JP2010272323A - Plasma ignition device - Google Patents

Plasma ignition device Download PDF

Info

Publication number
JP2010272323A
JP2010272323A JP2009122581A JP2009122581A JP2010272323A JP 2010272323 A JP2010272323 A JP 2010272323A JP 2009122581 A JP2009122581 A JP 2009122581A JP 2009122581 A JP2009122581 A JP 2009122581A JP 2010272323 A JP2010272323 A JP 2010272323A
Authority
JP
Japan
Prior art keywords
plasma
wall portion
ignition device
combustion chamber
plasma ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009122581A
Other languages
Japanese (ja)
Other versions
JP5355217B2 (en
Inventor
Takayuki Takeuchi
隆之 竹内
Masamichi Shibata
正道 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2009122581A priority Critical patent/JP5355217B2/en
Publication of JP2010272323A publication Critical patent/JP2010272323A/en
Application granted granted Critical
Publication of JP5355217B2 publication Critical patent/JP5355217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma ignition device performing ignition by injecting gas in a plasma state into an engine which facilitates the growth of a flame kernel and has an excellent ignition property and excellent durability. <P>SOLUTION: A plasma ignition device 1 is arranged to partition a discharge space 140 by a central electrode 110, a substantially cylindrical insulator 120 extending downward below a lower end surface of the electrode, and a grounding electrode 130 having an opening 131 communicating with an opening of the insulator to perform the application of a high voltage and the supply of a large current to the discharge space 140 to put the gas within the discharge space 140 in the plasma state, and to inject the gas into a combustion chamber 400 of an engine for ignition. As an eddying flow forming means for forming a plurality of eddying flows that are oriented to the center from their outer circumferences and different in moving velocity for a flow of a plasma jet PZ jetted from the discharge space 140, there is provided a shroud 15 having an eddying flow forming space 141 partitioned by peripheral walls 150, 151 surrounding the opening 131 and partially differing in height from each other at an front end side of the grounding electrode 130. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の点火に用いられるプラズマ点火装置の着火性の向上に関するものである。   The present invention relates to an improvement in ignitability of a plasma ignition device used for ignition of an internal combustion engine.

近年、自動車等の内燃機関においては、燃焼排気中に含まれる、窒素酸化物、二酸化炭素等の環境負荷物質の更なる低減を図るため、更なる燃費の向上、希薄燃焼化が望まれている。
機関の燃焼効率の向上と環境負荷の低減とを同時に実現可能な機関として、機関燃焼室内に高温高圧のプラズマ状態にした気体を噴射して、従来の火花放電による点火プラグでは火炎伝播できないような希薄な混合気を効率的に燃焼させる方法が注目されている。
In recent years, in an internal combustion engine such as an automobile, in order to further reduce environmentally hazardous substances such as nitrogen oxides and carbon dioxide contained in combustion exhaust gas, further improvement in fuel consumption and lean combustion are desired. .
As an engine capable of simultaneously improving the combustion efficiency of the engine and reducing the environmental load, it is impossible to propagate the flame with a spark plug using a conventional spark discharge by injecting gas in a high-temperature and high-pressure plasma state into the engine combustion chamber. A method for efficiently burning a lean air-fuel mixture has attracted attention.

このようなプラズマ点火装置として、特許文献1には、開口部と該開口部とに対向した底面とをもち軸方向に伸びる断面が円形のチャンバを区画するハウジングと、該ハウジングの表面に設けられ該チャンバの開口部と外部とを連通する外部電極孔を持つ外部電極と、該チャンバの該底面に配設された中心電極と、を有し、該中心電極と該外部電極との間に電圧を印加して該チャンバ内にプラズマを発生させ、該チャンバの開口部からプラズマジェットを噴射する内燃期間用プラズマ点火装置であって、該チャンバの容積が10mm以下であり、かつ該チャンバの軸方向の長さと内径との長さとのアスペクト比が2以上であることを特徴とする内燃機関用プラズマ点火装置が開示されている。 As such a plasma ignition device, Patent Document 1 includes a housing having an opening portion and a bottom surface facing the opening portion and defining a chamber having a circular section extending in the axial direction, and a surface of the housing. An external electrode having an external electrode hole communicating with the opening of the chamber and the outside; and a center electrode disposed on the bottom surface of the chamber, and a voltage between the center electrode and the external electrode Is applied to the plasma ignition device for an internal combustion period in which plasma is generated in the chamber and a plasma jet is ejected from the opening of the chamber, the volume of the chamber being 10 mm 3 or less, and the axis of the chamber A plasma ignition device for an internal combustion engine is disclosed in which the aspect ratio between the length of the direction and the length of the inner diameter is 2 or more.

特許文献1のプラズマ点火装置によれば、チャンバ内で高温高圧のプラズマ状態となった気体が噴射されたときの到達距離を長くし、希薄成層燃焼機関において、混合気中の燃料濃度が相対的に高い部位に到達させることができ、希薄燃料機関における着火性の向上を図ることができると期待された。   According to the plasma ignition device of Patent Document 1, the reach distance when the gas in a high-temperature and high-pressure plasma state is injected in the chamber is increased, and the fuel concentration in the air-fuel mixture is relatively increased in the lean stratified combustion engine. It was expected that the ignitability of the lean fuel engine could be improved.

ところが、このようなプラズマ点火装置において、高電圧の印加によって放電空間内の絶縁が破壊され、大電流が放電空間内に供給されるのは、10μsec以下と極めて短いので、機関燃焼室内に噴射されたプラズマ状態となった気体が、高エネルギ状態を維持できる時間は極めて短い。
このため、火炎核が成長して機関燃焼室内の混合気に火炎伝播して着火を起こすためには、例えば、200mJと比較的高いエネルギを供給する必要があった。加えて、このような高いエネルギを供給しながらも、燃焼可能な混合気の希薄化に限界を生じていた。さらに、このような高いエネルギを供給すると、電極の消耗が激しく、プラズマ点火装置としての耐久性、信頼性の向上に限界を生じていた。
However, in such a plasma ignition device, the insulation in the discharge space is broken by the application of a high voltage, and a large current is supplied into the discharge space because it is very short, 10 μsec or less, and is injected into the engine combustion chamber. The time in which the gas in the plasma state can maintain the high energy state is extremely short.
For this reason, in order for flame nuclei to grow and propagate to the air-fuel mixture in the engine combustion chamber to cause ignition, for example, it was necessary to supply a relatively high energy of 200 mJ. In addition, there is a limit to the dilution of the combustible mixture while supplying such high energy. Further, when such high energy is supplied, the electrode is consumed very much, which limits the improvement of durability and reliability as a plasma ignition device.

さらに、近年、燃料と圧縮空気との混合を良好にすべく、スワール比を高くしたり、過給器混合などにより燃焼室内に強力なタンブル渦を発生させたりすることがなされ、燃焼室内における高ガス流動化が図られている。このため、従来のプラズマ点火装置では、燃焼室内に噴射された火炎核が強力な筒内気流によって吹き飛ばされ、点火に十分な大きさの火炎核に成長する前にエネルギを消失し、難着火性機関の点火がさらに困難となる虞がある。   Furthermore, in recent years, in order to improve the mixing of fuel and compressed air, the swirl ratio has been increased, or strong tumble vortices have been generated in the combustion chamber by means of supercharger mixing. Gas fluidization is achieved. For this reason, in the conventional plasma ignition device, flame nuclei injected into the combustion chamber are blown away by a strong in-cylinder airflow, and energy is lost before growing into flame nuclei large enough for ignition, making it difficult to ignite. There is a risk that ignition of the engine will be more difficult.

