JP3539588B2 - Polyester film and method for producing the same - Google Patents

Polyester film and method for producing the same Download PDF

Info

Publication number
JP3539588B2
JP3539588B2 JP8328695A JP8328695A JP3539588B2 JP 3539588 B2 JP3539588 B2 JP 3539588B2 JP 8328695 A JP8328695 A JP 8328695A JP 8328695 A JP8328695 A JP 8328695A JP 3539588 B2 JP3539588 B2 JP 3539588B2
Authority
JP
Japan
Prior art keywords
film
heat
tenter
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8328695A
Other languages
Japanese (ja)
Other versions
JPH08244111A (en
Inventor
訓弘 堀田
克俊 宮川
美加 饗場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8328695A priority Critical patent/JP3539588B2/en
Publication of JPH08244111A publication Critical patent/JPH08244111A/en
Application granted granted Critical
Publication of JP3539588B2 publication Critical patent/JP3539588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、二軸延伸されたポリエステルフィルムおよびその製造方法に関するものである。更に詳しく言えば、熱収縮率を低減し、かつ、平面性、耐熱軟化性に優れたポリエステルフィルムに関するもので、複写機やプリンタなどに使用されるオーバヘッドプロジェクタ(OHP)用シートや製図用原紙など、使用時、比較的高温にさらされる用途に利用されるフィルムを提供するものである。
【0002】
【従来の技術】
ポリエステルフィルムは、その物理的、熱的特性に応じて、さまざまな分野で利用されている。特に、縦方向、横方向の二軸方向に延伸をかけたポリエステルフィルムは、機械的特性などに優れるため、より好ましく用いられている。特に、ポリエステルの中でも、ポリエチレンテレフタレート(以下PETと称することもある。)やポリエチレン2,6−ナフタレート(以下、PENと称することもある。)は、その機械的、熱的特性が優れ、また、特にPETは低価格であることなどから、広い分野で用いられている。
【0003】
ここで、ポリエステルの二軸延伸フィルムにおいては、延伸により分子配向をかけることにより、強度などの機械特性を向上させているが、逆に、延伸による歪みが分子鎖に残留するため、熱をかけることによりこの分子鎖の歪みが解放され、収縮するという性質を持っている。この収縮特性は、包装用のシュリンクフィルムなどに展開されているが、一般には、この収縮特性は障害となることが多い。そこで、二軸延伸後に、横延伸に用いられるテンタの中で、横延伸に引き続き、熱処理(熱固定とも呼ばれる)を行うことで、この分子鎖の歪みを解放することが行われている。一般に、この熱処理の温度に応じて熱収縮量は低下していくが、この熱処理だけでは完全に歪みを除去することができず、熱収縮特性が残留し、また逆に熱処理の温度を高くし過ぎると、分子配向が緩和し機械的特性が低下する問題があった。
【0004】
そこで、この残留する歪みを除去する方法として、テンタのレール幅を先細りになるようにして(トウインリラックスなどと呼ばれる)、幅方向に若干収縮させるようにして、この残留歪みを除去する方法が採用されている。しかし、この方法では、幅方向の熱収縮は除去可能であるが、機械方向、つまりフィルム長手方向の熱収縮を除去することはできない。このため、フィルム長手方向の熱収縮を除去する方法について、過去からいろいろな方法が検討されてきた。
【0005】
例えば、特公平4−28218号公報に示されるように、テンタのクリップ間隔が徐々に狭くなるようにすることで、機械方向にリラックス処理を行う方法が提案されている。この方法では、機械的な問題で、リラックスの量に上限があり、また、リラックスの量を大きくすると、リラックス処理前のクリップ間隔が広くなり、クリップ把持部と、非把持部の物性のむらが大きくなるという問題があった。
【0006】
また、一旦フィルムを巻き取った後に、ゆっくり巻出しながらオーブンで加熱処理し、その際に機械方向に速度差をつけてリラックス処理を行う方法が行われている。しかしながら、この方法では、このリラックス加工を行うためコストが高くなる問題がある。
【0007】
また、特公昭60−226160号公報に示されるように、フィルムの製造工程中に、オーブンによる機械方向のリラックス処理装置を設ける方法が提案されているが、フィルムの製造速度との兼ね合いで、熱処理温度を高めると、フィルムの平面性と機械的特性が悪化するため、温度をあまり高められず、結果として、特に150℃や200℃といった高温にさらされた際の熱収縮率の低下と優れた機械的特性を両立したフィルムが得られないといった問題があった。
【0008】
また、複写機やプリンタなどに使用されるOHP用シートなどは、使用時、比較的高温にさらされるため低熱収縮率のシートが求めれているが、比較的高温で圧搬送される時、圧変形を受けて、低熱収縮率のシートでも平面性が悪化することがあることから、熱収縮率が低いだけでは不十分であるという問題があった。
【0009】
【発明が解決しようとする課題】
そこで本発明は、二軸延伸フィルムの宿命である熱収縮を、機械方向、幅方向について、安価に、十分に低減させ、かつ、平面性、耐熱軟化性、機械特性に優れたポリエステルフィルムを提供することを目的とする。本発明者らは、鋭意検討の結果、フィルムがある特性を満足するように製造することにより、低熱収縮性に優れ、熱軟化による圧搬送時の平面性悪化の問題を生じさせない優れたフィルムを得ることに成功したものである。
【0010】
【課題を解決するための手段】
この目的に沿う本発明のポリエステルフィルムは、ポリエステルからなる二軸配向フィルムにおいて、フィルムの長手方向、幅方向の150℃で30分の熱収縮率が0.3%以下であり、フィルムに先端径が0.8mmのピンを10gの圧荷重で5℃/分の昇温下に押圧した際の、フィルムへのピン嵌入開始温度が115℃以上で、かつ、嵌入距離がフィルム厚さの8%以下であることを特徴とするものからなる。この本発明によって、低熱収縮性、平面性、耐軟化性に優れたポリエステルフィルムが得られる。
【0011】
また、本発明に係るポリエステルフィルムの製造方法は、二軸配向ポリエステルフィルムを製造するに際し、フィルムを機械方向と横方向にそれぞれ3〜6倍に二軸延伸した後、225℃以上、255℃以下の温度で熱処理を施し、熱処理後に、フィルムを緊張下に210℃以下の温度まで冷却し、しかる後にフィルムを徐冷しながら、長手方向に2.5%以下、幅方向に5.0%以下のリラックス処理を施すことを特徴とする方法からなる。
【0013】
以下、本発明を詳細に説明する。
本発明で言うポリエステルとは、ジオールとジカルボン酸とから縮重合により得られるポリマであり、ジカルボン酸としては、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、アジピン酸、セバチン酸などで代表されるものであり、また、ジオールとは、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、シクロヘキサンジメタノールなどで代表されるものである。具体的には例えば、ポリメチレンテレフタレート、ポリエチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリエチレン−p−オキシベンゾエート、ポリ−1,4−シクロヘキサンジメチレンテレフタレート、ポリエチレン−2,6−ナフタレートなどが挙げられる。もちろん、これらのポリエステルは、ホモポリマであってもコポリマであってもよく、共重合成分としては、例えば、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコールなどのジオール成分、アジピン酸、セバチン酸、フタル酸、イソフタル酸、2,6−ナフタテンジカルボン酸などのジカルボン酸成分が挙げられる。本発明の場合、特に、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレートが機械的強度、耐熱性、耐薬品性、耐久性などの観点から好ましい。中でも、ポリエチレンテレフタレートは、その価格が安いことからも好ましい。
