JP2010273127A - Method of manufacturing composite piezoelectric substrate - Google Patents

Method of manufacturing composite piezoelectric substrate Download PDF

Info

Publication number
JP2010273127A
JP2010273127A JP2009123439A JP2009123439A JP2010273127A JP 2010273127 A JP2010273127 A JP 2010273127A JP 2009123439 A JP2009123439 A JP 2009123439A JP 2009123439 A JP2009123439 A JP 2009123439A JP 2010273127 A JP2010273127 A JP 2010273127A
Authority
JP
Japan
Prior art keywords
substrate
piezoelectric substrate
composite piezoelectric
adhesive
litao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009123439A
Other languages
Japanese (ja)
Inventor
Masayuki Tanno
雅行 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009123439A priority Critical patent/JP2010273127A/en
Publication of JP2010273127A publication Critical patent/JP2010273127A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a composite piezoelectric substrate which is reduced in warpage after heat treatment and is less susceptible to cracking. <P>SOLUTION: In the method of manufacturing a composite piezoelectric substrate where at least a piezoelectric substrate and an insulator substrate are stuck with adhesive and then the adhesive is cured by heat treating the substrates thus stuck, a substrate having a conductivity of 1×10<SP>-14</SP>[Ω<SP>-1</SP>cm<SP>-1</SP>] or less is used as the insulator substrate, and the adhesive is cured by heat treatment while performing neutralization. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複合化された圧電基板(以下、複合圧電基板とも表記)に関するものである。   The present invention relates to a composite piezoelectric substrate (hereinafter also referred to as a composite piezoelectric substrate).

携帯電話等の高周波通信において周波数調整・選択用の部品として、例えば圧電基板上に弾性表面波を励起するための櫛形電極が形成された弾性表面波(Surface Acoustic Wave、SAW)デバイスが用いられる。   A surface acoustic wave (SAW) device in which a comb electrode for exciting a surface acoustic wave is formed on a piezoelectric substrate is used as a component for frequency adjustment / selection in high-frequency communication such as a cellular phone.

これに用いられる圧電基板材料は、電気信号から機械的振動への変換効率(以下、電気機械結合係数と記す)が極めて大きいこと、また櫛形電極の電極間隔と弾性波の音速により決まるフィルタ等の中心周波数が温度により変動しないことが求められる(以下、周波数温度特性と記す)。   The piezoelectric substrate material used for this has a very high conversion efficiency (hereinafter referred to as an electromechanical coupling coefficient) from an electric signal to mechanical vibration, and a filter determined by the electrode interval of the comb electrodes and the sound velocity of the elastic wave. It is required that the center frequency does not vary with temperature (hereinafter referred to as frequency-temperature characteristics).

すなわち、大きな電気機械結合係数と小さな周波数温度係数を兼ね備えた圧電基板が有れば好ましい。こうした特性を実現する圧電基板の一例として、圧電基板と他の基板を接合した複合圧電基板がある。   In other words, it is preferable to have a piezoelectric substrate having both a large electromechanical coupling coefficient and a small frequency temperature coefficient. An example of a piezoelectric substrate that realizes such characteristics is a composite piezoelectric substrate in which a piezoelectric substrate and another substrate are bonded.

このような複合圧電基板の一例として、特許文献1にはタンタル酸リチウム基板とサファイア基板との接合界面に、0.3nm以上2.5nm以下の厚みのアモルファスの接合領域を備えていることを特徴とする接合基板が開示されている。
具体的には、特許文献1に記載の接合基板では、接合領域の厚みは1.5nm以上であり、150℃で1時間保持した後の反り量が概ね200μm以下となっている。
As an example of such a composite piezoelectric substrate, Patent Document 1 includes an amorphous junction region having a thickness of 0.3 nm to 2.5 nm at a junction interface between a lithium tantalate substrate and a sapphire substrate. A bonded substrate is disclosed.
Specifically, in the bonded substrate described in Patent Document 1, the thickness of the bonded region is 1.5 nm or more, and the amount of warpage after being held at 150 ° C. for 1 hour is approximately 200 μm or less.

ここで、接合基板に求められる重要な特性として、熱処理後の反り増加量が少ないことがある。これは、SAWデバイスの製造工程においては熱処理を施すことが必要とされる場合があり、かかる熱処理後に基板に反りが生じると、クラックが生じたり、その後のダイシング工程などで基板をステージに吸着させることが困難となり、生産性が大幅に低下するためであるとされる。   Here, as an important characteristic required for the bonded substrate, there is a small increase in warpage after the heat treatment. This is because it may be necessary to perform a heat treatment in the SAW device manufacturing process, and if the substrate warps after the heat treatment, a crack occurs or the substrate is adsorbed to the stage in a subsequent dicing process or the like. This is because it becomes difficult and productivity is greatly reduced.

しかし、前述の特許文献1に記載の発明では、支持基板としてサファイア基板を用いているが、サファイア基板が高価であるため、安価な複合圧電基板とならないという問題がある。
そして、近年、更に反り増加量を低減させた複合圧電基板が求められていた。
However, in the invention described in Patent Document 1, a sapphire substrate is used as a support substrate. However, since the sapphire substrate is expensive, there is a problem that an inexpensive composite piezoelectric substrate cannot be obtained.
In recent years, there has been a demand for a composite piezoelectric substrate in which the amount of increase in warpage is further reduced.

