JP2010271636A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP2010271636A
JP2010271636A JP2009125342A JP2009125342A JP2010271636A JP 2010271636 A JP2010271636 A JP 2010271636A JP 2009125342 A JP2009125342 A JP 2009125342A JP 2009125342 A JP2009125342 A JP 2009125342A JP 2010271636 A JP2010271636 A JP 2010271636A
Authority
JP
Japan
Prior art keywords
represented
transfer agent
photosensitive member
general formula
electrophotographic photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009125342A
Other languages
Japanese (ja)
Other versions
JP5552755B2 (en
Inventor
Keisuke Shimoyama
啓介 下山
Eiji Kurimoto
鋭司 栗本
Takaaki Ikegami
孝彰 池上
Tadayoshi Uchida
忠良 内田
Hideki Nakamura
秀樹 中村
Toshihiko Koizumi
俊彦 小泉
Hajime Suzuki
一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009125342A priority Critical patent/JP5552755B2/en
Publication of JP2010271636A publication Critical patent/JP2010271636A/en
Application granted granted Critical
Publication of JP5552755B2 publication Critical patent/JP5552755B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly sensitive electrophotographic photoreceptor where charge generation and movement of a hole and an electron are performed efficiently, the charge polarity is used at both positive/negative polarities, and a stable sensitivity characteristic is acquired for environmental variation. <P>SOLUTION: This electrophotographic photoreceptor is provided with: a conductive support body; and a photosensitive layer disposed on the conductive support body. The photosensitive layer contains: a charge generator; diphenoquinone compound expressed by a general formula (1); and a hole transport agent of a specific distyryl structure. In general the formula (1), R<SB>1</SB>, R<SB>2</SB>and R<SB>3</SB>are saturated hydrocarbon, and may be the same mutually and different from each other. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複写機、レーザープリンター等に使用される電子写真感光体に関し、特に、有機薄膜を使用した電子写真感光体に関する。   The present invention relates to an electrophotographic photoreceptor used for a copying machine, a laser printer, and the like, and more particularly to an electrophotographic photoreceptor using an organic thin film.

従来は、複写機やレーザープリンター等に用いられる電子写真感光体には、セレン、セレン−テルル、セレン−砒素、アモルファスシリコン等の材料で構成された薄膜が感光層として用いられていた。
しかしながら近年では、低価格で環境汚染の少ない有機感光体を用いたものが主流になりつつある。そのような有機感光体を感光層の構造で分類すると、単層分散型の感光層と機能分離型の感光層とに分けられる。
Conventionally, a thin film made of a material such as selenium, selenium-tellurium, selenium-arsenic, amorphous silicon or the like has been used as a photosensitive layer in an electrophotographic photosensitive member used in a copying machine, a laser printer, or the like.
However, in recent years, those using organic photoreceptors that are low in cost and have little environmental pollution are becoming mainstream. Such organic photoreceptors can be classified into a single-layer dispersion type photosensitive layer and a function-separated type photosensitive layer when classified by the structure of the photosensitive layer.

単層分散型感光体は、電荷移動剤の媒体中に電荷発生剤を分散させ、単層膜で両方の機能を持たせたものであり、機能分離型感光体は、電荷を発生させる電荷発生層(CGL)と、発生した電荷を移動させる電荷移動層(CTL)とを別々に成膜したものである。現在では、いずれの型の電子写真感光体とも実用に供されている。特に単層型感光体では、感度を向上させるために高い移動度の電子移動剤の開発が望まれている。   Single layer dispersion type photoreceptors are those in which a charge generation agent is dispersed in a charge transfer agent medium and both functions are achieved by a single layer film. Function separation type photoreceptors generate charges that generate charges. A layer (CGL) and a charge transfer layer (CTL) for moving generated charges are separately formed. At present, both types of electrophotographic photoreceptors are in practical use. In particular, for a single-layer type photoreceptor, development of an electron transfer agent with high mobility is desired in order to improve sensitivity.

有機感光体を帯電型で分類すると、正帯電型と負帯電型の2種類に分けられるが、現在知られている電荷移動剤のうち、移動度が高いものは正孔移動性のものがほとんどであり、材料の選択の余地が多く、感光体の特性の制御が容易なことから、実用化されている有機感光体は積層型の負帯感光体が主流となっている。
一方、単層型感光体は、塗布工程が少なくコスト的に有利であるだけでなく、レーザー光のような単色光における干渉縞が発生し難い等の利点がある。更に、感光層の表面近傍で入射光がほとんど吸収され電荷が発生するので、照射光の感光層中での拡散はほとんどなく、帯電後の表面電荷中和にいたるまでの電荷の移動距離が積層型の感光体に比べて少ない点が挙げられる。このため、光および電荷キャリアの拡散による画像ボケが起こり難く、高解像度が期待できる。
Organic photoconductors can be classified into two types: positively charged and negatively charged. Among the currently known charge transfer agents, most of those with high mobility are those with hole mobility. Since there is much room for selection of materials and the characteristics of the photoconductor can be easily controlled, a layered negative belt photoconductor is mainly used as a practical organic photoconductor.
On the other hand, the single-layer type photoreceptor not only has a small coating process but is advantageous in terms of cost, and has an advantage that interference fringes in monochromatic light such as laser light hardly occur. Furthermore, since incident light is almost absorbed near the surface of the photosensitive layer and charges are generated, there is almost no diffusion of irradiated light in the photosensitive layer, and the distance of charge movement until neutralization of the surface charge after charging is laminated. There are few points compared to the type of photoreceptor. For this reason, image blur due to diffusion of light and charge carriers hardly occurs, and high resolution can be expected.

感光層中に電子移動剤と正孔移動剤とを含む単層型電子写真感光体では、正帯電および負帯電の両方の極性で用いることが可能であり、感光体の応用範囲を広げるとともに感光体の品種削減によるコストの低減、高速化対応などにおいても有利となる。また、正帯電で使用した場合はオゾンの影響が軽減できる。   Single-layer electrophotographic photoreceptors containing an electron transfer agent and a hole transfer agent in the photosensitive layer can be used with both positive and negative polarities, expanding the application range of the photoreceptor and increasing sensitivity. This is also advantageous in reducing costs and speeding up by reducing the number of body types. In addition, the effect of ozone can be reduced when used with positive charging.

このような利点を持つ単層型感光体であるが、負帯電積層感光体と匹敵するほどの耐久性および静電特性を両立するものは得られていない。
これは単層感光体が電子、正孔を同一膜中で移動させる機能が必要となり、さらに同一膜中に電荷発生機能を有する為、各機能を果たす材料開発、材料の組み合わせが難しい為である。電子移動は電子移動剤が担うが、未だ正孔移動剤のように高キャリア移動を果たす材料開発にいたっていない。さらに単層感光体に用いる正孔移動剤は電子移動剤との相性が重要であり、電子移動剤、正孔移動剤を選定する目安が明確ではなかったのが現状である
Although it is a single layer type photoconductor having such advantages, a photoconductor having both durability and electrostatic characteristics comparable to those of a negatively charged laminated photoconductor has not been obtained.
This is because the single-layer photoconductor needs to have the function of moving electrons and holes in the same film, and furthermore, since it has a charge generation function in the same film, it is difficult to develop and combine materials that fulfill each function. . Electron transfer is carried out by an electron transfer agent, but it has not yet been developed as a material that performs high carrier transfer like a hole transfer agent. Furthermore, the compatibility of the hole transfer agent used for the single layer photoreceptor with the electron transfer agent is important, and the guideline for selecting the electron transfer agent and the hole transfer agent was not clear.

また、現在のところ、単層感光体に用いることのできる電子移動剤としては、トリニトロフルオレノン(TNF)、テトラシアノエチレン、テトラシアノキノジメタン(TCNQ)、キノン、ジフェノキノン、ナフトキノン、アントラキノン及びこれらの誘導体等、特性上不十分な物質しか見出されていない。具体的には、これらの電子移動剤には、下記(i)〜(iv)のような欠点がある。   At present, the electron transfer agents that can be used for the single-layer photoconductor include trinitrofluorenone (TNF), tetracyanoethylene, tetracyanoquinodimethane (TCNQ), quinone, diphenoquinone, naphthoquinone, anthraquinone, and the like. Only a substance with insufficient properties, such as a derivative thereof, has been found. Specifically, these electron transfer agents have the following drawbacks (i) to (iv).

(i)これらの電子移動剤のほとんどはバインダー樹脂との相溶性が悪く、感光層中に、高濃度で均一に分散させることができないため、含有量の不足から電気特性を満足させることができない。
(ii)TNFは電子受容性が高く、そのため移動度も高いが、毒性が強いので実用に適さない。
(iii)TCNQは極めて高い電子受容性を示すが、強く着色しているため、感光層を形成させると本来は電荷発生剤に届くべき光を吸収してしまい、感度を低下させてしまう。
(iv)ジフェノキノン骨格において、相溶性を向上させるために、非対称置換型化合物が提唱されているが、感度の高い正帯電型の電子写真感光体を作るために十分な性能の化合物は得られていない。
(I) Most of these electron transfer agents have poor compatibility with the binder resin and cannot be uniformly dispersed at a high concentration in the photosensitive layer, so that the electrical properties cannot be satisfied due to insufficient content. .
(Ii) TNF has a high electron-accepting property and therefore has a high mobility, but is not suitable for practical use because of its high toxicity.
(Iii) Although TCNQ exhibits a very high electron accepting property, it is strongly colored. Therefore, when a photosensitive layer is formed, light that should originally reach the charge generating agent is absorbed and sensitivity is lowered.
(Iv) In the diphenoquinone skeleton, an asymmetrically substituted compound has been proposed in order to improve the compatibility, but a compound having sufficient performance to produce a highly sensitive positively charged electrophotographic photoreceptor has not been obtained. Absent.