【0014】
また、このポリエステルの中には、公知の各種添加剤、例えば、酸化防止剤、帯電防止剤、結晶核剤、無機粒子、有機粒子などが添加されていてもよい。特に、結晶核材、無機粒子は、フィルムの耐熱軟化性を向上させ、高温、圧搬送時のフィルムの変形を抑制し、平面性を高めるために有効である。
【0015】
また、該フィルムは積層構造をとっていることも好ましい。積層構造としては、共押出による積層、塗布による積層などが挙げられる。塗布による積層として、フィルムを横延伸する前に塗材をフィルムに塗布して、テンタ内で溶媒の乾燥、横延伸、熱処理を行う方法が、好ましく行われる。これらの積層構造は、主に、その用途に応じた表面特性を付与するために行われる。例えば、インクやトナーなどの易接着性、静電気を抑える帯電防止性など多用な特性の付与が可能である。
【0016】
本発明における二軸配向フィルムとは、フィルムの機械方向(フィルム長手方向)と、機械方向と直角な方向(幅方向)に、延伸を行ったフィルムを言う。具体的には、溶融押出し、実質的に無配向なフィルムを、長手方向に延伸後幅方向に延伸するもの、幅方向に延伸後長手方向に延伸するもの、あるいは、長手方向、幅方向同時に延伸するものが挙げられ、また、長手方向の延伸、幅方向の延伸を複数回組み合わせて行ってもよい。
【0017】
本発明においては、フィルム長手方向、幅方向の150℃で30分の熱収縮率が0.3%以下であることが必要であり、これを越えると、各用途において、使用の最中にフィルムが収縮し、カールや部分的なたるみなどの熱収縮に起因した平面性悪化を招いたりして、不具合を生じ易くなる。
【0018】
また、熱機械特性試験機(以下、TMAと略称することもある。)において、先端径が0.8mmのピンを10gの圧荷重で5℃/分の昇温下に押圧した際の、フィルムへのピン嵌入開始温度が115℃以上で、かつ嵌入距離がフィルム厚さの8%以下であることが必要である。これらを外れると、高温下で、圧搬送される時、フィルムが熱軟化して、圧変形を受け、熱軟化に起因した平面性悪化を招いたりして、不具合を生じ易くなる。さらに好ましくは、ピン嵌入開始温度が125℃以上で、嵌入距離がフィルム厚さの5%以下であることが望ましい。特に、最近は、複写機やプリンタ、印刷機などの機械において、高速化のためにかなり熱、圧がかかるものがあり、使用時、熱収縮と熱圧変形に起因する平面性悪化があることを見い出し、そのために、150℃での高温の熱収縮率がより小さく、優れた耐熱軟化性と両立させたフィルムが使用上、好ましいことを見い出した。
【0019】
前述したように、本発明においては、該フィルムの150℃30分の熱収縮率が0.3%以下で、TMA荷重(10g/0.8mmφ)下昇温(5℃/分)時、ピン嵌入開始温度が115℃以上で、嵌入距離はフィルム厚さの8%以下が必要であり、さらに好ましくは、ピン嵌入開始温度が125℃以上で、嵌入距離がフィルム厚さの5%以下が平面性、耐熱軟化性に優れたフィルムを得るのに好ましい。とくにポリエチレンテレフタレートでは、熱収縮率を低下させるため、熱処理温度を高め、弛緩処理を施しているが、熱処理温度、弛緩温度、弛緩率をあまり高めると、分子配向の乱れが大きくなり、フィルムの機械特性、平面性、耐熱軟化性が悪化してくるため好ましくない。そこで、優れた低熱収縮性と平面性、耐熱軟化性を両立させるためには、分子配向の乱れを抑えるため、縦、横延伸での分子配向の強化と熱処理によりフィルムの結晶化度をできるだけ高め、弛緩温度、弛緩率を必要最小限に抑えた熱処理条件が必要になる。
【0020】
この様な条件で作られたフィルムについて、非晶部のトランス比率は、25%以上であることが好ましい。さらに好ましくは30%以上である。すなわち、上述のような軟化挙動は非晶部の動き易さに起因していると考えられ、鋭意検討の結果、非晶部の分子鎖のコンフォメーションに関係していることを突きとめた。ポリエチレンテレフタレートの場合、その分子鎖のコンフォメーションにはトランス型とゴーシュ型が存在することがわかっている。トランス型が熱力学的に最も安定な構造であり、ゴーシュ型は準安定構造と言われている。結晶部は完全にトランス型のみで構成されており、非晶部にはトランス型とゴーシュ型が混在している。ここで、完全に無配向な非晶フィルムにおいては、ゴーシュ型が多く存在し、トランス型は少ない。配向が進むにつれトランス型の割合が増えてくる。すなわち、ゴーシュ型がより非晶的な性質を示すと考えられている。ここで、熱軟化挙動を考察するとゴーシュ型が多く含まれ、乱れた構造を取っている場合、軟化しやすく、トランス型が多くなると、熱に対し安定であり、かつ、ゴーシュ型の分子鎖を拘束すると考えられ、軟化挙動を生じにくくなると考えられる。すなわち、非晶部のトランス比率が25%未満であると、軟化挙動を生じやすく、好ましくないわけである。
【0021】
次に本発明の製造法の一例について説明するが、かかる例に限定されるものではない。
ポリエステルとして、ポリエチレンテレフタレートを用いた例を示すが、樹脂により、乾燥条件、押出条件、延伸温度などの条件は異なる。常法に従って、テレフタル酸とエチレングリコールからエステル化し、または、テレフタル酸ジメチルとエチレングリコールをエステル交換により、ビス−β−ヒドロキシエチルテレフタレート(BHT)を得た。次にこのBHTを重合槽に移行し、撹拌しながら、真空下で280℃に加熱して重合反応を進めた。ここで、撹拌のトルクを検出して、所定のトルクになったところで反応を終了した。重合槽から、ガット状に吐出し、水で冷却してからペレット状に切断した。
【0022】
次に重合したポリエチレンテレフタレートのペレットを、180℃で5時間真空乾燥した後、270〜300℃の温度に加熱された押出機に供給し、Tダイよりシート状に押出す。この溶融されたシートを、ドラム表面温度25℃に冷却されたドラム上に静電気力により密着固化し、実質的に非晶状態の成形フィルムを得る。このフィルムを、80〜120℃の加熱ロール群で加熱し機械方向に、3〜6倍一段もしくは多段階で延伸し、20〜50℃のロール群で冷却する。続いて、テンタへ導いて、該フィルムの両端をクリップで把持しながら、80〜140℃に加熱された熱風雰囲気中で加熱し、横方向に3〜6倍に延伸する。
【0023】
ここで、本発明におけるフィルムを得るための一つの方法として、二軸延伸されたフィルムをポリエステルの融点近くの温度で熱処理を行う方法がある。すなわち、こうして二軸延伸されたフィルムを低熱収縮性、平面性、耐熱軟化性を付与するために高温熱処理を行うが、ポリエチレンテレフタレートの場合には、225℃から255℃で、好ましくは230℃から250℃で、急速昇温、短時間熱処理を行うことで、上述の特性を得ることができる。
【0024】
また、このような熱処理条件にすることで、フィルムの結晶化度を上げ、分子配向の乱れが小さい、より好ましい状態のフィルムを得ることができる。しかしながら、このような熱処理条件をとるだけでは、150℃での熱収縮を低減することができない。すなわち、このような高温から冷却することにより、高温時の熱膨張分が冷却するにつれ、可逆的に収縮するため、歪みが蓄積され、ガラス転移温度から150℃といった範囲での熱収縮が付加されるようになる。そこで、この熱収縮を抑えるために、テンタの熱処理から冷却する工程において、この冷却に伴う可逆収縮分を吸収するような機械方向のリラックスをかけることが必要であるが、熱処理温度からすぐにリラックスをかけると分子配向の緩和が大きくなり、耐熱軟化性に優れたフィルム得られなくなる。そこで、熱処理後、約210℃以下、好ましくは約200℃まで、緊張下で冷却した後、リラックス処理することが分子配向緩和が抑制でき、耐熱軟化性を付与させるのに好ましい。。このリラックス処理としては、各種の方法が考えられるが、特に、平面性を維持するためには、フィルムをテンタのクリップで把持しながらクリップの間隔を縮めていく方法が好ましい。また、必要に応じてテンタレール幅を狭め、幅方向のリラックス処理を行い、室温まで徐冷して巻取ることで、本発明のフィルムを得た。このような熱処理、リラックス処理を行うことで、フィルムの分子配向の乱れを制御することができ、低熱収縮性と平面性、耐熱軟化性を両立してフィルム得ることが可能になる。
【0025】
[物性値の評価法]
(1)150℃30分の熱収縮率
フィルムを幅10mm、長さ約250mmにサンプリングし、約200mmの間隔で十字のマーキングを行い、その間隔を、日本光学(株)製の万能投影機と三豊商事(株)製のリニアスケール(精度0.001mm)を組み合わせた測長機を用いて正確に測定し、L0 (mm)とする。このサンプルを、150℃に加熱されたオーブン中で30分間処理し、室温(23℃、65%)で放冷してから、再び、マーキング間隔を測長機で測定して、L(mm)とする。ここで、熱収縮率=(L0 −L)×100/L0 (%)とし、5サンプルの平均値を採用した。
【0026】
(2)熱軟化性