特許公報3929983号公報Japanese Patent Publication No. 3929983

本発明は、上記事情に鑑みなされたもので、熱処理後の反り増加量を低減し、クラックの発生を防止することができる安価な複合化された圧電基板の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an inexpensive composite piezoelectric substrate manufacturing method capable of reducing the increase in warpage after heat treatment and preventing the occurrence of cracks.

上記課題を解決するために、本発明によれば、少なくとも、圧電基板と絶縁体基板とを接着剤で貼り合わせ、前記貼り合わせた基板に熱処理を行うことにより、前記接着剤を硬化させる複合化された圧電基板の製造方法であって、前記絶縁体基板として導電率が1×10−14[Ω−1・cm−1]以下のものを用い、前記熱処理による接着剤の硬化は、除電処理を施しながら行うことを特徴とする複合化された圧電基板の製造方法を提供する。
このような複合化された圧電基板の製造方法によれば、安価ではあるが一般的に複合圧電基板の反りが大きくなる傾向にある、導電率が1×10−14[Ω−1・cm−1]以下の絶縁体基板を用いた場合でも、熱処理後の反りの増加量が小さく、クラックの発生が抑制された複合化された圧電基板を提供することができる。
In order to solve the above-described problem, according to the present invention, at least a piezoelectric substrate and an insulator substrate are bonded together with an adhesive, and the bonded substrate is cured by performing a heat treatment on the bonded substrate. A method of manufacturing a piezoelectric substrate having a conductivity of 1 × 10 −14−1 · cm −1 ] or less is used as the insulator substrate, and the curing of the adhesive by the heat treatment is performed by a charge removal process. The present invention provides a method for manufacturing a composite piezoelectric substrate, which is performed while applying the method.
According to such a method for manufacturing a composite piezoelectric substrate, the conductivity is 1 × 10 −14−1 · cm , which is inexpensive but generally tends to increase the warpage of the composite piezoelectric substrate. 1 ] Even when the following insulator substrate is used, it is possible to provide a composite piezoelectric substrate in which the increase in warpage after heat treatment is small and the generation of cracks is suppressed.

また、前記絶縁体基板として、アルミナが主成分であるものを用いることが好ましい。
このように、絶縁体基板としてアルミナが主成分であるものを用いると、熱処理した後の反りの増加量を更に小さくすることができ、また安価な複合化された圧電基板を得ることができる。
Further, it is preferable to use a substrate whose main component is alumina as the insulator substrate.
As described above, when an insulating substrate containing alumina as a main component is used, the amount of warpage after heat treatment can be further reduced, and an inexpensive composite piezoelectric substrate can be obtained.

また、前記圧電基板として、LiTaO、LiNbO、Liのいずれかからなるものを用いることが好ましい。
このように、圧電基板がLiTaO、LiNbO、又はLiであれば、電気機械結合係数が大きく、また、複合化された圧電基板の効果により、動作周波数の温度変動が抑制された安価な複合化された圧電基板を提供することができる。
Moreover, as the piezoelectric substrate, LiTaO 3, LiNbO 3, it is preferable to use those made of Li 2 B 4 either O 7.
Thus, if the piezoelectric substrate is LiTaO 3 , LiNbO 3 , or Li 2 B 4 O 7 , the electromechanical coupling coefficient is large, and the temperature fluctuation of the operating frequency is suppressed by the effect of the combined piezoelectric substrate. It is possible to provide a low-cost compounded piezoelectric substrate.

本発明によれば、熱処理後の反り増加量が小さく、クラックの発生が抑制され、かつ安価な複合化された圧電基板を得ることができる。   According to the present invention, it is possible to obtain a composite piezoelectric substrate that is small in warpage increase after heat treatment, suppresses the generation of cracks, and is inexpensive.

本発明に係る複合化された圧電基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the composite piezoelectric substrate which concerns on this invention.

以下、本発明についてより具体的に説明する。
前述のように、熱処理後の反りの増加量が小さく、クラックの発生を抑制することができる複合圧電基板の製造方法が待たれていた。
Hereinafter, the present invention will be described more specifically.
As described above, a method for manufacturing a composite piezoelectric substrate that can suppress the occurrence of cracks with a small increase in warpage after heat treatment has been awaited.

ここで、一般の複合圧電基板が、熱処理後に反りが大きくなる原理を述べる。
LiTaOやLiNbO等の圧電基板は、周知のように焦電性を有する。そしてSAWデバイスの製造プロセスにおいて、圧電基板は加熱・冷却が繰り返されるが、圧電基板に温度差が加わると、焦電性により数キロボルトにも及ぶ表面電位が生じ、特に加熱後の圧電基板の表面電位は維持され、圧電基板が反ってしまう。
Here, the principle that a general composite piezoelectric substrate warps after heat treatment will be described.
Piezoelectric substrates such as LiTaO 3 and LiNbO 3 have pyroelectricity as is well known. In the SAW device manufacturing process, the piezoelectric substrate is repeatedly heated and cooled. However, if a temperature difference is applied to the piezoelectric substrate, a surface potential of several kilovolts is generated due to pyroelectricity. The potential is maintained and the piezoelectric substrate is warped.

一方、複合圧電基板は圧電基板と支持基板の膨張係数が異なることによって温度が変化するとバイメタルの様に変形を生じる。
この時、圧電基板にはバイメタル変形による応力が加わることになり、この応力は圧電基板に表面電荷を生じさせる。
On the other hand, the composite piezoelectric substrate deforms like a bimetal when the temperature changes due to the difference in expansion coefficient between the piezoelectric substrate and the support substrate.
At this time, stress due to bimetal deformation is applied to the piezoelectric substrate, and this stress generates surface charges on the piezoelectric substrate.

