JP2010085166A - Prepreg defect inspection method - Google Patents

Prepreg defect inspection method Download PDF

Info

Publication number
JP2010085166A
JP2010085166A JP2008252818A JP2008252818A JP2010085166A JP 2010085166 A JP2010085166 A JP 2010085166A JP 2008252818 A JP2008252818 A JP 2008252818A JP 2008252818 A JP2008252818 A JP 2008252818A JP 2010085166 A JP2010085166 A JP 2010085166A
Authority
JP
Japan
Prior art keywords
prepreg
defect
image
processing step
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008252818A
Other languages
Japanese (ja)
Inventor
Teppei Fukuzawa
哲平 福澤
Yusuke Uchiyama
雄介 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008252818A priority Critical patent/JP2010085166A/en
Publication of JP2010085166A publication Critical patent/JP2010085166A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect inspection method of a prepreg surface formed by impregnating a matrix resin into carbon fibers, especially, a defect inspection method using an optical means, capable of inspecting the prepreg surface aligned in one direction, with high accuracy and high reliability. <P>SOLUTION: A rectangular rate, the maximum diameter angle and the unevenness degree of a defect candidate domain are determined, and a crack defect is detected. Then, a threshold is calculated for each pixel row from an image wherein a crack defect detection domain is masked, and a fluff defect is detected by performing binarization by using the threshold. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、炭素繊維にマトリックス樹脂を含浸させたプリプレグ表面の欠点検査方法、特に、一方向に引き揃えたプリプレグ表面に対して、高精度で信頼性高く検査できる光学的手段を用いた欠点検査方法に関する。   The present invention relates to a method for inspecting defects on a prepreg surface in which a carbon fiber is impregnated with a matrix resin, and in particular, for inspecting defects using optical means capable of inspecting a prepreg surface aligned in one direction with high accuracy and high reliability. Regarding the method.

炭素繊維強化プラスチックス(以下、CFRPと呼称する。)は、その比強度、比弾性率の高さから様々な分野で多く利用されており、航空機、船艇、自動車、などの高い強度を要求される用途に利用が拡大している。これらの成形には炭素繊維を引き揃えて熱硬化性樹脂を含浸させたプリプレグと呼ばれるシート状成形用材料を用い、それを多層積層した後硬化させている。   Carbon fiber reinforced plastics (hereinafter referred to as CFRP) are widely used in various fields due to their high specific strength and high specific modulus, and require high strength in aircraft, boats, automobiles, etc. The use is expanding to the intended use. In these moldings, a sheet-like molding material called a prepreg in which carbon fibers are aligned and impregnated with a thermosetting resin is used, which is laminated and then cured.

CFRPに用いられるプリプレグにおいては、少しの欠点がCFRPとした際の破壊起点および強度低下原因となりうる為、これら検査規格の合否判定においては、高い精度の検査水準が要求される。   In a prepreg used for CFRP, a slight defect may cause a failure starting point and a strength decrease when CFRP is used, and therefore, a high accuracy inspection level is required in the pass / fail judgment of these inspection standards.

これら検査は、一般的に人の目によって行われていたが、省人化、精度向上、欠点見逃し抑制などを目的とした自動化技術の導入が進んでおり、検査時間の短縮や検査精度の向上のため、種々の技術が提案されている。   These inspections were generally performed by the human eye, but automated technologies aimed at saving labor, improving accuracy, and suppressing oversight of defects have been introduced, reducing inspection time and improving inspection accuracy. For this reason, various techniques have been proposed.

例えば、特許文献1には単一カメラにて複数種の欠点を検出できるプリプレグの製造方法および装置が提案されている。この特許文献1による欠点検査方法はプリプレグに光を照射し、プリプレグからの散乱光を受光手段により検出し該受光手段により検出された散乱反射光の信号レベルと予め設定した閾値との比較により欠点の識別をしている。   For example, Patent Document 1 proposes a prepreg manufacturing method and apparatus capable of detecting a plurality of types of defects with a single camera. This defect inspection method according to Patent Document 1 irradiates a prepreg with light, detects scattered light from the prepreg by a light receiving means, and compares the signal level of the scattered reflected light detected by the light receiving means with a preset threshold value. Have been identified.

また、特許文献2にはシート状表面の欠点識別装置が提案されており、信号レベルだけでなく検出画像の欠点の候補となる領域から複数の特徴量を抽出して、予め定めておいた欠点種類の特徴量と比較することで、欠点の識別をしている。
特開平9−225939 特開2004−109069
Further, Patent Document 2 proposes a defect identification device for a sheet-like surface, and extracts a plurality of feature amounts from regions that are candidates for defects of a detected image as well as a signal level, and sets a predetermined defect. The defect is identified by comparing with the feature quantity of the kind.
JP-A-9-225939 JP2004-109069

従来の欠点検査方法では、正常部を欠点として誤検出してしまう問題や、形状が酷似した欠点を別の欠点として検出してしまう、または1つの欠点を数種類の欠点として検出してしまう問題があった。特に一方向に引き揃えたプリプレグでは走行方向軸に沿った輝度値のムラが延在し、ワレ欠点、毛羽欠点として誤検出される問題の発生が顕著である。本発明はこのような事情に鑑みてなされたもので、その目的は、上記した従来の問題点を解決し、欠点を正確に識別する欠点検査方法を提供することにある。 In the conventional defect inspection method, there is a problem that a normal part is erroneously detected as a defect, a defect whose shape is very similar is detected as another defect, or a defect is detected as several types of defects. there were. In particular, in the prepreg aligned in one direction, the unevenness of the luminance value along the running direction axis extends, and the occurrence of a problem that is erroneously detected as a crack defect or a fluff defect is remarkable. The present invention has been made in view of such circumstances, and an object thereof is to provide a defect inspection method for solving the above-described conventional problems and accurately identifying defects.

本発明者らは、かかる課題について、一方向に引き揃えたプリプレグでは、プリプレグ表面は樹脂の塗布ムラや表面の凹凸があるため、単一の方向からプリプレグに照射した光であっても、プリプレグの位置によって、異なる方向に反射(散乱)するので、かかる散乱光を受光手段により撮像すると、正常部であってもその撮像画の輝度の分布が均一にはならず、欠点部が正常部より相対的に輝度値が高い場合であっても、正常部の一部分が、欠点からの反射光を受光した際と同等の信号レベルになる場合があることによるのではないかとの考えの下、検討を行い本発明に想到した。すなわち、この様な輝度値の信号レベルが高い正常部は樹脂の塗布ムラやプリプレグ表面の凹凸に規則性がないため生じ、不規則に分布しているので、2値化処理した際その形状が欠点の形状に酷似した形となって現れる場合があるという認識の下、正常部のうち輝度値の信号レベルが高い部分と、形状が酷似した欠点を先に分離して検出した後、その情報を考慮して他の欠点を検出することにより、欠点を正確に識別する欠点検査方法を見出したものである。   In the prepreg aligned in one direction, the present inventors have found that the surface of the prepreg has uneven coating of the resin and unevenness of the surface. Therefore, even if the prepreg is irradiated with light from a single direction, the prepreg Depending on the position of the light, it is reflected (scattered) in different directions. If such scattered light is imaged by the light receiving means, the luminance distribution of the captured image will not be uniform even in the normal part, and the defective part will be different from the normal part. Even if the luminance value is relatively high, a study is made based on the idea that a part of the normal part may have the same signal level as when the reflected light from the defect is received. The present invention was conceived. That is, such a normal portion having a high luminance value signal level is generated because there is no regularity in the unevenness of coating of the resin and the unevenness of the surface of the prepreg, and is irregularly distributed. Recognizing that it may appear as a shape that closely resembles the shape of the defect, after detecting the part of the normal part where the signal level of the luminance value is high and the defect whose shape is very similar to each other, the information is detected first. The present inventors have found a defect inspection method for accurately identifying defects by detecting other defects in consideration of the above.