これらの欠点を改善すべく電子移動剤の開発が進められており、特に特許文献1に開示されている様なジフェノキノン化合物は相溶性、電子移動性に優れており、単層感光体においても感光体特性を向上させることができる。
しかし現在までのところ感光体感度、環境安定性において満足できるものは得られていない。
Development of an electron transfer agent has been advanced to remedy these drawbacks. In particular, a diphenoquinone compound as disclosed in Patent Document 1 is excellent in compatibility and electron mobility, and even in a single layer photoreceptor. Body characteristics can be improved.
However, until now, no satisfactory one has been obtained in terms of photoreceptor sensitivity and environmental stability.

本発明は、上記従来技術の欠点を解決することを目的とし、高感度で安定性の高い単層型電子写真感光体を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a single-layer type electrophotographic photosensitive member having high sensitivity and high stability for the purpose of solving the above-mentioned drawbacks of the prior art.

上記課題を解決するために本発明に係る電子写真感光体は、具体的には下記(1)〜(11)に記載の技術的特徴を有する。
(1):導電性支持体と、該導電性支持体上に設けられた感光層と、を備え、該感光層は、電荷発生剤と、下記一般式(1)で表されるジフェノキノン化合物と、下記一般式(2)で表される正孔移動剤と、を含有することを特徴とする電子写真感光体である。
In order to solve the above problems, the electrophotographic photosensitive member according to the present invention specifically has the technical features described in (1) to (11) below.
(1): a conductive support and a photosensitive layer provided on the conductive support, the photosensitive layer comprising a charge generator and a diphenoquinone compound represented by the following general formula (1): And a hole transfer agent represented by the following general formula (2).

Figure 2010271636
Figure 2010271636

(上記式(1)中、R、R及びRは飽和炭化水素であって、相互に同じであってもよく異なっていてもよい。) (In the above formula (1), R 1 , R 2 and R 3 are saturated hydrocarbons and may be the same or different from each other.)

Figure 2010271636
Figure 2010271636

(上記式(2)中、R〜R11は、各々独立に水素、ハロゲン原子、置換基を有していてもよい炭素数1〜6のアルキル基、または炭素数1〜6のアルコキシ基を表す。) (In said formula (2), R < 4 > -R < 11 > is hydrogen, a halogen atom, the C1-C6 alkyl group which may have a substituent, or a C1-C6 alkoxy group each independently. Represents.)

(2):前記一般式(1)で表されるジフェノキノン化合物は、下記化学式(1a)で表されることを特徴とする上記(1)に記載の電子写真感光体である。

Figure 2010271636
(2) The diphenoquinone compound represented by the general formula (1) is represented by the following chemical formula (1a), and is the electrophotographic photosensitive member according to the above (1).
Figure 2010271636

(上記式(1a)中、t−Buは、tert−ブチル基を表す。) (In the above formula (1a), t-Bu represents a tert-butyl group.)

(3):前記一般式(2)で表される正孔移動剤は、下記化学式(2a)で表されることを特徴とする上記(1)又は(2)に記載の電子写真感光体である。 (3): The electrophotographic photosensitive member according to (1) or (2), wherein the hole transfer agent represented by the general formula (2) is represented by the following chemical formula (2a): is there.

Figure 2010271636
Figure 2010271636

(4):前記一般式(2)で表される正孔移動剤は、下記化学式(2b)で表されることを特徴とする上記(1)又は(2)に記載の電子写真感光体である。 (4): The hole transfer agent represented by the general formula (2) is represented by the following chemical formula (2b), and is the electrophotographic photoreceptor according to the above (1) or (2), is there.

Figure 2010271636
Figure 2010271636

(5):前記一般式(2)で表される正孔移動剤は、下記化学式(2c)で表されることを特徴とする上記(1)又は(2)に記載の電子写真感光体である。 (5): The hole transfer agent represented by the general formula (2) is represented by the following chemical formula (2c), and is the electrophotographic photoreceptor according to the above (1) or (2), is there.

Figure 2010271636
Figure 2010271636

(6):前記一般式(2)で表される正孔移動剤は、下記化学式(2d)で表されることを特徴とする上記(1)又は(2)に記載の電子写真感光体である。 (6): In the electrophotographic photosensitive member according to (1) or (2), the hole transfer agent represented by the general formula (2) is represented by the following chemical formula (2d): is there.

Figure 2010271636
Figure 2010271636

(7):前記一般式(2)で表される正孔移動剤は、下記化学式(2e)で表されることを特徴とする上記(1)又は(2)に記載の電子写真感光体である。 (7): In the electrophotographic photosensitive member according to (1) or (2), the hole transfer agent represented by the general formula (2) is represented by the following chemical formula (2e): is there.

Figure 2010271636
Figure 2010271636

(8):前記一般式(2)で表される正孔移動剤は、下記化学式(2f)で表されることを特徴とする上記(1)又は(2)に記載の電子写真感光体である。 (8): The electrophotographic photosensitive member according to (1) or (2), wherein the hole transfer agent represented by the general formula (2) is represented by the following chemical formula (2f): is there.

Figure 2010271636
Figure 2010271636

(9):前記電荷発生剤は、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2°)として、27.2°に最大回折ピークを有するオキシチタニルフタロシアニンであることを特徴とする上記(1)乃至(8)のいずれか1項に記載の電子写真感光体である。 (9): The charge generator is an oxytitanyl phthalocyanine having a maximum diffraction peak at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to CuKα characteristic X-rays (wavelength 1.542 mm). The electrophotographic photosensitive member according to any one of (1) to (8) above, wherein

(10):前記電荷発生剤は、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2°)として、27.2°に最大回折ピークを有するオキシチタニルフタロシアニンと、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2°)として、26.3°に最大回折ピークを有するオキシチタニルフタロシアニンと、を含むことを特徴とする上記(1)乃至(8)のいずれか1項に記載の電子写真感光体である。 (10): The charge generator is an oxytitanyl phthalocyanine having a maximum diffraction peak at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to CuKα characteristic X-rays (wavelength 1.542 mm). And oxytitanyl phthalocyanine having a maximum diffraction peak at 26.3 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to CuKα characteristic X-rays (wavelength 1.542Å), The electrophotographic photosensitive member according to any one of (1) to (8) above.

(11):前記電荷発生剤は、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2°)として、27.2°に最大回折ピークを有するオキシチタニルフタロシアニンと、クロロインジウムフタロシアンンと、を含むことを特徴とする上記(1)乃至(8)のいずれか1項に記載の電子写真感光体である。 (11): The charge generator is an oxytitanyl phthalocyanine having a maximum diffraction peak at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to CuKα characteristic X-rays (wavelength 1.542 mm). And the chloroindium phthalocyanine. The electrophotographic photosensitive member according to any one of (1) to (8) above, wherein

本発明によれば、電荷発生並びに正孔及び電子の移動が効率よく行われ、高感度かつ帯電極性が正負の両極性で使用でき環境変動に対して安定な感度特性が得られる。   According to the present invention, charge generation and movement of holes and electrons are efficiently performed, and the sensitivity characteristic that is highly sensitive and can be used with both positive and negative polarities is stable against environmental fluctuations.

実施例で用いたオキシチタニルフタロシアニンのX線回折図である。1 is an X-ray diffraction pattern of oxytitanyl phthalocyanine used in Examples. 実施例で用いたオキシチタニルフタロシアニンのX線回折図である。1 is an X-ray diffraction pattern of oxytitanyl phthalocyanine used in Examples. 実施例で用いたオキシチタニルフタロシアニンのX線回折図である。1 is an X-ray diffraction pattern of oxytitanyl phthalocyanine used in Examples. 実施例で用いたクロロインジウムフタロシアニンとオキシチタニルフタロシChloroindium phthalocyanine and oxytitanyl phthalose used in the examples 本発明に係る電子写真感光体の層構成の例を示す断面図である。アニンのX線回折図である。It is sectional drawing which shows the example of the layer structure of the electrophotographic photoreceptor which concerns on this invention. It is an X-ray diffraction pattern of anine.

本発明に係る電子写真感光体は、導電性支持体2と、該導電性支持体2上に設けられた感光層3と、を備え、該感光層3は、電荷発生剤と、下記一般式(1)で表されるジフェノキノン化合物と、下記一般式(2)で表される正孔移動剤と、を含有することを特徴とする。   The electrophotographic photosensitive member according to the present invention includes a conductive support 2 and a photosensitive layer 3 provided on the conductive support 2, and the photosensitive layer 3 includes a charge generating agent and the following general formula. It contains a diphenoquinone compound represented by (1) and a hole transfer agent represented by the following general formula (2).

Figure 2010271636
Figure 2010271636

(上記式(1)中、R、R及びRは飽和炭化水素であって、相互に同じであってもよく異なっていてもよい。) (In the above formula (1), R 1 , R 2 and R 3 are saturated hydrocarbons and may be the same or different from each other.)

Figure 2010271636
Figure 2010271636

(上記式(2)中、R〜R11は、各々独立に水素、ハロゲン原子、置換基を有していてもよい炭素数1〜6のアルキル基、または炭素数1〜6のアルコキシ基を表す。) (In the above formula (2), R 4 ~R 11 are each independently hydrogen, a halogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, Represents.)

