフィルム
が130〜150℃の範囲になっている時間は、6.0
秒であった。フィルムの弛緩率を0.44%とし、その
時のオーブン出口で観察したフィルム縦しわ本数は7本
(N=7本)であった。その後フィルムを表面温度90
℃の冷却ロール4接触させ、冷却した。得られた熱処理
フィルムの150℃熱収縮率は縦方向が0.07%、横
方向が0.03%、120℃熱収縮率は縦方向が0.0
20%、横方向が−0.028%であり良好、平面性も
良好レベルであった。
Example 2 A biaxially stretched polyethylene terephthalate film was obtained in the same manner as in Example 1. The obtained biaxially stretched film is slit into a width of 1500 mm,
The relaxation heat treatment was performed by the method of the present invention shown in FIG. By adjusting the length of the oven 5 to 2.5 m, the transport speed of the film 1 at 7 m / min, and the temperature of the preheating roll, the film temperature immediately after leaving the preheating roll 3 is set to 100 ° C., and the infrared heater provided in the oven The maximum temperature of the film in the oven 5 by adjusting the temperature of the
The film temperature Tf1 at 105 ° C. immediately before the cooling roll 4 exiting the oven was 105 ° C. The time during which the film is in the range of 130-150 ° C. in the oven is 6.0
Seconds. The relaxation rate of the film was 0.44%, and the number of vertical wrinkles observed at the exit of the oven at that time was 7 (N = 7). Thereafter, the film is heated to a surface temperature of 90.
The cooling roller 4 was brought into contact with a cooling roller of 4 ° C. and cooled. The 150 ° C heat shrinkage of the obtained heat-treated film was 0.07% in the vertical direction, 0.03% in the horizontal direction, and the heat shrinkage in the vertical direction was 0.07% in the vertical direction.
20% and -0.028% in the horizontal direction were good, and the flatness was also at a good level.

【0037】[比較例1]実施例1と同様の方法で二軸
延伸ポリエチレンテレフタレートフィルムを得た。その
後、弛緩率を0.25%とし、オーブン出口のフィルム
縦しわ本数を12本としたこと以外は実施例1と同様に
して弛緩熱処理を行った。得られた熱処理フィルムの1
50℃熱収縮率は縦方向が0.20%,横方向が−0.
01%、120℃熱収縮率は縦方向が0.080%、横
方向が−0.070%であり、製品規格に不適合なもの
であった。また熱処理後の製品には縦方向の波シワが固
定されており、平面性は極めて不良なものであった。
Comparative Example 1 A biaxially stretched polyethylene terephthalate film was obtained in the same manner as in Example 1. Thereafter, a relaxation heat treatment was performed in the same manner as in Example 1 except that the relaxation rate was set to 0.25% and the number of vertical wrinkles of the film at the outlet of the oven was set to 12. 1 of the heat-treated film obtained
The 50 ° C. heat shrinkage was 0.20% in the vertical direction and −0.0 in the horizontal direction.
The heat shrinkage rate at 01% and 120 ° C. was 0.080% in the vertical direction and −0.070% in the horizontal direction, and was incompatible with the product standard. Further, the product after the heat treatment was fixed with vertical wrinkles, and the flatness was extremely poor.

【0038】[比較例2]実施例1と同様の方法で二軸
延伸ポリエチレンテレフタレートフィルムを得た。その
後、弛緩率を0.56%とし、オーブン出口のフィルム
縦しわ本数を1〜2本としたこと以外は実施例1と同様
にして弛緩熱処理を行おうとしたが、冷却ロール以降の
引き取り系でフィルムが蛇行し、安定した熱処理ができ
なかった。得られた熱処理フィルムの150℃熱収縮率
は縦方向が0.07%、横方向が0.02%、120℃
熱収縮率は縦方向が0.011%、横方向が0.027
%であったが測定位置によってバラツキが大きく、平面
性が乱れており、製品として不適格なものであった。
Comparative Example 2 A biaxially stretched polyethylene terephthalate film was obtained in the same manner as in Example 1. Thereafter, a relaxation heat treatment was performed in the same manner as in Example 1 except that the relaxation rate was 0.56% and the number of longitudinal wrinkles of the film at the outlet of the oven was one or two. The film meandered, and stable heat treatment could not be performed. The thermal shrinkage at 150 ° C of the obtained heat-treated film was 0.07% in the vertical direction, 0.02% in the horizontal direction, and 120 ° C.
The heat shrinkage is 0.011% in the vertical direction and 0.027 in the horizontal direction.
However, the variation was large depending on the measurement position, the flatness was disturbed, and the product was unsuitable.

