JP2010272250A - Automatic check method for appearance defect of continuous porous electrode base material and winding body of porous electrode base material with its recording medium - Google Patents

Automatic check method for appearance defect of continuous porous electrode base material and winding body of porous electrode base material with its recording medium Download PDF

Info

Publication number
JP2010272250A
JP2010272250A JP2009121307A JP2009121307A JP2010272250A JP 2010272250 A JP2010272250 A JP 2010272250A JP 2009121307 A JP2009121307 A JP 2009121307A JP 2009121307 A JP2009121307 A JP 2009121307A JP 2010272250 A JP2010272250 A JP 2010272250A
Authority
JP
Japan
Prior art keywords
porous electrode
inspection
defect
defects
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009121307A
Other languages
Japanese (ja)
Other versions
JP5306053B2 (en
Inventor
Makoto Nakamura
誠 中村
Mitsuo Hamada
光夫 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2009121307A priority Critical patent/JP5306053B2/en
Publication of JP2010272250A publication Critical patent/JP2010272250A/en
Application granted granted Critical
Publication of JP5306053B2 publication Critical patent/JP5306053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic inspection method for appearance defects capable of accurately and effectively performing a continuous inspection of various appearance defects when continuously transferring the porous electrode base material of a long size and a rolled shape, and to provide a winding body of the porous electrode base material capable of immediately fixing inspection results and defective positions. <P>SOLUTION: In the automatic inspection method for appearance defects, inspection light is irradiated on the surface of the porous electrode base material (1), and the transmitted light, specular reflection light, and dispersed light are imaged. The imaged data are analyzed with an image processing section (4), and a recording medium is continuously wound as kinds and existing positions of the defects are recorded on it. The recording medium where the inspection results based on the automatic inspection of appearance defects are recorded is added on the wound winding body. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は炭素短繊維と炭化樹脂とからなる長尺の連続する多孔質電極基材の外観欠陥を自動的に検査する方法と、特にその連続外観検査に基づく欠陥部分の検査データが自動的に記録された記録媒体を有する多孔質電極基材の巻体に関する。   The present invention automatically inspects the appearance defect of a long continuous porous electrode substrate made of short carbon fibers and carbonized resin, and in particular, the inspection data of the defect portion based on the continuous appearance inspection automatically. The present invention relates to a wound body of a porous electrode substrate having a recorded recording medium.

多孔質電極基材は、通常、固体高分子型燃料電池における水素極(燃料極)と酸素極(空気極)の2極を構成し、それぞれがセパレータと触媒層の間に介装される部材である。各触媒層の間には高分子電界膜(イオン交換樹脂膜)が配され、これらの構成部材が一体化されてセルを構成する。前記多孔質電極基材は、セパレータと触媒層間の電気伝達体として機能するだけでなく、各セパレータから供給される水素や酸素などのガスを触媒層に分配する機能と、触媒層で生成される水を吸収して外部に排出する機能とを併せ持つことを求められており、現在のところ一般的に炭素質が有効とされている。   The porous electrode base material normally constitutes two electrodes, a hydrogen electrode (fuel electrode) and an oxygen electrode (air electrode), in a polymer electrolyte fuel cell, each of which is interposed between the separator and the catalyst layer It is. A polymer electric field membrane (ion exchange resin membrane) is disposed between the catalyst layers, and these constituent members are integrated to constitute a cell. The porous electrode base material not only functions as an electric conductor between the separator and the catalyst layer, but also functions to distribute a gas such as hydrogen and oxygen supplied from each separator to the catalyst layer, and is generated in the catalyst layer. It is required to have a function of absorbing water and discharging it to the outside. At present, carbonaceous materials are generally effective.

従来は、機械強度を高めるために、炭素短繊維と樹脂炭化物とを密に結着させるなどの方法が採られていたが、密に結着させ過ぎるとガス透過度が小さくなり、燃料電池に組んだときの発電性能が大幅に低下することが多い。一方、ガス透過度を大きく維持しようとして炭素短繊維と樹脂炭化物と結着を粗にしすぎると機械強度が低下し、燃料電池への組込み時のみならず通常時にあっても、その取扱いには様々な制限を受けることになる。   Conventionally, in order to increase the mechanical strength, methods such as tightly binding short carbon fibers and resin carbide have been adopted. The power generation performance when assembled is often greatly reduced. On the other hand, if the carbon short fiber and the resin carbide are too rough to maintain a high gas permeability, the mechanical strength decreases, and there are various ways to handle it not only when it is incorporated into the fuel cell but also at normal times. Will be subject to various restrictions.

こうした課題を解消した多孔質電極基材が、例えば特開2006−40885号公報(特許文献1)や特開2006−40886号公報(特許文献2)に開示されている。これら特許文献1及び2に開示された多孔質電極基材は、実質的に二次元平面内においてランダムな方向に分散した炭素短繊維同士が不定形の樹脂炭化物で結着され、さらに前記炭素短繊維同士がフィラメント状の樹脂炭化物により架橋されている。前記炭素短繊維の繊維直径は3〜9μm、繊維長が2〜12mmであって、その多孔質電極基材の厚みが150μm以下という極めて薄手の膜材からなる。かかる構成を備えた多孔質電極基材は、上記炭素短繊維を含む抄紙材料を湿式又は乾式の抄紙法により炭素繊維紙を作り、その炭素繊維紙に熱硬化性樹脂を含浸固化させたのち、不活性ガス雰囲気中で焼成して連続して製造される。こうして得られる長尺の多孔質電極基材は、3×2.54cm以下の紙管に巻き取ることができるだけの可撓性を有し、厚みが薄く安価でありながら、ガス透過度及び曲げ強度に優れている。   For example, Japanese Unexamined Patent Application Publication No. 2006-40885 (Patent Document 1) and Japanese Unexamined Patent Application Publication No. 2006-40886 (Patent Document 2) disclose a porous electrode base material that solves such problems. In these porous electrode base materials disclosed in Patent Documents 1 and 2, carbon short fibers dispersed in a random direction in a substantially two-dimensional plane are bound together by an amorphous resin carbide, and the carbon short The fibers are crosslinked with filamentous resin carbide. The carbon short fiber has a fiber diameter of 3 to 9 μm, a fiber length of 2 to 12 mm, and a porous electrode substrate made of a very thin film material having a thickness of 150 μm or less. A porous electrode base material having such a structure is made by making a carbon fiber paper by a wet or dry papermaking method from the papermaking material containing the carbon short fibers, and impregnating and solidifying the carbon fiber paper with a thermosetting resin, It is continuously manufactured by firing in an inert gas atmosphere. The long porous electrode substrate thus obtained is flexible enough to be wound around a paper tube of 3 × 2.54 cm or less, is thin and inexpensive, and has gas permeability and bending strength. Is excellent.

ところで、これらの多孔質電極基材は、上記炭素繊維紙に熱硬化性樹脂を含浸させてから加熱加圧して表面を平滑化し、その後、焼成炉内の不活性ガス雰囲気中で焼成して熱硬化性樹脂を炭化することにより製造されるが、その製造の間に、例えば炭素繊維が分散せず束となって固まり、それが部分的に残ったり、焼成炉内に堆積する不純物や浮遊する不純物が付着し、或いは熱硬化性樹脂の含浸量が不均一であったりするなどの多様な原因により、多孔質電極基材の本来要求される機能に悪影響を及ぼす様々な欠陥が発生する。   By the way, these porous electrode base materials are made by impregnating the above-mentioned carbon fiber paper with a thermosetting resin, and then heating and pressurizing to smooth the surface, and then firing and heating in an inert gas atmosphere in a firing furnace. Manufactured by carbonizing the curable resin, but during the production, for example, carbon fibers do not disperse and harden in a bundle, and it remains partially, or impurities that accumulate in the firing furnace and float Due to various causes such as adhesion of impurities or non-uniform impregnation amount of the thermosetting resin, various defects that adversely affect the originally required function of the porous electrode substrate are generated.

そこで、従来も多孔質電極基材に発生した多様な種類の欠陥を見出すために外観検査が行われている。しかしながら、この検査は、通常、目視によりなされている。この目視による外観欠陥検査でも、仮に例えばバッチ式で製造される板状の多孔質電極基材であれば時間をかけて精査することも可能であるが、上述のように連続して移送される長尺で極めて薄手の多孔質電極基材を対象とする場合には、検査対象自体が黒色である上に、欠陥色も黒色が多いこと、更には表面における色彩や光沢の僅かな差が品質に大きな影響を与えることから、それらの差異を正確に見極めることは、個人差も手伝って容易なことではなく、むしろこれらの欠陥検査は事実上不可能である場合が多い。   Therefore, in the past, appearance inspection has been performed in order to find various types of defects generated in the porous electrode substrate. However, this inspection is usually made visually. Even in this visual defect inspection, it is possible to scrutinize over time if it is a plate-like porous electrode base material manufactured by, for example, a batch method, but it is continuously transferred as described above. When targeting a long and extremely thin porous electrode base material, the inspection object itself is black, and the defect color is often black, and there is a slight difference in color and gloss on the surface. Therefore, it is not easy to accurately identify these differences, and it is often impossible to inspect these defects.