次に、本発明に係る電子写真感光体(以下、単に感光体と称することもある。)についてさらに詳細に説明する。
尚、以下に述べる実施の形態は、本発明の好適な実施の形態であるから技術的に好ましい種々の限定が付されているが、本発明の範囲は以下の説明において本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
Next, the electrophotographic photoreceptor according to the present invention (hereinafter sometimes simply referred to as a photoreceptor) will be described in more detail.
Although the embodiments described below are preferred embodiments of the present invention, various technically preferable limitations are attached thereto, but the scope of the present invention is intended to limit the present invention in the following description. Unless otherwise described, the present invention is not limited to these embodiments.

単層感光体においては同一層中で電子、正孔両方を輸送する必要があるため、用いる電子移動剤、正孔移動剤共に優れた特性を有していることが必要である。
従来は電子移動剤の電子輸送機能が十分ではなかったが、本発明に用いられる前記一般式(1)で表される電子移動剤は優れた電子輸送機能を有し、また相溶性に優れるため感光層中に高濃度に分散させることができ、感光層として十分な電子輸送能を得ることができる。
In a single-layer photoreceptor, it is necessary to transport both electrons and holes in the same layer. Therefore, both the electron transfer agent and the hole transfer agent to be used must have excellent characteristics.
Conventionally, the electron transfer function of the electron transfer agent was not sufficient, but the electron transfer agent represented by the general formula (1) used in the present invention has an excellent electron transfer function and is excellent in compatibility. It can be dispersed at a high concentration in the photosensitive layer, and a sufficient electron transport ability as the photosensitive layer can be obtained.

しかし一般に電子移動剤と正孔移動剤は電荷移動錯体を形成するため、単層感光体とした場合に電子移動剤及び正孔移動剤それぞれの単体での性能が、感光体の機能として反映されるとは限らない。つまり優れた電子輸送機能を有する前記一般式(1)で表される電子移動剤と、十分な正孔輸送機能を有する正孔移動剤を用いた場合でも、感光体として十分な電荷輸送機能が発揮されず、感度が低下したり、安定性に問題が生じたりしてしまう。
電子移動剤と正孔移動剤の組合せによる効果について詳細なメカニズムは明らかとなっていないが、特性の良い感光体とするには、電子移動剤及び正孔移動剤単体での特性が優れることは当然であるが、加えて電子移動剤と正孔移動剤の組合せも非常に重要となる。
However, since electron transfer agents and hole transfer agents generally form charge transfer complexes, the performance of each of the electron transfer agent and hole transfer agent as a single layer photoreceptor is reflected as the function of the photoreceptor. Not necessarily. That is, even when an electron transfer agent represented by the general formula (1) having an excellent electron transport function and a hole transfer agent having a sufficient hole transport function are used, a sufficient charge transport function as a photoreceptor is provided. It is not exhibited, and the sensitivity is lowered or the stability is problematic.
Although the detailed mechanism about the effect by the combination of the electron transfer agent and the hole transfer agent has not been clarified, in order to make a photoreceptor with good characteristics, the characteristics of the electron transfer agent and the hole transfer agent alone are excellent. Of course, the combination of an electron transfer agent and a hole transfer agent is also very important.

本発明の電子写真感光体のように、前記一般式(1)で表される電子移動剤(ジフェノキノン化合物)と前記一般式(2)で表される正孔移動剤を組み合わせた場合には、電子輸送機能、正孔輸送機能が十分に発揮され電子、正孔それぞれの移動性に優れ、正負両極性において高感度な感光体となる。また繰り返し使用しても感度、帯電性等の静電特性の変化が少ない安定した感光体となる。   When the electron transfer agent (diphenoquinone compound) represented by the general formula (1) and the hole transfer agent represented by the general formula (2) are combined as in the electrophotographic photoreceptor of the present invention, The electron transport function and the hole transport function are sufficiently exhibited, the mobility of each of electrons and holes is excellent, and the photoconductor is highly sensitive in both positive and negative polarities. Further, even if it is repeatedly used, a stable photoconductor with little change in electrostatic characteristics such as sensitivity and chargeability is obtained.

また、電荷発生剤においても特定の材料を用いることにより特性が向上する。ある特定の電荷発生剤に対して有効な電荷移動剤(電子移動剤、正孔移動剤)が、他の電荷発生剤に対しても有効であるとは限らず、逆にある特定の電荷移動剤に対して有効な電荷発生剤が、他の電荷移動剤に対しても有効であるとは限らず、相性が存在する、ということが知られている。   In addition, the characteristics of the charge generating agent are improved by using a specific material. An effective charge transfer agent (electron transfer agent, hole transfer agent) for a specific charge generation agent is not always effective for other charge generation agents. It is known that a charge generating agent effective against an agent is not necessarily effective against other charge transfer agents and has compatibility.

前記一般式(1)で表されるジフェノキノン化合物と前記一般式(2)で表される正孔移動剤を組み合わせた場合には、特にオキシチタニルフタロシアニンを電荷発生剤とした場合に相性が良く、特にCukα特性X線回折におけるブラッグ角(2θ±0.2°)が27.2°に最大回折ピークを有するオキシチタニウムフタロシアニンを用いることが最良である(図1参照。)。また、Cukα特性X線回折におけるブラッグ角(2θ±0.2°)が26.3°に最大回折ピークを有するオキシチタニウムフタロシアニン(図2参照。)を前記27.2°に最大回折ピークを有するオキシチタニウムフタロシアニンとを混合(図3参照。)して用いる事ができる。また、クロロインジウムフタロシアニンと前記27.2°に最大回折ピークを有するオキシチタニウムフタロシアニンとを混合(図4参照。)して用いることもできる。ピ−クは結晶状態や測定条件などによりブロ−ド(幅広)になったり、スプリット(分裂)したり、シフト(角度の変化)することもあり得る。   When the diphenoquinone compound represented by the general formula (1) and the hole transfer agent represented by the general formula (2) are combined, the compatibility is particularly good when oxytitanyl phthalocyanine is used as a charge generator, In particular, it is best to use oxytitanium phthalocyanine having a maximum diffraction peak at a Bragg angle (2θ ± 0.2 °) in Cukα characteristic X-ray diffraction of 27.2 ° (see FIG. 1). Further, oxytitanium phthalocyanine (see FIG. 2) having a maximum diffraction peak at a Bragg angle (2θ ± 0.2 °) of 26.3 ° in Cukα characteristic X-ray diffraction has a maximum diffraction peak at 27.2 °. It can be used by mixing with oxytitanium phthalocyanine (see FIG. 3). Alternatively, chloroindium phthalocyanine and oxytitanium phthalocyanine having the maximum diffraction peak at 27.2 ° may be mixed (see FIG. 4). The peak may become a broad (wide), split (split), or shift (change in angle) depending on the crystal state and measurement conditions.

以下、図面に沿って本発明の電子写真感光体を詳しく説明する。
図5は、本発明に係る電子写真感光体の層構成の一例を模式的に示す断面図であり、導電性支持体2の上に感光層3が設けられている。
〔導電性支持体2〕
本発明に用いることができる導電性支持体2には、アルミニウム、真鍮、ステンレス鋼、ニッケル、クロム、チタン、金、銀、銅、錫、白金、モリブデン、インジウム等の金属単体やその合金の加工体や、上記金属や炭素等の導電性物質を蒸着、メッキ等の方法で処理し、導電性を持たせたプラスチック板およびフィルム、さらに酸化錫、酸化インジウム、ヨウ化アルミニウムで被覆した導電性ガラス等、導電性基体の種類や形状に制限されることなく、導電性を有する種々の材料を使用することができる。一般には、円筒状のアルミニウム管単体やその表面をアルマイト処理した物、または導電性樹脂を塗工した物がよく用いられている。
Hereinafter, the electrophotographic photosensitive member of the present invention will be described in detail with reference to the drawings.
FIG. 5 is a cross-sectional view schematically showing an example of the layer structure of the electrophotographic photosensitive member according to the present invention, in which the photosensitive layer 3 is provided on the conductive support 2.
[Conductive support 2]
The conductive support 2 that can be used in the present invention is made of a simple metal such as aluminum, brass, stainless steel, nickel, chromium, titanium, gold, silver, copper, tin, platinum, molybdenum, indium, or an alloy thereof. And conductive glass coated with tin oxide, indium oxide, and aluminum iodide, and a conductive plate such as metal or carbon treated with a method such as vapor deposition or plating to provide conductivity. Various materials having conductivity can be used without being limited by the type and shape of the conductive substrate. In general, a single cylindrical aluminum tube, a surface anodized on its surface, or a material coated with a conductive resin is often used.

〔感光層3〕
本発明における感光層は少なくとも電荷発生剤と前記一般式(1)で表されるジフェノキノン化合物と前記一般式(2)で表される正孔移動剤を含む。
(電荷発生剤)
まず本発明における電荷発生剤について説明する。
本発明の電子写真感光体に用いることができる電荷発生剤としては、前述したオキシチタニルフタロシアニンが望ましいが、それに限定されるものではなく、その他、例えば、セレン、セレンーテルル、セレン−砒素、アモルファスシリコン、他のフタロシアニン顔料、モノアゾ顔料、ジスアゾ顔料、トリスアゾ顔料、ポリアゾ顔料、インジゴ顔料、スレン顔料、トルイジン顔料、ピラゾリン顔料、ペリレン顔料、キナクリドン顔料、ピリリウム塩等を用いることができる。
これらの電荷発生剤は単体で用いてもよいし、適切な光感度波長や増感作用を得るために2種類以上を混合して用いてもよい。
[Photosensitive layer 3]
The photosensitive layer in the present invention contains at least a charge generator, a diphenoquinone compound represented by the general formula (1), and a hole transfer agent represented by the general formula (2).
(Charge generator)
First, the charge generating agent in the present invention will be described.
The charge generator that can be used in the electrophotographic photoreceptor of the present invention is preferably the oxytitanyl phthalocyanine described above, but is not limited thereto. For example, selenium, selenium-tellurium, selenium-arsenic, amorphous silicon, Other phthalocyanine pigments, monoazo pigments, disazo pigments, trisazo pigments, polyazo pigments, indigo pigments, selenium pigments, toluidine pigments, pyrazoline pigments, perylene pigments, quinacridone pigments, pyrylium salts, and the like can be used.
These charge generating agents may be used alone or in combination of two or more in order to obtain an appropriate photosensitivity wavelength and sensitizing action.