本発明は、上記課題を解決するために、次のいずれかの構成を有する。(1)走行するプリプレグの表面に照明手段によって光を照射し、前記プリプレグの表面を撮像手段により撮像し、前記撮像手段によって撮像した画像を記憶手段に記憶し、前記記憶手段に記憶した画像を加工して欠点を検出及び識別するプリプレグ表面の検査方法であって、記憶手段に記憶したプリプレグ表面の画像を読み出し、予め定めた閾値を基準に2値化処理する第1の2値化処理ステップと
第1の2値化処理ステップにより得た第1の画像データより、明領域(A)を抽出し、前記明領域(A)の矩形率、最大径角度、凹凸度を求め、ワレ欠点を識別するワレ欠点識別ステップと
前記記憶手段に記憶したプリプレグの表面の画像から前記ワレ欠点識別ステップにより識別したワレ欠点である領域を除外するマスク処理ステップと
前記マスク処理ステップより得られたマスク画像を基に以下に定義される積算値Vs[x,y] (yは走行方向軸の要素、xは走行方向軸と直交する軸の要素)と1画素列毎の閾値Vt[x]を基準に2値化する第2の2値化処理ステップと、
第2の2値化処理ステップにより得られた第2の画像データより明領域(B)を抽出し、前記明領域(B)の特徴量を求め、毛羽欠点を識別する毛羽欠点識別ステップを有することを特徴とするプリプレグ表面の検査方法である。(なお、本明細書において、2値化処理ステップ後に得られる明領域(明領域(A)、明領域(B))を、その意味合いから総称して欠点候補領域と記すこともある)
In order to solve the above problems, the present invention has any one of the following configurations. (1) The surface of the traveling prepreg is irradiated with light by an illumination unit, the surface of the prepreg is imaged by an imaging unit, an image captured by the imaging unit is stored in a storage unit, and an image stored in the storage unit is stored. A method for inspecting a prepreg surface to detect and identify defects by processing, wherein a first binarization processing step of reading an image of the prepreg surface stored in a storage means and binarizing with reference to a predetermined threshold value Then, the bright area (A) is extracted from the first image data obtained by the first binarization processing step, the rectangular ratio, the maximum diameter angle, and the unevenness degree of the bright area (A) are obtained, and the crack defect is eliminated. A crack defect identifying step for identifying, a mask processing step for excluding an area that is a crack defect identified by the crack defect identifying step from the image of the surface of the prepreg stored in the storage means, and a previous step Integrated value Vs [x, y] defined below based on the mask image obtained from the mask processing step (y is an element of the traveling direction axis, x is an element of the axis orthogonal to the traveling direction axis) and one pixel column A second binarization processing step for binarization based on each threshold Vt [x];
A fluff defect identifying step for extracting a light area (B) from the second image data obtained by the second binarization processing step, obtaining a feature amount of the light area (B), and identifying a fluff defect This is a method for inspecting the prepreg surface. (In this specification, the bright regions (bright region (A) and bright region (B)) obtained after the binarization processing step may be collectively referred to as defect candidate regions from the meaning)

Figure 2010085166
Figure 2010085166

(2)前記照明手段はプリプレグ表面に対する入射角度がプリプレグ表面を基準とした場合20〜40度となるよう設けられた、(1)に記載のプリプレグ表面の検査方法である。
(3)前期照明手段はライン状照明であり、前記ライン状照明の長手方向の軸がプリプレグの走行方向と直交となるよう設けられた、(1)に記載のプリプレグ表面の検査方法である。
(4)前記撮像手段はその光軸がプリプレグ表面に対し、垂直となるよう設けられた、(1)に記載のプリプレグ表面の検査方法である。
(2) The illuminating means is the prepreg surface inspection method according to (1), wherein the illuminating means is provided so that an incident angle with respect to the prepreg surface is 20 to 40 degrees when the prepreg surface is used as a reference.
(3) The prepreg surface inspection method according to (1), wherein the first illuminating means is line-shaped illumination, and is provided so that a longitudinal axis of the line-shaped illumination is perpendicular to a traveling direction of the prepreg.
(4) The prepreg surface inspection method according to (1), wherein the imaging unit is provided so that an optical axis thereof is perpendicular to the prepreg surface.