一方、例えば特開2008−89534号公報(特許文献3)には、連続して移送される炭素繊維布帛の開口率などに関する連続検査方法が提案されている。しかし、この検査対象である炭素繊維布帛は、経糸と緯糸とが互いに交差する構造をもつ織物であり、その織物に透過光による撮像データを利用し、織物の開口率、炭素繊維糸条の幅、同糸条の配列密度、糸条の斜行などを演算処理し、その演算結果に基づき布帛の欠陥であるか否かを自動的に判定しようとするものである。   On the other hand, for example, Japanese Patent Application Laid-Open No. 2008-89534 (Patent Document 3) proposes a continuous inspection method relating to an opening ratio of a carbon fiber fabric that is continuously transferred. However, the carbon fiber fabric to be inspected is a woven fabric having a structure in which warp and weft intersect each other, and imaging data by transmitted light is used for the woven fabric, and the opening ratio of the woven fabric and the width of the carbon fiber yarn are used. In addition, the arrangement density of the yarns, the skew of the yarns, and the like are subjected to arithmetic processing, and an attempt is made to automatically determine whether or not the fabric is defective based on the arithmetic results.

しかるに、上記特許文献3による具体的な各検査項目における検査対象の数値自体及び数値範囲が、上記多孔質電極基材のそれと比較すると大幅に大きいため、その検査精度もさほど高精度が期待されていない。因みに、特許文献3の段落[0099]には、形状情報が既知の被検査布帛又は決められた検査対象である12K織物と3K織物のマスターワークを例に挙げ、それらを検査対象としているが、その開口幅は1.0mm×1.0mm、0.4mm×0.4mmと記載されている。これに対して、上記特許文献2に記載された実施例1〜5における細孔の平均半径は8μm〜11μmとあり、両者を比較しても、50〜1000倍以上の差がある。このような大きな差がある場合には、特許文献3により提案された炭素繊維布帛の連続検査手法と特許文献1及び2に記載された多孔質電極基材の外観欠陥検査手法とを同等のものとして取り扱うことができず、仮に前者の連続検査手法を校舎のそれに適用したとしても、高精度の検査結果を期待することは不可能である。   However, since the numerical value itself and the numerical range of the inspection target in each specific inspection item according to Patent Document 3 are significantly larger than that of the porous electrode base material, the inspection accuracy is expected to be very high. Absent. Incidentally, paragraph [0099] of Patent Document 3 gives examples of a fabric to be inspected whose shape information is known or a master workpiece of a 12K woven fabric and a 3K woven fabric that are determined to be inspected. The opening width is described as 1.0 mm × 1.0 mm and 0.4 mm × 0.4 mm. On the other hand, the average radius of the pores in Examples 1 to 5 described in Patent Document 2 is 8 μm to 11 μm, and even if they are compared, there is a difference of 50 to 1000 times or more. If there is such a large difference, the carbon fiber fabric continuous inspection method proposed by Patent Document 3 is equivalent to the appearance defect inspection method of the porous electrode substrate described in Patent Documents 1 and 2. Even if the former continuous inspection method is applied to that of the school building, it is impossible to expect a highly accurate inspection result.

他方、例えば特開2005−265467号公報(特許文献4)には、生産ラインを連続して走行する金属板、フィルム、紙、不織布、樹脂板、ガラス板などの検査対象物の表面における薄汚れ、斑、浅い傷などの低コントラスト欠陥を自動的に検出する欠陥検出装置が提案されている。この欠陥検出装置によれば、検査対象物表面に照射される検査光の反射光又は透過光を利用して、これを撮像して画像データを生成し、その画像データを画素の濃度値に基づいて処理し検査対象物の表面の欠陥を検出している。このときの画像処理は、隣接する複数の画素によって構成される欠陥検出用ブロック内の各画素の濃度値を積算して積算値を算出し、その積算値を所定の閾値とを比較することにより欠陥を検出するにあたり、前記欠陥検出用ブロックが隣接する欠陥検出用ブロックと一部分が重なるように設定して、低コントラストの欠陥であっても高精度に検出を可能にしている。   On the other hand, for example, Japanese Patent Laying-Open No. 2005-265467 (Patent Document 4) discloses a thin stain on the surface of an object to be inspected such as a metal plate, film, paper, nonwoven fabric, resin plate, and glass plate that continuously travels on a production line. In addition, a defect detection apparatus that automatically detects low contrast defects such as spots and shallow scratches has been proposed. According to this defect detection apparatus, the reflected or transmitted light of the inspection light irradiated on the surface of the inspection object is used to capture and generate image data, and the image data is based on the pixel density value. To detect defects on the surface of the inspection object. Image processing at this time is performed by integrating the density value of each pixel in the defect detection block constituted by a plurality of adjacent pixels to calculate an integrated value, and comparing the integrated value with a predetermined threshold value. In detecting a defect, the defect detection block is set so as to partially overlap an adjacent defect detection block so that even a low-contrast defect can be detected with high accuracy.

しかしながら、上記特許文献3及び4に開示された表面の外観欠陥検査方法では、いずれも単一の検査手段(透過光又は反射光を利用する撮像)による検査であるため、単一種類の欠陥を検査するのであれば有効ではあっても、異なる形態や色彩、寸法をもつ多種類の欠陥を同時に高精度に検査することは不可能である。更には、特に上記特許文献1及び2に開示されているようなロール状に巻かれた長尺で薄手の多孔質電極基材にとっては、所定の寸法に切断し、これをセルに組み立てるとき、前述のような多種類の欠陥の存在位置がその場で直ちに判断できず、以降の組み立て作業に様々な支障を来しかねないばかりでなく、必然的に最終製品である燃料電池の欠陥につながりかねない。   However, since the surface appearance defect inspection methods disclosed in Patent Documents 3 and 4 are both inspections by a single inspection means (imaging using transmitted light or reflected light), a single type of defect is detected. Although effective if inspected, it is impossible to simultaneously inspect various types of defects having different forms, colors and dimensions with high accuracy. Furthermore, especially for a long and thin porous electrode substrate wound in a roll shape as disclosed in Patent Documents 1 and 2, when cutting into a predetermined dimension and assembling it into a cell, The location of the various types of defects as described above cannot be immediately determined on the spot, which may cause various problems in the subsequent assembly work, and inevitably leads to defects in the final fuel cell. It might be.

特開2006−40885号公報JP 2006-40885 A 特開2006−40886号公報JP 2006-40886 A 特開2008−89534号公報JP 2008-89534 A 特開2005−265467号公報JP 2005-265467 A

本発明は、上述の問題点を解消すべく、マーキングなどが付されていない長尺でロール状の多孔質電極基材の連続移送時において、多種類の外観欠陥を高精度で且つ効率的に自動的に連続検査が可能な外観欠陥の自動検査方法を提供することと、前記多孔質電極基材を使って燃料電池を組み立てるにあたり、その組み立て現場において、巻体の状態で同多孔質電極基材の欠陥の種類、その存在位置、大きさの検査結果及び製造履歴を直ちに確定できる多孔質電極基材の巻体を提供することを目的とするものである。   In order to solve the above-mentioned problems, the present invention can efficiently and efficiently eliminate various types of appearance defects during continuous transfer of a long, roll-shaped porous electrode substrate that is not marked. In providing an automatic inspection method for appearance defects that can be automatically inspected continuously, and in assembling a fuel cell using the porous electrode substrate, the porous electrode substrate is wound in a wound state at the assembly site. It is an object of the present invention to provide a wound body of a porous electrode base material that can immediately determine the type of defect of a material, its existence position, the inspection result of the size, and the manufacturing history.

本発明の第一の主要な構成は、連続的に走行する炭素短繊維と炭化樹脂とからなる長尺の多孔質電極基材の外観欠陥自動検査方法であって、前記多孔質電極基材の表面に光を照射し、その少なくとも透過光、正反射光及び散乱光を撮像し、それらの撮像データを画像処理部にて解析し、その欠陥の種類、存在位置及び大きさを記録媒体に記録しつつ連続して巻き取ることを含んでなる多孔質電極基材の外観欠陥自動検査方法にある。   A first main configuration of the present invention is an automatic appearance defect inspection method for a long porous electrode base material composed of carbon short fibers and a carbonized resin that are continuously running. The surface is irradiated with light, and at least the transmitted light, specular reflected light and scattered light are imaged. The image data is analyzed by the image processing unit, and the type, location and size of the defect are recorded on the recording medium. In addition, the present invention is an automatic appearance defect inspection method for a porous electrode base material, which includes continuous winding.

また、本発明の第二の主要な構成は、前記第1の主要な構成である多孔質電極基材の外観欠陥自動検査方法による検査結果を記録した記録媒体を有してなる炭素短繊維と炭化樹脂とからなる長尺の多孔質電極基材の巻体にある。ここで、前記欠陥の種類が、少なくとも黒色欠点、白色欠点、光沢欠点、繊維束欠点、樹脂不足欠点、ピンホール欠点を含んでいることが望ましい。   Further, the second main configuration of the present invention is a carbon short fiber having a recording medium in which the inspection result by the appearance defect automatic inspection method for the porous electrode substrate which is the first main configuration is recorded. It exists in the roll of the elongate porous electrode base material which consists of carbonized resin. Here, it is desirable that the types of defects include at least black defects, white defects, gloss defects, fiber bundle defects, resin shortage defects, and pinhole defects.