感光層3中の電荷発生剤の濃度は0.005重量%以上10重量%以下が一般的に用いられ、好ましくは0.5重量%以上5重量%以下である。電荷発生剤の濃度が低いと感光体感度が低下する傾向にあり、濃度が高くなると帯電性や膜強度が低下する傾向にある。   The concentration of the charge generating agent in the photosensitive layer 3 is generally from 0.005% by weight to 10% by weight, and preferably from 0.5% by weight to 5% by weight. When the concentration of the charge generating agent is low, the photoreceptor sensitivity tends to decrease, and when the concentration is high, the chargeability and film strength tend to decrease.

(電荷移動剤)
《ジフェノキノン化合物》
次に、電荷移動剤について説明する。
本発明に用いる一般式(1)で表されるジフェノキノン化合物は、下記に示す構造骨格を有する。
(Charge transfer agent)
<Diphenoquinone compound>
Next, the charge transfer agent will be described.
The diphenoquinone compound represented by the general formula (1) used in the present invention has the structural skeleton shown below.

Figure 2010271636
Figure 2010271636

上記式(1)中、R、R、Rは飽和炭化水素であって、相互に同じであっても異なっていてもよい。 In said formula (1), R < 1 >, R < 2 >, R < 3 > is saturated hydrocarbon, Comprising: You may mutually be same or different.

電子受容性を高め、電子移動性を向上させるために、電子移動剤の置換基を電子吸引基とすることは従来より行われていたが、電子吸引基を含む化合物は電子移動剤自身の凝集力が高まるために、既知の電子移動剤ではバインダー樹脂との相溶性が悪くなり、そのため感光層3中に高濃度に分散させることができず、実用に到っていなかった。   In order to increase the electron acceptability and improve the electron mobility, it has been conventionally performed to use an electron withdrawing group as a substituent of the electron transfer agent. Since the force is increased, the compatibility of the known electron transfer agent with the binder resin is deteriorated, so that it cannot be dispersed at a high concentration in the photosensitive layer 3 and has not been put into practical use.

この相溶性を向上させるためには、一般に、電子移動剤を非対称構造にするとよいと言われており、従来技術でも、例えば下記化学式(3)のような非対称構造の電子移動剤が提案されている。   In order to improve this compatibility, it is generally said that the electron transfer agent should have an asymmetric structure. In the prior art, for example, an electron transfer agent having an asymmetric structure such as the following chemical formula (3) has been proposed. Yes.

Figure 2010271636
Figure 2010271636

前記化学式(3)において、Meはメチル基、tBuは、tert-ブチル基を表す。   In the chemical formula (3), Me represents a methyl group, and tBu represents a tert-butyl group.

しかしながら、上記化学式(3)の電子移動剤は、同じ置換基が2個存在しており、完全な非対称構造とはなっておらず、電子移動度も低い。   However, the electron transfer agent represented by the chemical formula (3) has two identical substituents, does not have a completely asymmetric structure, and has a low electron mobility.

このような不完全非対称構造の電子移動剤に電子吸引基を導入して電子移動度を向上させようとすると、非対称構造で得られた相溶性が導入された電子吸引基の凝集力によって打ち消されてしまう。例えば、既知の下記化学式(4)で示される電子移動剤は、バインダー樹脂に数%しか溶解せず、実用にならない。   When an electron withdrawing group is introduced into such an incompletely asymmetric structure of the electron transfer agent to improve the electron mobility, the compatibility obtained by the asymmetric structure is canceled by the cohesive force of the introduced electron withdrawing group. End up. For example, a known electron transfer agent represented by the following chemical formula (4) is only practically soluble in a binder resin and is not practical.

Figure 2010271636
Figure 2010271636

前記一般式(1)のジフェノキノン化合物は、いかなる対称軸も有さない完全非対称構造であり、電子吸引基を導入した場合でもバインダー樹脂との相溶性が良好である。   The diphenoquinone compound of the general formula (1) has a completely asymmetric structure that does not have any symmetry axis, and has good compatibility with the binder resin even when an electron withdrawing group is introduced.

具体的には、R、R、Rを飽和炭化水素であって、相互に同じであるか異なるものとすると、前記一般式(1)で表されるジフェノキノン化合物は、電子移動度が高く、バインダー樹脂との相溶性もよいため、電子移動剤として用いた場合、感光層3中に高濃度に均一に分散させることによって高感度の電子写真感光体を得ることができるようになるのである。 Specifically, when R 1 , R 2 , and R 3 are saturated hydrocarbons and are the same or different from each other, the diphenoquinone compound represented by the general formula (1) has an electron mobility. Since it is high and compatible with the binder resin, when used as an electron transfer agent, a highly sensitive electrophotographic photosensitive member can be obtained by uniformly dispersing it in the photosensitive layer 3 at a high concentration. is there.

このような置換基R、R、Rで表される飽和炭化水素基には、具体的には、メチル基、エチル基、プロピル基等の直鎖飽和炭化水素基や、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、tert-ペンチル基等の分岐飽和炭化水素基や、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の環式飽和炭化水素基や、これら直鎖、分岐、環式飽和炭化水素基同士の複合置換基等、炭素数やその構造に制限を受けずに用いることができる。これらの置換基の中でも、直鎖飽和炭化水素基や分岐飽和炭化水素基が好ましい。特に、R〜Rのいずれもtert-ブチル基、エチル基、またはメチル基であり、相互に同じであることが好ましい。 Specific examples of the saturated hydrocarbon group represented by such substituents R 1 , R 2 , and R 3 include linear saturated hydrocarbon groups such as a methyl group, an ethyl group, and a propyl group, an isopropyl group, Branched saturated hydrocarbon groups such as isobutyl group, sec-butyl group, tert-butyl group, tert-pentyl group, cyclic saturated hydrocarbon groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, etc. It can be used without being limited by the number of carbon atoms or its structure, such as a chain, a branched chain, or a composite substituent between cyclic saturated hydrocarbon groups. Among these substituents, a linear saturated hydrocarbon group and a branched saturated hydrocarbon group are preferable. In particular, any of R 1 to R 3 is a tert-butyl group, an ethyl group, or a methyl group, and is preferably the same as each other.

更に、前記置換基すべてをtert-ブチル基とすれば、下記化学式(5)で表される化合物を均一に溶解させた液体に、HClガスを接触させることにより容易に下記化学式(1a)で表される完全非対称のジフェノキノン化合物の合成ができる。   Further, if all the substituents are tert-butyl groups, the compound represented by the following chemical formula (1a) can be easily obtained by bringing HCl gas into contact with a liquid in which the compound represented by the following chemical formula (5) is uniformly dissolved. Synthesis of a fully asymmetric diphenoquinone compound.

Figure 2010271636
Figure 2010271636

Figure 2010271636
Figure 2010271636

また、前記一般式(1)中のR〜Rは、tert-ブチル基に限定されるものではなく、例えば、メチル基であれば、下記式(1b)で示される化合物が電子移動剤として得られる。 Further, R 1 to R 3 in the general formula (1), tert- not limited to butyl, for example, if a methyl group, compound an electron transfer agent represented by the following formula (1b) As obtained.

Figure 2010271636
Figure 2010271636

また、上記化学式(1)で示されるジフェノキノン化合物は、1種類を単独で用いてもよいし、2種以上を混合して用いてもよい。更に、前記一般式(1)で示されるジフェノキノン化合物は、感光層3中に0.1重量%から80重量%の濃度で含まれていることが好ましい。   Moreover, the diphenoquinone compound shown by the said Chemical formula (1) may be used individually by 1 type, and may be used in mixture of 2 or more types. Furthermore, the diphenoquinone compound represented by the general formula (1) is preferably contained in the photosensitive layer 3 at a concentration of 0.1 wt% to 80 wt%.

《正孔輸送材料》
本発明に用いる一般式(2)で表される正孔輸送材料は、下記に示す構造骨格を有する。
《Hole transport material》
The hole transport material represented by the general formula (2) used in the present invention has a structural skeleton shown below.

Figure 2010271636
Figure 2010271636

上記式(2)中、R〜R11は、各々独立に水素、ハロゲン原子、置換基を有していてもよい炭素数1〜6のアルキル基、炭素数1〜6のアルコキシル基を表わす。〕 In the above formula (2), R 4 to R 11 each independently represent a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or an alkoxyl group having 1 to 6 carbon atoms. . ]

アルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基等、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等がそれぞれ挙げられ、これらは、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等により置換されていても良い。これらの置換基の中でも、メチル基、メトキシ基が好ましい。   Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group. Examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group. These include a halogen atom, a nitro group, a cyano group, Substituted by alkyl groups such as methyl group, ethyl group, alkoxy groups such as methoxy group and ethoxy group, aryloxy groups such as phenoxy group, aryl groups such as phenyl group and naphthyl group, aralkyl groups such as benzyl group and phenethyl group May have been. Of these substituents, a methyl group and a methoxy group are preferable.