真空理工(株)製TMA TM−3000およびTA−1500を用いて、図1に示すようにサポータ(サポート管)1の上に、8mmφ、高さ5mmの石英円筒台座2を置き、その上に、約5×5mmのサンプル3を置き、先端径0.8mmφの金属ピン4を検出棒5にセットし、10gの圧荷重Pを負荷した状態で、昇温速度5℃/分で200℃まで昇温して熱寸法変化曲線を図2に示すように求め、図2の特性曲線において、金属ピン4とフィルムサンプル3の厚さ方向の熱膨張を含む直線部分に接線(延長線)を引き、この接線より嵌入(縮み)側へ外れ始める温度をピン嵌入(軟化)開始温度とし、延長線から熱寸法変化曲線が最も大きく外れる寸法差をフィルム厚さで除した値を嵌入距離とした。また、ピン嵌入が観測されないものは軟化温度を200℃以上とした。
【0027】
(3)平面性
フィルムをA4版に切り、富士ゼロックス(株)製複写機Vivce500に通し、そのフィルムを、上部(台より20cm)に糸を張った水平な台の上に拡げ、フィルムに写った糸の状態を観察し、湾曲部分が見られないものを○、湾曲部分が3箇所以下を△、それ以上を×と判定した。
【0028】
(4)非晶部のトランス比率
日本バイオ・ラッド ラボラトリーズ株式会社製のフーリエ変換赤外吸収測定機(FT−IR)FTS−7に、全反射法(ATR)用の測定アタッチメントを取り付け、KRS結晶を用いて45°の反射角度で吸光度を測定した。その測定結果より、1508、1453、1410、1337cm-1のピークの吸光度を読み取り、ゴーシュ型の吸光比Ag=(1453cm-1の吸光度)/(1508cm-1の吸光度+1410cm-1の吸光度)、およびトランス型の吸光比At=(1337cm-1の吸光度)/(1508cm-1の吸光度+1410cm-1の吸光度)とする。ここで、押出してシートに成形し、冷却ドラム上で急冷固化した未延伸フィルムサンプルについて吸光度を測定し、上記の計算により、Ag、Atを求め、Ag0 、At0 とする。また、別途、臭化ナトリウム水溶液による密度勾配管を作成し、25℃におけるサンプルの密度を測定する。結晶部の比率は、その密度(g/cm3 )より、結晶部の比率(%)=(密度−1.335)/(1.455−1.335)×100とし、非晶部の比率をXa(%)=100−(結晶部の比率)とする。
ここで、無配向未延伸フィルムが結晶部の比率が0%(非晶部100%)、ゴーシュ比率が85%と仮定し、補正係数αを、α=(0.85At0 )/(0.15Ag0 )とした。非晶部のトランス比率は、サンプルの吸光比Ag、Atより、非晶部のトランス比率(%)=[{At/(At+α・Ag)}−Xa]×100とし、サンプルのフィルム長手方向と幅方向について測定した値の平均値を用いた。
【0029】
【実施例】
以下、本発明の実施例に基づいて説明する。
実施例1
極限粘度0.65のポリエチレンテレフタレートのペレットを180℃で5時間真空乾燥した後に、270℃〜300℃に加熱された押出機に供給し、Tダイよりシート状に成形した。さらにこのフィルムを表面温度25℃の冷却ドラム上に静電気力で密着固化した未延伸フィルムを得た。
該未延伸フィルムを、80〜100℃の加熱ロール群で加熱し縦方向に3.4倍一段階で縦延伸し、20〜50℃のロール群で冷却した。続いて、テンタへ導き、該フィルムの両端をクリップで把持しながら、90℃に加熱された熱風雰囲気中で予熱し、95℃の熱風雰囲気中で横方向に3.6倍に横延伸した。
【0030】
こうして二軸延伸されたフィルムをそのまま、テンタ中で引続き、240℃の熱処理を行い、熱処理後一旦200℃まで冷却後、200℃から110℃までの徐冷区間で、テンタのレール幅を縮めて幅方向(TD方向)に4%、また、テンタのクリップ間隔を縮めて長手方向(MD方向)に1.5%リラックス処理を施し、テンタから取出し、フィルムの両端部のエッジ部分をトリミングして巻取り、厚み75μmの二軸延伸フィルムを得た。
得られたフィルムの物性は表1に示す通りである。熱収縮率が小さく、軟化開始温度が高く、ピン嵌入距離の小さい耐熱軟化性のフィルムが得られており、平面性も良好なものが得ることができた。
【0031】
実施例2
実施例1と同様にして縦延伸、横延伸を施したフィルムを、テンタ中で引続き、240℃の熱処理を行い、熱処理後、240℃から110℃までの徐冷区間で、テンタのレール幅を縮めて幅方向に4%、また、テンタのクリップ間隔を縮めて長手方向に1.5%リラックス処理を施し、テンタから取出し、フィルムの両端部のエッジ部分をトリミングして巻取り、厚み75μmの二軸延伸フィルムを得た。
得られたフィルムの物性は表1の通りである。実施例1と比較すると、熱収縮率は差がないが、リラックス開始温度が高いため、分子配向が乱れが大きくなるため、軟化開始温度の低下とピン嵌入距離の増加が少しみられるが、請求項1を満足しており、平面性の良好なフィルムを得ることができた。
【0032】
比較例1
実施例1と同様にして縦延伸、横延伸を施したフィルムを、テンタ中で引続き、240℃の熱処理を行い、熱処理後、幅方向、機械方向ともリラックス処理を施さないで、110℃まで徐冷して、テンタから取出し、フィルムの両端部のエッジ部分をトリミングして巻取り、厚み75μmの二軸延伸フィルムを得た。
得られたフィルムの物性は表1の通りである。実施例1と比較すると、リラックス処理を施していないので、分子配向の乱れが小さく、軟化開始温度、ピン嵌入がない耐熱軟化性が良好なフィルム得られているが、熱収縮率が高くなっているため、熱収縮に起因する平面性不良を生じたフィルムが得られている。
【0033】
実施例3
実施例1と同様にして縦延伸、横延伸を施したフィルムを、テンタ中で引続き250℃の熱処理を行い、熱処理後、一旦200℃まで冷却後、200℃から110℃までの徐冷区間で、テンタのレール幅を縮めて幅方向に4%、また、テンタのクリップ間隔を縮めて長手方向に1.5%リラックス処理を施し、テンタから取出し、フィルムの両端部のエッジ部分をトリミングして巻取り、厚み75μmの二軸延伸フィルムを得た。
得られたフィルムの物性は表1の通りである。実施例1に比較し、熱処理温度が高く、結晶化度が高いため、熱収縮率が小さく、耐熱軟化性も良好で、平面性が良好なフィルムが得られている。
【0034】
実施例4
実施例1と同様にして縦延伸、横延伸を施したフィルムを、テンタ中で引続き230℃の熱処理を行い、熱処理後、一旦200℃まで冷却後、200℃から110℃までの徐冷区間で、テンタのレール幅を縮めて幅方向に4%、また、テンタのクリップ間隔を縮めて長手方向に1.5%リラックス処理を施し、テンタから取出し、フィルムの両端部のエッジ部分をトリミングして巻取り、厚み75μmの二軸延伸フィルムを得た。
得られたフィルムの物性は表1の通りである。実施例1に比較し、熱処理温度が低く、結晶化度が低いため、熱収縮率は少し高く、軟化開始温度も少し低く、ピン嵌入距離が大きくなっているが、請求項1を満足しており、平面性が良好なフィルムが得られている。
【0035】
比較例2
実施例1と同様にして縦延伸、横延伸を施したフィルムを、テンタ中で引続き220℃の熱処理を行い、熱処理後、一旦200℃まで冷却後、200℃から110℃までの徐冷区間で、テンタのレール幅を縮めて幅方向に4%、テンタのクリップ間隔を縮めて、長手方向に1.5%リラックス処理を施し、テンタから取出し、フィルムの両端部のエッジ部分をトリミングして巻取り、厚み75μmの二軸延伸フィルムを得た。熱処理温度が低く、結晶化度が低いため、熱収縮率が高く、耐熱軟化性も悪いため、平面性を満足したフィルムが得られていない。
【0036】
比較例3
極限粘度0.65のポリエチレンテレフタレートのペレットを180℃で5時間真空乾燥した後に、270℃〜300℃に加熱された押出機に供給し、Tダイよりシート状に成形した。さらにこのフィルムを表面温度25℃の冷却ドラム上に静電気力で密着固化した未延伸フィルムを得た。
該未延伸フィルムを、80〜100℃の加熱ロール群で加熱し縦方向に2.5倍一段階で縦延伸し、20〜50℃のロール群で冷却した。続いて、テンタへ導き、該フィルムの両端をクリップで把持しながら、90℃に加熱された熱風雰囲気中で予熱し、95℃の熱風雰囲気中で横方向に2.8倍に横延伸した。
【0037】
こうして二軸延伸されたフィルムをそのまま、テンタ中で引続き、240℃の熱処理を行い、熱処理後、一旦200℃まで冷却後、200℃から110℃までの徐冷区間で、テンタのレール幅を縮めて幅方向に4%、また、テンタのクリップ間隔を縮めて長手方向に1.5%リラックス処理を施し、テンタから取出し、フィルムの両端部のエッジ部分をトリミングして巻取り、厚み75μmの二軸延伸フィルムを得た。
得られたフィルムの物性は表1の通りである。熱収縮率は満足したものが得られているが、実施例1と比較し、延伸による分子配向が弱いため、耐熱軟化性が悪く、耐熱軟化性に起因した平面性不良を生じたフィルムが得られた。
【0038】
実施例5
実施例1と同様にして縦延伸、横延伸を施したフィルムを、テンタ中で引続き240℃の熱処理を行い、熱処理後、一旦200℃まで冷却後、200℃から110℃までの徐冷区間で、テンタのレール幅を縮めて幅方向に4%リラックス処理を施し、テンタ出から、160℃〜70℃に加熱したロール群で、一旦加熱して、ロール速度比を変えて、徐冷しながら、長手方向に2.5%のリラックス処理を施し、フィルムの両端部のエッジ部分をトリミングして巻取り、厚み75μmの二軸延伸フィルムを得た。