本発明の多孔質電極基材の連続的な外観欠陥自動検査方法によれば、透過光、正反射光及び散乱光の少なくとも3種類の検査手段を採用して外観欠陥を連続的に検査するため、通常の目視検査では検出し得ない超薄手の多孔質電極基材に発生する欠陥であっても、これらの検査手段を採用することにより、欠陥の種類と、多種類の欠陥に特有の色調や形状、寸法、輝度変化が同時に且つ的確に判定できるようになり、極めて信頼性の高い高精度の検査が可能となる。また本発明の多孔質電極基材の巻体に、その検査結果のデータが記録された、例えば記録紙、記録チップなどの記録媒体を添付してあれば、性能に影響する欠陥部の種類、存在位置、大きさが前記記録媒体の記録によりたやすく特定できるため、燃料電池の組み立て現場においても、多孔質電極基材の巻体を巻き戻しながら所定の寸法に切断してセルを組み立てるにあたり、その記録により知り得る欠陥部分を排除して組み立てることができ、高性能で高品質のセルの組み立てが容易となる。   According to the automatic continuous defect inspection method for a porous electrode substrate of the present invention, the defect inspection is continuously inspected by employing at least three kinds of inspection means of transmitted light, specular reflection light and scattered light. Even if it is a defect that occurs in an ultra-thin porous electrode substrate that cannot be detected by normal visual inspection, the use of these inspection means makes it possible to identify the types of defects and many types of defects. Changes in color tone, shape, dimensions, and luminance can be determined simultaneously and accurately, enabling highly reliable and highly accurate inspection. In addition, if a recording medium, for example, a recording paper or a recording chip, on which the data of the inspection result is recorded, is attached to the wound body of the porous electrode base material of the present invention, the type of the defective portion that affects the performance, Since the location and size can be easily identified by recording the recording medium, even in the assembly site of the fuel cell, when assembling the cell by cutting it into a predetermined dimension while rewinding the wound body of the porous electrode substrate, As a result, it is possible to eliminate the defective parts that can be known by the recording, and it is easy to assemble high-performance and high-quality cells.

本発明の連続走行する長尺の多孔質電極基材の外観欠陥自動検査方法を実施するための代表的な装置例とその工程説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the typical example of an apparatus for enforcing the external appearance defect automatic inspection method of the elongate porous electrode base material which runs continuously of this invention, and its process explanatory drawing. 前記外観欠陥自動検査方法において採用される3種類の光学的検査手段の好適な配置例を示す説明図である。It is explanatory drawing which shows the suitable example of arrangement | positioning of three types of optical inspection means employ | adopted in the said external appearance defect automatic inspection method. 上記外観欠陥自動検査装置の画像処理部の概略構成を説明するブロック図である。It is a block diagram explaining the schematic structure of the image processing part of the said external appearance defect automatic inspection apparatus. 前記外観欠陥自動検査方法によって得られる検反テスト結果を示す判定表である。It is a judgment table showing the inspection test result obtained by the appearance defect automatic inspection method.

まず、本発明の連続走行する長尺の多孔質電極基材の外観欠陥自動検査方法の好適な実施の形態を説明するに先立ち、本発明の検査対象である巻取り可能な長尺の多孔質電極基材について簡単に説明する。
この多孔質電極基材は、上記特許文献1に開示された製造方法により製造されたものである。すなわち、多孔質電極基材は、実質的に二次元平面においてランダムな方向に分散せしめられた繊維直径が3〜9μmの炭素短繊維および繊維素繊維以外の濾水度が400〜900mlのフィブリル状物からなる炭素繊維紙に樹脂を含浸したのち、樹脂を炭素化して製造される。同多孔質電極基材の炭素短繊維には、炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などいずれかが使われる。また、炭素短繊維の生産コスト、分散性、最終多孔質炭素電極基材の平滑性の面から、炭素短繊維の直径を3〜9μmとして、炭素短繊維の繊維長を、前記樹脂との結着性や分散性の点から、2〜12mmとしている。
First, prior to describing a preferred embodiment of the method for automatically inspecting appearance defects of a long porous electrode substrate that continuously runs according to the present invention, a long porous film that can be wound up, which is an inspection object of the present invention. The electrode substrate will be briefly described.
This porous electrode substrate is manufactured by the manufacturing method disclosed in Patent Document 1. That is, the porous electrode base material is a fibril shape having a freeness of 400 to 900 ml except for carbon short fibers having a fiber diameter of 3 to 9 μm and fiber fibers dispersed in a random direction in a substantially two-dimensional plane. It is manufactured by impregnating a carbon fiber paper made of a material with a resin and then carbonizing the resin. As the carbon short fiber of the porous electrode base material, any of carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, and the like is used. In addition, from the viewpoint of production cost of carbon short fibers, dispersibility, and smoothness of the final porous carbon electrode substrate, the diameter of the carbon short fibers is set to 3 to 9 μm, and the fiber length of the carbon short fibers is combined with the resin. From the standpoint of wearability and dispersibility, the thickness is 2 to 12 mm.

ここで、「実質的に二次元平面内においてランダムな方向に分散」とは、炭素短繊維がおおむね一つの面を形成するように横たわっているということであり、樹脂としては、フェノール樹脂など炭素繊維との結着力が強く、炭化時の残存重量が大きいものが好ましい。この樹脂炭化物は、多孔質電極基材を100質量%としたときに、その中の樹脂炭化物が25〜40質量%である。炭素短繊維同士が不定形の樹脂炭化物で結着されている。   Here, “substantially dispersed in a random direction in a two-dimensional plane” means that the carbon short fibers lie so as to form a single surface, and the resin includes carbon such as phenol resin. Those having strong binding strength with fibers and a large residual weight during carbonization are preferred. This resin carbide has a resin carbide content of 25 to 40 mass% when the porous electrode substrate is taken as 100 mass%. The short carbon fibers are bound together with an amorphous resin carbide.

不定形の樹脂炭化物は最小繊維径3μm以下で網状を呈し、炭素短繊維と炭素短繊維とを網状の樹脂炭化物で架橋させて、直径2μm程度の小さな孔と直径50μm程度の大きな孔とが混在している。このように大小の孔が混在することにより、多孔質電極基材は、反応ガスを反応部(触媒層)に効率よく送り届ける機能だけでなく、反応ガスに含まれている水や発電により発生する水を効率よく排出する機能も有することとなる。この多孔質電極基材のガス透過度を、2000m/sec/MPa以下とすることにより、目付が小さくても割れずらく、また、嵩密度が小さくても基材の厚み方向に延びる炭素短繊維が殆ど存在しない。この多孔質電極基材は可撓性があり、3×2.54cm以下の直径を有する紙管に巻くことができ、梱包品がコンパクト化でき、持ち運び及び取り扱いが容易である。この多孔質電極基材の更なる具体的な構成については、上記特許文献1の記載に委ねる。   Amorphous resin carbide has a net shape with a minimum fiber diameter of 3 μm or less, and short carbon fibers and short carbon fibers are cross-linked with a net resin carbide to mix small holes with a diameter of about 2 μm and large holes with a diameter of about 50 μm. is doing. By mixing the large and small pores in this way, the porous electrode base material is generated not only by the function of efficiently delivering the reaction gas to the reaction part (catalyst layer) but also by water contained in the reaction gas and power generation. It also has a function of efficiently discharging water. By setting the gas permeability of the porous electrode base material to 2000 m / sec / MPa or less, short carbon fibers that are difficult to crack even if the basis weight is small, and that extend in the thickness direction of the base material even if the bulk density is small. Is almost nonexistent. This porous electrode base material is flexible, can be wound around a paper tube having a diameter of 3 × 2.54 cm or less, can be made compact, and is easy to carry and handle. The further specific configuration of the porous electrode substrate is left to the description in Patent Document 1 above.

さて、以上の構成を備えたロール状に巻かれた薄手の多孔質電極基材に本発明の外観欠陥自動検査方法を実施するには、図1に示すように、多孔質電極基材1の巻体であるロール体2を架台3に巻き戻し可能に支持させ、このロール体2から多孔質電極基材1を連続して引き出しながら、後述する検査手段により外観欠陥を自動的に検出し、その検出データを画像処理部4において解析し、その解析結果に基づく半径結果を逐次コンピュータ5内の図示せぬ記憶部に収納する。外観欠陥の検出が終了した多孔質電極基材1はその巻取部6にてロール状に巻き戻される。   Now, in order to carry out the appearance defect automatic inspection method of the present invention on a thin porous electrode substrate wound in a roll having the above-described configuration, as shown in FIG. The roll body 2 which is a wound body is supported so as to be rewound on the gantry 3, and the appearance defect is automatically detected by the inspection means described later while continuously pulling the porous electrode substrate 1 from the roll body 2, The detected data is analyzed in the image processing unit 4, and the radius result based on the analysis result is sequentially stored in a storage unit (not shown) in the computer 5. The porous electrode base material 1 for which the detection of the appearance defect has been completed is rewound into a roll shape by the winding unit 6.