以下、本発明の感光体に用いられる正孔移動剤として、下記化学式(2a)〜(2f)で示される化合物の具体例を示すが、これに限定されるものではない。   Specific examples of the compounds represented by the following chemical formulas (2a) to (2f) are shown below as hole transfer agents used in the photoreceptor of the present invention, but are not limited thereto.

Figure 2010271636
Figure 2010271636

Figure 2010271636
Figure 2010271636

Figure 2010271636
Figure 2010271636

Figure 2010271636
Figure 2010271636

Figure 2010271636
Figure 2010271636

Figure 2010271636
Figure 2010271636

上記化学式(2a)〜(2f)で表される化合物は、感光層3中に1種類含有されてもよいし、2種類以上でもよい。
感光層3中の正孔移動剤の濃度は要求される感光体性能や帯電極性により異なるため特に限定されないが、0.1重量%以上70重量%以下が好ましい。濃度が低いと正孔移動が不十分になり感光体特性に影響を与えることがあり、濃度が高いと樹脂との相溶性が悪くなり不均一な膜になったり樹脂濃度が低くなったりするため膜強度が低下する可能性もある。
One kind of the compounds represented by the above chemical formulas (2a) to (2f) may be contained in the photosensitive layer 3, or two or more kinds thereof may be used.
The concentration of the hole transfer agent in the photosensitive layer 3 is not particularly limited because it varies depending on the required photoreceptor performance and charging polarity, but is preferably 0.1 wt% or more and 70 wt% or less. If the concentration is low, hole transfer may be insufficient and affect the characteristics of the photoconductor. If the concentration is high, compatibility with the resin will deteriorate, resulting in a non-uniform film or low resin concentration. There is also a possibility that the film strength is lowered.

更に、これら前記一般式(1)で示される電子移動剤(ジフェノキノン化合物)と前記一般式(2)で示される正孔移動剤に、他の電荷移動剤を添加することもでき、その場合には、感度を高めたり、残留電位を低下させたりすることができ、本発明の電子写真感光体の特性を改良することができる。   Furthermore, other charge transfer agents can be added to the electron transfer agent (diphenoquinone compound) represented by the general formula (1) and the hole transfer agent represented by the general formula (2). Can increase the sensitivity and decrease the residual potential, and can improve the characteristics of the electrophotographic photosensitive member of the present invention.

特性改良のために添加できる電子移動剤、正孔移動剤には、高分子化合物として、ポリビニルカルバゾール、ハロゲン化ポリビニルカルバゾール、ポリビニルピレン、ポリビニルインドロキノキサリン、ポリビニルベンゾチオフェン、ポリビニルアントラセン、ポリビニルアクリジン、ポリビニルピラゾリン、ポリアセチレン、ポリチオフェン、ポリピロール、ポリフェニレン、ポリフェニレンビニレン、ポリイソチアナフテン、ポリアニリン、ポリジアセチレン、ポリヘプタジイエン、ポリピリジンジイル、ポリキノリン、ポリフェニレンスルフィド、ポリフェロセニレン、ポリペリナフチレン、ポリフタロシアニン等の導電性高分子化合物を用いることができる。   Electron transfer agents and hole transfer agents that can be added to improve properties include polymer compounds such as polyvinyl carbazole, halogenated polyvinyl carbazole, polyvinyl pyrene, polyvinyl indoloquinoxaline, polyvinyl benzothiophene, polyvinyl anthracene, polyvinyl acridine, polyvinyl. Pyrazoline, polyacetylene, polythiophene, polypyrrole, polyphenylene, polyphenylene vinylene, polyisothianaphthene, polyaniline, polydiacetylene, polyheptadiene, polypyridinediyl, polyquinoline, polyphenylene sulfide, polyferrocenylene, polyperinaphthylene, polyphthalocyanine, etc. The conductive polymer compound can be used.

また、低分子化合物として、アントラセン、ピレン、フェナントレン等の多環芳香族化合物、インドール、カルバゾール、イミダゾール、等の含窒素複素環化合物、フルオレノン、フルオレン、オキサジアゾール、オキサゾール、ピラゾリン、ヒドラゾン、トリフェニルメタン、トリフェニルアミン、エナミン、スチルベン化合物などを使用することができる。   Low molecular weight compounds include polycyclic aromatic compounds such as anthracene, pyrene and phenanthrene, nitrogen-containing heterocyclic compounds such as indole, carbazole and imidazole, fluorenone, fluorene, oxadiazole, oxazole, pyrazoline, hydrazone and triphenyl. Methane, triphenylamine, enamine, stilbene compounds and the like can be used.

さらに、ポリエチレンオキシド、ポリプロピレンオキシド、ポリアクリロニトリル、ポリメタクリル酸等の高分子化合物にLiイオン等の金属イオンをドープした高分子固体電解質等も用いることができる。   Furthermore, a polymer solid electrolyte in which a polymer compound such as polyethylene oxide, polypropylene oxide, polyacrylonitrile, polymethacrylic acid or the like is doped with a metal ion such as Li ion can also be used.

またさらに、テトラチアフルバレンーテトラシアノキノジメタンで代表される電子供与化合物と電子受容化合物で形成された有機電荷移動錯体等も用いることができ、これらを1種だけ添加しても、2種以上の化合物を混合して添加しても所望の感光体特性を得ることができる。   Furthermore, an organic charge transfer complex formed of an electron donating compound represented by tetrathiafulvalene-tetracyanoquinodimethane and an electron accepting compound can also be used. Even if the above compounds are mixed and added, desired photoreceptor characteristics can be obtained.

(バインダー樹脂)
感光層3を形成するために用いることができるバインダー樹脂には、ポリカーボネート樹脂、スチレン樹脂、アクリル樹脂、スチレンーアクリル樹脂、エチレンー酢酸ビニル樹脂、ポリプロピレン樹脂、塩化ビニル樹脂、塩素化ポリエーテル、塩化ビニル−酢酸ビニル樹脂、ポリエステル樹脂、フラン樹脂、ニトリル樹脂、アルキッド樹脂、ポリアセタール樹脂、ポリメチルペンテン樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリアリレート樹脂、ジアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリアリルスルホン樹脂、シリコーン樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエーテル樹脂、フェノール樹脂、EVA樹脂、ACS樹脂、ABS樹脂及びエポキシアリレート等の光硬化樹脂等がある。これらは単体で用いても、共重合体を用いてもよく、また、それらを2種以上混合して使用することも可能である。また、分子量の異なった樹脂を混合して用いれば、硬度や耐摩耗性を改善できて好ましい。
(Binder resin)
Binder resins that can be used to form the photosensitive layer 3 include polycarbonate resin, styrene resin, acrylic resin, styrene-acrylic resin, ethylene-vinyl acetate resin, polypropylene resin, vinyl chloride resin, chlorinated polyether, vinyl chloride. -Vinyl acetate resin, polyester resin, furan resin, nitrile resin, alkyd resin, polyacetal resin, polymethylpentene resin, polyamide resin, polyurethane resin, epoxy resin, polyarylate resin, diarylate resin, polysulfone resin, polyethersulfone resin, poly Photocurable resins such as allyl sulfone resin, silicone resin, ketone resin, polyvinyl butyral resin, polyether resin, phenol resin, EVA resin, ACS resin, ABS resin, and epoxy arylate That. These may be used alone or as a copolymer, or they may be used in combination of two or more. Further, it is preferable to use a mixture of resins having different molecular weights because the hardness and wear resistance can be improved.

(溶剤)
塗工液に使用する溶剤には、メタノール、エタノール、n−プロパノール、i−プロパノール、ブタノール等のアルコール類、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロヘプタン等の飽和脂肪族炭化水素、トルエン、キシレン等の芳香族炭化水素、ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンゼン等の塩素系炭化水素、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、メトキシエタノール等のエーテル系類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル類、N,N−ジメチルホルムアミド、ジメチルスルホキシド等がある。これらは単独で用いても、2種類以上の溶剤を混合して用いてもよい。
(solvent)
Solvents used in the coating solution include alcohols such as methanol, ethanol, n-propanol, i-propanol, and butanol, saturated aliphatic hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, cycloheptane, toluene, Aromatic hydrocarbons such as xylene, chlorinated hydrocarbons such as dichloromethane, dichloroethane, chloroform and chlorobenzene, ethers such as dimethyl ether, diethyl ether, tetrahydrofuran and methoxyethanol, and ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone , Esters such as ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, N, N-dimethylformamide, dimethyl sulfoxide, etc. That. These may be used alone or as a mixture of two or more solvents.

(その他の添加物)
本発明の感光体を製造するための塗工液には、電子写真感光体特性を損なわない範囲で、酸化防止剤、紫外線吸収剤、ラジカル捕捉剤、軟化剤、硬化剤、架橋剤等を添加することができ、感光体の特性、耐久性、機械特性を向上させられる。
さらに、分散安定剤、沈降防止剤、色分かれ防止剤、レベリング剤、消泡剤、増粘剤、艶消し剤等を添加すれば、感光体の仕上がり外観や、塗工液の寿命を改善できて好ましい。
(Other additives)
Addition of antioxidants, ultraviolet absorbers, radical scavengers, softeners, curing agents, crosslinking agents, etc. to the coating solution for producing the photoreceptor of the present invention within the range not impairing the electrophotographic photoreceptor characteristics It is possible to improve the characteristics, durability, and mechanical characteristics of the photoreceptor.
Furthermore, the addition of dispersion stabilizers, anti-settling agents, anti-color separation agents, leveling agents, antifoaming agents, thickeners, matting agents, etc. can improve the finished appearance of the photoreceptor and the life of the coating solution. It is preferable.