本発明において、「プリプレグ」とは一方向に引き揃えた炭素繊維にマトリックス樹脂を含浸させたシート状物をいう。
本発明において、「ライン状照明」とは、発光部が1次元方向に直線的に延びた形状を有するものでありその長手方向の軸に沿った輝度分布が一定である領域を持った照明をいい、発光部は長手方向に直交する方向の長さが10mm以内で長手方向にほぼ一定であれば、幅を有した細長い面であっても良い。ここで、ほぼ一定とは、長手方向の幅の平均に対し、各部の幅のずれが±5mm以内であることをいう。かかる「ライン状照明」は、具体的には直管形蛍光灯や、複数の光ファイバを線状に配置してハロゲンやLEDなどの光源からの光をライトガイドで導くもの、照明手段の前面にシリンドリカルレンズを設けることにより照明を行うもの等が挙げられるが、光量の可変が容易でかつ、コストや保守性の観点から、LEDライン照明を用いることが好ましい。本発明において、ライン状照明の「長手方向の軸」とは、発光面の長軸と定義する。
本発明において、撮像手段の「光軸」とは、受光面の中心からの垂線と定義する。
本発明において「矩形率」とは、図3に示す欠点候補領域30の重心31を通り、外周の2点を結ぶ直線の最大径32と最小径33の比と定義する。
本発明において、「最大径角度」とは、図4に示す欠点候補領域の最大径32の長手方向の軸方向と走行方向に直交する軸の相対角度34と定義する。
本発明において、「凹凸度」とは、図5に示す欠点候補領域の包絡周囲長35と周囲長36の比と定義する。
本発明において、「ワレ欠点」とは、炭素繊維束の拡がりが十分でないため、プリプレグ間に隙間が生じる状態の欠点をいう。「ワレ欠点」は、隙間を通して離型紙の反射が生じることにより白色に見えることで認識される。
本発明において、「毛羽欠点」とは、炭素繊維の一部が切れ、毛羽立った状態または糸束が塊になった状態の欠点をいう。「毛羽欠点」は、プリプレグの正常部と色相が同一である。
本発明において、「入射角度」とは、照明手段の発光面から垂直に照射される光の光軸とプリプレグ面とのなす角度と定義する。
In the present invention, the “prepreg” refers to a sheet-like material obtained by impregnating a carbon fiber aligned in one direction with a matrix resin.
In the present invention, “line illumination” refers to illumination having a region in which the light emitting portion extends linearly in a one-dimensional direction and the luminance distribution along the longitudinal axis is constant. The light emitting portion may be an elongated surface having a width as long as the length in the direction orthogonal to the longitudinal direction is within 10 mm and substantially constant in the longitudinal direction. Here, “substantially constant” means that the deviation of the width of each part is within ± 5 mm with respect to the average of the widths in the longitudinal direction. Such "line illumination" is specifically a straight tube fluorescent lamp, a plurality of optical fibers arranged in a line to guide light from a light source such as halogen or LED with a light guide, the front of the illumination means For example, the illumination is performed by providing a cylindrical lens, but it is preferable to use LED line illumination from the viewpoint of easy change of the light amount and cost and maintainability. In the present invention, the “longitudinal axis” of the line illumination is defined as the long axis of the light emitting surface.
In the present invention, the “optical axis” of the imaging means is defined as a perpendicular line from the center of the light receiving surface.
In the present invention, the “rectangular ratio” is defined as the ratio of the maximum diameter 32 and the minimum diameter 33 of a straight line passing through the center of gravity 31 of the defect candidate region 30 shown in FIG.
In the present invention, the “maximum diameter angle” is defined as the relative angle 34 of the axis perpendicular to the running direction and the longitudinal axis direction of the maximum diameter 32 of the defect candidate region shown in FIG.
In the present invention, the “degree of unevenness” is defined as the ratio of the envelope peripheral length 35 to the peripheral length 36 of the defect candidate region shown in FIG.
In the present invention, the “cracking defect” refers to a defect in which a gap is generated between the prepregs because the carbon fiber bundle is not sufficiently expanded. The “collapse defect” is recognized by the appearance of white due to the reflection of the release paper through the gap.
In the present invention, the “fluff defect” refers to a defect in which a part of the carbon fiber is cut and the fluff is in a state of being fluffy or a bundle of yarns is agglomerated. The “fluff defect” has the same hue as the normal part of the prepreg.
In the present invention, the “incident angle” is defined as an angle formed by the optical axis of light irradiated perpendicularly from the light emitting surface of the illumination means and the prepreg surface.

本発明によれば、誤検出なくワレと毛羽を正確に識別できる。   According to the present invention, cracks and fluff can be accurately identified without erroneous detection.

以下、本発明の欠点検査方法の好ましい実施形態例を、図面を参照しながら説明する。図1は、この発明の一実施形態による欠点検査方法の構成を示す概略ブロック図である(図中、「第1の2値化処理ステップ」等の「ステップ」は省略して示している)。本実施形態では、走行中のプリプレグを撮像し、撮像した画像に基づいて欠点検出処理を実行する。そのために、本実施形態の欠点検査方法は、図1に示すように、画像データを生成する照明・撮像手段1と、その撮像画像を記憶する記憶手段2と記憶した画像データを読み出し、予め定めた閾値により2値化処理する第1の2値化処理ステップ3と、複数の特徴量を抽出しワレ欠点を検出するワレ欠点検出ステップ4と、記憶した画像読み出し第1の欠点検出ステップで検出した欠点領域をマスクする、マスク処理ステップ5と、1画素列毎に閾値を求め2値化処理する第2の2値化処理ステップ6と少なくとも1つ以上の特徴量を抽出し毛羽欠点を検出する、毛羽欠点検出ステップ7から構成される。なお、第1の2値化処理ステップの閾値は、毛羽およびワレ欠点の平均輝度を求めておき、2値化処理ステップの際、毛羽欠点が明領域(A)欠点候補領域として検出されない閾値を予め決めておく。後述する第2の2値化処理ステップ6ではプリプレグ走行方向軸に長く輝度が高い部分があると、その画素列の閾値が大きくなる。ワレ欠点は走行方向に長く輝度が高いため、ワレ欠点が存在する状態で1画素列毎の閾値を算出しようとすると、ワレのある画素列は高い閾値を持つことになり、毛羽やその他の欠点の正確な識別が出来なくなる。そのため、第2の2値化処理ステップ6に先立ちに、ワレ欠点検出ステップ4でワレ欠点を検出し、マスク処理ステップ5でワレ欠点領域をマスクすることにより、第2の2値化処理ステップ6ではワレ欠点の影響を受けることなく画素列の閾値を算出することができる。   Hereinafter, preferred embodiments of the defect inspection method of the present invention will be described with reference to the drawings. FIG. 1 is a schematic block diagram showing the configuration of a defect inspection method according to an embodiment of the present invention (in the figure, “steps” such as “first binarization processing step” are omitted). . In the present embodiment, an image of a traveling prepreg is captured, and a defect detection process is executed based on the captured image. For this purpose, as shown in FIG. 1, the defect inspection method according to the present embodiment reads the illumination / imaging means 1 for generating image data, the storage means 2 for storing the captured image, and the stored image data to determine the predetermined data. Detected by a first binarization processing step 3 for binarization processing using the threshold value, a crack defect detection step 4 for detecting a crack defect by extracting a plurality of feature amounts, and a stored image reading first defect detection step A mask processing step 5 for masking the defective region, a second binarization processing step 6 for obtaining a threshold value for each pixel column, and a binarization process, and extracting at least one feature amount to detect a fluff defect Fuzz defect detection step 7. The threshold value for the first binarization processing step is the threshold value for obtaining the average brightness of the fluff and crack defects and not detecting the fluff defect as a bright area (A) defect candidate area during the binarization process step. Decide in advance. In a second binarization processing step 6 to be described later, if there is a portion with a long and high brightness on the prepreg travel direction axis, the threshold value of the pixel row increases. The crack defect is long in the running direction and has high brightness, so if you try to calculate the threshold value for each pixel row in the presence of the crack defect, the pixel column with cracks will have a high threshold value, and fluff and other defects Cannot be accurately identified. Therefore, prior to the second binarization processing step 6, the crack defect is detected in the crack defect detection step 4, and the crack defect region is masked in the mask processing step 5. Then, the threshold value of the pixel row can be calculated without being affected by the crack defect.

図2はこの発明の一実施形態の照明・撮像手段の構成を表した図である。本実施形態で使用する照明手段21はライン状照明装置であり、その長手方向の軸がプリプレグ(図では輪郭のみ示すが、黒色である)の走行方向と直交となるよう設けられている。また、プリプレグ表面に対する入射角度がプリプレグ表面を基準とした場合20〜40度となるよう設けられている。   FIG. 2 is a diagram showing the configuration of illumination / imaging means according to an embodiment of the present invention. The illuminating means 21 used in the present embodiment is a line-shaped illuminating device, and is provided so that the longitudinal axis thereof is orthogonal to the traveling direction of the prepreg (only the contour is shown in the figure but black). Further, the incident angle with respect to the prepreg surface is set to 20 to 40 degrees when the prepreg surface is used as a reference.