【0039】[0039]

【発明の効果】本発明の二軸延伸ポリエステルフィルム
製造方法によれば、平面性が良好で、熱寸法安定性に優
れた二軸延伸ポリエステルフィルムを効率よく得ること
ができる。
According to the method for producing a biaxially oriented polyester film of the present invention, a biaxially oriented polyester film having good flatness and excellent thermal dimensional stability can be efficiently obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の1つの実施形態を表す弛緩熱処
理装置の1例である。
FIG. 1 is an example of a relaxation heat treatment apparatus representing one embodiment of the present invention.

【図2】図2は懸垂状態のフィルムの断面図である。FIG. 2 is a cross-sectional view of the film in a suspended state.

【符号の説明】[Explanation of symbols]

1:二軸延伸ポリエステルフィルム 2:フィルムの縦しわ 3:予熱ロール 4:冷却ロール 5:熱処理オーブン 21:二軸延伸ポリエステルフィルム 22:フィルムの縦しわである。 1: Biaxially stretched polyester film 2: Film longitudinal wrinkle 3: Preheating roll 4: Cooling roll 5: Heat treatment oven 21: Biaxially stretched polyester film 22: Film longitudinal wrinkle.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二軸延伸ポリエステルフィルムを懸垂し
た状態で予熱ロールから冷却ロールに向って走行させる
間に式(1)で示される最高温度Tmaxに到達させ、
かつ式(2)を満足する条件で過供給することにより該
フィルムを弛緩熱処理することを特徴とする二軸延伸ポ
リエステルフィルムの熱処理方法。 【数1】 Tg+50≦Tmax≦Tg+150・・・(1) (式(1)で、Tmaxはフィルム最高温度(℃)、T
gはポリエステルの二次転移温度(℃)を表わす。) 3/L≦N≦30/L・・・(2) (式(2)で、Nはフィルム単位幅当たりの縦しわの本
数(1/m)、Lはフィルム自由長(m)を表わす。)
1. While running a biaxially stretched polyester film in a suspended state from a preheating roll to a cooling roll, the polyester film is allowed to reach a maximum temperature Tmax represented by the formula (1),
And a heat treatment method for a biaxially stretched polyester film, wherein the film is subjected to a relaxation heat treatment by oversupplying under conditions satisfying the formula (2). Tg + 50 ≦ Tmax ≦ Tg + 150 (1) (In the equation (1), Tmax is the film maximum temperature (° C.), T
g represents the second order transition temperature (° C.) of the polyester. 3 / L ≦ N ≦ 30 / L (2) (in the formula (2), N represents the number of vertical wrinkles per unit width of the film (1 / m), and L represents the free length (m) of the film). .)
【請求項2】 走行する二軸延伸ポリエステルフィルム
を弛緩熱処理する際に、フィルムの温度をTmax−2
0(℃)からTmax(℃)の範囲に1〜60秒間保持
することを特徴とする請求項1に記載の二軸延伸ポリエ
ステルフィルムの熱処理方法。
2. The temperature of the running biaxially stretched polyester film is set to Tmax-2 when the film is subjected to relaxation heat treatment.
The method for heat-treating a biaxially stretched polyester film according to claim 1, wherein the temperature is maintained in a range of 0 (° C) to Tmax (° C) for 1 to 60 seconds.
JP2000141324A 2000-05-15 2000-05-15 Method for heat-treating biaxially stretched polyester film Pending JP2001322166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000141324A JP2001322166A (en) 2000-05-15 2000-05-15 Method for heat-treating biaxially stretched polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141324A JP2001322166A (en) 2000-05-15 2000-05-15 Method for heat-treating biaxially stretched polyester film