そこで、本願発明はかかる実情に鑑み、希薄均質燃料機関や希薄成層燃焼機関、過給混合燃焼機関などの難着火性機関の機関燃焼室内にプラズマ状態となった気体を噴射して機関の点火を行うプラズマ点火装置において、火炎核の成長を促し、着火性に優れたプラズマ点火装置を提供することを目的とするものである。   Therefore, in view of such circumstances, the present invention injects a plasma gas into an engine combustion chamber of a non-ignitable engine such as a lean homogeneous fuel engine, a lean stratified combustion engine, a supercharged mixed combustion engine, etc. to ignite the engine. An object of the present invention is to provide a plasma ignition device that promotes the growth of flame nuclei and has excellent ignitability.

第1の発明では、長軸状の中心電極と、該中心電極を覆いつつ、その下端面よりも下方に伸びる略筒状に形成した絶縁体と、該絶縁体を覆いつつ、該絶縁体の開口部に連通する接地電極開口部を設けた接地電極とによって放電空間を区画し、該放電空間に、放電用電源からの高電圧の印加とプラズマエネルギ供給用電源からの大電流の供給とを行って、該放電空間内の気体を高温・高圧のプラズマ状態となして、機関燃焼室内に噴射して該機関の点火を行うプラズマ点火装置において、上記放電空間から噴出するプラズマ状態の気体の流れに、その外周から中心に向かい、移動速度の異なる複数の渦流を形成する渦流形成手段を設ける(請求項1)   In the first invention, a long-axis center electrode, an insulator formed in a substantially cylindrical shape covering the center electrode and extending below the lower end surface thereof, and covering the insulator, A discharge space is partitioned by a ground electrode provided with a ground electrode opening that communicates with the opening, and a high voltage from a discharge power source and a large current from a plasma energy supply power source are supplied to the discharge space. In the plasma ignition device for performing the ignition of the engine by injecting the gas in the discharge space into a high-temperature and high-pressure plasma state and injecting the gas into the engine combustion chamber, the flow of the gas in the plasma state ejected from the discharge space Eddy current forming means for forming a plurality of eddy currents having different moving speeds from the outer periphery toward the center (Claim 1).

より具体的には、第2の発明のように、上記渦流形成手段は、上記接地電極の先端側に延設して、上記開口部の周囲を覆うように上記開口部の開口径よりも大きな開口径を有し、上記燃焼室内に向かって部分的に異なる高さに突設された略円筒状の周壁部によって区画して渦流形成空間を形成する(請求項2)。   More specifically, as in the second aspect of the invention, the vortex forming means extends to the tip side of the ground electrode and is larger than the opening diameter of the opening so as to cover the periphery of the opening. An eddy current forming space is formed by being partitioned by a substantially cylindrical peripheral wall portion having an opening diameter and protruding partially at different heights toward the combustion chamber.

また、第3の発明のように、上記渦流形成空間を区画する上記周壁部は、上記燃焼室への突出長さの長い長壁部と、上記燃焼室への突出長さの短い短壁部とを有し、上記長壁部内周の高さと上記短壁部内周の高さとが連続的に変化する斜め円筒状に形成しても良い(請求項3)。   Further, as in the third invention, the peripheral wall portion defining the eddy current forming space includes a long wall portion having a long projecting length to the combustion chamber, and a short wall portion having a short projecting length to the combustion chamber. And may be formed in an oblique cylindrical shape in which the height of the inner circumference of the long wall portion and the height of the inner circumference of the short wall portion change continuously (Claim 3).

さらに、第4の発明のように、上記渦流形成空間を区画する上記周壁部は、上記燃焼室への突出長さの長い長壁部と上記燃焼室への突出長さの短い短壁部とを有し、上記長壁部内周の高さと上記短壁部内周の高さとが断続的に変化する切欠き円筒状に形成しても良い(請求項4)。   Further, as in the fourth aspect of the invention, the peripheral wall portion that divides the eddy current forming space includes a long wall portion having a long projecting length to the combustion chamber and a short wall portion having a short projecting length to the combustion chamber. And may have a notched cylindrical shape in which the height of the inner circumference of the long wall portion and the height of the inner circumference of the short wall portion change intermittently.

また、第5の発明のように、上記渦流形成空間を区画する上記周壁部は、中心軸に対して対称の位置に配設した2以上の上記長壁部と、中心軸に対して対称の位置に配設した2以上の上記短壁部とを有する対称形に形成しても良い(請求項5)。   Further, as in the fifth invention, the peripheral wall portion that divides the eddy current forming space includes two or more long wall portions arranged at positions symmetrical with respect to the central axis, and a position symmetrical with respect to the central axis. You may form in the symmetrical form which has the said 2 or more said short wall part arrange | positioned to (Claim 5).

第6の発明では、上記放電用電源からの1回の高電圧の印加に対して、上記プラズマエネルギ発生用電源からの大電流の供給は、パルス電流によって複数回に分割して供給する(請求項6)。   In a sixth aspect of the invention, supply of a large current from the plasma energy generation power source is divided into a plurality of times by a pulse current in response to one high voltage application from the discharge power source. Item 6).

上記放電用電源から高電圧が印加されると、上記中心電極の下端表面と上記接地電極開口部との間の絶縁が破壊され、上記絶縁体の内周壁表面を這うように沿面放電が起こる。
この沿面放電をトリガとして上記プラズマエネルギ供給用電源から大電流が流れ、上記放電空間内に高エネルギの電子が放電経路の周りに放出され、上記放電空間内の気体が電離され、高温・高圧のプラズマ状態となって、上記放電空間から噴出される。
このとき、上記放電空間から噴出したプラズマ噴流に対して、上記渦流形成手段によって噴流内部に異なる速度の渦流が複数形成される(以下、変速渦流と称す)ことが本発明者等の鋭意試験によって判明した。
この変速渦流は、噴流全体としては一塊の渦輪(以下、変速渦輪と称す)を形成し、内部にプラズマの高いエネルギを封じ込みつつ、回転しながら上記燃焼室内を移動するため周囲の混合気を内部に取り込みながら燃焼成長する。
加えて、上記変速渦輪内に存在する速度分布によって渦輪に乱れが生じ、混合気の取り込みがさらに良好となり、燃焼速度が向上するので早期に上記燃焼機関の点火を実現できる。
したがって、本発明のプラズマ点火装置を用いることにより、寿命の短いプラズマの高エネルギを効率よく利用することが可能となり、燃焼室内に強力な筒内気流が存在するような、高過給燃焼機関や、極希薄燃焼機関等の難着火性燃焼機関の点火を安定して実現できる。
When a high voltage is applied from the discharge power source, the insulation between the lower end surface of the center electrode and the ground electrode opening is broken, and creeping discharge occurs over the inner peripheral wall surface of the insulator.
A large current flows from the plasma energy supply power source triggered by this creeping discharge, high energy electrons are emitted around the discharge path in the discharge space, gas in the discharge space is ionized, and high temperature and high pressure It becomes a plasma state and is ejected from the discharge space.
At this time, according to the present inventors' earnest test, a plurality of eddy currents having different velocities are formed inside the jet flow by the vortex forming means with respect to the plasma jet jetted from the discharge space (hereinafter referred to as variable speed vortex flow). found.
This speed change vortex forms a vortex ring (hereinafter referred to as a speed change vortex ring) as a whole jet, and encloses the high-plasma energy inside and moves the mixture in the combustion chamber while rotating while moving in the combustion chamber. Combustion grows while taking inside.
In addition, the vortex ring is disturbed by the speed distribution existing in the transmission vortex ring, and the intake of the air-fuel mixture is further improved.
Therefore, by using the plasma ignition device of the present invention, it becomes possible to efficiently use the high energy of the short-lived plasma, and a highly supercharged combustion engine in which a strong in-cylinder airflow exists in the combustion chamber or In addition, ignition of a hardly ignitable combustion engine such as an extremely lean combustion engine can be realized stably.