得られたフィルムの物性は表1の通りである。実施例1に比較し、熱収縮率が少し低く、リラックス時の分子配向の乱れ大きくなるためか、耐熱軟化性が少し悪くなっているが、本発明で特定した要件を満足しており、平面性が良好なフィルムが得られている。
【0039】
実施例6
実施例1と同様にして縦延伸、横延伸を施したフィルムを、テンタ中で引続き240℃の熱処理を行い、熱処理後、一旦200℃まで冷却後、200℃から110℃までの徐冷区間で、テンタのレール幅を縮めて幅方向に4%リラックス処理を施し、テンタから取出し、上下から熱風が吹き出すオーブンに導き、オーブン入口、出口の把持ロールの速度比を変えて、温度160℃で機械方向に2.5%のリラックスを施し、フィルムの両端部のエッジ部分をトリミングして巻取り、厚み75μmの二軸延伸フィルムを得た。
得られたフィルムの物性は表1の通りである。長手方向のリラックスが無緊張に近いため、実施例5に比較し、分子配向の乱れが少し大きく、耐熱軟化性が少し悪くなっているが、請求項1を満足しており、平面性が良好なフィルムが得られている。
【0040】
比較例4
実施例1同様にして縦延伸、横延伸を施したフィルムを、テンタ中で引き続き、240℃の熱処理を行い、熱処理後、一旦200℃まで冷却後、200℃から110℃までの徐冷区間で、テンタのレール幅を縮めて幅方向に6%、また、テンタのクリップ間隔を縮めて長手方向に3%リラックス処理を施し、テンタから取出し、フィルムの両端部のエッジ部分をトリミングして巻取り、厚み75μmの二軸延伸フィルムを得た。
得られたフィルムの物性は表1の通りである。実施例1と比較すると、リラックス率が高いため、熱収縮率は低くなっているが、弛緩処理時の分子配向の緩和が大きくなるため、軟化開始温度が低下し、ピン嵌入距離が増加し、請求項1を満足してないため、熱軟化に起因した平面性不良を生じたフィルムが得られた。
【0041】
【表1】

Figure 0003539588
【0042】
【発明の効果】
本発明のポリエステルフィルムにより、熱収縮が小さく、耐熱軟化性に優れたフィルムをコストアップすることなく得ることができ、OHPや電機絶縁材料などにおいて、熱収縮や耐熱軟化性に起因する平面性などの問題が生じることのない、しかも、安価な材料を提供することが可能になる。
【図面の簡単な説明】
【図1】熱機械特性試験機を用いて熱軟化性を測定する方法を示す概略構成図である。
【図2】図1の測定で求められる熱軟化性の一例を示す特性図である。
【符号の説明】
1 サポート管
2 台座
3 サンプル
4 金属ピン
5 検出棒
P 圧荷重[0001]
[Industrial applications]
The present invention relates to a biaxially stretched polyester film and a method for producing the same. More specifically, the present invention relates to a polyester film having a reduced heat shrinkage rate and excellent flatness and heat-softening resistance, such as a sheet for an overhead projector (OHP) used in copiers and printers and a base paper for drafting. It is intended to provide a film used for an application which is exposed to a relatively high temperature during use.
[0002]
[Prior art]
Polyester films are used in various fields depending on their physical and thermal properties. In particular, polyester films stretched in the biaxial directions of the longitudinal direction and the transverse direction are more preferably used because of their excellent mechanical properties and the like. In particular, among polyesters, polyethylene terephthalate (hereinafter sometimes referred to as PET) and polyethylene 2,6-naphthalate (hereinafter sometimes referred to as PEN) have excellent mechanical and thermal properties, and In particular, PET is used in a wide range of fields because of its low price.
[0003]
Here, in a biaxially stretched polyester film, mechanical properties such as strength are improved by applying molecular orientation by stretching, but conversely, since strain due to stretching remains in molecular chains, heat is applied. As a result, the strain of the molecular chain is released and contracted. This shrinking property is developed in shrink films for packaging and the like, but generally, this shrinking property often becomes an obstacle. Therefore, after the biaxial stretching, in a tenter used for the transverse stretching, heat treatment (also referred to as heat setting) is performed subsequent to the transverse stretching to release the strain of the molecular chains. Generally, the amount of heat shrinkage decreases with the temperature of this heat treatment.However, this heat treatment alone cannot completely remove the strain, and the heat shrinkage characteristics remain. If too long, there is a problem that the molecular orientation is relaxed and the mechanical properties are reduced.
[0004]
Therefore, as a method for removing the residual distortion, a method of reducing the width of the tenter by narrowing the width of the tenter (referred to as toe-in relaxation) and contracting the width slightly in the width direction is adopted. Have been. However, this method can remove the thermal shrinkage in the width direction but cannot remove the thermal shrinkage in the machine direction, that is, the longitudinal direction of the film. For this reason, various methods for removing the thermal shrinkage in the longitudinal direction of the film have been studied in the past.