このときの外観欠陥検査の基本的な手法は、低コントラストの欠陥であっても高精度に検出が可能な上記特許文献4に記載された手法に基づいているが、同文献4に記載された手法と異なる本発明に係る外観欠陥自動検査方法の最も特徴とする構成は、外観欠陥の検査手段が同文献4のごとく単一種類ではなく、3種類の異なる特定の検査手段を採用して、その各検査結果を組み合わせて最終的な判定を行っていることである。   The basic method of the appearance defect inspection at this time is based on the method described in Patent Document 4 that can be detected with high accuracy even for a low-contrast defect. The most characteristic configuration of the visual defect automatic inspection method according to the present invention, which is different from the technique, is that the appearance defect inspection means is not a single kind as in the literature 4, but adopts three different specific inspection means, The final determination is made by combining the inspection results.

これは、検査対象である多孔質電極基材が極めて薄手であるため色調変化や欠陥寸法を特定することが難しく、しかも基材自体が黒色であって、欠陥部分の大半が同じく黒色であり、上記特許文献3や4に開示されているように、基材表面に照明光を照射して、その反射光や透過光を単一種類の検査手段をもって撮像して、その撮像データを分析するだけでは、多種類で多様の欠陥をもつ多孔質電極基材の全ての欠陥部分の種類を特定し、その欠陥の程度までも同時に判定することは到底不可能である。   This is because the porous electrode substrate to be inspected is very thin, so it is difficult to specify the color change and defect size, and the substrate itself is black, and most of the defective parts are also black, As disclosed in Patent Documents 3 and 4 above, the surface of the substrate is irradiated with illumination light, the reflected light or transmitted light is imaged with a single type of inspection means, and the imaging data is analyzed. Then, it is impossible to specify all types of defective portions of the porous electrode substrate having various types and various types of defects and simultaneously determine the degree of the defects.

そこで、本発明にあっては、上述のように3種類の異なる検査手段を採用して、その各検査結果を組み合わせて総合的な判定を行うことによって、目視では到底検査が不可能なような極めて薄手で且つ他種類で多様な大きさの欠陥を含む多孔質電極基材の色調変化や欠陥寸法をも同時に的確に特定することが初めて可能となる。
本発明において外観欠陥として多孔質電極基材の表面に表出する欠陥の種類には、黒色欠点・白色欠点・光沢欠点・繊維束・樹脂不足・ピンホールなどの種類があり、通常では表出しない正常でない外観部分である。
Therefore, in the present invention, as described above, three kinds of different inspection means are adopted, and the overall determination is performed by combining the inspection results, so that it is impossible to visually inspect. For the first time, it is possible to accurately and accurately specify a change in color tone and a defect size of a porous electrode substrate that is extremely thin and includes other types of defects of various sizes.
In the present invention, the types of defects that appear on the surface of the porous electrode substrate as appearance defects include black defects, white defects, gloss defects, fiber bundles, resin shortages, pinholes, etc. Does not look normal.

ここで、黒色欠点には、欠陥の種類として2つある。
その1つは、(1) 炭素化炉内に堆積した不純物や浮遊している不純物が、多孔質炭素電極基材に付着・反応してできる黒色部分であり、見た目は焦げ目に近い。2つ目は、(2) 抄紙バインダーの分散ムラにより付着した炭化樹脂の表面形状が複雑になっているもので、光をよく散乱させるため黒く見える。ただし、目視及び光学的検査では両者を明確な区別しにくいが、電子顕微鏡によると、(1) は繊維が切断され、その剪断屑が散らばっており、(2) では細かい網目状の繊維が集まっている、ことが観察される。
Here, there are two types of defects in black defects.
One of them is (1) the black part formed by the impurities deposited in the carbonization furnace and floating impurities adhering to and reacting with the porous carbon electrode substrate, and the appearance is close to burnt. Second, (2) the surface shape of the carbonized resin adhered due to uneven dispersion of the papermaking binder is complicated and looks black because it scatters light well. However, although it is difficult to clearly distinguish between the two by visual inspection and optical inspection, according to the electron microscope, (1) the fibers are cut and the shearing debris is scattered, and (2) the fine mesh fibers are gathered. It is observed that

上記白色欠点では、黒色欠点(2) の場合と同じく、抄紙バインダーの分散ムラにより極端に炭化樹脂比率が高くなっている部分であるが、その表面形状は上記黒色欠点とは異なり平滑である。そのため、光をよく反射させるため白く見える。
上記光沢欠点は、例えば黒鉛粉やグラファイト粉等の不純物が混合している場合に見られる。白色欠点よりも光って見える。
As with the black defect (2), the white defect is a portion where the carbonized resin ratio is extremely high due to uneven dispersion of the papermaking binder, but the surface shape is smooth unlike the black defect. Therefore, it looks white to reflect light well.
The gloss defect is observed when impurities such as graphite powder and graphite powder are mixed. It looks brighter than the white defect.

上記繊維束欠点は、抄紙の段階で繊維間の分散ムラにより発生する。繊維が束になっているため黒く見える。
上記樹脂不足は樹脂の含浸不良により発生する。樹脂が少ないため黒く見える。
ここで、繊維束欠点の場合の黒色欠点は長さが10mmより大きく、且つ長さと幅との比が4:1以上であり、樹脂不足の場合の黒色欠点は長さが10mmより小さくななっている。
The above-mentioned fiber bundle defect occurs due to uneven dispersion between fibers at the paper making stage. It looks black due to the bundle of fibers.
The resin shortage occurs due to poor resin impregnation. It looks black because there is little resin.
Here, the black defect in the case of the fiber bundle defect has a length greater than 10 mm and the ratio of the length to the width is 4: 1 or more, and the black defect in the case of insufficient resin becomes less than 10 mm in length. ing.

上記ピンホール欠点は、黒色欠点(1) の場合と同じく、炭素化炉内に堆積した不純物や浮遊している不純物が、多孔質炭素電極基材に付着・反応してできるものであるが、上記黒色欠点(1) は傷が浅い場合に発生し、その傷が大きくなるとピンホールとなる。   The pinhole defect, as in the case of the black defect (1), is formed by impurities deposited in the carbonization furnace and floating impurities adhering to and reacting with the porous carbon electrode substrate. The black defect (1) occurs when the scratch is shallow, and when the scratch becomes large, it becomes a pinhole.

本発明にあっては、外観欠陥の検査手段として、記述したとおり3種類の異なる検出手段を採用している。その一つは、多孔質電極基材1を挟んで、その一面側から所要の照度をもつ照明光を照射し、その透過光を他面側にて第1撮像装置7をもって撮像する透過光の撮像手段であり、二つ目は多孔質電極基材1の一面側に所要の照度をもつ照明光を所定の入射角で照射し、その正反射角線上に配された第2撮像装置8をもって正反射光を撮像する正反射光の撮像手段であり、三つ目は多孔質電極基材1の一面側に所要の照度をもつ照明光を所定の入射角で照射し、その正反射角線上から外れた反射角線上に配された第3撮像装置9をもって、その散乱光を撮像する散乱光の撮像手段である。これらの3種類の撮像手段を、多孔質電極基材1の走行路に沿って直列的に配し、その撮像データを上記画像処理部4へと送る。   In the present invention, as described, three different types of detection means are employed as appearance defect inspection means. One of them is the illumination of illumination light having a required illuminance from one side of the porous electrode base material 1 and the transmitted light imaged by the first imaging device 7 on the other side. The second is imaging means, and the second is to illuminate illumination light having a required illuminance on one surface side of the porous electrode substrate 1 at a predetermined incident angle and to have a second imaging device 8 arranged on the regular reflection angle line. An imaging means for specularly reflected light for imaging specularly reflected light, and the third one is that illumination light having a predetermined illuminance is applied to one surface side of the porous electrode substrate 1 at a predetermined incident angle, and on the regular reflection angle line. The third imaging device 9 arranged on the reflection angle line deviating from the above is a scattered light imaging means for imaging the scattered light. These three types of imaging means are arranged in series along the traveling path of the porous electrode substrate 1 and the imaging data is sent to the image processing unit 4.

上記第2撮像装置8の場合には、検査光の照射角度と第2撮像装置8の受光角度とは同じであり、10〜30°に設定することが望ましい。10〜30°を外れると検出精度が高く低下する。また、第3撮像装置9では散乱反射を利用するため、第3撮像装置9の受光角度を10〜50°に設定し、検査光の照射角度と第3撮像装置9の受光角度との角度差を10°以上30°以下とすることが好ましい。10°以上30°以下であると、上記白色欠点に対する高精度の判定が可能となる。   In the case of the second imaging device 8, the irradiation angle of the inspection light and the light receiving angle of the second imaging device 8 are the same, and it is desirable to set the angle to 10 to 30 °. If the angle deviates from 10 to 30 °, the detection accuracy decreases. Since the third imaging device 9 uses scattered reflection, the light receiving angle of the third imaging device 9 is set to 10 to 50 °, and the angle difference between the irradiation angle of the inspection light and the light receiving angle of the third imaging device 9 is set. Is preferably 10 ° or more and 30 ° or less. When the angle is 10 ° or more and 30 ° or less, it is possible to determine the white defect with high accuracy.