照明手段の種類としては、本実施形態に示したようなライン状照明装置が好ましい。ライン状照明装置とは、発光部が1次元方向に直線的に延びた形状を有する照明装置でありその長手方向の軸に沿った輝度分布が一定である領域を持った照明装置であり、光源をライン状に直線的に配置したもの、複数の光ファイバを線状に配置して光源からの光をライトガイドで導くもの、照明手段の前面にシリンドリカルレンズを設けることにより照明を行うもの等が挙げられる。例えば直管形蛍光灯、LEDライン照明、集光型ライン照明、等がある。本発明においては、光量の可変が容易でかつ、コスト、保守性の観点からLEDライン照明が好ましい。かかるライン状照明装置の発光部の長さは、プリプレグの全幅を均一に照明できれば特に限定されるものではないが、プリプレグ幅に対して、片側50〜150mm外側までカバーすることが好ましい。例えば、プリプレグ幅が、1000mmであれば、ライン状照明の長さは1200とし、100mmずつ外側まで照明するようにすればよい。なお、照明手段としてライン状照明装置を用いない場合には、カメラ撮像範囲のプリプレグ表面の光量がプリプレグ幅方向に均一になるよう、光源を配置することが必要である。
撮像手段22はラインセンサである。ラインセンサとは、1ラインの明暗または輝度に関するデータを得るものであり、光を受光するフォトダイオード等の受光素子(画素)がライン状に、直線的に配置され、受光した光を電気信号に変換しデータを出力するものをいう。例えばCCDラインセンサ、CMOSラインセンサ、X線ラインセンサ等がある。本発明においては可視光域に受光感度をもち、微小な欠点を検出するためにノイズが少ないことが好ましく、かかる観点からCCDラインセンサが好ましい。ライン状照明装置によって照射された検査対象物を撮像し、検査対象物の撮像データを生成し、記憶手段2に転送する。
As the type of illumination means, a line illumination device as shown in the present embodiment is preferable. A line-shaped illuminating device is an illuminating device having a shape in which a light emitting portion extends linearly in a one-dimensional direction, and is an illuminating device having a region in which a luminance distribution along a longitudinal axis thereof is constant. In which a plurality of optical fibers are linearly arranged to guide the light from the light source with a light guide, and in which a cylindrical lens is provided in front of the illumination means to illuminate, etc. Can be mentioned. For example, there are straight tube fluorescent lamps, LED line lighting, condensing type line lighting, and the like. In the present invention, LED line illumination is preferable from the viewpoints of easy variable light quantity and cost and maintainability. The length of the light emitting part of such a line illumination device is not particularly limited as long as the entire width of the prepreg can be illuminated uniformly, but it is preferable to cover the prepreg width to the outside of 50 to 150 mm on one side. For example, if the width of the prepreg is 1000 mm, the length of the line illumination is set to 1200, and the illumination may be performed to the outside by 100 mm. When a line illumination device is not used as the illumination means, it is necessary to arrange a light source so that the amount of light on the prepreg surface in the camera imaging range is uniform in the prepreg width direction.
The imaging means 22 is a line sensor. A line sensor obtains data related to brightness or darkness or luminance of one line. Light receiving elements (pixels) such as photodiodes that receive light are linearly arranged in a line, and the received light is converted into an electrical signal. This means that data is converted and output. For example, there are a CCD line sensor, a CMOS line sensor, an X-ray line sensor, and the like. In the present invention, it is preferable to have a light receiving sensitivity in the visible light region and to reduce noise in order to detect minute defects. From this viewpoint, a CCD line sensor is preferable. The inspection object irradiated by the line illumination device is imaged, imaging data of the inspection object is generated, and transferred to the storage unit 2.

次にワレ欠点検出ステップ4は第1の2値化処理ステップ3の結果の2値化画像から、ワレ特徴量抽出処理8により明領域(A)の矩形率、最大径角度、凹凸度を抽出し、予め定めておいた各特徴量と比較し、ワレ欠点を検出する。なお、明領域(A)は前述した予め設定した閾値により2値化処理した後の明領域であり、本ステップで検出する欠点である疑いのある領域(欠点候補領域)である。例えば、輝度の深さを0〜255とするならば、2値化後の輝度値は0または255いずれかになるので、輝度値が255の領域を明領域、0の領域を暗領域とする。また、矩形率、最大径角度、凹凸度の比較基準となる値はワレおよび毛羽欠点のそれぞれの矩形率、最大径角度、凹凸度の平均値を求めておき、ワレおよび毛羽欠点を正確に識別できる線引きとなる値となるよう予め決めておく。また、矩形率、最大径角度、凹凸度を求める前に、空間フィルタリング処理によって、微小な領域を削除して、欠点候補領域を絞り込んでもよい。また、矩形率、最大径角度、凹凸度を求める前に、各欠点候補領域の画素数を求め、予め比較値を設定しておき、欠点候補領域を絞り込んでもよい。   Next, the crack defect detection step 4 extracts the rectangular ratio, the maximum diameter angle, and the unevenness degree of the bright area (A) from the binary image obtained as a result of the first binarization processing step 3 by the crack feature amount extraction process 8. Then, a crack defect is detected by comparing with each predetermined feature amount. The bright area (A) is a bright area after binarization processing using the above-described preset threshold value, and is an area suspected of being a defect detected in this step (defect candidate area). For example, if the luminance depth is 0 to 255, the luminance value after binarization is either 0 or 255, so that the region where the luminance value is 255 is the bright region and the region where 0 is the dark region. . In addition, as the reference values for the rectangular ratio, maximum diameter angle, and unevenness, the average values of the rectangular ratio, maximum diameter angle, and unevenness of cracks and fluff defects are obtained, and cracks and fluff defects are accurately identified. It is determined in advance so as to be a value that can be drawn. In addition, before obtaining the rectangular ratio, the maximum diameter angle, and the unevenness degree, the defect candidate area may be narrowed down by deleting a minute area by a spatial filtering process. Further, before obtaining the rectangular ratio, the maximum diameter angle, and the unevenness degree, the number of pixels of each defect candidate area may be obtained, and a comparison value may be set in advance to narrow down the defect candidate areas.

マスク処理ステップ5は記憶手段2より画像を読み出し、ワレ欠点検出ステップ4でワレと識別された領域をマスクする。具体的にはワレ欠点領域の輝度値を0にする処理である。   The mask processing step 5 reads an image from the storage means 2 and masks the area identified as crack in the crack defect detection step 4. Specifically, this is a process of setting the brightness value of the crack defect area to zero.