第2の発明によれば、上記放電空間から噴出した高温・高圧のプラズマ噴流が上記周壁部内に区画された渦流形成空間において外径方向に膨張したのち上記周壁部の内周壁に衝突するため、上記放電空間から噴出するプラズマ状態の気体の中心部における速度と、上記周壁部の内周壁近傍における速度との差が大きくなり、上記プラズマ噴流内に内側から外側へ向かう渦流が発生する。
本発明者等の鋭意試験により、上記周壁部から上記プラズマ噴流が噴出するときには、上記長壁部側が移動速度の速い先行渦となり、上記短壁部側が移動速度の遅い後続渦となって、一つの渦輪の内部に速度の異なる渦が存在する変速渦輪を形成し、これが上記燃焼室内の混合気と反応して燃焼速度の速い火炎核が発生することが判明した。
したがって、本発明によれば、上記変速渦輪を発生させて燃焼速度の向上を図り、優れた着火性を示すプラズマ点火装置が実現可能となる。
According to the second invention, the high-temperature and high-pressure plasma jet ejected from the discharge space expands in the outer diameter direction in the vortex formation space partitioned in the peripheral wall portion, and then collides with the inner peripheral wall of the peripheral wall portion. The difference between the velocity at the central portion of the plasma state gas ejected from the discharge space and the velocity in the vicinity of the inner peripheral wall of the peripheral wall portion becomes large, and a vortex flow from the inside toward the outside is generated in the plasma jet.
When the plasma jet is ejected from the peripheral wall portion by the inventors' earnest test, the long wall portion side becomes a leading vortex with a fast moving speed, and the short wall portion side becomes a succeeding vortex with a slow moving speed, It was found that a variable speed vortex ring in which vortices of different speeds exist inside the vortex ring, and this reacts with the air-fuel mixture in the combustion chamber to generate flame nuclei with a high combustion speed.
Therefore, according to the present invention, it is possible to realize a plasma ignition device that generates the above-described variable speed vortex ring to improve the combustion speed and exhibits excellent ignitability.

第3の発明によれば、上記周壁部は、突出長さの長い長壁部側における長壁部内周の高さから突出長さの短い短壁部側における短壁部内周の高さまで連続的に高さが変化するように斜め円筒状に形成されているので、放電空間から噴出したプラズマ噴流と長壁部内周壁との接触時間と短壁部内周壁との接触時間とが異なり、渦流に速度分布が発生する。
したがって、本発明によれば、上記変速渦輪を発生させて燃焼速度の向上を図り、優れた着火性を示すプラズマ点火装置が実現可能となる。
According to the third invention, the peripheral wall portion is continuously high from the height of the inner periphery of the long wall portion on the side of the long wall portion having a long protruding length to the height of the inner periphery of the short wall portion on the side of the short wall portion having a short protruding length. Since the contact time between the plasma jet ejected from the discharge space and the inner wall of the long wall is different from the contact time of the inner wall of the short wall, the velocity distribution is generated in the vortex. To do.
Therefore, according to the present invention, it is possible to realize a plasma ignition device that generates the above-described variable speed vortex ring to improve the combustion speed and exhibits excellent ignitability.

第4の発明によれば、上記変速渦流形成空間を区画する上記周壁部は、上記燃焼室への突出長さの長い長壁部と上記燃焼室への突出長さの短い短壁部とを有し、上記長壁部内周の高さと上記短壁部内周の高さとが断続的に変化する切欠き円筒状に形成されているので、放電空間から噴出したプラズマ噴流と長壁部内周壁との接触時間と短壁部内周壁との接触時間とが異なり、渦流に速度分布が発生する。
したがって、本発明によれば、上記変速渦輪を発生させて燃焼速度の向上を図り、優れた着火性を示すプラズマ点火装置が実現可能となる。
According to a fourth aspect of the invention, the peripheral wall portion defining the transmission eddy current forming space has a long wall portion having a long projecting length into the combustion chamber and a short wall portion having a short projecting length into the combustion chamber. In addition, since the height of the inner circumference of the long wall portion and the height of the inner circumference of the short wall portion are intermittently formed, the contact time between the plasma jet ejected from the discharge space and the inner circumferential wall of the long wall portion is Different from the contact time with the inner wall of the short wall, a velocity distribution is generated in the vortex.
Therefore, according to the present invention, it is possible to realize a plasma ignition device that generates the above-described variable speed vortex ring to improve the combustion speed and exhibits excellent ignitability.

第5の発明によれば、火炎核の成長方向が対称形に広がるため、上記変速渦輪が上記燃焼室内を移動する際の直進性が向上し、貫徹力が増す。
したがって、上記燃焼室内に強力な筒内気流が発生しているような場合でも、上記燃焼室内の所望の位置に火炎を到達させることが可能となり、より安定した着火が期待できる。
According to the fifth aspect, since the growth direction of the flame kernel spreads symmetrically, the straightness when the variable speed vortex ring moves in the combustion chamber is improved, and the penetration force is increased.
Therefore, even when a strong in-cylinder airflow is generated in the combustion chamber, the flame can reach a desired position in the combustion chamber, and more stable ignition can be expected.

第6の発明によれば、複数化に分けて高エネルギを上記プラズマ点火プラグに投入することにより、上記変速渦流に後続する変速渦流を重畳的に発生させ、これらが衝突することにより上記変速渦流の乱れをさらに大きくし、混合気との反応性を向上させ、より燃焼速度の高いプラズマ点火装置の実現が可能となることが本発明者等の鋭意試験により判明した。
加えて、1回当たりの投入エネルギが小さくなるので上記中心電極及び上記接地電極の消耗を抑制することも期待できる。
According to the sixth aspect of the present invention, the shift eddy current following the shift vortex is generated in a superimposed manner by supplying high energy to the plasma ignition plug in a plurality of ways, and the shift vortex flows by colliding with each other. It has been clarified by the present inventors that the turbulence of the gas is further increased, the reactivity with the air-fuel mixture is improved, and a plasma ignition device with a higher combustion speed can be realized.
In addition, since the input energy per one time becomes small, it can be expected that consumption of the center electrode and the ground electrode is suppressed.