次に、図示実施形態による本発明に係る多孔質電極基材1の外観欠陥自動検査方法を、図に基づいて具体的に説明する。
図1は、本発明の外観欠陥自動検出方法を実施するための代表的な装置例を示す概略構成図である。この外観欠陥自動検出装置は、架台3に回転可能に支持されたロール体2が巻き戻される多孔質電極基材1の巻戻し走路上に、第1〜第3の光源10〜12に対応する上記第1〜第3の撮像装置7〜9が、それぞれ組となって配されている。ここで、前記異なる3種類の撮像手段の配列順は任意であり、上述の配列に限定されない。第1〜第3の撮像装置7〜9により撮像された撮像データは、画像処理部4において画像処理がなされる。
Next, an automatic appearance defect inspection method for the porous electrode substrate 1 according to the present invention according to the illustrated embodiment will be specifically described with reference to the drawings.
FIG. 1 is a schematic block diagram showing a typical apparatus example for carrying out the automatic appearance defect detection method of the present invention. This automatic appearance defect detection apparatus corresponds to the first to third light sources 10 to 12 on the unwinding runway of the porous electrode substrate 1 on which the roll body 2 rotatably supported by the gantry 3 is unwound. The first to third imaging devices 7 to 9 are arranged in pairs. Here, the arrangement order of the three different types of imaging means is arbitrary, and is not limited to the above arrangement. Image data captured by the first to third imaging devices 7 to 9 is subjected to image processing in the image processing unit 4.

各光源10〜12には、多孔質電極基材1の走行路を直線状に横断して配置されたハロゲンランプやLED、蛍光灯等の線状の検査光の発生が可能な照明装置によって構成される。第1〜第3撮像装置7〜9は、撮像した光を電気信号に変換して画像データを生成するCCDカメラ等の固体撮像素子を備えた撮像装置を備えている。本実施形態では、第1〜第3撮像装置7〜9を多孔質電極基材1の巻戻し走路を横断する方向に直線状に複数個配置し、走行する多孔質電極基材1の1次元画像を順次、撮像することによって2次元画像を得ている。   Each of the light sources 10 to 12 is constituted by a lighting device capable of generating linear inspection light such as a halogen lamp, an LED, or a fluorescent lamp arranged linearly across the traveling path of the porous electrode substrate 1. Is done. The first to third imaging devices 7 to 9 include an imaging device including a solid-state imaging element such as a CCD camera that converts imaged light into an electrical signal to generate image data. In the present embodiment, a plurality of first to third imaging devices 7 to 9 are linearly arranged in a direction crossing the unwinding running path of the porous electrode substrate 1, and the one-dimensional of the porous electrode substrate 1 that travels is arranged. A two-dimensional image is obtained by sequentially capturing images.

画像処理部4は、上記特許文献4に記載された画像処理装置と同様に、演算装置(CPU)、記憶装置(メモリ)等を備えている。そのため、画像処理部4の具体的な構成及びその処理手順等に関しては上記特許文献4の詳細な記載に委ねることとして、以下の説明では簡単な説明に止める。ただし、本発明にあっては、前述の演算装置(CPU)、記憶装置(メモリ)等は上記3種類の撮像手段のそれぞれに対応して設けられている。   The image processing unit 4 includes an arithmetic device (CPU), a storage device (memory), and the like, similar to the image processing device described in Patent Document 4. For this reason, the specific configuration of the image processing unit 4 and the processing procedure thereof are left to the detailed description of Patent Document 4 described above, and the following description is limited to a simple description. However, in the present invention, the arithmetic device (CPU), the storage device (memory), and the like described above are provided corresponding to each of the three types of imaging means.

画像処理部4は、図3に示すように、撮像装置7〜9から入力されたアナログ画像信号をデジタル値に変換する画像入力部4aと、画像入力部4aで得られたデジタル信号を記憶するラインメモリ4bと、画像入力部4aで変換されたデジタル信号に含まれるラインセンサの画素オフセット電圧のばらつきや感度斑を補正処理する画素斑補正部4cと、画素斑補正部4cでの補正で用いる係数を保持する斑補正係数メモリ4dと、画像入力部4aで得られたデジタル信号に含まれるレンズの周辺部の光量低下や照明の斑といった低周波領域の補正処理し、ほぼ均一な明るさのラインセンサの画像データを得る背景処理部4eと、背景処理部4eにおける補正処理に用いる係数を保持する背景処理係数メモリ4fとを備えている。   As shown in FIG. 3, the image processing unit 4 stores an image input unit 4a that converts analog image signals input from the imaging devices 7 to 9 into digital values, and a digital signal obtained by the image input unit 4a. It is used for correction in the line memory 4b, the pixel spot correction unit 4c that corrects pixel offset voltage variations and sensitivity spots of the line sensor included in the digital signal converted by the image input unit 4a, and the pixel spot correction unit 4c. Spot correction coefficient memory 4d that holds coefficients, and correction processing for low-frequency regions such as a decrease in the amount of light at the periphery of the lens and illumination spots included in the digital signal obtained by the image input unit 4a, and a substantially uniform brightness A background processing unit 4e that obtains image data of the line sensor and a background processing coefficient memory 4f that holds coefficients used for correction processing in the background processing unit 4e are provided.

上述の構成を備えた外観欠陥自動検出装置によれば、先ず、所定速度で搬送経路上を連続的に走行する多孔質電極基材1に、第1〜第3の各光源10〜12からのそれぞれ検査光を照射する。
このとき、第1撮像装置7と第1光源10とは、図2(a)に示すように、前記多孔質電極基材1の走行面に直交する鉛直面上に多孔質電極基材1を挟んで対向して配置されており、第1撮像装置7は第1光源10から照射され多孔質電極基材1を透過する検査光を撮像する。
According to the appearance defect automatic detection apparatus having the above-described configuration, first, the porous electrode base material 1 that continuously travels on the conveyance path at a predetermined speed is supplied to each of the first to third light sources 10 to 12. Each is irradiated with inspection light.
At this time, as shown in FIG. 2A, the first imaging device 7 and the first light source 10 place the porous electrode substrate 1 on a vertical plane orthogonal to the traveling surface of the porous electrode substrate 1. The first imaging device 7 images inspection light that is emitted from the first light source 10 and passes through the porous electrode substrate 1.

一方、第2及び第3撮像装置8,9と第2及び第3光源11,12とは、図2(b)(c)に示すように、それぞれが前記多孔質電極基材1の上方に多孔質電極基材1の走行方向に所定の間隔をおいて離れて配置されている。各光源11,12から照射される各検査光は多孔質電極基材1の表面に向けられており、その各反射光を第2及び第3撮像装置8,9がそれぞれ受光する。ここで、第2光源11から照射される検査光の多孔質電極基材表面に対する入射角と第2撮像装置8の受光角は同じであるが、第3光源12から照射される検査光の多孔質電極基材表面に対する入射角と第2撮像装置8の受光角は異なる。つまり、第2撮像装置8は第2光源11により照射される検査光の正反射光を受光して撮像し、第3撮像装置9は第3光源12により照射される検査光の散乱光を受光して撮像する。   On the other hand, the second and third imaging devices 8 and 9 and the second and third light sources 11 and 12 are respectively located above the porous electrode substrate 1 as shown in FIGS. The porous electrode substrate 1 is disposed at a predetermined interval in the traveling direction. Each inspection light emitted from each light source 11, 12 is directed to the surface of the porous electrode substrate 1, and each of the reflected lights is received by the second and third imaging devices 8, 9. Here, the incident angle of the inspection light irradiated from the second light source 11 with respect to the porous electrode substrate surface is the same as the light receiving angle of the second imaging device 8, but the inspection light irradiated from the third light source 12 is porous. The incident angle with respect to the surface of the electrode base material and the light receiving angle of the second imaging device 8 are different. In other words, the second imaging device 8 receives and images the specularly reflected light of the inspection light emitted from the second light source 11, and the third imaging device 9 receives the scattered light of the inspection light emitted from the third light source 12. And take an image.

このように、異なる3種類の撮像手段により撮像された画像は、第1〜第3撮像装置7〜9でそれぞれ1次元のアナログデータに変換されたのち、画像処理部4に備えられた画像入力部4aに送られる。この画像入力部4aでは、各撮像装置7〜9から送られた1次元のアナログデータを各画素の濃度値を示すデジタルデータに変換する。次いで、このデジタルデータが画素斑補正部4cへと送る。画素斑補正部4cに入力される濃度値を示す画像データの横方向の1列と縦方向の1行は、各撮像装置7〜9のラインサンサによって一時に取得される濃度値に対応している。   As described above, the images picked up by the three different kinds of image pickup means are converted into one-dimensional analog data by the first to third image pickup devices 7 to 9 respectively, and then input to the image processing unit 4. Sent to the unit 4a. In this image input unit 4a, the one-dimensional analog data sent from each of the imaging devices 7 to 9 is converted into digital data indicating the density value of each pixel. Next, this digital data is sent to the pixel spot correction unit 4c. One column in the horizontal direction and one row in the vertical direction of the image data indicating the density value input to the pixel spot correction unit 4c correspond to the density values acquired at a time by the line sensors of the imaging devices 7-9. .