すなわち、複合圧電基板に温度が付加された状態では、圧電基板にはバイメタル効果による応力及び焦電効果による帯電(表面電荷)の双方が生じ、反りが更に大きくなってしまう。   That is, in a state where temperature is applied to the composite piezoelectric substrate, both stress due to the bimetal effect and charging (surface charge) due to the pyroelectric effect are generated in the piezoelectric substrate, and the warpage is further increased.

次に温度が初期の温度に戻ると、バイメタル効果による変形は解消されるが、圧電基板の焦電性により生じた表面電位により複合圧電基板の変形が残存することになる。そのため複合圧電基板には熱処理後に反りが発生することになる。
特に、複合圧電基板の支持基板として導電率が1×10−14[Ω−1・cm−1]以下の絶縁体基板を用いる場合には、この高抵抗な絶縁体基板に接合させる圧電基板は表面電荷が溜まりやすくなるため、反り量が大きくなってしまう傾向がある。
Next, when the temperature returns to the initial temperature, the deformation due to the bimetal effect is eliminated, but the deformation of the composite piezoelectric substrate remains due to the surface potential generated by the pyroelectric property of the piezoelectric substrate. Therefore, the composite piezoelectric substrate is warped after heat treatment.
In particular, when an insulator substrate having a conductivity of 1 × 10 −14−1 · cm −1 ] or less is used as a support substrate of the composite piezoelectric substrate, the piezoelectric substrate to be bonded to the high resistance insulator substrate is Since the surface charge tends to accumulate, the amount of warping tends to increase.

しかし、本発明者らは、少なくとも、圧電基板と絶縁体基板とを接着剤で貼り合わせ、貼り合わせた基板に熱処理を行うことにより、接着剤を硬化させる複合化された圧電基板の製造方法において、絶縁体基板として導電率が1×10−14[Ω−1・cm−1]以下のものを用いた場合であっても、熱処理による接着剤の硬化を除電処理を施しながら行うことによって、圧電基板の焦電効果による帯電を抑制することができることを知見した。
そして、このような複合化された圧電基板の製造方法では、熱処理時に圧電基板と絶縁体基板とを貼り合わせた基板の周囲温度が変化すると、バイメタル効果による変形は生じるが、圧電基板の焦電効果による帯電が抑制される。従って、熱処理後に温度が初期の温度に戻るとバイメタル効果による変形は解消され、複合圧電基板はほぼ元の形状に戻り、反りがほとんど発生せず、クラックの発生も防止できることを見出し、本発明を完成させた。
However, the inventors have at least a method of manufacturing a composite piezoelectric substrate in which the adhesive is cured by bonding the piezoelectric substrate and the insulator substrate with an adhesive and performing heat treatment on the bonded substrate. Even when an insulator substrate having a conductivity of 1 × 10 −14−1 · cm −1 ] or less is used, by performing curing of the adhesive by heat treatment while performing a charge removal treatment, It has been found that charging due to the pyroelectric effect of the piezoelectric substrate can be suppressed.
In such a composite piezoelectric substrate manufacturing method, if the ambient temperature of the substrate on which the piezoelectric substrate and the insulator substrate are bonded is changed during the heat treatment, deformation due to the bimetal effect occurs, but the pyroelectricity of the piezoelectric substrate is increased. Charge due to the effect is suppressed. Therefore, when the temperature returns to the initial temperature after the heat treatment, the deformation due to the bimetal effect is eliminated, the composite piezoelectric substrate returns to its original shape, almost no warpage occurs, and the occurrence of cracks can also be prevented. Completed.

以下、本発明について図1を参照して詳細に説明するが、本発明はこれらに限定されるものではない。図1は、本発明の複合化された圧電基板の製造方法の説明図である。   Hereinafter, the present invention will be described in detail with reference to FIG. 1, but the present invention is not limited thereto. FIG. 1 is an explanatory view of a method of manufacturing a composite piezoelectric substrate according to the present invention.

本発明の複合圧電基板の製造方法によれば、まず導電率が1×10−14[Ω−1・cm−1]以下の絶縁体基板2と、圧電基板1とを用意する。
本発明の複合圧電性基板の製造方法によれば、このような複合圧電基板の反り量が大きくなる傾向がある絶縁体基板2を用いても、反りの増加量を小さくすることができ、クラックの発生を防止することができる。従って、必ずしもサファイア基板のような高価なものを用いる必要はない。
According to the method for manufacturing a composite piezoelectric substrate of the present invention, first, an insulator substrate 2 having a conductivity of 1 × 10 −14−1 · cm −1 ] or less and a piezoelectric substrate 1 are prepared.
According to the method for manufacturing a composite piezoelectric substrate of the present invention, even when using the insulator substrate 2 that tends to increase the amount of warpage of such a composite piezoelectric substrate, the amount of increase in warpage can be reduced and cracks can be reduced. Can be prevented. Therefore, it is not always necessary to use an expensive material such as a sapphire substrate.