本発明の第1の実施形態におけるプラズマ点火装置の構成を示す全体図。1 is an overall view showing a configuration of a plasma ignition device according to a first embodiment of the present invention. (a)は、本発明の第1の実施形態におけるプラズマ点火装置の概要を示す等価回路図、(b)は、その電流特性図。(A) is the equivalent circuit schematic which shows the outline | summary of the plasma ignition apparatus in the 1st Embodiment of this invention, (b) is the electric current characteristic diagram. (a)は、本発明の第1の実施形態におけるプラズマ点火装置に適用可能な他の等価回路図、(b)は、その電流特性図。(A) is another equivalent circuit diagram applicable to the plasma ignition device in the 1st Embodiment of this invention, (b) is the electric current characteristic diagram. 本発明の第1の実施形態におけるプラズマ点火装置の作用を示し、(a)は、点火信号が発信された直後の状態を示す要部断面模式図、(b)は、点火から0.2ms後の状態を示す要部断面模式図。The operation of the plasma ignition device in the first embodiment of the present invention is shown, (a) is a schematic cross-sectional view of the main part showing a state immediately after the ignition signal is transmitted, (b) is 0.2 ms after ignition The principal part cross-sectional schematic diagram which shows the state. 本発明の第1の実施形態における火炎核の燃焼成長の経時変化を(a)から(f)の順を追って示す図面代用シュリーレン写真。The schlieren photograph substitute for drawing which shows change with time of combustion growth of a flame kernel in order of (a) to (f) in a 1st embodiment of the present invention. 本発明の第2の実施形態における火炎核の燃焼成長の経時変化を(a)から(f)の順を追って示す図面代用シュリーレン写真。The schlieren photograph substitute for drawing which shows the time-dependent change of the combustion growth of the flame kernel in the 2nd Embodiment of this invention in order from (a) to (f). 比較例における火炎核の燃焼成長の経時変化を(a)から(f)の順を追って示す図面代用シュリーレン写真。The schlieren photograph which substitutes for drawing which shows the time-dependent change of the combustion growth of the flame kernel in a comparative example in order from (a) to (f). 火炎核の燃焼成長に対する本発明の効果を比較例と共に示す特性図。The characteristic view which shows the effect of this invention with respect to the combustion growth of a flame kernel with a comparative example. 燃焼変動(COV IMEP)に対する本発明の効果を比較例と共に示す特性図。The characteristic view which shows the effect of this invention with respect to a combustion fluctuation | variation (COV IMEP) with a comparative example. 本発明の第3の実施形態におけるプラズマ点火装置の概要を示し、(a)は、要部断面図、(b)は、要部下面斜視図、(c)は、変速渦輪の状態を示す模式図。The outline | summary of the plasma ignition apparatus in the 3rd Embodiment of this invention is shown, (a) is principal part sectional drawing, (b) is a principal part bottom surface perspective view, (c) is a model which shows the state of a transmission vortex ring Figure.

本発明は、放電空間内の気体に高エネルギを与えて高温・高圧のプラズマ状態として、機関燃焼室内に噴射して点火を行うプラズマ点火装置において、プラズマ噴流に変速渦流を発生させることにより、火炎核に適度な乱れを生じさせて混合気との反応性を高め、火炎核の燃焼速度を加速して、自動車エンジン等の燃焼機関、特に、超希薄燃焼機関や、高過給混合機関等の難着火性の点火に優れた着火性を示すプラズマ点火装置である。   The present invention provides a plasma igniter that applies high energy to a gas in a discharge space to form a high-temperature and high-pressure plasma state and ignites it by injecting it into an engine combustion chamber. It generates moderate turbulence in the nuclei to increase the reactivity with the air-fuel mixture, accelerates the combustion speed of the flame nuclei, such as combustion engines such as automobile engines, especially ultra lean combustion engines, high supercharged mixing engines, etc. It is a plasma ignition device that exhibits excellent ignitability for ignition with difficulty ignition.

本発明の第1の実施形態におけるプラズマ点火装置1について、図1を参照して説明する。本実施形態において、プラズマ点火装置1は、点火プラグ10と点火プラグ10に高電圧を印加する放電用電源20と大電流を供給するプラズマエネルギ供給用電源30とによって構成され、点火プラグ10は、図略の機関40に装着され燃焼室400内に先端が露出している。
点火プラグ10は、長軸状の中心電極110と、中心電極110の外周を覆い絶縁保持する略筒状の絶縁体120と、絶縁体120を覆う略筒状の接地電極130とによって構成されている。
A plasma ignition device 1 according to a first embodiment of the present invention will be described with reference to FIG. In the present embodiment, the plasma ignition device 1 includes an ignition plug 10, a discharge power source 20 that applies a high voltage to the spark plug 10, and a plasma energy supply power source 30 that supplies a large current. A tip is exposed in the combustion chamber 400 mounted on the engine 40 (not shown).
The spark plug 10 includes a long-axis center electrode 110, a substantially cylindrical insulator 120 that covers and holds the outer periphery of the center electrode 110, and a substantially cylindrical ground electrode 130 that covers the insulator 120. Yes.

中心電極110は、高耐熱性、良電気伝導性の材料からなり、中心電極110の基端側には、良電気伝導性及び良熱伝導性の材料からなる中心電極中軸111が形成され、さらに基端部には、放電用電源20及びプラズマエネルギ供給用電源30に接続される中心電極端子部112が形成されている。   The center electrode 110 is made of a material having high heat resistance and good electrical conductivity, and a central electrode central shaft 111 made of a material having good electrical conductivity and good heat conductivity is formed on the proximal end side of the center electrode 110, and A central electrode terminal portion 112 connected to the discharge power source 20 and the plasma energy supply power source 30 is formed at the base end.

絶縁体120は、耐熱性、機械的強度、高温における絶縁耐力、熱伝導率などに優れた高純度のアルミナ等からなり、中心電極110の下端面よりも下方に伸びる筒状に形成されている。
絶縁体120の中腹には、径大に拡径された絶縁体係止部121が形成され、後述するハウジング部13との気密性を保持する図略のシール部材を介してハウジング部13の内側に係止されている。
絶縁体120の基端側は、中心電極端子部112とハウジング部13表面とを絶縁し、高電圧のリークを防止するコルゲート状の絶縁体頭部123が形成されている。
The insulator 120 is made of high-purity alumina or the like excellent in heat resistance, mechanical strength, high-temperature dielectric strength, thermal conductivity, and the like, and is formed in a cylindrical shape that extends downward from the lower end surface of the center electrode 110. .
An insulator locking portion 121 having a large diameter is formed in the middle of the insulator 120, and the inside of the housing portion 13 is interposed via a seal member (not shown) that maintains airtightness with the housing portion 13 described later. It is locked to.
On the base end side of the insulator 120, a corrugated insulator head 123 is formed that insulates the center electrode terminal portion 112 and the surface of the housing portion 13 and prevents high-voltage leakage.

接地電極130は、導電性金属材料からなり、絶縁体120を覆うように略筒状に形成され、先端側において中心に向かって屈曲し絶縁体120の底部を覆い、絶縁体120の下端開口部に連通する開口部131が形成されている。絶縁体120の内周壁と中心電極110の底面と開口部131とによって、内径φD、長さLの所定の容積を有する放電空間140が区画されている。
接地電極130には、本発明の要部である渦流形成手段として、開口部131の周囲を覆うように開口部131の開口径φDよりも大きな開口径φDを有し、先端側に向かって部分的に異なる高さで突設された略円筒状の周壁部(シュラウド)15が形成されている。
本実施形態においてシュラウド15は、突出長さの長い長壁部150側における長壁部内周151の高さL21から突出長さの短い短壁部152側における短壁部内周153の高さL22まで連続的に高さが変化するように斜め円筒状に形成され、その内側に変速渦流形成空間141が区画されている。
The ground electrode 130 is made of a conductive metal material, is formed in a substantially cylindrical shape so as to cover the insulator 120, bends toward the center on the tip side, covers the bottom of the insulator 120, and opens at the lower end of the insulator 120. An opening 131 is formed in communication with. A discharge space 140 having a predetermined volume with an inner diameter φD 1 and a length L 1 is defined by the inner peripheral wall of the insulator 120, the bottom surface of the center electrode 110, and the opening 131.
The ground electrode 130 has an opening diameter φD 2 larger than the opening diameter φD 1 of the opening 131 so as to cover the periphery of the opening 131 as a vortex forming means that is a main part of the present invention, and is directed toward the tip side. Thus, a substantially cylindrical peripheral wall portion (shroud) 15 projecting at a partially different height is formed.
In the present embodiment, the shroud 15 extends from the height L 21 of the long wall inner periphery 151 on the long wall portion 150 side with the long protruding length to the height L 22 of the short wall inner periphery 153 on the short wall portion 152 side with the short protruding length. It is formed in an oblique cylindrical shape so that its height continuously changes, and a variable speed vortex forming space 141 is defined inside thereof.