第2の2値化処理ステップ6はマスク処理ステップ5よりワレ欠点領域がマスクされた画像より1画素列毎の閾値を算出し、その閾値により2値化処理を行なう。ここでいう1画素列とは図6のように走行方向軸をY軸、走行方向軸と直交する軸をX軸とし、その要素をy,x、各要素数をX:10 Y:5、各画素をV[x,y] とした場合を例にとると、V[a,1]〜V[a,5]の1列を指す。1画素列の閾値の算出においてはまず積算値Vs[x,y]を求める。積算値Vs[x,y]は各画素を中心としたX軸、数画素分の積算値であり、   In the second binarization processing step 6, a threshold value for each pixel column is calculated from the image in which the crack defect area is masked in the mask processing step 5, and binarization processing is performed based on the threshold value. As used herein, one pixel row is defined as the Y axis as the running direction axis and the X axis as the axis perpendicular to the running direction axis, as shown in FIG. 6, and the elements are y and x, and the number of each element is X: 10 Y: 5, Taking the case where each pixel is V [x, y] as an example, it indicates one column of V [a, 1] to V [a, 5]. In calculating the threshold value of one pixel column, first, an integrated value Vs [x, y] is obtained. The integrated value Vs [x, y] is an integrated value for several pixels on the X axis centered on each pixel,

Figure 2010085166
Figure 2010085166

で求め、上式の計算を全画素に対して行う。p<xであるのはp≧xの場合、例えばVs[2,1]積算値をp=2で求める場合、積算範囲はV[0,1]〜V[4,1]となり、実際には存在しない画素[0,1]を参照することになる。故にp<xの条件が必要となる。画素列の閾値は積算値Vsと予め定めておいた比較値Vcと比較し、定数を加減算する計算を1画素列分行う。比較値Vcは正常部の平均輝度値に応じて実験的に求める。pの値は図7に示すように2値化後の明領域(B)の違いに出る。p=0の場合、輝度の高い画素が列の大半を占めている一画素列(以降、縦スジと記載)の画素は明領域(B)として検出されないが、他の部分は検出される。一方、p=1の場合、縦スジとその両隣の1画素列の画素も明領域(B)として検出されなくなる。1画素列の算出を、図8を例に取って説明する。図8ではp=1、Vc=75、k=1の条件でx=3の1画素列の閾値を求めている。まず、各画素V[3,1]〜V[3,5]まで積算値を求める。次に And the above equation is calculated for all pixels. p <x is p ≧ x, for example, when Vs [2,1] integrated value is calculated with p = 2, the integrated range is V [0,1] to V [4,1] Refers to a non-existent pixel [0,1]. Therefore, the condition of p <x is necessary. The threshold value of the pixel column is compared with the integrated value Vs and a predetermined comparison value Vc, and a calculation for adding or subtracting a constant is performed for one pixel column. The comparison value Vc is obtained experimentally according to the average luminance value of the normal part. The value of p appears in the difference in the bright area (B) after binarization as shown in FIG. When p = 0, pixels in one pixel column (hereinafter referred to as vertical stripes) in which pixels with high luminance occupy most of the column are not detected as bright regions (B), but other portions are detected. On the other hand, when p = 1, the vertical streak and the pixels of the one pixel column on both sides thereof are not detected as the bright region (B). The calculation of one pixel column will be described using FIG. 8 as an example. In FIG. 8, the threshold value of one pixel column of x = 3 is obtained under the conditions of p = 1, Vc = 75, and k = 1. First, an integrated value is obtained for each pixel V [3,1] to V [3,5]. next

Figure 2010085166
Figure 2010085166

の条件でx=3のVrを求める。Vr[3,1]を例にとると、Vs[3,1]=81、Vc=75であるからVs>VcとなりVr[3,1]=Vaとなる。一方でVr[3,4]はVs[3,4]=67であるからVs<Vcとなり、Vr[3,4]=-Vaとなる。各画素のVrを算出後、 Vr of x = 3 is obtained under the conditions of Taking Vr [3,1] as an example, since Vs [3,1] = 81 and Vc = 75, Vs> Vc and Vr [3,1] = Va. On the other hand, since Vs [3,4] is Vs [3,4] = 67, Vs <Vc and Vr [3,4] = − Va. After calculating Vr for each pixel,

Figure 2010085166
Figure 2010085166

の式に従い、各画素のVrを積算する。図8を例にとると、5画素のVrの合計値は3Va、k=1であるため、Vt[3]=3Vaとなる。図8のV[3,2]に注目すると、他の画素より極端に輝度値が高い。しかし、この値が28または255であったとしてもVt[3]=3Vaであり、画素の輝度値の大小ではなく、Vcに比べて輝度値の高い画素がその1画素列にどのくらい存在するかで閾値が決まってくることがわかる。そのため、極端に輝度値の高い画素があってもその列の閾値が極端に高い閾値になることがない。 The Vr of each pixel is integrated according to the following formula. Taking FIG. 8 as an example, since the total value of Vr of 5 pixels is 3Va and k = 1, Vt [3] = 3Va. When attention is paid to V [3, 2] in FIG. 8, the luminance value is extremely higher than other pixels. However, even if this value is 28 or 255, Vt [3] = 3Va, not the magnitude of the pixel luminance value, but how many pixels with a luminance value higher than Vc exist in the one pixel column. It can be seen that the threshold is determined. Therefore, even if there is a pixel having an extremely high luminance value, the threshold value of the column does not become an extremely high threshold value.

毛羽欠点検出ステップ7は第2の2値化処理ステップにより得た2値化画像より、明領域(B)を欠点候補として、少なくとも一つ以上特徴量(例えば画素数、長さ、幅等)を求め、予め定めた値と比較して毛羽欠点を検出する。なお、予め定めた値とは、例えば求める特徴量が画素数であれば、その値以上の画素数であれば毛羽欠点とし、以下であれば欠点と見なさないとするような値であり、分解能と欠点規格に応じて予め実験的に求めておく。   The fluff defect detection step 7 uses at least one feature amount (for example, the number of pixels, length, width, etc.) using the bright region (B) as a defect candidate from the binarized image obtained by the second binarization processing step. The fluff defect is detected by comparing with a predetermined value. The predetermined value is, for example, a value such that if the feature quantity to be obtained is the number of pixels, if the number of pixels is equal to or greater than that value, it is regarded as a fuzz defect, and if it is less, it is not regarded as a defect. And experimentally obtained in advance according to the defect standard.

また、第2の2値化処理ステップに先立つ前処理として、記憶手段より画像を読み出し、水平フィルタリング処理をかけた画像をマスク処理ステップ6よりワレ欠点領域がマスクされた画像に加算する処理を加えるのが好ましい。   Further, as a pre-process prior to the second binarization processing step, a process is performed in which an image is read from the storage means and the image subjected to the horizontal filtering process is added to the image in which the crack defect area is masked from the mask processing step 6. Is preferred.