一般的なCCDラインセンサでは、画素(受光素子)の感度ばらつきを補正するため、マトリックス状に配置された画素の行列ごとの濃度値の平均値と、その直前の行列の画素の濃度値の平均値との差を求めて順次斑補正係数とし、この斑補正係数を斑補正係数メモリ4dに保持する。画素斑補正部4cでは、入力された濃度値に斑補正係数累積値を加算して、斑補正済みのデータとする。この補正済みデータは、画素間の濃度値の平均値のばらつきを減少させる。   In a general CCD line sensor, in order to correct the sensitivity variation of pixels (light receiving elements), the average value of density values for each matrix of pixels arranged in a matrix and the average value of density values of pixels in the matrix immediately before that are arranged. The difference from the value is obtained and sequentially used as a spot correction coefficient, and the spot correction coefficient is stored in the spot correction coefficient memory 4d. The pixel spot correction unit 4c adds the spot correction coefficient cumulative value to the input density value to obtain spot corrected data. This corrected data reduces variations in the average value of density values between pixels.

画像入力部4aで得られたデジタル信号に含まれるレンズの周辺部の光量低下や照明の斑といった低周波領域の補正処理し、ほぼ均一な明るさのラインセンサの画像データを得る背景処理部4eでは、ラインセンサの出力レベルの差をなくすため、背景補正係数を算出して背景補正係数メモリ4eに記憶してあり、入力された画像データに前記背景補正係数を乗じて、ラインセンサの出力レベルの差を打ち消す。背景補正係数を算出する際に、地合などによるノイズ成分を除去するため、必要に応じて平滑化処理を加えてもよい。   A background processing unit 4e that corrects a low frequency region such as a decrease in the amount of light at the periphery of the lens and a spot of illumination included in the digital signal obtained by the image input unit 4a, and obtains image data of a line sensor with substantially uniform brightness. Then, in order to eliminate the difference in the output level of the line sensor, the background correction coefficient is calculated and stored in the background correction coefficient memory 4e, and the input image data is multiplied by the background correction coefficient to obtain the output level of the line sensor. Counter the difference. When calculating the background correction coefficient, a smoothing process may be added as necessary in order to remove noise components due to formation or the like.

第1〜第3撮像装置7〜9により撮像される撮像データには、正常でないと判定される濃度値の範囲の値も含まれるため、本実施形態にあっても、特許文献4に記載された欠陥検査装置と同様に、正常でないとされる濃度の範囲にある値を排除する画素濃度制限部4gを有しており、また3画素×3画素の欠陥検出用ブロック(画素ブロック)として、ブロックごとの各画素の濃度値を積算する積算演算が行われる。以下、各ブロックごとの各画素の濃度値を積算する積算演算が行われる手順を、上記特許文献4に記載された手順を参考にして具体的に説明する。   Since the imaging data captured by the first to third imaging devices 7 to 9 includes a density value range determined to be not normal, even in this embodiment, it is described in Patent Document 4. As with the defect inspection apparatus, the pixel density limiting unit 4g that excludes values in the density range that is not normal is included, and a 3 pixel × 3 pixel defect detection block (pixel block) An integration operation for integrating the density values of each pixel for each block is performed. Hereinafter, a procedure for performing an integration operation for integrating the density values of each pixel for each block will be specifically described with reference to the procedure described in Patent Document 4.

いま、正常部の撮像データであれば、画素ブロック(欠陥検出用ブロック)内の濃度値を積算した濃度合計値と、欠陥を含んでいる画素ブロック内の濃度値を積算した濃度合計値とでは、その値にずれがある。図示せぬブロック積算部では、欠陥検出用ブロックを1画素ずつ、縦(行方向)あるいは横(列方向)にずらしながら積算値を算出することによって、欠陥部を確実に検出できるようにしている。   Now, if the imaging data of the normal part, the density total value obtained by integrating the density values in the pixel block (defect detection block) and the density total value obtained by integrating the density values in the pixel block including the defect are: , There is a gap in the value. In the block integration unit (not shown), the defect detection block is reliably detected by calculating the integration value while shifting the defect detection block pixel by pixel in the vertical (row direction) or horizontal (column direction). .

欠陥検出用ブロックの縦方向の移動は、まず、画素濃度制限部4gで画像メモリ4hに第1〜第3行分の撮像データを記憶させ、ブロック積算部4iで第1〜第3行分の濃度値を積算する(ステップ1)。次いで、画像メモリ4hに第4行の撮像データを記憶させ、ブロック積算部4iで、ステップ1で算出した第1〜第3行の積算値に第4行の濃度値を加算するとともに第1行の濃度値を減算して第2〜第4行の3行分の積算値を得る(ステップ2)。さらに、画像メモリ4hに第5行の撮像データを記憶させ、ブロック積算部4iで、ステップ2で算出した第2〜第4行の積算値に第5行の濃度値を加算するとともに第2行の濃度値を減算し、第3〜第5行の3行分の積算値を得る(ステップ3)。このような処理を繰り返すことにより、欠陥検出用ブロックが縦方向に1画素ずつ、ずれてゆくことになる。   In the vertical movement of the defect detection block, first, the image density for the first to third rows is stored in the image memory 4h by the pixel density limiting unit 4g, and the first to third rows for the block integrating unit 4i. The density values are integrated (step 1). Next, the image data of the fourth row is stored in the image memory 4h, and the density value of the fourth row is added to the integrated value of the first to third rows calculated in step 1 by the block integration unit 4i and the first row. Are integrated to obtain integrated values for three rows of the second to fourth rows (step 2). Further, the image data of the fifth row is stored in the image memory 4h, and the density value of the fifth row is added to the integrated value of the second to fourth rows calculated in step 2 by the block integrating unit 4i and the second row. Are integrated to obtain integrated values for the third to fifth rows (step 3). By repeating such processing, the defect detection block is shifted by one pixel in the vertical direction.

欠陥検出用ブロックの横(列)方向の移動は、まず、画像メモリ4hに第1〜第3列の3列分の撮像データを記憶させ、ブロック積算部4iで第1〜第3列の3列分の濃度値を積算する(ステップ10)。次いで、画像メモリ4hに第4列の撮像データを記憶させ、ブロック積算部4iで、ステップ10で算出した第1〜第3列の積算値に、第4列の濃度値を加算するとともに第1列の濃度値を減算して第2〜第4列の3列分の積算値を得る(ステップ12)。さらに、画像メモリ4hに第5列の撮像データを記憶させ、ブロック積算部4iで、ステップ12で算出した第2〜第4列の積算値に第5列の濃度値を加算するとともに第2列の濃度値を減算し、第3〜第5列の3列分の積算値を得る(ステップ13)。このような処理を繰り返すことにより、欠陥検出用ブロックが横方向に1画素ずつ、ずれてゆくことになる。   To move the defect detection block in the horizontal (column) direction, first, image data for three columns of the first to third columns is stored in the image memory 4h, and the block accumulating unit 4i stores 3 of the first to third columns. The density values for the columns are integrated (step 10). Next, the imaging data of the fourth column is stored in the image memory 4h, and the density value of the fourth column is added to the integrated value of the first to third columns calculated in step 10 by the block integration unit 4i and the first value is added. The density values of the columns are subtracted to obtain integrated values for three columns of the second to fourth columns (step 12). Further, the imaging data of the fifth column is stored in the image memory 4h, and the density value of the fifth column is added to the integrated value of the second to fourth columns calculated in step 12 by the block integrating unit 4i and the second column. Are subtracted from each other to obtain integrated values for the third to fifth columns (step 13). By repeating such processing, the defect detection block is shifted by one pixel in the horizontal direction.

ブロック積算部4iにおいてラインセンサの画素方向(列方向)に3画素分、検査対象物Sの移動方向(行方向)に3画素分の拡がりを持つ欠陥検出用ブロックについて演算を行うため、画像メモリ4hは、演算に必要な個数の濃度値を格納するだけの容量が必要である。更に強調処理として、移動方向に隣接したブロック間で演算処理を行う場合には、それに係わるブロックサイズ分のメモリ容量が必要となる。   In order to perform an operation on a defect detection block having a spread of 3 pixels in the pixel direction (column direction) of the line sensor and 3 pixels in the movement direction (row direction) of the inspection object S in the block integration unit 4i, 4h needs a capacity to store the number of density values necessary for the calculation. Further, when performing an arithmetic process between blocks adjacent in the moving direction as an emphasis process, a memory capacity corresponding to the block size is required.