接地電極130の外周部は、絶縁体120の外周を覆うように基端側に向かって筒状に伸び、中心電極110と絶縁体120を介して対向する背後電極部134が延設されている。
さらに、背後電極134の基端側は、絶縁体120を保持しつつ、図略の機関燃焼室400内に第2の開口部133が露出するように図略の機関燃焼室壁面40に固定すると共に接地電極130と該燃焼室壁面40とを電気的に接地状態とするためのハウジング部13が形成されている。
背後電極部134の外周には、上記燃焼室壁面に螺結するためのネジ部135が形成され、ハウジング部13の基端側外周部にはネジ部135を締め付けるための六角部136が形成され、さらに絶縁体120をハウジング部13内に加締め固定すべく加締め部137が形成されている。
The outer peripheral portion of the ground electrode 130 extends in a cylindrical shape toward the proximal end so as to cover the outer periphery of the insulator 120, and a back electrode portion 134 that is opposed to the center electrode 110 through the insulator 120 is extended. .
Further, the base end side of the back electrode 134 is fixed to the engine combustion chamber wall surface 40 (not shown) so that the second opening 133 is exposed in the engine combustion chamber 400 (not shown) while holding the insulator 120. At the same time, a housing portion 13 for electrically grounding the ground electrode 130 and the combustion chamber wall surface 40 is formed.
A screw part 135 for screwing to the combustion chamber wall surface is formed on the outer periphery of the back electrode part 134, and a hexagonal part 136 for tightening the screw part 135 is formed on the outer peripheral part on the proximal end side of the housing part 13. Further, a caulking portion 137 is formed for caulking and fixing the insulator 120 in the housing portion 13.

図2に本発明の第1の実施形態におけるプラズマ点火装置1に適用し得るプラズマエネルギ発生用電源として利用可能な高エネルギ電源の例を示す。
放電用電源20は、第1の電源21、イグニッションキー22、点火コイル23、点火コイル駆動回路24、電子制御装置25、第1の整流素子26、点火ノイズ吸収抵抗27によって構成されている。
なお、放電用電源20は、電極消耗の抑制を図るため、第1の整流素子26によって、中心電極110が陽極となるように整流するのが望ましい。
FIG. 2 shows an example of a high energy power source that can be used as a plasma energy generating power source that can be applied to the plasma ignition device 1 according to the first embodiment of the present invention.
The discharge power source 20 includes a first power source 21, an ignition key 22, an ignition coil 23, an ignition coil drive circuit 24, an electronic control device 25, a first rectifier element 26, and an ignition noise absorption resistor 27.
The discharge power source 20 is desirably rectified by the first rectifying element 26 so that the center electrode 110 becomes an anode in order to suppress electrode consumption.

プラズマ発生用電源30は、第2の電源31、充電電流調整抵抗32、第2の整流素子34、プラズマエネルギ充電用コンデンサ33によって構成されている。なお、電極消耗の抑制を図るため、プラズマ発生用電源30は、第2の整流素子34によって、中心電極110が陽極となるように整流するのが望ましい。   The plasma generating power source 30 includes a second power source 31, a charging current adjusting resistor 32, a second rectifying element 34, and a plasma energy charging capacitor 33. In order to suppress electrode consumption, the plasma generating power source 30 is desirably rectified by the second rectifying element 34 so that the center electrode 110 becomes an anode.

放電用電源20から高電圧が印加され、放電空間140内の絶縁を破壊するブレークダウン放電が起こると、プラズマエネルギ充電用コンデンサ33に蓄えられたエネルギが大電流IPとなって極めて短い放電時間TPに一気に放出される。図2(b)に、この時の、放電電流IPと投入されるエネルギと放電時間Tとの関係を示す。 When a high voltage is applied from the discharge power supply 20 and a breakdown discharge that breaks the insulation in the discharge space 140 occurs, the energy stored in the plasma energy charging capacitor 33 becomes a large current IP and an extremely short discharge time TP. It is released at a stretch. In FIG. 2 (b), at this time, illustrating the relationship between the energy to be introduced and the discharge current IP and the discharge time T P.

図3に本発明の第2の実施形態におけるプラズマ点火装置1に適用し得る高エネルギ電源の例を示す。
図3(a)に示すように、第2の実施形態におけるプラズマ点火装置1aでは、プラズマエネルギ充電用コンデンサ33と並列に複数のチョークコイル35とコンデンサ33とを設けることにより、図3(b)に示すように1回の点火において、1回で放出するエネルギと同量のエネルギを2山以上の複数回に分割されたパルス電流として供給することもできる。
なお、チョークコイル35は、下流側を低インダクタンスとし、上流側を高インダクタンスとしてある。放電用電源20からのブレークダウン放電によって放電空間140内の絶縁が破壊され、先ず、チョークコイル35の介装されていないコンデンサ33から1段目の大電流の放出がなされ、次いで、低インダクタンスのチョークコイル35によって遅延されたコンデンサ33から2段目の電流放出がなされ、さらに、高インダクタンスのチョークコイル35によって遅延されたコンデンサ33から3段目に電流放出がなされる。
FIG. 3 shows an example of a high energy power source applicable to the plasma ignition device 1 in the second embodiment of the present invention.
As shown in FIG. 3A, in the plasma ignition device 1a according to the second embodiment, a plurality of choke coils 35 and capacitors 33 are provided in parallel with the plasma energy charging capacitor 33, so that FIG. As shown in FIG. 5, in one ignition, the same amount of energy as that released at one time can be supplied as a pulse current divided into two or more peaks.
The choke coil 35 has a low inductance on the downstream side and a high inductance on the upstream side. The breakdown in the discharge space 140 is broken by the breakdown discharge from the discharge power source 20, and first, a first stage of large current is discharged from the capacitor 33 in which the choke coil 35 is not interposed. The second-stage current is released from the capacitor 33 delayed by the choke coil 35, and further, the third-stage current is released from the capacitor 33 delayed by the high-inductance choke coil 35.

図4から図9を参照して、本発明の効果について説明する。
放電用電源20から高電圧が印加されると、中心電極110の下端表面と接地電極開口部131との間の絶縁が破壊され、絶縁体120の内周壁表面を這うように沿面放電が起こる。
この沿面放電をトリガとしてプラズマエネルギ供給用電源30から大電流が流れ、放電空間140内に高エネルギの電子が放電経路の周りに放出され、放電空間140内の気体が電離され、高温・高圧のプラズマ状態となって、放電空間140から噴出される。
The effects of the present invention will be described with reference to FIGS.
When a high voltage is applied from the discharge power supply 20, the insulation between the lower end surface of the center electrode 110 and the ground electrode opening 131 is broken, and creeping discharge occurs so as to cover the inner peripheral wall surface of the insulator 120.
With this creeping discharge as a trigger, a large current flows from the plasma energy supply power source 30, high energy electrons are emitted around the discharge path in the discharge space 140, gas in the discharge space 140 is ionized, and high temperature / high pressure It becomes a plasma state and is ejected from the discharge space 140.