また、本発明で用いる圧電基板1としては、LiTaO、LiNbO、Liのいずれかからなるものを用いることができる。圧電基板1がLiTaO、LiNbO、又はLiであれば、電気機械結合係数が大きく、また、複合化された圧電基板の効果により、動作周波数の温度変動が抑制された安価な複合化された圧電基板を提供することができる。 In addition, as the piezoelectric substrate 1 used in the present invention, a substrate made of any one of LiTaO 3 , LiNbO 3 , and Li 2 B 4 O 7 can be used. If the piezoelectric substrate 1 is LiTaO 3 , LiNbO 3 , or Li 2 B 4 O 7 , the electromechanical coupling coefficient is large, and the operating frequency temperature fluctuation is suppressed by the effect of the combined piezoelectric substrate. A composite piezoelectric substrate can be provided.

また、絶縁体基板2としては、アルミナが主成分であるものを用いることができる。アルミナを主成分とする絶縁体基板2は、ヤング率が約300〜400GPaと大きく硬いため、熱処理後の反り増加量が小さく、また安価な複合化された圧電基板を得ることができる。   Further, as the insulator substrate 2, a substrate whose main component is alumina can be used. Since the insulator substrate 2 containing alumina as a main component has a large Young's modulus of about 300 to 400 GPa and is hard, an increase in warpage after heat treatment is small, and an inexpensive composite piezoelectric substrate can be obtained.

その後、圧電基板1と絶縁体基板2の一方又は両方に接着剤3を塗布し、例えば、真空下で貼り合わせて接合することにより、圧電基板1と絶縁体基板2とを貼り合わせた基板4とすることができる。
尚、接着面に異物が混入しないように、貼り合わせ前に各基板の表面を洗浄することが好ましい。また、接着剤3として紫外線硬化接着剤を用いる場合には、貼り合わせ後に紫外線照射することで、接着剤を仮に硬化させることができる。そして、このように接着剤を仮に硬化させた後に、後述する接着剤を硬化するための熱処理を行うことによって接着剤を完全に硬化させることができる。
Thereafter, the adhesive 3 is applied to one or both of the piezoelectric substrate 1 and the insulator substrate 2, and the substrate 4 is bonded to the piezoelectric substrate 1 and the insulator substrate 2 by bonding them together under vacuum, for example. It can be.
In addition, it is preferable to clean the surface of each substrate before bonding so that no foreign matter enters the bonding surface. Moreover, when using an ultraviolet curing adhesive as the adhesive agent 3, an adhesive agent can be temporarily hardened by irradiating an ultraviolet-ray after bonding. And after hardening an adhesive agent in this way, an adhesive agent can be hardened completely by performing the heat processing for hardening the adhesive agent mentioned later.

本発明の複合化された圧電基板の製造方法においては、上記のように貼り合わせた基板4に熱処理を行って接着剤3を硬化させて(硬化した接着剤:3’)、複合化された圧電基板5を得るが、この熱処理による接着剤3の硬化を、除電処理を施しながら行う。
除電処理としては、例えば、イオナイザを用い、貼り合わせた基板4を逆極性のイオンで中和させることで除電することができる。
In the method for manufacturing a composite piezoelectric substrate of the present invention, the substrate 4 bonded as described above is subjected to a heat treatment to cure the adhesive 3 (cured adhesive: 3 ′), thereby being combined. The piezoelectric substrate 5 is obtained, and the adhesive 3 is cured by this heat treatment while performing a charge removal process.
As the charge removal treatment, for example, an ionizer can be used to remove the charge by neutralizing the bonded substrate 4 with ions of opposite polarity.

尚、本発明において「熱処理」は、圧電基板1と絶縁体基板2とを接着剤3で貼り合わせた基板4を加熱、又は、加熱後冷却する工程をいい、本発明の複合化された圧電基板の製造方法においては、この熱処理工程を除電処理を施しながら行う。   In the present invention, the “heat treatment” refers to a process of heating the substrate 4 in which the piezoelectric substrate 1 and the insulator substrate 2 are bonded together with the adhesive 3 or cooling after heating, and the combined piezoelectric of the present invention. In the method for manufacturing a substrate, this heat treatment step is performed while performing a charge removal process.

このように、本発明の複合圧電基板の製造方法では、貼り合わせた基板4をイオナイザなどにより除電処理を施しながら加熱、冷却するため、従来反りの原因として問題視されていた圧電基板の焦電性に起因する表面電位が生じない。
従って、本発明の複合圧電基板の製造方法を用いれば、貼り合わせた基板4を加熱、冷却することでバイメタル効果による変形は生じるが、圧電基板1の焦電効果による帯電が生じないため、熱処理後(加熱・冷却後)に温度が初期の温度に戻るとバイメタル効果による変形は解消されてほぼ元の形状に戻り、反り増加量を小さくすることができる。また、圧電基板1の帯電による変形を抑制することができるため、熱処理後のクラックの発生を防止することができる。
As described above, in the method for manufacturing a composite piezoelectric substrate of the present invention, the bonded substrate 4 is heated and cooled while being subjected to a charge removal process using an ionizer or the like. The surface potential due to the nature does not occur.
Therefore, if the composite piezoelectric substrate manufacturing method of the present invention is used, the bonded substrate 4 is heated and cooled to cause deformation due to the bimetal effect, but the piezoelectric substrate 1 is not charged due to the pyroelectric effect. When the temperature returns to the initial temperature later (after heating / cooling), the deformation due to the bimetal effect is eliminated, the shape returns to the original shape, and the amount of increase in warpage can be reduced. Moreover, since deformation due to charging of the piezoelectric substrate 1 can be suppressed, generation of cracks after heat treatment can be prevented.