(下引き層)
本発明の電子写真感光体では、導電性支持体2と感光層3との間に、接着機能、バリヤー機能、導電性支持体2表面の欠陥被覆機能などを持つ下引き層を設けてもよい。この下引き層としては、酸化アルミニウム、ポリエチレン樹脂、アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、ポリアミド樹脂、ナイロン樹脂などを用いることができる。それらの下引き層は、単独の樹脂で構成しても、あるいは2種類以上の樹脂を混合して構成してもよい。また、樹脂中に金属酸化物やカーボンを分散させた下引き層を用いることができる。
(Underlayer)
In the electrophotographic photoreceptor of the present invention, an undercoat layer having an adhesion function, a barrier function, a defect covering function on the surface of the conductive support 2 and the like may be provided between the conductive support 2 and the photosensitive layer 3. . As the undercoat layer, aluminum oxide, polyethylene resin, acrylic resin, epoxy resin, polycarbonate resin, polyurethane resin, vinyl chloride resin, vinyl acetate resin, polyvinyl butyral resin, polyamide resin, nylon resin, or the like can be used. These undercoat layers may be composed of a single resin or a mixture of two or more resins. Further, an undercoat layer in which a metal oxide or carbon is dispersed in a resin can be used.

(表面保護層)
また感光層3の上に、ポリビニルホルマール樹脂、ポリカーボネート樹脂、フッ素樹脂、ポリウレタン樹脂、シリコーン樹脂等の有機薄膜や、シランカップリング剤の加水分解物で形成されるシロキサン構造体から成る薄膜を成膜して表面保護層を設けてもよく、その場合には、電子写真感光体の耐久性が向上するので好ましい。この表面保護層は、耐久性向上以外の他の機能を向上させるために設けてもよい。
(Surface protective layer)
On the photosensitive layer 3, a thin film made of an organic thin film such as polyvinyl formal resin, polycarbonate resin, fluororesin, polyurethane resin, or silicone resin or a siloxane structure formed from a hydrolyzate of a silane coupling agent is formed. Then, a surface protective layer may be provided. In that case, the durability of the electrophotographic photoreceptor is improved, which is preferable. This surface protective layer may be provided in order to improve functions other than the durability improvement.

以下、本発明について実施例を挙げてより具体的に説明する。
<ジフェノキノンの製造例>
本発明に用いた前記一般式(1)で表されるジフェノキノン化合物の製造方法の一例を説明する。
先ず、2,6−ジ−tert−ブチルフェノール30.0gをクロロホルム300mlに溶かした溶液に、過マンガン酸カリウム91.8gを加え、温度を55〜60℃に保って25時間かき混ぜた。次いで、無機物をろ別し、濃縮した後ろ過し、得られた残渣をクロロホルム100mlに溶解し、少量のメタノールを加えて再結晶させたところ、赤褐色結晶として融点242〜243℃のジフェノキノンを得た。その重量を測定したところ21.5gであり、収率に換算すると72%であった。
Hereinafter, the present invention will be described more specifically with reference to examples.
<Example of production of diphenoquinone>
An example of a method for producing the diphenoquinone compound represented by the general formula (1) used in the present invention will be described.
First, 91.8 g of potassium permanganate was added to a solution of 30.0 g of 2,6-di-tert-butylphenol in 300 ml of chloroform, and the mixture was stirred for 25 hours while maintaining the temperature at 55-60 ° C. Next, the inorganic substance was filtered off, concentrated and filtered. The obtained residue was dissolved in 100 ml of chloroform and recrystallized by adding a small amount of methanol to obtain diphenoquinone having a melting point of 242 to 243 ° C. as reddish brown crystals. . When the weight was measured, it was 21.5g, and it was 72% when converted into a yield.

次に、酢酸300mlとクロロホルム120mlの混合液を用意し、それを反応溶媒として前記赤褐色結晶のジフェノキノン3.0gを溶解させ、窒素雰囲気下で室温に保ってHClガスを吹き込み、かき混ぜながら反応させた。
前記HClガスの吹き込みを7時間行った後、室温で一晩かき混ぜ、沈殿をろ別した。ろ液を減圧下で濃縮した後、水300mlを加えてろ過したところ3.8gの黄色固体の析出物が得られた。この3.8gの黄色個体析出物を25mlのメタノールに溶かし、少量の水を加えて再結晶させたところ、淡黄色結晶として融点150〜151℃のジフェノールを2.4g得た。収率に換算すると84%であった。
Next, a mixed liquid of 300 ml of acetic acid and 120 ml of chloroform was prepared, and 3.0 g of the reddish brown crystals of diphenoquinone was dissolved as a reaction solvent, and kept at room temperature in a nitrogen atmosphere, and HCl gas was blown and reacted while stirring. .
After blowing the HCl gas for 7 hours, the mixture was stirred overnight at room temperature, and the precipitate was filtered off. After the filtrate was concentrated under reduced pressure, 300 ml of water was added and filtered to obtain 3.8 g of a yellow solid precipitate. When 3.8 g of the yellow solid precipitate was dissolved in 25 ml of methanol and recrystallized by adding a small amount of water, 2.4 g of diphenol having a melting point of 150 to 151 ° C. was obtained as pale yellow crystals. In terms of yield, it was 84%.

前記2.4gのジフェノールをクロロホルム180mlに溶解し、二酸化鉛28.0gを加え、室温で3時間かき混ぜた後、残留物をろ別した。ろ液を濃縮した後メタノール20mlを加えた。析出した結晶をろ過し、メタノールで洗浄したところ、赤紫色結晶として、融点155〜156℃の、前記式(1a)で示されるジフェノキノンを1.9g得た。収率に換算すると81%であった。
以上の反応過程を以下に示す。
The 2.4 g of diphenol was dissolved in 180 ml of chloroform, 28.0 g of lead dioxide was added, and the mixture was stirred at room temperature for 3 hours, and then the residue was filtered off. The filtrate was concentrated and 20 ml of methanol was added. The precipitated crystals were filtered and washed with methanol to obtain 1.9 g of diphenoquinone represented by the above formula (1a) having a melting point of 155 to 156 ° C. as reddish purple crystals. In terms of yield, it was 81%.
The above reaction process is shown below.

Figure 2010271636
Figure 2010271636

以下の実施例で使用する前記式(1a)で示されたジフェノキノン化合物は、前記製造例の製造方法によって合成されたものである。   The diphenoquinone compound represented by the formula (1a) used in the following examples is synthesized by the production method of the production example.

<オキシチタニルフタロシアニンの製造例>
フタロジニトリル64.4gとα―クロロナフタレン150mlの混合物中に窒素気流下で6.5mlの四塩化チタンを5分間滴下した。滴下後、マントルヒーターにより200℃で2時間加熱して反応を完結させた。その後析出物をろ過し、ろ過残渣をαクロロナフタレンで洗浄した後、クロロホルムで洗浄し、さらにメタノールで洗浄した。その後、濃アンモニア水60mlとイオン交換水60mlの混合液により沸点下で10時間の加水分解反応を行ったのち、室温で吸引ろ過し、イオン交換水で洗浄が中性になるまで洗浄した。その後、メタノールで洗浄したのち、90℃の熱風で10時間乾燥したところ、青紫色の結晶型チタニルフタロシアニン粉末64.6gを得た。得られたチタニルフタロシアニンは図2の様にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、26.3°に最大ピーク(最大回折ピーク)を有する物であった。
<Production example of oxytitanyl phthalocyanine>
6.5 ml of titanium tetrachloride was dropped into a mixture of 64.4 g of phthalodinitrile and 150 ml of α-chloronaphthalene under a nitrogen stream for 5 minutes. After dropping, the reaction was completed by heating at 200 ° C. for 2 hours with a mantle heater. Thereafter, the precipitate was filtered, and the filtration residue was washed with α-chloronaphthalene, then washed with chloroform, and further washed with methanol. Thereafter, a hydrolysis reaction was performed at a boiling point for 10 hours with a mixed solution of 60 ml of concentrated ammonia water and 60 ml of ion-exchanged water, followed by suction filtration at room temperature and washing with ion-exchanged water until the washing became neutral. Then, after washing with methanol and drying with hot air at 90 ° C. for 10 hours, 64.6 g of blue-violet crystalline titanyl phthalocyanine powder was obtained. The titanyl phthalocyanine thus obtained has a maximum peak at 26.3 ° (maximum diffraction peak) as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542 mm) of CuKα as shown in FIG. It was a thing having.

次に、約10倍量の濃硫酸に溶解し、水にあけて析出させ、ろ過した粗ウエットケーキ30gを純水で中性になるまで水洗し、濾別しチタニルフタロシアニンウエットケーキ29gを得た。
前記ウエットケーキ10gを−5℃に冷やしたテトラヒドロフラン500ml中に投入し30分攪拌した後にろ別、乾燥しチタニルフタロシアニン9.5gを得た。得られたチタニルフタロシアニンは図1の様にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、27.2°に最大ピーク(最大回折ピーク)を有する物であった。
Next, it was dissolved in about 10 times the amount of concentrated sulfuric acid, poured into water and precipitated, and 30 g of the filtered crude wet cake was washed with pure water until neutral, and filtered to obtain 29 g of titanyl phthalocyanine wet cake. .
10 g of the wet cake was put into 500 ml of tetrahydrofuran cooled to −5 ° C., stirred for 30 minutes, filtered and dried to obtain 9.5 g of titanyl phthalocyanine. The resulting titanyl phthalocyanine has a maximum peak at 27.2 ° (maximum diffraction peak) as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542 mm) of CuKα as shown in FIG. It was a thing having.