[実施例1]
本発明による一実施形態について説明する。検査対象である、プリプレグは幅1000mmで、7m/minで走行される。ライン状照明は高輝度LEDライン照明(CCS社製 HLND型)を1台使用し、前記プリプレグの全面に光が入射するように配置した。撮像手段として、ラインセンサを使用し、具体的には、素子数7450、駆動周波数40MHz、最高走査周期192μsの性能を有するラインセンサカメラ(NED社製 e7450D)を2台並列に設置し、撮像される画像の、プリプレグの幅方向の分解能は0.1mm/画素以上になるように調整した。 照明の角度はプリプレグ表面に対する入射角度が30度となるよう設置し、プリプレグ表面の照度が9000lxになるよう照明の光量を設定した。ラインセンサはその光軸がプリプレグ表面に対し、垂直となるよう設置する。また、カメラ撮像範囲のプリプレグ面に直接外光が当たらないよう、上面および側面に遮光板を取り付ける。
[Example 1]
An embodiment according to the present invention will be described. The prepreg to be inspected is 1000 mm wide and travels at 7 m / min. As the line-shaped illumination, one high-luminance LED line illumination (HLND type manufactured by CCS) was used, and it was arranged so that light was incident on the entire surface of the prepreg. A line sensor is used as the imaging means. Specifically, two line sensor cameras (NED e7450D) having the performance of 7450 elements, driving frequency of 40 MHz, and maximum scanning cycle of 192 μs are installed in parallel. The resolution of the prepreg in the width direction of the prepreg was adjusted to be 0.1 mm / pixel or more. The illumination angle was set so that the incident angle with respect to the prepreg surface was 30 degrees, and the amount of illumination light was set so that the illuminance on the prepreg surface was 9000 lx. The line sensor is installed so that its optical axis is perpendicular to the prepreg surface. In addition, light shielding plates are attached to the top and side surfaces so that external light does not directly strike the prepreg surface of the camera imaging range.

カメラで撮像した画像データは一旦パソコン上に取り付けた画像処理ボード上に記憶させ、ボード上で7450×1000画素の画像にし、その後、パソコン上のメモリに読込む。   The image data captured by the camera is temporarily stored on an image processing board attached on a personal computer, converted into an image of 7450 × 1000 pixels on the board, and then read into a memory on the personal computer.

輝度の深さを255階調とし、複数の毛羽およびワレ欠点画像の輝度の平均値を求め、第1の2値化処理ステップの閾値を45に設定した。この値では2値後、第1の2値化処理を行い、欠点候補領域として明領域(A)を75点検出した。すべての明領域(A)の矩形率、最大径角度、凹凸度を求め、ワレ欠点と識別する最大径角度の範囲を75〜115度、矩形率を5以上、凹凸度を1.5以下として、ワレ欠点検出処理をおこなった。なお、最大径角度の範囲はワレ欠点の最大径角度が発生原因の特性上、走行方向軸にほぼ水平としかならない為、90±25度の範囲とした。矩形率および凹凸度は最大径角度による識別で、はじかれない複数の欠点の特徴量を求めて定めた。第2の2値化処理ステップにおいて使用する閾値の算出において、p=1、Va=1、Vc=90、k=1として、1画素列毎に閾値を算出し、2値化処理後、明領域(B)の画素数を求めた。なお、各値Va、kは予め1に決めておき、Vcは(1+2p)×正常部の平均輝度値とし、輝度値の高い正常部の影響が最も軽減されるpの値を実験的に求めた。画素数:500以上を毛羽欠点として、毛羽欠点検出処理をおこなった。なお、毛羽欠点とし識別する画素数は予め複数の毛羽欠点の画素数を求めておき、最も画素数の少ない毛羽欠点の値とした。表1にワレ欠点に形状が酷似した欠点候補領域の抽出結果および毛羽欠点の検出結果を示す。   The brightness depth was set to 255 gradations, the average brightness value of the plurality of fluff and crack defect images was obtained, and the threshold value of the first binarization processing step was set to 45. With this value, after binarization, a first binarization process was performed, and 75 bright areas (A) were detected as defect candidate areas. Obtain the rectangular ratio, maximum diameter angle, and unevenness of all bright areas (A), set the maximum diameter angle range to distinguish from crack defects to 75 to 115 degrees, set the rectangular ratio to 5 or more, and unevenness to 1.5 or less. The crack defect detection process was performed. The range of the maximum diameter angle is set to 90 ± 25 degrees because the maximum diameter angle of the crack defect is the cause of the occurrence, and it is almost horizontal to the running direction axis. The rectangularity and the degree of unevenness were determined by determining feature amounts of a plurality of defects that are not repelled by identification based on the maximum diameter angle. In the calculation of the threshold value used in the second binarization processing step, the threshold value is calculated for each pixel column with p = 1, Va = 1, Vc = 90, and k = 1. The number of pixels in the region (B) was obtained. Each value Va, k is set to 1 in advance, and Vc is (1 + 2p) × average luminance value of the normal part, and the value of p that minimizes the influence of the normal part having a high luminance value is experimental. Asked. Fluff defect detection processing was performed using the number of pixels of 500 or more as a fuzz defect. Note that the number of pixels identified as fluff defects was obtained in advance as the number of pixels of a plurality of fluff defects, and the value of the fluff defect having the smallest number of pixels was used. Table 1 shows a result of extracting a defect candidate region whose shape closely resembles a crack defect and a result of detecting a fuzz defect.

この例ではワレ欠点の条件を満たしているものはLabel 230,400,507となり、形状が酷似した欠点および正常部を誤検出することなくワレ欠点を検出できた。また、毛羽欠点も誤検出することなく検出できた。   In this example, labels 230, 400, and 507 satisfy the crack defect condition, and the crack defect could be detected without erroneously detecting a defect having a very similar shape and a normal part. Moreover, fuzz defects could be detected without erroneous detection.

Figure 2010085166
Figure 2010085166

[実施例2]
プリプレグを、5m/minで走行させ、1撮像画像における、プリプレグの走行方向の長さを実施例1と同一に合わせるよう、カメラ取込み設定を変更した以外は、実施例1と同じ状態で欠点処理を行った。結果を表2に示す。この例ではワレ欠点の条件を満たしているものはLabel 89,287,412となり、形状が酷似した欠点および正常部を誤検出することなくワレ欠点を検出できた。また、毛羽欠点も誤検出することなく検出できた。
[Example 2]
The defect processing is performed in the same state as in the first embodiment except that the prepreg is driven at 5 m / min and the camera capture setting is changed so that the length in the traveling direction of the prepreg in one captured image is the same as that in the first embodiment. Went. The results are shown in Table 2. In this example, Label 89, 287, and 412 satisfy the crack defect condition, and the crack defect could be detected without erroneously detecting the defect having a very similar shape and the normal part. Moreover, fuzz defects could be detected without erroneous detection.