その後は定法に従い加工処理を行うことができ、例えば、上記のように製造した複合化された圧電基板5を面取り加工した後、圧電基板1の表面側を研削及びラップ加工により削り落とし、さらにポリッシュ加工を施すことで、圧電基板1を所定の厚さになるように加工することができる。
また、このとき、上記のように貼り合わせて面取り加工を施した後に、複合圧電基板5の圧電基板1の外周を、例えば0.1mm以上3mm以下の幅の分だけ除去するとより良い。この除去工程は例えば特殊面取りホイールなどを用いて行うことが可能である。このような圧電基板1の外周より0.1mm以上3mm以下除去された複合圧電基板5であれば、その後に行う圧電基板1の研削工程等で圧電基板1に加工歪やクラック等が発生することを更に抑制することができる。
Thereafter, the processing can be performed according to a regular method. For example, after the composite piezoelectric substrate 5 manufactured as described above is chamfered, the surface side of the piezoelectric substrate 1 is scraped off by grinding and lapping, and further polished. By applying the processing, the piezoelectric substrate 1 can be processed to have a predetermined thickness.
At this time, it is better to remove the outer periphery of the piezoelectric substrate 1 of the composite piezoelectric substrate 5 by a width of, for example, 0.1 mm or more and 3 mm or less after performing the chamfering process by bonding as described above. This removal step can be performed using, for example, a special chamfering wheel. If such a composite piezoelectric substrate 5 is removed from the outer periphery of the piezoelectric substrate 1 by 0.1 mm or more and 3 mm or less, processing distortion, cracks, etc. are generated in the piezoelectric substrate 1 in the subsequent grinding process of the piezoelectric substrate 1 or the like. Can be further suppressed.

また、本発明においては、上記に示した圧電基板1の研削工程等の後に更に熱処理を行うことで、接着剤3をより硬化させることができるが、この熱処理工程においても除電処理を施すことによって、反り量の増加を抑制することができ、クラックの発生を防止することができる。   Further, in the present invention, the adhesive 3 can be further cured by performing a heat treatment after the grinding step or the like of the piezoelectric substrate 1 described above. The increase in the amount of warpage can be suppressed, and the occurrence of cracks can be prevented.

以下、実施例と比較例を示して本発明を具体的に説明するが、本発明はこれらの記載によって限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited by these description.

(実施例)
直径4インチ(100mm)で厚さが215μmであり、貼り合わせ面とその反対側の面のそれぞれの表面粗さRaが共に0.3μmであって、ヤング率が340GPa、導電率が1×10−15[Ω−1・cm−1]であるアルミナ基板を用意した。
また、圧電基板として導電率が1×10−14[Ω−1・cm−1]であり、直径4インチ(100mm)の36°回転Yカットタンタル酸リチウム(LiTaO)基板を用意して、この圧電基板の厚さが160μmとなるよう両面粗研磨により表裏面の粗さが0.13μmとなるよう仕上げた。
(Example)
It has a diameter of 4 inches (100 mm) and a thickness of 215 μm. The surface roughness Ra of the bonded surface and the opposite surface is both 0.3 μm, the Young's modulus is 340 GPa, and the conductivity is 1 × 10. An alumina substrate having −15−1 · cm −1 ] was prepared.
Moreover, the electrical conductivity is 1 × 10 −14−1 · cm −1 ] as a piezoelectric substrate, and a 36 ° rotated Y-cut lithium tantalate (LiTaO 3 ) substrate having a diameter of 4 inches (100 mm) is prepared. The piezoelectric substrate was finished to have a surface roughness of 0.13 μm by double-sided rough polishing so that the thickness of the piezoelectric substrate was 160 μm.

そして、前記アルミナ基板にエポキシを主成分とする導電性の紫外線硬化接着剤をスピンコートし貼り合わせ面上に均一に塗布した。
また、前記LiTaO基板の貼り合わせ面を洗浄し、前記接着剤を同様に塗布し、前記アルミナ基板の接着剤塗布面と前記LiTaO基板の接着剤塗布面を圧力1×10−3mbarの真空下で貼り合わせた。
Then, a conductive ultraviolet curable adhesive mainly composed of epoxy was spin-coated on the alumina substrate and uniformly applied onto the bonded surface.
Further, the bonding surface of the LiTaO 3 substrate is washed and the adhesive is applied in the same manner, and the adhesive application surface of the alumina substrate and the adhesive application surface of the LiTaO 3 substrate are set at a pressure of 1 × 10 −3 mbar. Bonded together under vacuum.

次に、この貼り合わせた基板に、照度50mW/cmの紫外線を5分間照射し、接着剤を仮に硬化させた。このとき貼り合わせた基板面内で接着剤の層は一様に5μmの厚さだった。 Next, the bonded substrate was irradiated with ultraviolet rays having an illuminance of 50 mW / cm 2 for 5 minutes to temporarily cure the adhesive. At this time, the adhesive layer was uniformly 5 μm in thickness within the bonded substrate surfaces.

次にこのアルミナ基板とLiTaO基板とを貼り合わせた基板にイオナイザを照射しながら、65℃の温度で2時間キュアを行い室温まで冷却した。
この複合圧電基板の反りを周囲温度23℃にて測定したところ30μmであった。
また、前記アルミナ基板とLiTaO基板との複合圧電基板のLiTaO基板の部分の表面電位を表面電位計にて測定したところ表面電位は0(V)であった。
Next, curing was performed at a temperature of 65 ° C. for 2 hours while cooling the substrate to a room temperature while irradiating an ionizer on the substrate on which the alumina substrate and the LiTaO 3 substrate were bonded.
When the warpage of the composite piezoelectric substrate was measured at an ambient temperature of 23 ° C., it was 30 μm.
Further, when the surface potential of the LiTaO 3 substrate portion of the composite piezoelectric substrate composed of the alumina substrate and the LiTaO 3 substrate was measured with a surface potentiometer, the surface potential was 0 (V).