また、図1のX線回折スペクトルを有するチタニルフタロシアニン粉末を1gと、図2X線回折スペクトルを有するチタニルフタロシアニンと20gを混合した。得られたフタロシアニンは図3のようにCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、26.3°、27.3°にピークを有するものであった。   Also, 1 g of titanyl phthalocyanine powder having the X-ray diffraction spectrum of FIG. 1 and 20 g of titanyl phthalocyanine having the X-ray diffraction spectrum of FIG. 2 were mixed. The obtained phthalocyanine has peaks at 26.3 ° and 27.3 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542 mm) of CuKα as shown in FIG. It was a thing.

また、図1のX線回折スペクトルを有するチタニルフタロシアニン9.5gとクロロインジウムフタロシアニン0.5gを、濃硫酸100mlに溶解し、室温で30分撹拌した後、これを氷水で冷却したイオン交換水にあけて析出させ、ろ過により粗ウエットケーキを分離した。続いて沈殿物を1000mlのイオン交換水で洗浄して、ウエットケーキを得た。ウエットケーキに0.2mol/lの塩酸400mlを加え、室温で3時間攪拌した。再び沈殿物を濾過により分離し、イオン交換水4000mlで洗浄しろ別を行いウエットケーキを得た。次いで、−5℃に冷却したテトラヒドロフランに500mlにウエットケーキを投入し結晶変換させた。その後冷却下でフタロシアニンを攪拌させ、室温に戻したのちに、ろ過、乾燥させフタロシアニン混合物を得た。得られたフタロシアニン組成物の結晶のX線回折スペクトルを測定した結果を図4に示した。   Also, 9.5 g of titanyl phthalocyanine having the X-ray diffraction spectrum of FIG. 1 and 0.5 g of chloroindium phthalocyanine are dissolved in 100 ml of concentrated sulfuric acid and stirred at room temperature for 30 minutes, and then this is added to ion-exchanged water cooled with ice water. The crude wet cake was separated by filtration. Subsequently, the precipitate was washed with 1000 ml of ion exchange water to obtain a wet cake. To the wet cake, 400 ml of 0.2 mol / l hydrochloric acid was added and stirred at room temperature for 3 hours. The precipitate was again separated by filtration, washed with 4000 ml of ion-exchanged water and filtered to obtain a wet cake. Next, 500 ml of wet cake was added to tetrahydrofuran cooled to −5 ° C. for crystal conversion. Thereafter, the phthalocyanine was stirred under cooling, returned to room temperature, filtered and dried to obtain a phthalocyanine mixture. The results of measuring the X-ray diffraction spectrum of the crystals of the obtained phthalocyanine composition are shown in FIG.

<実施例1>
先ず、前記オキシチタニルフタロシアニンの製造例により得られた図1のX線回折スペクトルを有するオキシチタニルフタロシアニン0.5g、ガラスビーズ30ml、テトラヒドロフラン320mlと共にペイントシェイカーで5時間分散しガラスビーズをろ別しCGL液308ml得る。得られたCGL液に前記化学式(2a)で表される正孔移動剤25gと前記ジフェノキノンの製造例で得られた化学式(1a)のジフェノキノン25g、バインダー樹脂としてZ型ポリカーボネート42g、を加えて溶解し、単層感光体用塗工液を作製した。
得られた塗工液をアルミニウムドラムに塗布し、100℃、1時間の乾燥を行い、膜厚20μmの感光層を形成し、電子写真感光体を作製した。
<Example 1>
First, 0.5 g of oxytitanyl phthalocyanine having the X-ray diffraction spectrum shown in FIG. 1 obtained by the above-mentioned production example of oxytitanyl phthalocyanine, 30 ml of glass beads and 320 ml of tetrahydrofuran are dispersed for 5 hours with a paint shaker, and the glass beads are filtered off. 308 ml of liquid is obtained. To the obtained CGL solution, 25 g of the hole transfer agent represented by the chemical formula (2a), 25 g of diphenoquinone of the chemical formula (1a) obtained in the production example of diphenoquinone, and 42 g of Z-type polycarbonate as a binder resin are dissolved. Then, a coating solution for a single layer photoreceptor was prepared.
The obtained coating solution was applied to an aluminum drum, dried at 100 ° C. for 1 hour to form a photosensitive layer having a thickness of 20 μm, and an electrophotographic photosensitive member was produced.

<実施例2>
実施例1において、前記化学式(2a)で表される正孔移動剤を前記化学式(2b)で表される正孔移動剤に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Example 2>
In Example 1, an electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the hole transfer agent represented by the chemical formula (2a) was replaced with the hole transfer agent represented by the chemical formula (2b). did.

<実施例3>
実施例1において、前記化学式(2a)で表される正孔移動剤を前記化学式(2c)で表される正孔移動剤に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Example 3>
In Example 1, an electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the hole transfer agent represented by the chemical formula (2a) was replaced with the hole transfer agent represented by the chemical formula (2c). did.

<実施例4>
実施例1において、前記化学式(2a)で表される正孔移動剤を前記化学式(2d)で表される正孔移動剤に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Example 4>
In Example 1, an electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the hole transfer agent represented by the chemical formula (2a) was replaced with the hole transfer agent represented by the chemical formula (2d). did.

<実施例5>
実施例1において、前記化学式(2a)で表される正孔移動剤を前記化学式(2e)で表される正孔移動剤に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Example 5>
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the hole transfer agent represented by the chemical formula (2a) in Example 1 was replaced with the hole transfer agent represented by the chemical formula (2e). did.

<実施例6>
実施例1において、前記化学式(2a)で表される正孔移動剤を前記化学式(2f)で表される正孔移動剤に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Example 6>
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the hole transfer agent represented by the chemical formula (2a) in Example 1 was replaced with the hole transfer agent represented by the chemical formula (2f). did.

<実施例7>
実施例1において、前記化学式(1a)で表される電子移動剤(ジフェノキノン化合物)を前記化学式(1b)で表される電子移動剤(ジフェノキノン化合物)に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Example 7>
In Example 1, the same procedure as in Example 1 was followed except that the electron transfer agent (diphenoquinone compound) represented by the chemical formula (1a) was replaced with the electron transfer agent (diphenoquinone compound) represented by the chemical formula (1b). An electrophotographic photosensitive member was produced.

<実施例8>
実施例1において、図1のX線回折スペクトルを有する電荷発生剤を図2のX線回折スペクトルを有する電荷発生剤に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Example 8>
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the charge generating agent having the X-ray diffraction spectrum of FIG. 1 was replaced with the charge generating agent having the X-ray diffraction spectrum of FIG.

<実施例9>
実施例1において、図1のX線回折スペクトルを有する電荷発生剤を図3のX線回折スペクトルを有する電荷発生剤に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Example 9>
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the charge generator having the X-ray diffraction spectrum of FIG. 1 was replaced with the charge generator having the X-ray diffraction spectrum of FIG.

<実施例10>
実施例1において、図1のX線回折スペクトルを有する電荷発生剤を図4のX線回折スペクトルを有する電荷発生剤に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Example 10>
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the charge generator having the X-ray diffraction spectrum shown in FIG. 1 was replaced with the charge generator having the X-ray diffraction spectrum shown in FIG.

<参考例1>
実施例1において、図1のX線回折スペクトルを有する電荷発生剤を下記化学式(10)のジスアゾ顔料に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Reference Example 1>
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the charge generator having the X-ray diffraction spectrum shown in FIG. 1 was replaced with a disazo pigment of the following chemical formula (10).

Figure 2010271636
Figure 2010271636

<比較例1>
実施例1において、前記化学式(1a)で表されるジフェノキノンに代えて、下記化学式(6)で示すジフェノキノンを用いて電子写真感光体を作製した。
<Comparative Example 1>
In Example 1, an electrophotographic photoreceptor was produced using diphenoquinone represented by the following chemical formula (6) instead of diphenoquinone represented by the chemical formula (1a).

Figure 2010271636
Figure 2010271636

<比較例2>
実施例1において、化学式(1a)で表されるジフェノキノンに代えて、前記化学式(6)で示すジフェノキノンを用い、また、図1のX線回折スペクトルを有する電荷発生剤を図3のX線回折スペクトルを有する電荷発生剤に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Comparative example 2>
In Example 1, instead of the diphenoquinone represented by the chemical formula (1a), the diphenoquinone represented by the chemical formula (6) was used, and the charge generating agent having the X-ray diffraction spectrum of FIG. An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the charge generating agent having a spectrum was used.

<比較例3>
実施例1において、化学式(1a)で表されるジフェノキノンに代えて、前記化学式(6)で示すジフェノキノンを用い、また、図1のX線回折スペクトルを有する電荷発生剤を図4のX線回折スペクトルを有する電荷発生剤に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Comparative Example 3>
In Example 1, instead of the diphenoquinone represented by the chemical formula (1a), the diphenoquinone represented by the chemical formula (6) was used, and the charge generating agent having the X-ray diffraction spectrum of FIG. An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the charge generating agent having a spectrum was used.