このとき、図4(a)に示すように、放電空間140から噴出したプラズマ噴流PZが、変速渦流形成空間141において外径方向に膨張したのちシュラウド15の内周壁に衝突するため、放電空間140から噴出するプラズマ状態の気体の中心部における速度と、シュラウド15の内周壁近傍における速度との差が大きくなり、プラズマ噴流PZ内に内側から外側へ向かう渦流が発生する。
さらに、シュラウド15は、突出長さの長い長壁部150側における長壁部内周151の高さL21から突出長さの短い短壁部152側における短壁部内周153の高さL22まで連続的に高さが変化するように斜め円筒状に形成されているので、放電空間140から噴出した電離気体と長壁部内周壁151との接触時間と短壁部内周壁153との接触時間とが異なるので渦流に速度分布が発生する。
本発明者等の鋭意試験により、図4(b)に示すように、シュラウド15からプラズマ噴流PZが噴出するときには、長壁部150側が移動速度の速い先行渦VRとなり、短壁部152側が移動速度の遅い後続渦VRとなって、一つの渦輪の内部に速度の異なる渦が存在する変速渦輪(Various Velocity Vortex Ring、VVVR)を形成し、これが燃焼室400内の混合気と反応して燃焼速度の速い火炎核が発生することが判明した。
回転する変速渦輪VVVR内にプラズマのエネルギが閉じ込められるので、従来のプラズマ点火装置に比べ、プラズマの高エネルギ状態を長く維持する事が可能となる。
加えて、移動速度の早い先行渦VRと移動速度の遅い後続渦VRとが一体の変速渦輪VVVRを形成して燃焼室400内の混合気を内部に取り込みつつ火炎核成長しながら燃焼室400内を移動するので、渦の回転速度のズレによって変速渦輪VVVRに適度な乱れが生じ、変速渦輪VVVR内への混合気の取り込みが良好となり燃焼速度が速くなるものと推察される。
At this time, as shown in FIG. 4A, the plasma jet PZ ejected from the discharge space 140 expands in the outer diameter direction in the variable speed vortex formation space 141 and then collides with the inner peripheral wall of the shroud 15. The difference between the velocity at the center of the gas in the plasma state ejected from the gas and the velocity in the vicinity of the inner peripheral wall of the shroud 15 becomes large, and a vortex flowing from the inside toward the outside is generated in the plasma jet PZ.
Furthermore, the shroud 15 is continuously from a height L 21 of longwall inner peripheral 151 in a long long wall portion 150 side of the protruding length to the height L 22 of the minor wall portion inner peripheral 153 in a short minor wall portion 152 side of the projecting length Since the contact time between the ionized gas ejected from the discharge space 140 and the long wall inner peripheral wall 151 is different from the contact time between the short wall inner peripheral wall 153 and the vortex flow. Velocity distribution occurs.
As shown in FIG. 4 (b), when the plasma jet PZ is ejected from the shroud 15, the long wall 150 side becomes the leading vortex VR 1 having a high moving speed, and the short wall 152 side moves. The subsequent vortex VR 2 having a low velocity forms a variable velocity vortex ring (V VVR ) in which vortices having different velocities exist inside one vortex ring, which reacts with the air-fuel mixture in the combustion chamber 400. As a result, it was found that a flame kernel with a high burning rate was generated.
Since the plasma energy is confined in the rotating variable vortex ring V VVR , it is possible to maintain the high energy state of the plasma longer than in the conventional plasma ignition device.
In addition, the preceding vortex VR 1 having a fast moving speed and the succeeding vortex VR 2 having a slow moving speed form an integrated variable speed vortex ring V VVR to burn while growing the flame kernel while taking in the air-fuel mixture in the combustion chamber 400. Since it moves in the chamber 400, it is presumed that the shift vortex ring V VVR is moderately disturbed due to the deviation of the rotational speed of the vortex, the air-fuel mixture is taken into the shift vortex ring V VVR , and the combustion speed is increased. .

本発明の効果を確認すべく、希薄燃焼機関を模して、プロパンと圧縮空気とを所定の混合比で投入し、内部を所定の圧力に調整した燃焼試験容器を用いて、燃焼試験を行い、点火開始から0.2ms毎の様子をシュリーレン撮影した。
本発明の第1の実施形態におけるプラズマ点火装置1を装着し、図2に示すように200mJのエネルギを1回で供給し、これを実施例1とした。
図3に示すように、200mJのエネルギを2回に分けて供給し、これを実施例2とした。
また、特許文献1にあるような本発明のシュラウド150が形成されていない従来のプラズマ点火プラグを用いて、図2に示すように200mJのエネルギを供給し、これを比較例1とした。
なお、本試験においては、具体的には、本実例1、実施例2として、φD=1.3mm、φD=3.0mm、L=1.3mm、L21=1mm、L22=2mmに設定したものを用い、比較例1には、φD=1.3mm、φD=3.0mmに設定したもの用いた。
実施例1、実施例2、比較例1の試験結果の一部を、それぞれ、図5、図6、図7に示す。
In order to confirm the effect of the present invention, a combustion test was conducted using a combustion test vessel in which propane and compressed air were introduced at a predetermined mixing ratio and the inside was adjusted to a predetermined pressure, imitating a lean combustion engine. A Schlieren image was taken every 0.2 ms from the start of ignition.
The plasma ignition device 1 according to the first embodiment of the present invention was mounted, and 200 mJ of energy was supplied at a time as shown in FIG.
As shown in FIG. 3, energy of 200 mJ was supplied in two portions, which was referred to as Example 2.
Further, using a conventional plasma spark plug in which the shroud 150 of the present invention is not formed as in Patent Document 1, energy of 200 mJ was supplied as shown in FIG.
In this test, specifically, as Example 1 and Example 2, φD 1 = 1.3 mm, φD 2 = 3.0 mm, L 1 = 1.3 mm, L 21 = 1 mm, L 22 = using those set 2 mm, in Comparative example 1 was used [phi] D 1 = 1.3 mm, those that have been set to [phi] D 2 = 3.0 mm.
Part of the test results of Example 1, Example 2, and Comparative Example 1 are shown in FIGS. 5, 6, and 7, respectively.

図5(a)〜(f)に時間を追って順に示すように、本発明の実施例1では、放電空間140から噴出したプラズマ火炎が渦輪を形成して回転しながら燃焼室内を移動するものの、シュラウド15の長壁部150側の渦流の移動速度に比べ短壁部152側の渦流の移動速度が遅く、渦輪に乱れが生じて、点火からの時間の経過と共に火炎が周囲の混合気を取り込んで成長する様子が確認された。
また、図6(a)〜(f)に時間を追って順にに示すように、本発明の実施例2では、実施例1に比べさらに火炎核に大きな乱れが発生し、火炎成長の速度も速く、実施例1よりもさらに大きな火炎に成長する様子が確認された。
一方、図7(a)〜(f)に時間を追って順にに示すように、従来のプラズマ点火装置を用いた場合比較例1では、放電空間から噴射される火炎核は略球状をしており、火炎核は乱れることなく一様に火炎成長しているが、燃焼室内の移動距離は、実施例1、実施例2よりも短いことが確認された。
5A to 5F, the plasma flame ejected from the discharge space 140 moves in the combustion chamber while rotating while forming a vortex ring in Example 1 of the present invention. The movement speed of the vortex on the short wall 152 side is slower than the movement speed of the vortex on the long wall section 150 side of the shroud 15, and the vortex ring is turbulent. It was confirmed that it grew.
Further, as shown in order in the order of time in FIGS. 6A to 6F, in Example 2 of the present invention, a larger disturbance occurs in the flame kernel than in Example 1, and the rate of flame growth is faster. It was confirmed that the flame grew to a larger flame than Example 1.
On the other hand, as shown in the order of time in FIGS. 7A to 7F, in the case of using the conventional plasma ignition device, in Comparative Example 1, the flame kernel injected from the discharge space has a substantially spherical shape. It was confirmed that the flame nuclei were uniformly grown without being disturbed, but the moving distance in the combustion chamber was shorter than that in Examples 1 and 2.