そして、この前記複合圧電基板を面取り加工した後、圧電基板であるLiTaO基板の外周約0.5mmを特殊面取りホイールにて削り落とした。次いで、LiTaO基板の表面側(貼り合わせ面と反対側)をラップ及び研削により110μm削り落とし、この後、この複合圧電基板に加熱はじめからイオナイザを照射しながら、120℃の温度で2時間キュアを行い室温まで冷却した。 Then, after chamfering the composite piezoelectric substrate, about 0.5 mm of the outer periphery of the LiTaO 3 substrate which is a piezoelectric substrate was scraped off with a special chamfering wheel. Next, the surface side (the side opposite to the bonding surface) of the LiTaO 3 substrate is scraped off by 110 μm by lapping and grinding, and then the composite piezoelectric substrate is cured at 120 ° C. for 2 hours while being irradiated with an ionizer from the beginning. And cooled to room temperature.

さらにポリッシュによりLiTaO基板の厚さが30μmになるようにした。
この複合圧電基板の反りを周囲温度23℃にて測定したところ40μmであった。また、前記アルミナ基板とLiTaO基板との複合圧電基板のLiTaO基板部分の表面電位を表面電位計にて測定したところ表面電位は0(V)であった。
また、ウエハ面内を顕微鏡にて観察したところにLiTaO基板部分にクラックは生じていなかった。
Further, the thickness of the LiTaO 3 substrate was set to 30 μm by polishing.
When the warpage of the composite piezoelectric substrate was measured at an ambient temperature of 23 ° C., it was 40 μm. Further, when the surface potential of the LiTaO 3 substrate portion of the composite piezoelectric substrate of the alumina substrate and the LiTaO 3 substrate was measured with a surface potentiometer, the surface potential was 0 (V).
Further, when the inside of the wafer surface was observed with a microscope, no cracks occurred in the LiTaO 3 substrate portion.

さらに、前記複合圧電基板にイオナイザを照射しながら、180℃の温度で2時間加熱し室温まで冷却した。
この複合圧電基板の反りを周囲温度23℃にて測定したところ45μmであった。
また、前記アルミナ基板とLiTaO基板との複合圧電基板のLiTaO基板部分の表面電位を表面電位計にて測定したところ表面電位は0(V)であった。
また、ウエハ面内を顕微鏡にて観察したところにLiTaO基板部分にクラックは生じていなかった。
Further, while irradiating the composite piezoelectric substrate with an ionizer, the composite piezoelectric substrate was heated at a temperature of 180 ° C. for 2 hours and cooled to room temperature.
The warpage of this composite piezoelectric substrate was measured at an ambient temperature of 23 ° C. and found to be 45 μm.
Further, when the surface potential of the LiTaO 3 substrate portion of the composite piezoelectric substrate of the alumina substrate and the LiTaO 3 substrate was measured with a surface potentiometer, the surface potential was 0 (V).
Further, when the inside of the wafer surface was observed with a microscope, no cracks occurred in the LiTaO 3 substrate portion.

(比較例)
直径4インチ(100mm)で厚さが215μmであり、貼り合わせ面とその反対側の面のそれぞれの表面粗さRaが共に0.3μmであって、ヤング率が340GPa、導電率が1×10−15[Ω−1・cm−1]であるアルミナ基板を用意した。
また、圧電基板として導電率が1×10−14[Ω−1・cm−1]であり、直径4インチ(100mm)の36°回転Yカットタンタル酸リチウム(LiTaO)基板を用意して、この圧電基板の厚さが160μmとなるよう両面粗研磨により表裏面の粗さが0.13μmとなるよう仕上げた。
(Comparative example)
It has a diameter of 4 inches (100 mm) and a thickness of 215 μm. The surface roughness Ra of the bonded surface and the opposite surface is 0.3 μm, the Young's modulus is 340 GPa, and the conductivity is 1 × 10. An alumina substrate having −15−1 · cm −1 ] was prepared.
Moreover, the electrical conductivity is 1 × 10 −14−1 · cm −1 ] as a piezoelectric substrate, and a 36 ° rotated Y-cut lithium tantalate (LiTaO 3 ) substrate having a diameter of 4 inches (100 mm) is prepared. The piezoelectric substrate was finished to have a surface roughness of 0.13 μm by double-sided rough polishing so that the thickness of the piezoelectric substrate was 160 μm.

そして、前記アルミナ基板にエポキシを主成分とする導電性の紫外線硬化接着剤をスピンコートし貼り合わせ面上に均一に塗布した。
また、前記LiTaO基板の貼り合わせ面を洗浄し、前記接着剤を同様に塗布し、前記アルミナ基板の接着剤塗布面と前記LiTaO基板の接着剤塗布面を圧力1×10−3mbarの真空下で貼り合わせた。
Then, a conductive ultraviolet curable adhesive mainly composed of epoxy was spin-coated on the alumina substrate and uniformly applied onto the bonded surface.
Further, the bonding surface of the LiTaO 3 substrate is washed and the adhesive is applied in the same manner, and the adhesive application surface of the alumina substrate and the adhesive application surface of the LiTaO 3 substrate are set at a pressure of 1 × 10 −3 mbar. Bonded together under vacuum.