[0005]
For example, as disclosed in Japanese Patent Publication No. 4-28218, a method of performing a relaxing process in a machine direction by gradually reducing a clip interval of a tenter has been proposed. In this method, there is an upper limit to the amount of relaxation due to mechanical problems, and if the amount of relaxation is increased, the clip interval before the relaxation process is widened, and the unevenness of the physical properties of the clip gripping part and the non-grip part becomes large. There was a problem of becoming.
[0006]
Further, a method has been performed in which after a film is once wound up, a heat treatment is performed in an oven while slowly unwinding, and at that time, a relaxation process is performed with a speed difference in the machine direction. However, in this method, there is a problem that the cost is increased due to performing the relaxing processing.
[0007]
Further, as disclosed in Japanese Patent Publication No. 60-226160, a method of providing a machine-direction relaxation treatment device using an oven during the film production process has been proposed. However, in consideration of the film production speed, a heat treatment method has been proposed. When the temperature is increased, the flatness and mechanical properties of the film are deteriorated, so that the temperature cannot be increased so much. As a result, the heat shrinkage rate particularly when exposed to a high temperature such as 150 ° C. or 200 ° C. is excellent. There was a problem that a film having both mechanical properties could not be obtained.
[0008]
OHP sheets used in copiers, printers, etc. are exposed to relatively high temperatures during use, so low heat shrinkage sheets are required. As a result, even a sheet having a low heat shrinkage may deteriorate the flatness, so that there is a problem that a low heat shrinkage alone is not sufficient.
[0009]
[Problems to be solved by the invention]
Therefore, the present invention provides a polyester film that reduces the heat shrinkage, which is the fate of a biaxially stretched film, in the machine direction and the width direction, inexpensively and sufficiently, and has excellent flatness, heat-softening resistance, and mechanical properties. The purpose is to do. The present inventors have conducted intensive studies and, as a result, produced a film that satisfies certain characteristics, thereby producing an excellent film that has excellent low heat shrinkage and does not cause a problem of deterioration in flatness during pressure conveyance due to thermal softening. It was successful.
[0010]
[Means for Solving the Problems]
The polyester film of the present invention for this purpose has a biaxially oriented film made of polyester, which has a heat shrinkage of 0.3% or less for 30 minutes at 150 ° C. in the longitudinal and width directions of the film, When a pin having a thickness of 0.8 mm is pressed at a temperature rise of 5 ° C./min with a pressure load of 10 g at a temperature of 115 ° C. or more at the start of pin insertion into the film, and the insertion distance is 8% of the film thickness. It consists of the following. According to the present invention, a polyester film excellent in low heat shrinkage, flatness and softening resistance can be obtained.
[0011]
Further, the method for producing a polyester film according to the present invention, when producing a biaxially oriented polyester film, 3 to 6 times each in machine direction and lateral direction After the biaxial stretching, heat treatment is performed at a temperature of 225 ° C or more and 255 ° C or less, and after the heat treatment, Cool the film under tension to a temperature below 210 ° C, then While gradually cooling the film, a relaxation treatment of 2.5% or less in the longitudinal direction and 5.0% or less in the width direction is performed.
[0013]
Hereinafter, the present invention will be described in detail.
The polyester referred to in the present invention is a polymer obtained by condensation polymerization of a diol and a dicarboxylic acid, and examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, adipic acid, sebacic acid, and the like. The diol is represented by ethylene glycol, trimethylene glycol, tetramethylene glycol, cyclohexane dimethanol and the like. Specific examples include polymethylene terephthalate, polyethylene terephthalate, polytetramethylene terephthalate, polyethylene-p-oxybenzoate, poly-1,4-cyclohexane dimethylene terephthalate, and polyethylene-2,6-naphthalate. Of course, these polyesters may be a homopolymer or a copolymer, and as a copolymerization component, for example, diol components such as diethylene glycol, neopentyl glycol, and polyalkylene glycol, adipic acid, sebacic acid, phthalic acid, And dicarboxylic acid components such as isophthalic acid and 2,6-naphthaltenedicarboxylic acid. In the case of the present invention, polyethylene terephthalate and polyethylene-2,6-naphthalate are particularly preferred from the viewpoint of mechanical strength, heat resistance, chemical resistance, durability and the like. Among them, polyethylene terephthalate is preferable because its price is low.
[0014]
In addition, various known additives such as an antioxidant, an antistatic agent, a crystal nucleating agent, inorganic particles, and organic particles may be added to the polyester. In particular, the crystal nucleus material and the inorganic particles are effective for improving the heat-softening resistance of the film, suppressing the deformation of the film at high temperature and pressure transport, and improving the flatness.
[0015]
It is also preferable that the film has a laminated structure. Examples of the laminated structure include lamination by coextrusion and lamination by coating. As a method of lamination by coating, a method in which a coating material is applied to the film before the film is laterally stretched, and the solvent is dried, laterally stretched, and heat-treated in a tenter, is preferably used. These laminated structures are mainly used to impart surface characteristics according to the intended use. For example, various characteristics such as easy adhesion of ink and toner and antistatic property for suppressing static electricity can be imparted.
[0016]
The biaxially oriented film in the present invention refers to a film that has been stretched in the machine direction (film longitudinal direction) of the film and in a direction (width direction) perpendicular to the machine direction. Specifically, melt-extruded, a substantially non-oriented film is stretched in the longitudinal direction and then stretched in the width direction, stretched in the width direction and stretched in the longitudinal direction, or stretched simultaneously in the longitudinal and width directions. The stretching in the longitudinal direction and the stretching in the width direction may be performed in combination a plurality of times.
[0017]
In the present invention, the heat shrinkage rate at 150 ° C. for 30 minutes in the longitudinal direction and width direction of the film must be 0.3% or less. Is contracted, and the flatness is degraded due to thermal shrinkage such as curl or partial slack.
[0018]
In addition, when a pin having a tip diameter of 0.8 mm is pressed with a pressure load of 10 g at a temperature rise of 5 ° C./min using a thermomechanical property tester (hereinafter sometimes abbreviated as TMA), It is necessary that the temperature at which the pins are inserted into the pin is 115 ° C. or more, and the insertion distance is 8% or less of the film thickness. If the film is deviated from the above, when the film is conveyed under pressure at a high temperature, the film is thermally softened and subjected to pressure deformation, and the flatness is deteriorated due to the heat softening, so that a problem is easily caused. More preferably, the pin insertion start temperature is 125 ° C. or more, and the insertion distance is desirably 5% or less of the film thickness. In particular, recently, in machines such as copiers, printers, and printing presses, considerable heat and pressure are required to increase the speed, and when used, flatness is deteriorated due to heat shrinkage and hot-press deformation. For this reason, it was found that a film having a smaller heat shrinkage at 150 ° C. at a high temperature and having both excellent heat-resistant softening property was preferable in use.
[0019]
As described above, in the present invention, the heat shrinkage of the film at 150 ° C. for 30 minutes is 0.3% or less, and when the film is heated (5 ° C./min) under a TMA load (10 g / 0.8 mmφ), When the fitting start temperature is 115 ° C. or more, the fitting distance must be 8% or less of the film thickness. More preferably, the pin fitting start temperature is 125 ° C. or more, and the fitting distance is 5% or less of the film thickness. It is preferable to obtain a film excellent in heat resistance and heat softening property. In particular, in polyethylene terephthalate, the heat treatment temperature is increased and the relaxation treatment is performed to reduce the heat shrinkage.However, if the heat treatment temperature, the relaxation temperature, and the relaxation rate are excessively increased, the disorder of the molecular orientation becomes large, and the mechanical property of the film increases. It is not preferable because properties, flatness and heat-softening property are deteriorated. Therefore, in order to achieve excellent low heat shrinkage, flatness, and heat-softening resistance, the degree of crystallinity of the film should be increased as much as possible by strengthening the molecular orientation in longitudinal and transverse stretching and heat treatment to suppress disturbance in molecular orientation. In addition, heat treatment conditions in which the relaxation temperature and the relaxation rate are minimized are required.