さらに、本発明の火炎核の成長速度に対する効果を確認すべく、図5、図6、図7に示した実施例1、実施例2、比較例1のシュリーレン写真を2値化して火炎核の断面積を算出し、その経時変化を測定し、その結果を図8に示す。
図8に示すように、本発明の実施例1、実施例2、比較例1の点火直後に噴射された火炎核の大きさはほとんど差がないのにも関わらず、実施例1、実施例2とも比較例1よりも大きく成長し、本発明によれば、従来のプラズマ点火装置よりも火炎核の成長速度が早くなることが判明した。
Furthermore, in order to confirm the effect of the present invention on the growth rate of flame nuclei, the schlieren photographs of Example 1, Example 2 and Comparative Example 1 shown in FIGS. The cross-sectional area was calculated, the change with time was measured, and the result is shown in FIG.
As shown in FIG. 8, although the sizes of flame nuclei injected immediately after ignition of Examples 1, 2 and Comparative Example 1 of the present invention are almost the same, Example 1 and Example Both were grown larger than Comparative Example 1, and according to the present invention, it was found that the growth rate of flame nuclei was faster than that of the conventional plasma ignition device.

さらに、本発明の第1の実施形態におけるプラズマ点火装置1、第2の実施形態におけるプラズマ点火装置1a、従来のプラズマ点火装置を用いて、実際の内燃機関(2000rpm、空燃比26.2)において計測した燃焼変動(COV IMEP %)の結果を図9に示す。本図に示すように、本発明によれば、燃焼変動を低減できることが判明した。   Further, in the actual internal combustion engine (2000 rpm, air-fuel ratio 26.2) using the plasma ignition device 1 in the first embodiment of the present invention, the plasma ignition device 1a in the second embodiment, and the conventional plasma ignition device. The result of the measured combustion fluctuation (COV IMEP%) is shown in FIG. As shown in this figure, according to the present invention, it has been found that combustion fluctuation can be reduced.

図10(a)、(b)に示すように、本発明の第3の実施形態におけるプラズマ点火装置では、上記実施形態と同様の構成に加え、シュラウド15aの形状を、シュラウド15aの周壁の一部を切欠いて、2以上の長壁部150aと短壁部151aとが断続的に変化し、中心軸に対してそれぞれが対象となるように配設された、対称形状に形成されている。シュラウド15aをこのような形状とすることによって、図10(c)に示すような先行渦VRaと後続渦VRaとが直交する対称形の変速渦輪VVVRaが形成される。
火炎核の成長方向が対称形に広がるため、変速渦輪VVVRaが燃焼室500内を移動する際の直進性が向上し、貫通力が増す。したがって、燃焼室400内に強力な筒内気流が発生しているような場合でも、燃焼室400内の所望の位置に火炎を到達させることが可能となり、より安定した着火が期待できる。
As shown in FIGS. 10A and 10B, in the plasma ignition device according to the third embodiment of the present invention, in addition to the same configuration as that of the above-described embodiment, the shape of the shroud 15a is changed to one of the peripheral walls of the shroud 15a. The two or more long wall portions 150a and the short wall portions 151a are intermittently changed, and are formed in a symmetrical shape so as to be respectively targeted with respect to the central axis. By forming the shroud 15a in such a shape, a symmetrical transmission vortex ring V VVR a in which the leading vortex VR 1 a and the trailing vortex VR 2 a are orthogonal as shown in FIG. 10C is formed.
Since the growth direction of the flame kernel spreads symmetrically, the straightness when the variable speed vortex ring V VVR a moves in the combustion chamber 500 is improved, and the penetration force is increased. Therefore, even when a strong in-cylinder airflow is generated in the combustion chamber 400, the flame can reach a desired position in the combustion chamber 400, and more stable ignition can be expected.

本発明は上記実施形態に限定するものではなく、本発明の趣旨を逸脱しない限りにおいて、適用する機関の大きさ、燃料の種類、機関の運転状況に応じて、具体的な回転付与機構の形状は適宜変更可能である。例えば、上記実施形態においては、一つの点火プラグで構成されるプラズマ式プラズマ点火装置について説明したが、本発明が多数の点火プラグを含む多気筒エンジンにも適用し得るものである。
また、上記実施形態においては、高電圧電源を放電用電源20とプラズマ発生用電源30との2電源により構成した場合について説明したが、1の電源からDc−Dcコンバータ等を介して異なる電圧に調整して放電用電源とプラズマ発生用電源とする構成としても良い。さらに、上記実施形態においては、放電用電源の昇圧回路として、通常の点火コイルを用いた場合を例に説明したが、コンデンサ放電型点火コイル(C.D.I.)、圧電トランス等を用いても良い。
The present invention is not limited to the above-described embodiment, and the shape of the specific rotation imparting mechanism is determined according to the size of the engine to be applied, the type of fuel, and the operating state of the engine without departing from the spirit of the present invention. Can be appropriately changed. For example, in the above-described embodiment, the plasma type plasma ignition device constituted by one ignition plug has been described. However, the present invention can be applied to a multi-cylinder engine including a large number of ignition plugs.
Further, in the above embodiment, the case where the high voltage power source is constituted by the two power sources of the discharge power source 20 and the plasma generating power source 30 has been described. It is good also as a structure adjusted and used as the power supply for discharge and the power supply for plasma generation. Further, in the above-described embodiment, the case where a normal ignition coil is used as the boosting circuit of the discharge power source has been described as an example, but a capacitor discharge ignition coil (CDI), a piezoelectric transformer, or the like is used. May be.

1 プラズマ点火装置
10 点火プラグ
110 中心電極
120 絶縁体
130 接地電極
140 放電空間
141 変速渦流形成空間
15 シュラウド(周壁部、渦流形成手段)
150 長壁部
151 長壁部内周
152 短壁部
153 短壁部内周
20 放電用電源
30 プラズマエネルギ供給用電源
40 内燃機関
400 機関燃焼室
φD 放電空間内径(絶縁体内周壁内径)
φD シュラウド内径
放電空間長さ
21 長壁部内周高さ
22 短壁部内周高さ
VR 先行渦
VR 後続渦
VVR 変速渦輪
DESCRIPTION OF SYMBOLS 1 Plasma ignition apparatus 10 Spark plug 110 Center electrode 120 Insulator 130 Ground electrode 140 Discharge space 141 Variable eddy current formation space 15 Shroud (peripheral wall part, eddy current formation means)
150 Long wall portion 151 Long wall portion inner circumference 152 Short wall portion 153 Short wall portion inner circumference 20 Discharge power source 30 Plasma energy supply power source 40 Internal combustion engine 400 Engine combustion chamber φD 1 Discharge space inner diameter (insulator inner wall inner diameter)
φD 2 Shroud inner diameter L 1 Discharge space length L 21 Long wall inner circumferential height L 22 Short wall inner circumferential height VR 1 Leading vortex VR 2 Successive vortex V VVR variable vortex ring

特開2006−294257号公報JP 2006-294257 A

Claims (6)