Publications (1)

Publication Number Publication Date
JP2001322166A true JP2001322166A (en) 2001-11-20

Family

ID=18648457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141324A Pending JP2001322166A (en) 2000-05-15 2000-05-15 Method for heat-treating biaxially stretched polyester film

Country Status (1)

Country Link
JP (1) JP2001322166A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274430A (en) * 2009-05-26 2010-12-09 Systec Co Ltd Method for heat-treating biaxially oriented polyester film
CN111136898A (en) * 2020-02-25 2020-05-12 上海市凌桥环保设备厂有限公司 Three-dimensional synchronous stretching polytetrafluoroethylene microporous film and preparation method thereof
JPWO2020241692A1 (en) * 2019-05-28 2020-12-03
CN115023048A (en) * 2022-06-23 2022-09-06 珠海新立电子科技有限公司 Ultra-thin single face FPC product levels device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274430A (en) * 2009-05-26 2010-12-09 Systec Co Ltd Method for heat-treating biaxially oriented polyester film
JPWO2020241692A1 (en) * 2019-05-28 2020-12-03
WO2020241692A1 (en) * 2019-05-28 2020-12-03 富士フイルム株式会社 Biaxially oriented polyester film
CN113811566A (en) * 2019-05-28 2021-12-17 富士胶片株式会社 Biaxially oriented polyester film
CN111136898A (en) * 2020-02-25 2020-05-12 上海市凌桥环保设备厂有限公司 Three-dimensional synchronous stretching polytetrafluoroethylene microporous film and preparation method thereof
CN115023048A (en) * 2022-06-23 2022-09-06 珠海新立电子科技有限公司 Ultra-thin single face FPC product levels device
CN115023048B (en) * 2022-06-23 2023-01-06 珠海新立电子科技有限公司 Ultra-thin single face FPC product levels device

Similar Documents

Publication Publication Date Title
EP0748273B1 (en) Method of making biaxially oriented thermoplastic films
JP2018130958A (en) Biaxially oriented polypropylene film
JP6797279B2 (en) Method for manufacturing thermoplastic resin film and thermoplastic resin film
JP2009149066A (en) Polyethylene terephthalate resin film and its manufacturing method
US5076977A (en) Process for controlling curl in polyester film
JP2007185898A (en) Biaxially oriented polyester film and its manufacturing process
JP4228115B1 (en) Polyethylene terephthalate resin film and method for producing the same
JP2001322166A (en) Method for heat-treating biaxially stretched polyester film
JP3676156B2 (en) Heat treatment method for biaxially stretched polyester film
JP2002144421A (en) Method for heat treating biaxially stretched polyester film
JP4239112B1 (en) Biaxially oriented polyethylene terephthalate film and method for producing the same
JPH07314552A (en) Production of thermoplastic resin film
JP2001158053A (en) Method for heat-treating biaxially stretched polyester film
JP3316900B2 (en) Polyester film molding method
JP3539588B2 (en) Polyester film and method for producing the same
KR0158241B1 (en) Process for preparing polyester film
JP2002001810A (en) Method for relaxation heat treating biaxially oriented polyester film
JP2004358742A (en) Method for manufacturing plastic film
JPH01165423A (en) Preparation of biaxially oriented polyester film
JPH10258458A (en) Biaxially oriented polyester film and its manufacture
JP5249854B2 (en) Heat treatment method for biaxially stretched polyester film
JP2002018948A (en) Method for manufacturing stretched film
JP2004018784A (en) Polyester film and its manufacturing method
JP2008195044A (en) Heat treatment method of deformed lengthy molding
JP4909125B2 (en) Heat treatment method for odd-shaped long shaped body