[0020]
In the film produced under such conditions, the trans ratio of the amorphous portion is preferably 25% or more. More preferably, it is 30% or more. That is, it is considered that the softening behavior as described above is caused by the easiness of movement of the amorphous part, and as a result of intensive studies, it was found that the softening behavior was related to the molecular chain conformation of the amorphous part. In the case of polyethylene terephthalate, it is known that the conformation of the molecular chain includes a trans type and a gauche type. The transformer type is the most thermodynamically stable structure, and the gauche type is called a metastable structure. The crystal part is entirely composed of only the trans type, and the amorphous part is a mixture of the trans type and the gauche type. Here, in a completely non-oriented amorphous film, there are many gauche types and few trans types. As the orientation advances, the ratio of the trans type increases. That is, it is considered that the gauche type exhibits more amorphous properties. Here, when considering the thermal softening behavior, many gauche types are included, and when it has a disordered structure, it is easy to soften, and when the number of trans types increases, it is stable against heat, and the gauche type molecular chains are formed. It is considered to be constrained, and it is considered that softening behavior is unlikely to occur. That is, if the trans ratio of the amorphous portion is less than 25%, softening behavior is likely to occur, which is not preferable.
[0021]
Next, an example of the production method of the present invention will be described, but the present invention is not limited to this example.
An example in which polyethylene terephthalate is used as the polyester will be described, but conditions such as drying conditions, extrusion conditions, and stretching temperatures vary depending on the resin. According to a conventional method, bis-β-hydroxyethyl terephthalate (BHT) was obtained by esterifying terephthalic acid and ethylene glycol or transesterifying dimethyl terephthalate and ethylene glycol. Next, this BHT was transferred to a polymerization tank, and heated to 280 ° C. under vacuum with stirring to advance the polymerization reaction. Here, the stirring torque was detected, and the reaction was terminated when the predetermined torque was reached. The mixture was discharged from the polymerization tank in a gut shape, cooled with water, and then cut into pellets.
[0022]
Next, the polymerized polyethylene terephthalate pellets are vacuum-dried at 180 ° C. for 5 hours, then supplied to an extruder heated to a temperature of 270 to 300 ° C., and extruded from a T-die into a sheet. The melted sheet is closely adhered and solidified by electrostatic force on a drum cooled to a drum surface temperature of 25 ° C. to obtain a substantially amorphous molded film. This film is heated by a group of heating rolls at 80 to 120 ° C., stretched in a machine direction by 3 to 6 times in one step or in multiple steps, and cooled by a group of rolls at 20 to 50 ° C. Subsequently, the film is guided to a tenter and heated in a hot air atmosphere heated to 80 to 140 ° C. while being gripped with both ends of the film with clips, and is stretched 3 to 6 times in the horizontal direction.
[0023]
Here, as one method for obtaining a film in the present invention, there is a method in which a biaxially stretched film is heat-treated at a temperature near the melting point of polyester. That is, the biaxially stretched film is subjected to high-temperature heat treatment in order to impart low heat shrinkage, flatness, and heat-softening resistance. In the case of polyethylene terephthalate, the temperature is from 225 ° C to 255 ° C, preferably from 230 ° C. The above characteristics can be obtained by performing a rapid temperature rise and a short-time heat treatment at 250 ° C.
[0024]
Under such heat treatment conditions, it is possible to increase the crystallinity of the film, and obtain a more favorable film in which the disorder of the molecular orientation is small. However, the heat shrinkage at 150 ° C. cannot be reduced only by adopting such heat treatment conditions. That is, by cooling from such a high temperature, as the thermal expansion at high temperature cools, it contracts reversibly as it cools, so that strain is accumulated and heat shrinkage in the range from the glass transition temperature to 150 ° C. is added. Become so. In order to suppress this heat shrinkage, it is necessary to relax in the machine direction so as to absorb the reversible shrinkage due to this cooling in the step of cooling from the heat treatment of the tenter. When applied, the relaxation of the molecular orientation is increased, and a film having excellent heat-softening resistance cannot be obtained. Therefore, after the heat treatment, it is preferable to perform a relaxation treatment after cooling under tension to about 210 ° C. or less, preferably to about 200 ° C., in order to suppress relaxation of molecular orientation and to impart heat-resistant softening property. . Various methods are conceivable as the relaxation process. In particular, in order to maintain flatness, it is preferable to reduce the interval between clips while holding the film with clips of a tenter. Further, the tenter rail width was reduced as required, a relaxation treatment in the width direction was performed, and the film was gradually cooled to room temperature and wound up to obtain a film of the present invention. By performing such a heat treatment and a relaxation treatment, disorder of the molecular orientation of the film can be controlled, and a film having both low heat shrinkage, flatness, and heat softening resistance can be obtained.
[0025]
[Physical property evaluation method]
(1) Heat shrinkage at 150 ° C for 30 minutes
A film is sampled to a width of 10 mm and a length of about 250 mm, and cross marks are made at intervals of about 200 mm. The interval is determined by a universal projector manufactured by Nippon Kogaku Co., Ltd. and a linear scale manufactured by Mitoyo Shoji Co., Ltd. 0.001 mm) and accurately measure using a length measuring machine 0 (Mm). This sample was treated in an oven heated to 150 ° C. for 30 minutes, allowed to cool at room temperature (23 ° C., 65%), and then the marking interval was measured again with a length measuring machine to obtain L (mm). And Here, the heat shrinkage rate = (L 0 −L) × 100 / L 0 (%) And the average value of 5 samples was adopted.
[0026]
(2) Thermal softening property
Using TMA TM-3000 and TA-1500 manufactured by Vacuum Riko Co., Ltd., a quartz cylindrical pedestal 2 of 8 mmφ and a height of 5 mm is placed on a supporter (support tube) 1 as shown in FIG. A sample 3 of about 5 × 5 mm is placed, a metal pin 4 having a tip diameter of 0.8 mmφ is set on the detection rod 5, and a pressure load P of 10 g is applied thereto, and the temperature is raised up to 200 ° C. at a rate of 5 ° C./min. A temperature dimensional change curve is obtained as shown in FIG. 2 by raising the temperature, and a tangent (extension line) is drawn on a straight line portion including the thermal expansion in the thickness direction of the metal pin 4 and the film sample 3 in the characteristic curve of FIG. The temperature at which the tangent began to deviate to the insertion (shrinkage) side was defined as the pin insertion (softening) start temperature, and the value obtained by dividing the dimensional difference at which the thermal dimensional change curve deviated most greatly from the extension line by the film thickness was defined as the insertion distance. In cases where no pin insertion was observed, the softening temperature was 200 ° C. or higher.
[0027]
(3) Flatness
The film is cut into an A4 size plate, passed through a copier Vivce500 manufactured by Fuji Xerox Co., Ltd., and the film is spread on a horizontal table having a thread stretched on the upper portion (20 cm from the table). Observation was made as ○ when no curved portion was observed, Δ when the curved portion was three or less, and × when more.
[0028]
(4) Transform ratio of amorphous part
Attaching a measurement attachment for total reflection method (ATR) to Fourier transform infrared absorption measurement device (FT-IR) FTS-7 manufactured by Nippon Bio-Rad Laboratories Co., Ltd. and using a KRS crystal at a reflection angle of 45 ° The absorbance was measured. From the measurement results, 1508, 1453, 1410, 1337 cm -1 The absorbance of the peak was read, and the Gauche-type absorption ratio Ag = (1453 cm) -1 Absorbance) / (1508cm -1 Absorbance of +1 410cm -1 Absorbance) and trans-type absorption ratio At = (1337 cm -1 Absorbance) / (1508cm -1 Absorbance of +1 410cm -1 Absorbance). Here, the absorbance was measured for the unstretched film sample extruded into a sheet, quenched and solidified on a cooling drum, and Ag and At were calculated by the above calculation. 0 , At 0 And Separately, a density gradient tube using an aqueous sodium bromide solution is prepared, and the density of the sample at 25 ° C. is measured. The ratio of crystal parts is determined by the density (g / cm Three ), The ratio of the crystal part (%) = (density-1.335) / (1.455-1.335) × 100, and the ratio of the amorphous part is Xa (%) = 100− (the ratio of the crystal part). ).