次に、この貼り合わせた基板に、照度50mW/cmの紫外線を5分間照射し、接着剤を仮に硬化させた。このとき貼り合わせた基板面内で接着剤の層は一様に5μmの厚さだった。 Next, the bonded substrate was irradiated with ultraviolet rays having an illuminance of 50 mW / cm 2 for 5 minutes to temporarily cure the adhesive. At this time, the adhesive layer was uniformly 5 μm in thickness within the bonded substrate surfaces.

次にこのアルミナ基板とLiTaO基板とを貼り合わせた基板を65℃の温度で2時間キュアを行い、その後室温まで冷却した。
この複合圧電基板の反りを周囲温度23℃にて測定したところ40μmであった。
また、前記アルミナ基板とLiTaO基板との複合圧電基板のLiTaOの部分の表面電位を表面電位計にて測定したところ表面電位は0.8(kV)であった。
Next, the substrate on which the alumina substrate and the LiTaO 3 substrate were bonded together was cured at a temperature of 65 ° C. for 2 hours, and then cooled to room temperature.
When the warpage of the composite piezoelectric substrate was measured at an ambient temperature of 23 ° C., it was 40 μm.
Further, when the surface potential of the LiTaO 3 portion of the composite piezoelectric substrate composed of the alumina substrate and the LiTaO 3 substrate was measured with a surface potentiometer, the surface potential was 0.8 (kV).

そして、この前記複合圧電基板を面取り加工した後、圧電基板であるLiTaO基板の外周約0.5mmを特殊面取りホイールにて削り落とした。次いで、LiTaO基板の表面側(貼り合わせ面と反対側)をラップ及び研削により110μm削り落とし、この後、この複合圧電基板を120℃の温度で2時間キュアを行い、その後室温まで冷却した。 Then, after chamfering the composite piezoelectric substrate, about 0.5 mm of the outer periphery of the LiTaO 3 substrate which is a piezoelectric substrate was scraped off with a special chamfering wheel. Next, the surface side (the side opposite to the bonding surface) of the LiTaO 3 substrate was scraped off by 110 μm by lapping and grinding, and then this composite piezoelectric substrate was cured at a temperature of 120 ° C. for 2 hours and then cooled to room temperature.

さらにポリッシュによりLiTaO基板の厚さが30μmになるようにした。
この複合圧電基板の反りを周囲温度23℃にて測定したところ400μmであった。また、前記アルミナ基板とLiTaO基板との複合圧電基板のLiTaO基板の部分の表面電位を表面電位計にて測定したところ表面電位は3(kV)であった。
また、ウエハ面内を顕微鏡にて観察したところにLiTaO基板外周部分に総長50mmのクラックが生じた。
Further, the thickness of the LiTaO 3 substrate was set to 30 μm by polishing.
When the warpage of the composite piezoelectric substrate was measured at an ambient temperature of 23 ° C., it was 400 μm. Further, when the surface potential of the LiTaO 3 substrate portion of the composite piezoelectric substrate of the alumina substrate and the LiTaO 3 substrate was measured with a surface potentiometer, the surface potential was 3 (kV).
Further, when the inside of the wafer surface was observed with a microscope, a crack having a total length of 50 mm occurred in the outer peripheral portion of the LiTaO 3 substrate.

さらに、前記複合圧電基板を180℃の温度で2時間加熱を行い、その後室温まで冷却した。
この複合圧電基板の反りを周囲温度23℃にて測定したところ800μmであった。また、前記アルミナ基板とLiTaO基板との複合圧電基板のLiTaO基板部分の表面電位を表面電位計にて測定したところ表面電位は6(kV)であった。
また、ウエハ面内を顕微鏡にて観察したところにLiTaO基板外周部分のクラックは総長120mmであった。
Further, the composite piezoelectric substrate was heated at a temperature of 180 ° C. for 2 hours and then cooled to room temperature.
When the warpage of the composite piezoelectric substrate was measured at an ambient temperature of 23 ° C., it was 800 μm. Further, when the surface potential of the LiTaO 3 substrate portion of the composite piezoelectric substrate of the alumina substrate and the LiTaO 3 substrate was measured with a surface potentiometer, the surface potential was 6 (kV).
Further, when the inside of the wafer surface was observed with a microscope, cracks in the outer peripheral portion of the LiTaO 3 substrate were 120 mm in total length.

上記のように、本発明の複合化された圧電基板の製造方法であれば、熱処理後の反り増加量が小さく、クラックの発生が抑制された安価な複合圧電基板を提供することが出来る。   As described above, according to the composite piezoelectric substrate manufacturing method of the present invention, it is possible to provide an inexpensive composite piezoelectric substrate in which the amount of increase in warping after heat treatment is small and the generation of cracks is suppressed.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に含有される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. It is contained in the technical range.

1…圧電基板、 2…絶縁体基板、 3…接着剤、 3’…硬化した接着剤、 4…貼り合わせた基板、 5…複合化された圧電基板。 DESCRIPTION OF SYMBOLS 1 ... Piezoelectric substrate, 2 ... Insulator board | substrate, 3 ... Adhesive agent, 3 '... Hardened adhesive agent, 4 ... Bonded board | substrate, 5 ... Composite piezoelectric substrate.