長軸状の中心電極と、該中心電極を覆いつつ、その下端面よりも下方に伸びる略筒状に形成した絶縁体と、該絶縁体を覆いつつ、該絶縁体の開口部に連通する接地電極開口部を設けた接地電極とによって放電空間を区画し、
該放電空間に、放電用電源からの高電圧の印加とプラズマエネルギ供給用電源からの大電流の供給とを行って、該放電空間内の気体を高温・高圧のプラズマ状態となして、機関燃焼室内に噴射して該機関の点火を行うプラズマ点火装置において、
上記放電空間から噴出するプラズマ状態の気体の流れに、その外周から中心に向かい、移動速度の異なる複数の渦流を形成する渦流形成手段を設けたことを特徴とするプラズマ点火装置。
A long-axis center electrode, an insulator formed in a substantially cylindrical shape that covers the center electrode and extends below the lower end surface thereof, and a ground that covers the insulator and communicates with the opening of the insulator The discharge space is partitioned by a ground electrode provided with an electrode opening,
A high voltage is applied from the discharge power source to the discharge space and a large current is supplied from the plasma energy supply power source, and the gas in the discharge space is changed to a high-temperature and high-pressure plasma state to cause engine combustion. In a plasma ignition device that ignites the engine by injecting into the room,
A plasma igniter comprising a vortex forming means for forming a plurality of vortexes having different moving speeds from the outer periphery toward the center of the gas flow in a plasma state ejected from the discharge space.
上記渦流形成手段は、上記接地電極の先端側に延設して、上記開口部の周囲を覆うように上記開口部の開口径よりも大きな開口径を有し、上記燃焼室内に向かって部分的に異なる高さに突設された略円筒状の周壁部によって区画して渦流形成空間を形成したことを特徴とする請求項1に記載のプラズマ点火装置。   The eddy current forming means extends to the front end side of the ground electrode, has an opening diameter larger than the opening diameter of the opening so as to cover the periphery of the opening, and partially enters the combustion chamber. 2. The plasma ignition device according to claim 1, wherein a vortex forming space is formed by being partitioned by a substantially cylindrical peripheral wall projecting at different heights. 上記渦流形成空間を区画する上記周壁部は、上記燃焼室への突出長さの長い長壁部と、上記燃焼室への突出長さの短い短壁部とを有し、
上記長壁部内周の高さと上記短壁部内周の高さとが連続的に変化する斜め円筒状に形成したことを特徴とする請求項2に記載のプラズマ点火装置。
The peripheral wall portion that divides the vortex forming space has a long wall portion with a long protruding length into the combustion chamber and a short wall portion with a short protruding length into the combustion chamber,
3. The plasma ignition device according to claim 2, wherein the inner circumference of the long wall portion and the inner circumference of the short wall portion are formed in an oblique cylindrical shape in which the height continuously changes.
上記渦流形成空間を区画する上記周壁部は、上記燃焼室への突出長さの長い長壁部と上記燃焼室への突出長さの短い短壁部とを有し、
上記長壁部内周の高さと上記短壁部内周の高さとが断続的に変化する切欠き円筒状に形成したことを特徴とする請求項2に記載のプラズマ点火装置。
The peripheral wall portion that divides the vortex forming space has a long wall portion with a long protruding length into the combustion chamber and a short wall portion with a short protruding length into the combustion chamber,
3. The plasma ignition device according to claim 2, wherein the plasma ignition device is formed in a notched cylindrical shape in which the height of the inner circumference of the long wall portion and the height of the inner circumference of the short wall portion change intermittently.
上記渦流形成空間を区画する上記周壁部は、中心軸に対して対称の位置に配設した2以上の上記長壁部と、中心軸に対して対称の位置に配設した2以上の上記短壁部とを有する対称形に形成したことを特徴とする請求項3又は4に記載のプラズマ点火装置。   The peripheral wall portion that divides the eddy current forming space includes two or more long wall portions that are disposed symmetrically with respect to the central axis, and two or more short walls that are disposed symmetrically with respect to the central axis. The plasma ignition device according to claim 3, wherein the plasma ignition device is formed in a symmetrical shape having a portion. 上記放電用電源からの1回の高電圧の印加に対して、上記プラズマエネルギ発生用電源からの大電流の供給は、パルス電流によって複数回に分割して供給することを特徴とする請求項1ないし5のいずれか1項に記載のプラズマ点火装置。   2. The supply of a large current from the plasma energy generating power source is divided into a plurality of times by a pulse current in response to one high voltage application from the discharge power source. 6. The plasma ignition device according to any one of items 5 to 5.
JP2009122581A 2009-05-20 2009-05-20 Plasma ignition device Active JP5355217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009122581A JP5355217B2 (en) 2009-05-20 2009-05-20 Plasma ignition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122581A JP5355217B2 (en) 2009-05-20 2009-05-20 Plasma ignition device

Publications (2)

Publication Number Publication Date
JP2010272323A true JP2010272323A (en) 2010-12-02
JP5355217B2 JP5355217B2 (en) 2013-11-27

Family

ID=43420189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122581A Active JP5355217B2 (en) 2009-05-20 2009-05-20 Plasma ignition device

Country Status (1)

Country Link
JP (1) JP5355217B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099672A1 (en) * 2011-12-28 2013-07-04 日本碍子株式会社 Ignition device, ignition method, and engine
JP2016095986A (en) * 2014-11-13 2016-05-26 株式会社日本自動車部品総合研究所 Ignition plug
US20180363618A1 (en) * 2017-06-14 2018-12-20 Denso Corporation Ignition apparatus
CN113446129A (en) * 2021-07-26 2021-09-28 中国人民解放军战略支援部队航天工程大学 High-efficiency stable combustion injector of medium-small thrust rocket engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56172280U (en) * 1980-05-22 1981-12-19
JPH09161946A (en) * 1995-12-13 1997-06-20 Mitsubishi Heavy Ind Ltd Spark plug for internal combustion engine
JP2009097500A (en) * 2007-09-26 2009-05-07 Denso Corp Plasma ignition device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56172280U (en) * 1980-05-22 1981-12-19
JPH09161946A (en) * 1995-12-13 1997-06-20 Mitsubishi Heavy Ind Ltd Spark plug for internal combustion engine
JP2009097500A (en) * 2007-09-26 2009-05-07 Denso Corp Plasma ignition device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099672A1 (en) * 2011-12-28 2013-07-04 日本碍子株式会社 Ignition device, ignition method, and engine
JP2016095986A (en) * 2014-11-13 2016-05-26 株式会社日本自動車部品総合研究所 Ignition plug
US20180363618A1 (en) * 2017-06-14 2018-12-20 Denso Corporation Ignition apparatus
US11181090B2 (en) * 2017-06-14 2021-11-23 Denso Corporation Ignition apparatus
CN113446129A (en) * 2021-07-26 2021-09-28 中国人民解放军战略支援部队航天工程大学 High-efficiency stable combustion injector of medium-small thrust rocket engine
CN113446129B (en) * 2021-07-26 2022-09-30 中国人民解放军战略支援部队航天工程大学 High-efficiency stable combustion injector of medium-small thrust rocket engine

Also Published As

Publication number Publication date
JP5355217B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5015910B2 (en) Ignition device
JP6293720B2 (en) Pre-chamber ignition device
JP5691662B2 (en) Non-thermal equilibrium plasma ignition device
JP5858903B2 (en) Ignition device
JP5901459B2 (en) Ignition device
JP5355217B2 (en) Plasma ignition device
CN103470427B (en) Microwave plasma ignition combustion system of internal combustion engine
CN101285590A (en) Electro-dynamic swirler, combustion apparatus and methods using the same
JP2011106377A (en) Direct-injection internal combustion engine and method of controlling the same
JP6025283B2 (en) Ignition device
JP2017147086A (en) Internal combustion
JP5477253B2 (en) Internal combustion engine ignition device
KR20230121143A (en) Plasma Ignition and Combustion Assist Systems for Gas Turbine Engines
JP2011117356A (en) Cylinder injection type internal combustion engine
JP5705043B2 (en) Ignition device for internal combustion engine
WO2013099672A1 (en) Ignition device, ignition method, and engine
JP5442064B2 (en) Ignition device
JP2010003605A (en) Plasma ignition device
JP2011018593A (en) Plasma ignition device
JP6035176B2 (en) Ignition device
JP2010015856A (en) Spark plug for internal combustion engine
JP2010203295A (en) Plasma ignition device
JP5818756B2 (en) Ignition device
US20210247070A1 (en) Plasma injection modules
CN117345500A (en) Pre-burning type plasma jet multi-point igniter for ammonia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5355217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250