Here, assuming that the non-oriented unstretched film has a crystal portion ratio of 0% (amorphous portion 100%) and a gauche ratio of 85%, the correction coefficient α is α = (0.85 At) 0 ) / (0.15 Ag 0 ). The trans-ratio of the amorphous part is calculated from the absorption ratio Ag and At of the sample by setting the trans-ratio of the amorphous part (%) = [{At / (At + α · Ag)} − Xa] × 100. The average value of the values measured in the width direction was used.
[0029]
【Example】
Hereinafter, a description will be given based on examples of the present invention.
Example 1
The polyethylene terephthalate pellets having an intrinsic viscosity of 0.65 were vacuum-dried at 180 ° C. for 5 hours, then supplied to an extruder heated to 270 ° C. to 300 ° C., and formed into a sheet shape from a T-die. Further, an unstretched film in which the film was adhered and solidified by electrostatic force on a cooling drum having a surface temperature of 25 ° C. was obtained.
The unstretched film was heated by a group of heating rolls at 80 to 100 ° C., stretched longitudinally by 3.4 times in one step, and cooled by a group of rolls of 20 to 50 ° C. Subsequently, the film was guided to a tenter, preheated in a hot air atmosphere heated to 90 ° C. while holding both ends of the film with clips, and stretched transversely 3.6 times in a 95 ° C. hot air atmosphere.
[0030]
The film thus biaxially stretched as it is is continuously subjected to a heat treatment at 240 ° C. in a tenter. After the heat treatment, the film is once cooled to 200 ° C., and then slowly cooled from 200 ° C. to 110 ° C. to reduce the rail width of the tenter. 4% in the width direction (TD direction) and 1.5% relaxation in the longitudinal direction (MD direction) with the clip interval of the tenter reduced, taken out from the tenter, and trimmed at the edges of both ends of the film. After winding, a biaxially stretched film having a thickness of 75 μm was obtained.
The physical properties of the obtained film are as shown in Table 1. A heat-softening film having a small heat shrinkage rate, a high softening start temperature, a small pin insertion distance, and a good flatness were obtained.
[0031]
Example 2
The film subjected to longitudinal stretching and transverse stretching in the same manner as in Example 1 was subsequently subjected to a heat treatment at 240 ° C. in a tenter, and after the heat treatment, the rail width of the tenter was reduced in a gradually cooling section from 240 ° C. to 110 ° C. Shrink to 4% in the width direction and 1.5% in the longitudinal direction to shrink the clip interval of the tenter, take it out, take it out of the tenter, trim the edges of both ends of the film and wind it up, take up 75μm thick A biaxially stretched film was obtained.
Table 1 shows the physical properties of the obtained film. Compared with Example 1, there is no difference in heat shrinkage, but the relaxation start temperature is high, and the molecular orientation is disordered. Therefore, the softening start temperature is reduced and the pin insertion distance is slightly increased. Item 1 was satisfied, and a film having good flatness could be obtained.
[0032]
Comparative Example 1
The film subjected to longitudinal stretching and transverse stretching in the same manner as in Example 1 is successively subjected to a heat treatment at 240 ° C. in a tenter. After the heat treatment, the film is gradually relaxed to 110 ° C. without being subjected to relaxation treatment in the width direction and the machine direction. After cooling, the film was taken out of the tenter, and the edges of both ends of the film were trimmed and wound up to obtain a biaxially stretched film having a thickness of 75 μm.
Table 1 shows the physical properties of the obtained film. Compared with Example 1, since a relaxation treatment was not performed, a disorder in molecular orientation was small, and a film having a good softening start temperature and a good heat-resistant softening property without pin insertion was obtained, but the heat shrinkage rate was high. Therefore, a film having poor flatness due to heat shrinkage has been obtained.
[0033]
Example 3
The film subjected to longitudinal stretching and transverse stretching in the same manner as in Example 1 was subsequently subjected to a heat treatment at 250 ° C. in a tenter. After the heat treatment, the film was once cooled to 200 ° C. and then gradually cooled from 200 ° C. to 110 ° C. The width of the tenter is reduced by 4% in the width direction by reducing the width of the tenter, and the interval between clips of the tenter is reduced by 1.5% in the longitudinal direction. The film is taken out from the tenter, and the edges of both ends of the film are trimmed. After winding, a biaxially stretched film having a thickness of 75 μm was obtained.
Table 1 shows the physical properties of the obtained film. Compared with Example 1, a film having a higher heat treatment temperature and a higher degree of crystallinity has a smaller heat shrinkage, a better heat-softening property, and a better flatness.
[0034]
Example 4
The film subjected to longitudinal stretching and transverse stretching in the same manner as in Example 1 is subjected to a heat treatment at 230 ° C. in a tenter, and after the heat treatment, once cooled to 200 ° C., and then slowly cooled from 200 ° C. to 110 ° C. The width of the tenter is reduced by 4% in the width direction by reducing the width of the tenter, and the interval between clips of the tenter is reduced by 1.5% in the longitudinal direction. The film is taken out from the tenter, and the edges of both ends of the film are trimmed. After winding, a biaxially stretched film having a thickness of 75 μm was obtained.
Table 1 shows the physical properties of the obtained film. Compared with Example 1, the heat treatment temperature is lower and the degree of crystallinity is lower, so that the heat shrinkage is slightly higher, the softening start temperature is slightly lower, and the pin insertion distance is longer. Thus, a film having good flatness was obtained.
[0035]
Comparative Example 2
The film subjected to longitudinal stretching and transverse stretching in the same manner as in Example 1 is continuously heat-treated at 220 ° C. in a tenter, and after the heat treatment, once cooled to 200 ° C., and then slowly cooled from 200 ° C. to 110 ° C. The width of the tenter is reduced by 4% in the width direction, the clip interval of the tenter is reduced, the relaxing process is performed by 1.5% in the longitudinal direction, the film is taken out from the tenter, and the edges of both ends of the film are trimmed and wound. Then, a biaxially stretched film having a thickness of 75 μm was obtained. Since the heat treatment temperature is low and the crystallinity is low, the heat shrinkage is high and the heat softening property is poor, so that a film satisfying the flatness has not been obtained.
[0036]
Comparative Example 3
The polyethylene terephthalate pellets having an intrinsic viscosity of 0.65 were vacuum-dried at 180 ° C. for 5 hours, then supplied to an extruder heated to 270 ° C. to 300 ° C., and formed into a sheet shape from a T-die. Further, an unstretched film in which the film was adhered and solidified by electrostatic force on a cooling drum having a surface temperature of 25 ° C. was obtained.
The unstretched film was heated with a group of heating rolls at 80 to 100 ° C, stretched longitudinally in one step by 2.5 times in the longitudinal direction, and cooled by a group of rolls at 20 to 50 ° C. Subsequently, the film was guided to a tenter, preheated in a hot air atmosphere heated to 90 ° C. while holding both ends of the film with clips, and stretched laterally 2.8 times in a 95 ° C. hot air atmosphere.
[0037]
The film thus biaxially stretched is directly subjected to a heat treatment at 240 ° C. in a tenter. After the heat treatment, the film is once cooled to 200 ° C., and then the rail width of the tenter is reduced in a gradually cooling section from 200 ° C. to 110 ° C. 4% in the width direction and 1.5% relaxation in the longitudinal direction by reducing the clip interval of the tenter, take out from the tenter, trim the edges of both ends of the film and wind it up. An axially stretched film was obtained.
Table 1 shows the physical properties of the obtained film. Satisfactory heat shrinkage is obtained, but compared to Example 1, the film has poor molecular orientation due to stretching, and thus has poor heat-softening property, and a film having poor flatness due to heat-softening property is obtained. Was done.