ブロック積算部4iで得られた積算データは、判定処理部4jにおいて、予め設定され閾値メモリ4kに記憶されている閾値と比較され、欠陥の有無が判定される。欠陥判定用の閾値は、検査対象物の地合変化等に応じて逐次、更新される。このような更新を可能とするため、閾値メモリ4kが2つの閾値保持領域を備えるように構成され、一方の領域を判定処理部4jが判定に使用する閾値を保持する領域とし、他方の領域を更新中の閾値を保持する領域としている。他方の領域で閾値の更新が完了すると、判定処理部4kで閾値を読み込むラインを他方の領域側に切り換え、更新済みの閾値で欠陥検出判定が行う。このような構成によって、正常部の濃度値が変動しても、欠陥の検出精度を一定に保つことができる。ブロック積算部4iでブロックを縦、横に1画素ずつ移動させながら濃度値の積算値を得ているため、欠陥のサイズが大きい場合、同一の欠陥に関する情報が複数出力されて、データ数が非常に多くなる。このため、集約処理部4lでは予め集約範囲を設定しておき、範囲内での検出結果を一つにまとめて、データ出力部4mから出力する。   Integration data obtained by the block integration unit 4i is compared with a threshold value set in advance and stored in the threshold memory 4k in the determination processing unit 4j, and the presence or absence of a defect is determined. The threshold value for defect determination is sequentially updated in accordance with the change in formation of the inspection object. In order to enable such updating, the threshold memory 4k is configured to include two threshold holding areas, and one area is set as an area holding a threshold used by the determination processing unit 4j, and the other area is set as the other area. It is an area for holding a threshold value during updating. When the update of the threshold value is completed in the other region, the line for reading the threshold value by the determination processing unit 4k is switched to the other region side, and the defect detection determination is performed with the updated threshold value. With such a configuration, even if the density value of the normal part varies, the defect detection accuracy can be kept constant. Since the integrated value of the density value is obtained while moving the block vertically and horizontally by the block integrating unit 4i, when the defect size is large, a plurality of pieces of information on the same defect are output and the number of data is very large. To be more. For this reason, the aggregation processing unit 4l sets the aggregation range in advance, collects the detection results within the range, and outputs them from the data output unit 4m.

図4は、本発明による上述の外観欠陥自動検査方法により判定された多孔質電極基材の判定結果を示す判定表である。この表から理解できるように、検査手段の種類によってはその検査結果が異なることである。このことは、上記特許文献3及び4に開示された外観欠陥検査におけるように単一の検査手段による検査だけでは、検査対象が他種類の欠陥を備えている可能性が高い場合には有効でないことを示しており、本発明のように多様な試験を経て初めて認識されたものである。   FIG. 4 is a determination table showing the determination result of the porous electrode substrate determined by the above-described appearance defect automatic inspection method according to the present invention. As can be understood from this table, the inspection results differ depending on the type of inspection means. This is not effective when the inspection object is likely to have other types of defects only by inspection by a single inspection means as in the appearance defect inspection disclosed in Patent Documents 3 and 4 above. This is recognized for the first time through various tests as in the present invention.

具体的には、例えば2種類の上記黒色欠点(1) 及び(2) について見ると、同じ黒色欠点であっても、正反射光による検査と散乱光による検査では、正反射光による検査が全て欠陥ありとされているのに対して、散乱光ではその欠陥の種類を特定することが難しい場合があり、透過光による検査では全く欠陥が検出されない。また、例えば白色欠点に関しては、正反射光及び透過光による検査で欠陥が発見されるが、散乱光による検査ではその欠陥が見落とされている。更に、白色欠点に類似する光沢欠点の場合は、正反射光による検査で確実に発見可能となる。   Specifically, for example, when looking at the two types of black defects (1) and (2), even if the same black defect is detected, all of the inspections using specular reflection light are inspected using regular reflection light and scattered light inspection. While it is considered that there is a defect, it may be difficult to specify the type of the defect with scattered light, and no defect is detected by inspection with transmitted light. For example, for a white defect, a defect is discovered by inspection with specular reflection light and transmitted light, but the defect is overlooked by inspection with scattered light. Furthermore, in the case of a glossy defect similar to a white defect, it can be reliably detected by inspection with specular reflection light.

更に、繊維束欠点及び樹脂不足欠点に対しては、両者ともに樹脂が不足することに変わりないが、その撮像の形状及び寸法を踏まえて判定する必要があることは既述したとおりである。しかして、樹脂不足欠点に関しては、図4に示すとおり、正反射光及び散乱光による両検査にて発見されるが、繊維束欠点に関しては、散乱光ではその欠陥が見落とされる。またピンホール欠点に関しては、反射光による検査では確定できないが、透過光により確実に検出される。   Furthermore, as for the fiber bundle defect and the resin shortage defect, the resin is still insufficient in both cases, but as described above, it is necessary to determine based on the shape and dimensions of the imaging. As shown in FIG. 4, the resin-deficient defect is found by both inspection using specular reflection light and scattered light, but the fiber bundle defect is overlooked by the scattered light. Further, pinhole defects cannot be determined by inspection with reflected light, but are reliably detected with transmitted light.

特に、本発明の検査対象となる薄手の多孔質電極基材の外観欠陥自動検査にあっては、上述のとおり、正反射光、散乱光及び透過光による検査を組み合わせることにより、複数種類からなる外観欠陥の存否を的確に検出して判定することができ、高精度の検査が実現される。
なお、本発明に係る多孔質電極基材の外観欠陥自動検査にあっては、当然に欠陥位置に関する記録を記録媒体に残している。その走行距離を検出する方法としては、走行する多孔質電極基材上に接触するコンタクトロールや移送ロールの軸の回転数をエンコーダーで検出している。また、多孔質電極基材の幅方向における欠陥位置は、前記幅方向に直線状に配置された各撮像装置により得られる撮像データから演算により求められる。
In particular, in the appearance defect automatic inspection of the thin porous electrode base material to be inspected according to the present invention, as described above, by combining inspections with specularly reflected light, scattered light and transmitted light, a plurality of types are provided. Presence or absence of appearance defects can be accurately detected and determined, and high-precision inspection is realized.
In addition, in the automatic appearance defect inspection of the porous electrode base material according to the present invention, the record regarding the defect position is naturally left on the recording medium. As a method for detecting the traveling distance, the number of rotations of the shaft of the contact roll or the transfer roll contacting the traveling porous electrode substrate is detected by an encoder. In addition, the defect position in the width direction of the porous electrode base material is obtained by calculation from image data obtained by each image pickup device arranged linearly in the width direction.

1 多孔質電極基材
2 (多孔質電極基材の)ロール体
3 架台
4 画像処理部
4a 画像入力部
4b ラインメモリ
4c 画素斑補正部
4d 斑補正係数メモリ
4e 背景処理部
4f 背景処理係数メモリ
4g 画素濃度制限部
4h 画像メモリ
4i ブロック積算部
4j 判定処理部
4k 閾値メモリ
4l 集約処理部
4m データ出力部
5 コンピュータ
6 巻取部
7〜9 第1〜第3撮像装置
10〜12 第1〜第3光源
DESCRIPTION OF SYMBOLS 1 Porous electrode base material 2 Roll body (of porous electrode base material) 3 Base 4 Image processing part 4a Image input part 4b Line memory 4c Pixel spot correction part 4d Spot correction coefficient memory 4e Background processing part 4f Background processing coefficient memory 4g Pixel density limiting unit 4h Image memory 4i Block integration unit 4j Determination processing unit 4k Threshold memory 4l Aggregation processing unit 4m Data output unit 5 Computer 6 Winding unit 7-9 First to third imaging devices 10-12 First to third light source

Claims (3)

炭素短繊維と炭化樹脂とからなり連続的に走行する長尺の多孔質電極基材の外観欠陥自動検査方法であって、
前記多孔質電極基材の表面に検査光を照射し、その透過光、正反射光及び散乱光を撮像し、それらの撮像データを画像処理部にて解析し、その欠陥の種類、存在位置及び大きさを記録媒体に記録しつつ連続して巻き取ることを含んでなる多孔質電極基材の外観欠陥自動検査方法。
A method for automatically inspecting the appearance of a long porous electrode substrate made of short carbon fibers and carbonized resin and continuously running,
The surface of the porous electrode substrate is irradiated with inspection light, the transmitted light, specularly reflected light, and scattered light are imaged, and the image data is analyzed by the image processing unit, and the type of defect, the position of the defect, and A method for automatically inspecting an appearance defect of a porous electrode substrate, comprising continuously winding the size while recording the size on a recording medium.
請求項1記載の外観欠陥自動検査方法による検査結果を記録した記録媒体を有してなる炭素短繊維と炭化樹脂とからなる長尺の多孔質電極基材の巻体。   A wound body of a long porous electrode base material comprising a carbon short fiber and a carbonized resin, comprising a recording medium on which an inspection result by the appearance defect automatic inspection method according to claim 1 is recorded. 前記欠陥の種類が、黒色欠点、白色欠点、光沢欠点、繊維束欠点、樹脂不足欠点、ピンホール欠点を含んでなる請求項2に記載の多孔質電極基材の巻体。   The wound body of the porous electrode substrate according to claim 2, wherein the types of defects include black defects, white defects, gloss defects, fiber bundle defects, resin shortage defects, and pinhole defects.
JP2009121307A 2009-05-19 2009-05-19 Method for automatically inspecting appearance defect of continuous porous electrode substrate and wound body of porous electrode substrate with attached recording medium Active JP5306053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121307A JP5306053B2 (en) 2009-05-19 2009-05-19 Method for automatically inspecting appearance defect of continuous porous electrode substrate and wound body of porous electrode substrate with attached recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121307A JP5306053B2 (en) 2009-05-19 2009-05-19 Method for automatically inspecting appearance defect of continuous porous electrode substrate and wound body of porous electrode substrate with attached recording medium