Figure 2010085166
Figure 2010085166

[実施例3]
プリプレグを、3m/minで走行させ、1撮像画像における、プリプレグの走行方向の長さを実施例1と同一に合わせるよう、カメラ取込み設定を変更した以外は、実施例1と同じ状態で欠点処理を行った。結果を表3に示す。この例ではワレ欠点の条件を満たしているものはLabel 65,87,408となり、形状が酷似した欠点および正常部を誤検出することなくワレ欠点を検出できた。また、毛羽欠点も誤検出することなく検出できた。
[Example 3]
The defect processing is performed in the same state as in the first embodiment except that the prepreg is run at 3 m / min and the camera capture setting is changed so that the length in the running direction of the prepreg in one captured image is the same as that in the first embodiment. Went. The results are shown in Table 3. In this example, Label 65, 87, 408 satisfies the crack defect condition, and the crack defect can be detected without erroneously detecting the defect having a very similar shape and the normal part. Moreover, fuzz defects could be detected without erroneous detection.

Figure 2010085166
Figure 2010085166

上述した本発明の欠点検査方法は、一方向に引き揃えた炭素繊維にマトリックス樹脂を含浸させたプリプレグに好ましく適用されるが、適用対象としては、一方向に引き揃えた黒色の繊維シート状物であるようなものであれば、これに限定されない。   The above-described defect inspection method of the present invention is preferably applied to a prepreg in which a carbon fiber aligned in one direction is impregnated with a matrix resin. As an application object, a black fiber sheet-like material aligned in one direction is used. As long as it is, it is not limited to this.

本発明の一実施形態による欠点検査方法の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the defect inspection method by one Embodiment of this invention. 本発明の一実施形態の照明・撮像手段の構成を表した図である。It is a figure showing the structure of the illumination and imaging means of one Embodiment of this invention. 欠点候補領域の矩形率を説明するための図である。It is a figure for demonstrating the rectangular rate of a defect candidate area | region. 欠点候補領域の最大径角度を説明するための図である。It is a figure for demonstrating the maximum diameter angle of a defect candidate area | region. 欠点候補領域の凹凸度を説明するための図である。It is a figure for demonstrating the unevenness | corrugation degree of a defect candidate area | region. 第2の2値化処理ステップにおいて閾値を算出する際の1画素列の定義を説明するための図である。It is a figure for demonstrating the definition of 1 pixel row at the time of calculating a threshold value in the 2nd binarization process step. 第2の2値化処理ステップにおけるpの値による欠点候補領域の違いを説明するための図である。It is a figure for demonstrating the difference of the defect candidate area | region by the value of p in a 2nd binarization process step. 第2の2値化処理ステップにおける1画素列の閾値の計算を説明するための図である。It is a figure for demonstrating the calculation of the threshold value of 1 pixel row | line | column in a 2nd binarization process step.

符号の説明Explanation of symbols

1 照明・撮像手段
2 記憶手段
3 第1の2値化処理ステップ
4 ワレ欠点検出ステップ
5 マスク処理ステップ
6 第2の2値化処理ステップ
7 毛羽欠点検出ステップ
8 ワレ特徴量抽出処理
9 毛羽特徴量抽出処理
10 記憶・演算装置
20 プリプレグ
21 照明
22 カメラ
30 欠点候補領域
31 欠点候補領域の重心
32 欠点候補領域の最大径
33 欠点候補領域の最小径
34 欠点候補領域の最大径角度
35 欠点候補領域の包絡周囲長
36 欠点候補領域の周囲長
40 10×5画像
41 Y軸要素数
42 X軸要素数
43 1画素列
DESCRIPTION OF SYMBOLS 1 Illumination / imaging means 2 Storage means 3 First binarization processing step 4 Crack defect detection step 5 Mask processing step 6 Second binarization processing step 7 Fluff defect detection step 8 Crack feature extraction process 9 Fluff feature Extraction Processing 10 Storage / Calculation Device 20 Prepreg 21 Illumination 22 Camera 30 Defect Candidate Area 31 Defect Candidate Area Center of Gravity 32 Defect Candidate Area Maximum Diameter 33 Defect Candidate Area Minimum Diameter 34 Defect Candidate Area Maximum Diameter Angle 35 Defect Candidate Area Envelope perimeter 36 Perimeter length of defect candidate area 40 10 × 5 image 41 Y-axis element number 42 X-axis element number 43 1 pixel array:

Claims (4)

走行するプリプレグの表面に照明手段によって光を照射し、前記プリプレグの表面を撮像手段により撮像し、前記撮像手段によって撮像した画像を記憶手段に記憶し、前記記憶手段に記憶した画像を加工して欠点を検出及び識別するプリプレグ表面の検査方法であって、記憶手段に記憶したプリプレグ表面の画像を読み出し、予め定めた閾値を基準に2値化処理する第1の2値化処理ステップと
第1の2値化処理ステップにより得た第1の画像データより、明領域(A)を抽出し
前記明領域(A)の矩形率、最大径角度、凹凸度を求め、ワレ欠点を識別するワレ欠点識別ステップと
前記記憶手段に記憶したプリプレグの表面の画像から前記ワレ欠点識別ステップにより識別したワレ欠点である領域を除外するマスク処理ステップと
前記マスク処理ステップより得られたマスク画像を基に輝度値を以下に定義される積算値Vs[x,y](yは走行方向軸の要素、xは走行方向軸と直交する軸の要素)と1画素列毎の閾値Vt[x]を基準に2値化する第2の2値化処理ステップと、
第2の2値化処理ステップにより得られた第2の画像データより、明領域(B)を抽出し、前記明領域(B)の特徴量を求め、毛羽欠点を識別する毛羽欠点識別ステップを有することを特徴とするプリプレグ表面の検査方法。
Figure 2010085166
The surface of the traveling prepreg is illuminated by illumination means, the surface of the prepreg is imaged by the imaging means, the image captured by the imaging means is stored in the storage means, and the image stored in the storage means is processed. A method for inspecting a prepreg surface for detecting and identifying a defect, wherein a first binarization step and a first binarization processing step for reading out an image of a prepreg surface stored in a storage means and binarizing with reference to a predetermined threshold From the first image data obtained by the binarization processing step, a bright area (A) is extracted, the rectangular ratio, the maximum diameter angle, and the unevenness degree of the bright area (A) are obtained to identify the crack defect. A masking step for excluding an area that is a crack defect identified by the crack defect identifying step from an image of the surface of the prepreg stored in the storage means and the mask; The integrated value Vs [x, y] defined below based on the mask image obtained from the processing step (y is an element of the traveling direction axis, x is an element of the axis orthogonal to the traveling direction axis) and 1 A second binarization processing step for binarization based on a threshold value Vt [x] for each pixel column;
From the second image data obtained by the second binarization processing step, a bright region (B) is extracted, a feature amount of the bright region (B) is obtained, and a fluff defect identifying step for identifying a fluff defect is performed. A method for inspecting a prepreg surface, comprising:
Figure 2010085166
前記照明手段はプリプレグ表面に対する入射角度がプリプレグ表面を基準とした場合20〜40度となるよう設けられた、請求項1に記載のプリプレグ表面の検査方法。   2. The prepreg surface inspection method according to claim 1, wherein the illumination unit is provided so that an incident angle with respect to the prepreg surface is 20 to 40 degrees when the prepreg surface is used as a reference. 前期照明手段はライン状照明であり、前記ライン状照明の長手方向の軸がプリプレグの走行方向と直交方向となるよう設けられた、請求項1に記載のプリプレグ表面の検査方法。   The prepreg surface inspection method according to claim 1, wherein the first-stage illumination means is line-shaped illumination, and is provided such that a longitudinal axis of the line-shaped illumination is in a direction perpendicular to the traveling direction of the prepreg. 前記撮像手段はその光軸がプリプレグ表面に対し、垂直となるよう設けられた、請求項1に記載のプリプレグ表面の検査方法。   The prepreg surface inspection method according to claim 1, wherein the imaging unit is provided such that an optical axis thereof is perpendicular to the prepreg surface.
JP2008252818A 2008-09-30 2008-09-30 Prepreg defect inspection method Pending JP2010085166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252818A JP2010085166A (en) 2008-09-30 2008-09-30 Prepreg defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252818A JP2010085166A (en) 2008-09-30 2008-09-30 Prepreg defect inspection method