[0038]
Example 5
The film subjected to longitudinal stretching and transverse stretching in the same manner as in Example 1 was subjected to a heat treatment at 240 ° C. in a tenter, and after the heat treatment, the film was once cooled to 200 ° C. and then gradually cooled from 200 ° C. to 110 ° C. Then, the width of the tenter rail is reduced, and a 4% relaxation process is performed in the width direction. From the tenter, the roll is heated to 160 ° C. to 70 ° C., and once heated, while changing the roll speed ratio, and gradually cooling. A 2.5% relaxation treatment was performed in the longitudinal direction, and the edge portions at both ends of the film were trimmed and wound up to obtain a 75 μm-thick biaxially stretched film.
Table 1 shows the physical properties of the obtained film. Compared to Example 1, the heat shrinkage was slightly lower, and the heat-induced softening property was slightly degraded, probably because the molecular orientation during relaxation was larger, but the requirements specified in the present invention were satisfied. A film having good properties is obtained.
[0039]
Example 6
The film subjected to longitudinal stretching and transverse stretching in the same manner as in Example 1 was subjected to a heat treatment at 240 ° C. in a tenter, and after the heat treatment, the film was once cooled to 200 ° C. and then gradually cooled from 200 ° C. to 110 ° C. , Reduce the rail width of the tenter, apply 4% relaxation treatment in the width direction, take it out of the tenter, guide it to the oven where hot air blows from above and below, change the speed ratio of the gripping rolls at the entrance and exit of the oven, and machine at 160 ° C. The film was relaxed by 2.5% in the direction, and the edges of both ends of the film were trimmed and wound up to obtain a biaxially stretched film having a thickness of 75 μm.
Table 1 shows the physical properties of the obtained film. Since the relaxation in the longitudinal direction is almost tensionless, the disorder of the molecular orientation is slightly larger and the heat softening property is slightly deteriorated as compared with Example 5, but satisfy the claim 1, and the flatness is good. Film has been obtained.
[0040]
Comparative Example 4
The film subjected to longitudinal stretching and transverse stretching in the same manner as in Example 1 is subjected to a heat treatment at 240 ° C. in a tenter, and after the heat treatment, once cooled to 200 ° C., and then gradually cooled from 200 ° C. to 110 ° C. The width of the tenter is reduced by 6% in the width direction by reducing the width of the tenter, and the interval between clips of the tenter is reduced by 3% in the longitudinal direction. The film is taken out from the tenter, and the edges of both ends of the film are trimmed and wound. And a biaxially stretched film having a thickness of 75 μm.
Table 1 shows the physical properties of the obtained film. Compared with Example 1, the heat shrinkage rate is low because the relaxation rate is high, but the relaxation of the molecular orientation during the relaxation process is large, so the softening start temperature is reduced and the pin insertion distance is increased, Since the first aspect was not satisfied, a film having poor flatness due to thermal softening was obtained.
[0041]
[Table 1]
Figure 0003539588
[0042]
【The invention's effect】
By the polyester film of the present invention, it is possible to obtain a film having a small heat shrinkage and an excellent heat-softening property without increasing the cost, and a flatness due to the heat shrinkage and the heat-softening property in an OHP or an electric insulating material. It is possible to provide an inexpensive material that does not cause the problem described above.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a method for measuring thermosoftening property using a thermomechanical property tester.
FIG. 2 is a characteristic diagram showing an example of the thermal softening property determined by the measurement in FIG.
[Explanation of symbols]
1 Support tube
2 pedestals
3 samples
4 Metal pins
5 Detection rod
P pressure load

Claims (2)

ポリエステルからなる二軸配向フィルムにおいて、フィルムの長手方向、幅方向の150℃で30分の熱収縮率が0.3%以下であり、フィルムに先端径が0.8mmのピンを10gの圧荷重で5℃/分の昇温下に押圧した際の、フィルムへのピン嵌入開始温度が115℃以上で、かつ、嵌入距離がフィルム厚さの8%以下であることを特徴とするポリエステルフィルム。A biaxially oriented film made of polyester has a heat shrinkage of not more than 0.3% for 30 minutes at 150 ° C. in the longitudinal direction and width direction of the film, and a pin having a tip diameter of 0.8 mm applied to the film with a pressure load of 10 g. A polyester film having a pin insertion start temperature of 115 ° C. or more and a fitting distance of 8% or less of the film thickness when pressed at a temperature increase of 5 ° C./min. 二軸配向ポリエステルフィルムを製造するに際し、フィルムを機械方向と横方向にそれぞれ3〜6倍に二軸延伸した後、225℃以上、255℃以下の温度で熱処理を施し、熱処理後に、フィルムを緊張下に210℃以下の温度まで冷却し、しかる後にフィルムを徐冷しながら、長手方向に2.5%以下、幅方向に5.0%以下のリラックス処理を施すことを特徴とする、ポリエステルフィルムの製造方法。Upon manufacturing a biaxially oriented polyester film was biaxially oriented to 3-6 times respectively in the machine and transverse directions of the film, 225 ° C. or higher, subjected to a heat treatment at 255 ° C. below the temperature after the heat treatment, tension the film A polyester film characterized by being subjected to a relaxing treatment of 2.5% or less in the longitudinal direction and 5.0% or less in the width direction while gradually cooling the film to a temperature of 210 ° C. or less. Manufacturing method.
JP8328695A 1995-03-14 1995-03-14 Polyester film and method for producing the same Expired - Lifetime JP3539588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8328695A JP3539588B2 (en) 1995-03-14 1995-03-14 Polyester film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8328695A JP3539588B2 (en) 1995-03-14 1995-03-14 Polyester film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08244111A JPH08244111A (en) 1996-09-24
JP3539588B2 true JP3539588B2 (en) 2004-07-07

Family

ID=13798148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8328695A Expired - Lifetime JP3539588B2 (en) 1995-03-14 1995-03-14 Polyester film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3539588B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4983075B2 (en) * 2006-04-04 2012-07-25 東レ株式会社 Method for producing biaxially stretched polyester film
JP6167798B2 (en) * 2012-09-27 2017-07-26 東洋紡株式会社 Polyester film
JP6167797B2 (en) * 2012-09-27 2017-07-26 東洋紡株式会社 Polyester film
JP6255301B2 (en) * 2013-05-21 2017-12-27 ポリプラスチックス株式会社 Method for measuring crystallinity of resin molded products
CN107001666B (en) * 2014-11-28 2020-09-01 东丽株式会社 Polyester film

Also Published As

Publication number Publication date
JPH08244111A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
JP5664548B2 (en) Heat-shrinkable polyester film, its package, and method for producing heat-shrinkable polyester film
JP4844561B2 (en) Method for producing biaxially stretched polyester film
JP5686601B2 (en) Heat-shrinkable polyester film
JPH07106597B2 (en) Method for manufacturing high modulus film
WO2019188337A1 (en) Heat-shrinkable polyester film
JP3765681B2 (en) Production method of polyester film
JP4983075B2 (en) Method for producing biaxially stretched polyester film
JP4228087B2 (en) Biaxially stretched polyester film for processing
KR101262435B1 (en) Thermo-shrinkable polyester film
JP3539588B2 (en) Polyester film and method for producing the same
JPH10180866A (en) Low heat-shrinkable polyester film and its manufacture
JP2001187421A (en) Tenter clip and producing method for thermoplastic resin film
JP2002210818A (en) Method for manufacturing thermoplastic resin oriented sheet
JPH08164558A (en) Polyester film
JPH0929833A (en) Film for overhead projector
JP3852671B2 (en) Method for producing biaxially stretched polyester film
JP7255168B2 (en) biaxially oriented film
JPH06166102A (en) Manufacture of polyester film
JPH0780928A (en) Production of plastic film
JPH08132523A (en) Low heat-shrinkable polyester film
JP2004358742A (en) Method for manufacturing plastic film
JPH11277621A (en) Biaxially oriented thermoplastic resin film and manufacture thereof
JPH11115043A (en) Biaxially stretched polyester film and its manufacture
JP3367129B2 (en) Method for producing polyester film
KR20090053702A (en) Thermo-shrinkable polyester film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040318

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

EXPY Cancellation because of completion of term