Claims (3)

少なくとも、圧電基板と絶縁体基板とを接着剤で貼り合わせ、前記貼り合わせた基板に熱処理を行うことにより、前記接着剤を硬化させる複合化された圧電基板の製造方法であって、前記絶縁体基板として導電率が1×10−14[Ω−1・cm−1]以下のものを用い、前記熱処理による接着剤の硬化は、除電処理を施しながら行うことを特徴とする複合化された圧電基板の製造方法。 At least a method for manufacturing a composite piezoelectric substrate in which a piezoelectric substrate and an insulator substrate are bonded together with an adhesive, and the adhesive is cured by performing a heat treatment on the bonded substrate, the insulator A composite piezoelectric material characterized in that a substrate having a conductivity of 1 × 10 −14−1 · cm −1 ] or less is used as a substrate, and the curing of the adhesive by the heat treatment is performed while performing a charge removal treatment. A method for manufacturing a substrate. 前記絶縁体基板として、アルミナが主成分であるものを用いることを特徴とする請求項1に記載の複合化された圧電基板の製造方法。   2. The method of manufacturing a composite piezoelectric substrate according to claim 1, wherein the insulator substrate is composed mainly of alumina. 前記圧電基板として、LiTaO、LiNbO、Liのいずれかからなるものを用いることを特徴とする請求項1又は請求項2に記載の複合化された圧電基板の製造方法。 3. The method for manufacturing a composite piezoelectric substrate according to claim 1, wherein the piezoelectric substrate is made of any one of LiTaO 3 , LiNbO 3 , and Li 2 B 4 O 7 .
JP2009123439A 2009-05-21 2009-05-21 Method of manufacturing composite piezoelectric substrate Pending JP2010273127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123439A JP2010273127A (en) 2009-05-21 2009-05-21 Method of manufacturing composite piezoelectric substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009123439A JP2010273127A (en) 2009-05-21 2009-05-21 Method of manufacturing composite piezoelectric substrate

Publications (1)

Publication Number Publication Date
JP2010273127A true JP2010273127A (en) 2010-12-02

Family

ID=43420803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123439A Pending JP2010273127A (en) 2009-05-21 2009-05-21 Method of manufacturing composite piezoelectric substrate

Country Status (1)

Country Link
JP (1) JP2010273127A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224493A (en) * 2016-06-15 2017-12-21 横河電機株式会社 Hermetic structure and manufacturing method
CN107615449A (en) * 2015-06-02 2018-01-19 信越化学工业株式会社 Possesses the manufacture method of the composite crystal of oxide monocrystal film
WO2021157218A1 (en) * 2020-02-03 2021-08-12 信越化学工業株式会社 Composite substrate and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254114A (en) * 2003-02-20 2004-09-09 Yamajiyu Ceramics:Kk Single crystal for piezoelectric substrate, surface acoustic wave filter using the same and its manufacturing method
JP2007134889A (en) * 2005-11-09 2007-05-31 Shin Etsu Chem Co Ltd Composite piezoelectric substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254114A (en) * 2003-02-20 2004-09-09 Yamajiyu Ceramics:Kk Single crystal for piezoelectric substrate, surface acoustic wave filter using the same and its manufacturing method
JP2007134889A (en) * 2005-11-09 2007-05-31 Shin Etsu Chem Co Ltd Composite piezoelectric substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615449A (en) * 2015-06-02 2018-01-19 信越化学工业株式会社 Possesses the manufacture method of the composite crystal of oxide monocrystal film
JP2017224493A (en) * 2016-06-15 2017-12-21 横河電機株式会社 Hermetic structure and manufacturing method
WO2021157218A1 (en) * 2020-02-03 2021-08-12 信越化学工業株式会社 Composite substrate and method for manufacturing same
JP2021125496A (en) * 2020-02-03 2021-08-30 信越化学工業株式会社 Composite substrate and manufacturing method thereof
JP7271458B2 (en) 2020-02-03 2023-05-11 信越化学工業株式会社 Composite substrate manufacturing method

Similar Documents

Publication Publication Date Title
EP3490144B1 (en) Method of producing composite substrate for surface acoustic wave device
JP2005229455A (en) Compound piezoelectric substrate
JP4657002B2 (en) Composite piezoelectric substrate
JP6427714B2 (en) Junction and elastic wave device
KR101148587B1 (en) Composite piezoelectric substrate manufacturing method
JP5180889B2 (en) Composite substrate, elastic wave device using the same, and method of manufacturing composite substrate
JP5115562B2 (en) Method for manufacturing acoustic wave device
JP4723207B2 (en) Composite piezoelectric substrate
JP2007134889A (en) Composite piezoelectric substrate
JP2011071967A (en) Method for manufacturing composite substrate
JP2007214902A (en) Surface acoustic wave device
WO2011158636A1 (en) Composite substrate
JP2018537888A (en) Composite structures and related fabrication methods
US20100269319A1 (en) Method for manufacturing surface acoustic wave device
JP2010273127A (en) Method of manufacturing composite piezoelectric substrate
JP2006304206A (en) Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof
JP2010068484A (en) Combined piezoelectric substrate
JP2010251978A (en) Method of manufacturing composite piezoelectric board and composite piezoelectric board
JP6660113B2 (en) Composite substrate and method of manufacturing the same
JP2007228120A (en) Surface acoustic wave element
JP2011019043A (en) Composite substrate and method for manufacturing composite substrate
WO2021157218A1 (en) Composite substrate and method for manufacturing same
JP2011211331A (en) Composite piezoelectric substrate and surface acoustic wave element
KR100276265B1 (en) A device and method for manufactoring the piezo electric elements
JP2011124628A (en) Composite piezoelectric chip and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130104