Publications (1)

Publication Number Publication Date
JP2010085166A true JP2010085166A (en) 2010-04-15

Family

ID=42249275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252818A Pending JP2010085166A (en) 2008-09-30 2008-09-30 Prepreg defect inspection method

Country Status (1)

Country Link
JP (1) JP2010085166A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184942A (en) * 2011-03-03 2012-09-27 Central Glass Co Ltd Method for detecting surface defect of glass fiber product
WO2013061682A1 (en) 2011-10-28 2013-05-02 東レ株式会社 Prepreg production method
JP2013160745A (en) * 2012-02-09 2013-08-19 Toray Ind Inc Method and device for inspecting porous carbon fiber sheet-like material
CN104655642A (en) * 2015-02-06 2015-05-27 江苏大学 Automatic measurement, characterization and classification method for steel cracking defects and system of method
WO2016208731A1 (en) * 2015-06-24 2016-12-29 三菱レイヨン株式会社 Fiber-reinforced resin material, molded article, method and device for manufacturing fiber-reinforced resin material, and device for inspecting fiber bundle group
WO2019142503A1 (en) * 2018-01-18 2019-07-25 東レ株式会社 Method for measuring conditions of resin on prepreg surface and apparatus for measuring said conditions
CN116721067A (en) * 2023-05-29 2023-09-08 宿迁凯达环保设备制造有限公司 Impregnated paper impregnation quality detection method based on machine vision

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184942A (en) * 2011-03-03 2012-09-27 Central Glass Co Ltd Method for detecting surface defect of glass fiber product
WO2013061682A1 (en) 2011-10-28 2013-05-02 東レ株式会社 Prepreg production method
US9180653B2 (en) 2011-10-28 2015-11-10 Toray Industries, Inc. Prepreg production method
JP2013160745A (en) * 2012-02-09 2013-08-19 Toray Ind Inc Method and device for inspecting porous carbon fiber sheet-like material
CN104655642A (en) * 2015-02-06 2015-05-27 江苏大学 Automatic measurement, characterization and classification method for steel cracking defects and system of method
JPWO2016208731A1 (en) * 2015-06-24 2017-06-29 三菱ケミカル株式会社 Fiber reinforced resin material, molded product, fiber reinforced resin material manufacturing method and manufacturing apparatus, and fiber bundle group inspection apparatus
WO2016208731A1 (en) * 2015-06-24 2016-12-29 三菱レイヨン株式会社 Fiber-reinforced resin material, molded article, method and device for manufacturing fiber-reinforced resin material, and device for inspecting fiber bundle group
JP2017214590A (en) * 2015-06-24 2017-12-07 三菱ケミカル株式会社 Fiber-reinforced resin material, molded product, method and apparatus for producing fiber-reinforced resin material, and inspection device of fiber bundle group
US10343352B2 (en) 2015-06-24 2019-07-09 Mitsubishi Chemical Corporation Fiber-reinforced resin material, molded article, method and device for manufacturing fiber-reinforced resin material, and fiber bundle group inspection device
JP2021028397A (en) * 2015-06-24 2021-02-25 三菱ケミカル株式会社 Fiber-reinforced resin material, molded article, and manufacturing method and manufacturing apparatus of fiber-reinforced resin material
US11597165B2 (en) 2015-06-24 2023-03-07 Mitsubishi Chemical Corporation Fiber-reinforced resin material, molded article, method and device for manufacturing fiber-reinforced resin material, and fiber bundle group inspection device
US11951692B2 (en) 2015-06-24 2024-04-09 Mitsubishi Chemical Corporation Fiber-reinforced resin material, molded article, method and device for manufacturing fiber-reinforced resin material, and fiber bundle group inspection device
WO2019142503A1 (en) * 2018-01-18 2019-07-25 東レ株式会社 Method for measuring conditions of resin on prepreg surface and apparatus for measuring said conditions
CN116721067A (en) * 2023-05-29 2023-09-08 宿迁凯达环保设备制造有限公司 Impregnated paper impregnation quality detection method based on machine vision
CN116721067B (en) * 2023-05-29 2024-04-12 宿迁凯达环保设备制造有限公司 Impregnated paper impregnation quality detection method based on machine vision

Similar Documents

Publication Publication Date Title
EP0501683B1 (en) Technique for enhanced two-dimensional imaging
JP2010085166A (en) Prepreg defect inspection method
JP5174540B2 (en) Wood defect detection device
KR102073229B1 (en) Surface defect detection apparatus and surface defect detection method
WO2016158873A1 (en) Device for examining surface defect in hot-dipped steel plate, and method for examining surface defect
JP2007078540A (en) Visual inspection method and visual inspection device
US20120133761A1 (en) Uneven area inspection system
CN111033243A (en) Appearance inspection device and appearance inspection method
JP2013160745A (en) Method and device for inspecting porous carbon fiber sheet-like material
JP2007316019A (en) Surface defect inspection device
JP5732605B2 (en) Appearance inspection device
JP2009222683A (en) Method and apparatus for surface inspection
JP2010085165A (en) Surface inspection device and surface inspection method
JP5297245B2 (en) Object surface inspection equipment
JP2015200544A (en) Surface irregularity inspection device and surface irregularity inspection method
JP2002310917A (en) Defect detecting method and device thereof
JP2003240732A (en) Gold-plated defect-inspecting apparatus
JP2003156451A (en) Defect detecting device
JP2014186030A (en) Defect inspection device
JPH08304295A (en) Method and apparatus for detecting surface defect
JP2012247343A (en) Defect inspection method of antireflection film and defect inspection apparatus
JP5266118B2 (en) Defect inspection method and defect inspection apparatus for object surface
JP2004191070A (en) Coated surface inspection apparatus
JP2006064531A (en) Inspection method of prepreg
JP2009264800A (en) Surface inspecting method and surface inspecting device