Publications (2)

Publication Number Publication Date
JP2010272250A true JP2010272250A (en) 2010-12-02
JP5306053B2 JP5306053B2 (en) 2013-10-02

Family

ID=43420136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121307A Active JP5306053B2 (en) 2009-05-19 2009-05-19 Method for automatically inspecting appearance defect of continuous porous electrode substrate and wound body of porous electrode substrate with attached recording medium

Country Status (1)

Country Link
JP (1) JP5306053B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113750A (en) * 2011-11-30 2013-06-10 Hitachi Zosen Corp Inspection device and inspection method for laminated substrate
JP2013160745A (en) * 2012-02-09 2013-08-19 Toray Ind Inc Method and device for inspecting porous carbon fiber sheet-like material
JP2015170386A (en) * 2014-03-04 2015-09-28 凸版印刷株式会社 Correction method of catalyst layer, correction device of catalyst layer, catalyst layer sheer or manufacturing method and manufacturing device for membrane electrode assembly
JP2018142466A (en) * 2017-02-28 2018-09-13 凸版印刷株式会社 Electrode catalyst layer membrane-electrode assembly and solid polymer fuel cell
JP2018163154A (en) * 2017-03-27 2018-10-18 三菱ケミカル株式会社 Method of automatically inspecting long object for appearance defects, and roll of long object with recording medium
JP2019020313A (en) * 2017-07-20 2019-02-07 株式会社島津製作所 X-ray phase imaging device, and method for detecting defect of fiber-containing material
JP2019028078A (en) * 2017-08-03 2019-02-21 東レ株式会社 Method of inspecting gas diffusion electrode, and gas diffusion electrode
CN110231345A (en) * 2019-07-17 2019-09-13 佛山市清极能源科技有限公司 A kind of film electrode fault online test method and equipment
JP2019203748A (en) * 2018-05-22 2019-11-28 三菱ケミカル株式会社 Monitoring method of fiber bundle, monitoring device using monitoring method, and method for manufacturing fiber bundle using monitoring method or monitoring device
CN113495077A (en) * 2020-04-08 2021-10-12 财团法人纺织产业综合研究所 Cloth detection machine
JP2022024563A (en) * 2020-07-28 2022-02-09 日立建機株式会社 Method, device, and system for inspecting surface
WO2022216063A1 (en) * 2021-04-06 2022-10-13 주식회사 엘지에너지솔루션 Method for pre-detecting defective product from porous polymer substrate for separator
WO2024054044A1 (en) * 2022-09-06 2024-03-14 주식회사 엘지화학 Analysis method for pore distribution of porous structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341349A (en) * 1989-07-07 1991-02-21 Omron Corp Apparatus for inspecting fault of sheet like article
JPH0682385A (en) * 1992-09-01 1994-03-22 Mitsubishi Rayon Co Ltd Defect inspection device
JPH06235624A (en) * 1992-12-15 1994-08-23 Hitachi Ltd Inspecting method and apparatus for transparent sheet
JP2002162362A (en) * 2000-11-22 2002-06-07 Mitsubishi Rayon Co Ltd Error detector and detecting means for seats
JP2003183994A (en) * 2001-10-09 2003-07-03 Mitsubishi Rayon Co Ltd Carbon fiber paper, and porous carbon electrode material for fuel battery using the same
JP2009244064A (en) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd Inspection method of polarization film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341349A (en) * 1989-07-07 1991-02-21 Omron Corp Apparatus for inspecting fault of sheet like article
JPH0682385A (en) * 1992-09-01 1994-03-22 Mitsubishi Rayon Co Ltd Defect inspection device
JPH06235624A (en) * 1992-12-15 1994-08-23 Hitachi Ltd Inspecting method and apparatus for transparent sheet
JP2002162362A (en) * 2000-11-22 2002-06-07 Mitsubishi Rayon Co Ltd Error detector and detecting means for seats
JP2003183994A (en) * 2001-10-09 2003-07-03 Mitsubishi Rayon Co Ltd Carbon fiber paper, and porous carbon electrode material for fuel battery using the same
JP2009244064A (en) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd Inspection method of polarization film

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113750A (en) * 2011-11-30 2013-06-10 Hitachi Zosen Corp Inspection device and inspection method for laminated substrate
JP2013160745A (en) * 2012-02-09 2013-08-19 Toray Ind Inc Method and device for inspecting porous carbon fiber sheet-like material
JP2015170386A (en) * 2014-03-04 2015-09-28 凸版印刷株式会社 Correction method of catalyst layer, correction device of catalyst layer, catalyst layer sheer or manufacturing method and manufacturing device for membrane electrode assembly
JP2018142466A (en) * 2017-02-28 2018-09-13 凸版印刷株式会社 Electrode catalyst layer membrane-electrode assembly and solid polymer fuel cell
JP2018163154A (en) * 2017-03-27 2018-10-18 三菱ケミカル株式会社 Method of automatically inspecting long object for appearance defects, and roll of long object with recording medium
JP2019020313A (en) * 2017-07-20 2019-02-07 株式会社島津製作所 X-ray phase imaging device, and method for detecting defect of fiber-containing material
JP2019028078A (en) * 2017-08-03 2019-02-21 東レ株式会社 Method of inspecting gas diffusion electrode, and gas diffusion electrode
JP7310101B2 (en) 2017-08-03 2023-07-19 東レ株式会社 Gas diffusion electrode inspection method and gas diffusion electrode
JP2019203748A (en) * 2018-05-22 2019-11-28 三菱ケミカル株式会社 Monitoring method of fiber bundle, monitoring device using monitoring method, and method for manufacturing fiber bundle using monitoring method or monitoring device
CN110231345A (en) * 2019-07-17 2019-09-13 佛山市清极能源科技有限公司 A kind of film electrode fault online test method and equipment
CN110231345B (en) * 2019-07-17 2023-11-14 佛山市清极能源科技有限公司 Membrane electrode defect online detection method and equipment
CN113495077A (en) * 2020-04-08 2021-10-12 财团法人纺织产业综合研究所 Cloth detection machine
JP2022024563A (en) * 2020-07-28 2022-02-09 日立建機株式会社 Method, device, and system for inspecting surface
JP7119034B2 (en) 2020-07-28 2022-08-16 日立建機株式会社 SURFACE INSPECTION METHOD, SURFACE INSPECTION APPARATUS, AND SURFACE INSPECTION SYSTEM
WO2022216063A1 (en) * 2021-04-06 2022-10-13 주식회사 엘지에너지솔루션 Method for pre-detecting defective product from porous polymer substrate for separator
US11940368B2 (en) 2021-04-06 2024-03-26 Lg Energy Solution, Ltd. Method for pre-detecting defective porous polymer substrate for separator
WO2024054044A1 (en) * 2022-09-06 2024-03-14 주식회사 엘지화학 Analysis method for pore distribution of porous structure

Also Published As

Publication number Publication date
JP5306053B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5306053B2 (en) Method for automatically inspecting appearance defect of continuous porous electrode substrate and wound body of porous electrode substrate with attached recording medium
CN105745523B (en) System and method for inspecting wound optical fiber
JP5909751B2 (en) Flat glass foreign matter inspection apparatus and inspection method
JP5031691B2 (en) Surface flaw inspection device
JPH0328749A (en) Online type structure inspection system
JP2007513350A (en) System and method for measuring defect properties of composite structures
KR20080031922A (en) Apparatus and methods for inspecting a composite structure for defects
JP2016180637A (en) Defect inspection device and method
JP2009293999A (en) Wood defect detector
JP6183875B2 (en) Inspection method and inspection apparatus for porous carbon fiber sheet
JP2004325346A (en) Method of detecting pinhole and method of producing membrane electrode assembly
JP2010085166A (en) Prepreg defect inspection method
JP5387319B2 (en) Inspection method for sheet-like continuum
TW200839223A (en) Method and apparatus for defect test of hollow fiber porous membrane and production method of the same
JP5234038B2 (en) Metal defect detection method
JP7310101B2 (en) Gas diffusion electrode inspection method and gas diffusion electrode
CN111751386B (en) Machine vision optical detection system and method
JP2009162579A (en) Quality evaluator as to section of paper and quality evaluation method using same
JP4212702B2 (en) Defect inspection apparatus, defect inspection method, and storage medium
JP2006349599A (en) Device and method for inspecting transparent substrate
JP2018163154A (en) Method of automatically inspecting long object for appearance defects, and roll of long object with recording medium
JP2011081294A (en) Correction projection foreign matter determination method of color filter substrate, and projection foreign matter correcting device
JP2012247343A (en) Defect inspection method of antireflection film and defect inspection apparatus
JP4989453B2 (en) Defect detection device for light transmissive film
JP3184287B2 (en) Light diffuser inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R151 Written notification of patent or utility model registration

Ref document number: 5306053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250