<比較例4>
実施例1において、化学式(1a)で表されるジフェノキノンに代えて、前記化学式(6)で示すジフェノキノンを用い、前記化学式(2a)で表される正孔移動剤を下記化学式(7)で表される正孔移動剤に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Comparative example 4>
In Example 1, instead of diphenoquinone represented by the chemical formula (1a), diphenoquinone represented by the chemical formula (6) was used, and the hole transfer agent represented by the chemical formula (2a) was represented by the following chemical formula (7). An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the hole transfer agent was changed.

Figure 2010271636
Figure 2010271636

<比較例5>
実施例1において、前記化学式(2a)で表される正孔移動剤を下記化学式(8)で表される正孔移動剤に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Comparative Example 5>
In Example 1, an electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the hole transfer agent represented by the chemical formula (2a) was replaced with the hole transfer agent represented by the following chemical formula (8). did.

Figure 2010271636
Figure 2010271636

<比較例6>
実施例1において、前記化学式(2a)で表される正孔移動剤を下記化学式(9)で表される正孔移動剤に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Comparative Example 6>
In Example 1, an electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the hole transfer agent represented by the chemical formula (2a) was replaced with the hole transfer agent represented by the following chemical formula (9). did.

Figure 2010271636
Figure 2010271636

<比較例7>
実施例11において、前記化学式(2a)で表される正孔移動剤を前記化学式(9)で表される正孔移動剤に代えた以外は実施例11と同様にして電子写真感光体を作製した。
<Comparative Example 7>
In Example 11, an electrophotographic photosensitive member was produced in the same manner as in Example 11 except that the hole transfer agent represented by the chemical formula (2a) was replaced with the hole transfer agent represented by the chemical formula (9). did.

<電気特性測定条件>
・正帯電特性評価方法
コロナ放電電流が20μAとなるようにコロナ放電器を設定し、前記実施例1〜10、比較例1〜7、参考例1において製造した単層分散型感光体を暗所にてコロナ放電により正帯電させて帯電電位を測定する。この時の表面電位が700Vになるように放電電流を調節し、780nmの光で露光し、各感光体の表面電位を700Vから350に半減させる露光量を測定した。この時の露光量を半減露光量(μJ/cm)とする。この半減露光量は、感光体の感度を示す値であり、半減露光量の数値は小さいほど高感度な感光体を示し、高感度感光体は0.25μJ/cm2、実用的な範囲としては0.45μJ/cm以下である。また、感光体評価を行う温湿度を常温環境(25℃−湿度50%)、低温環境(10℃−湿度10%)、高温環境(35℃−湿度80%)の3環境にて感光体半減露光量(μJ/cm2)を計測し、3環境下での半減露光量の偏差を下記計算式にて算出する。
<Electrical characteristics measurement conditions>
Positive Charging Characteristic Evaluation Method The corona discharger was set so that the corona discharge current was 20 μA, and the single-layer dispersion type photoconductor produced in Examples 1 to 10, Comparative Examples 1 to 7, and Reference Example 1 was used in a dark place. Measure the charge potential by positively charging with corona discharge. The discharge current was adjusted so that the surface potential at this time was 700 V, and exposure was performed with light of 780 nm, and the exposure amount that reduced the surface potential of each photoconductor from 700 V to 350 was measured. Let the exposure amount at this time be a half exposure amount (μJ / cm 2 ). This half-exposure amount is a value indicating the sensitivity of the photoconductor. The smaller the value of the half-exposure amount, the higher the sensitivity of the photoconductor. The high-sensitivity photoconductor is 0.25 μJ / cm2, and the practical range is 0. 45 μJ / cm 2 or less. The temperature and humidity at which the photoreceptor is evaluated are reduced to half the photoreceptor in three environments: a normal temperature environment (25 ° C.—humidity 50%), a low temperature environment (10 ° C.—humidity 10%), and a high temperature environment (35 ° C.—humidity 80%). The exposure amount (μJ / cm 2 ) is measured, and the deviation of the half-exposure amount under three environments is calculated by the following formula.

偏差=((Σ(半減露光量)−(各環境の半減露光量の平均)×3)/2)0.5 Deviation = ((Σ (Half exposure amount) 2 − (Average of half exposure amount in each environment) 2 × 3) / 2) 0.5

半減露光量の偏差は小さいほど温湿度変化に対する感光体感度変動が小さいことを示し、一般的な感光体の範囲としては0.03以下である事が望ましい値である。
また各感光体の表面電位700Vで780nmの光(露光量2μJ/cm)を照射した時の表面電位を測定した。この時の表面電位を残留電位(VL)とする。この残留電位は、帯電後減衰せずに感光体表面に除電しきれずに残った電荷であり、この電位が小さいほど実用上好ましく、一般的には100V以下が好ましい。
The smaller the half-exposure deviation, the smaller the photoreceptor sensitivity fluctuation with respect to temperature and humidity changes, and the range of a general photoreceptor is preferably 0.03 or less.
Further, the surface potential of each photoconductor when irradiated with 780 nm light (exposure amount 2 μJ / cm 2 ) at 700 V was measured. The surface potential at this time is defined as a residual potential (VL). This residual potential is a charge that does not decay after charging and remains on the surface of the photoreceptor without being completely discharged. Practically, the smaller the potential is, the more preferable it is 100 V or less.

・負帯電特性評価方法
帯電極性を負帯電に切り替え、上記方法と同様に評価を実施した。
-Negative charge characteristic evaluation method The charge polarity was switched to negative charge, and evaluation was performed in the same manner as the above method.

<測定結果>
実施例1〜10、比較例1〜7及び参考例1の測定結果は、表1の通りである。
<Measurement results>
Table 1 shows the measurement results of Examples 1 to 10, Comparative Examples 1 to 7, and Reference Example 1.

Figure 2010271636
Figure 2010271636

上記表1によれば、実施例1〜10の電子写真感光体は両極性の感光体評価において、高感度であり、また各環境下における半減露光エネルギーの偏差も小さく環境変化に対する変動が少ない事が分かる。
特に電荷発生剤にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、27.2°に最大ピーク(最大回折ピーク)を有するオキシチタニウムフタロシアニンを用いた場合には非常に高感度である。また電荷発生剤にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、26.3°、27.2°にピークを有するオキシチタニウムフタロシアニン、またはCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、27.2°に最大ピーク(最大回折ピーク)を有するオキシチタニウムフタロシアニンとクロロインジウムフタロシアニンの混合物を用いた場合には、高感度であり環境による変動が更に小さくなっている。
According to Table 1 above, the electrophotographic photoreceptors of Examples 1 to 10 are highly sensitive in evaluation of the bipolar photoreceptor, and the deviation in half-exposure energy under each environment is small, and the variation with respect to the environmental change is small. I understand.
In particular, oxytitanium phthalocyanine having a maximum peak (maximum diffraction peak) at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542 mm) of CuKα is used as a charge generator. When used, it is very sensitive. As a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray of CuKα as a charge generator (± 0.2 °), oxytitanium phthalocyanine having peaks at 26.3 °, 27.2 °, or Mixture of oxytitanium phthalocyanine and chloroindium phthalocyanine having a maximum peak (maximum diffraction peak) at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542 mm) of CuKα When is used, the sensitivity is high and the variation due to the environment is further reduced.

これに対し、比較例1〜3の感光体は電子移動剤の対称性が不十分であるため、電荷移動性が悪く、正帯電特性では実用的は低感度領域の半減露光量に入るが、電子移動が重要となる負帯電特性では十分な感度を得ることができない。また比較例4〜7は他の正孔移動剤と組み合わせたものであるが、感度が十分ではなく環境による変動も大きくなっている。参考例は感度は充分ではないが、比較例7と比較すると正負両極性ともに感度がよく、また環境による変動も小さいことがわかる。   On the other hand, since the photoconductors of Comparative Examples 1 to 3 have insufficient symmetry of the electron transfer agent, the charge transferability is poor, and the positive charge characteristics practically enter a half-exposure amount in the low sensitivity region. Sufficient sensitivity cannot be obtained with the negative charging characteristics in which electron transfer is important. Further, Comparative Examples 4 to 7 are combined with other hole transfer agents, but the sensitivity is not sufficient and the fluctuation due to the environment is also large. Although the sensitivity of the reference example is not sufficient, it can be seen that both the positive and negative polarities are more sensitive than the comparative example 7, and the fluctuation due to the environment is small.

以上述べてきたように、本発明に用いた電子移動剤(ジフェノキノン化合物)と正孔輸送剤と電荷発生剤を組み合わせることで次のような特性を持っている。
(A)電子、正孔の移動がスムーズになり正帯電、負帯電共に感光体感度が優れ、環境に対する変動も少ない。
(B)更に電荷発生剤にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、27.2°に最大ピーク(最大回折ピーク)を有するオキシチタニウムフタロシアニンを組み合わせることで、高い電荷発生、高い電子、正孔移動効率によって、これまでに無い高感度な両極性単層感光体を実現できる。
(C)電荷発生剤にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、26.3°、27.2°にピークを有するオキシチタニウムフタロシアニン、またはCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、27.2°に最大ピーク(最大回折ピーク)を有するオキシチタニウムフタロシアニンとクロロインジウムフタロシアニンの混合物を組み合わせた場合には、高感度であり、環境による変動を更に抑えることができる。
As described above, the combination of the electron transfer agent (diphenoquinone compound), the hole transport agent and the charge generator used in the present invention has the following characteristics.
(A) The movement of electrons and holes is smooth, the positive and negative charges are excellent in photoreceptor sensitivity, and there are few fluctuations with respect to the environment.
(B) Further, the charge generator has a maximum peak (maximum diffraction peak) at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542 mm) of CuKα. By combining titanium phthalocyanine, an unprecedented high-sensitivity bipolar single-layer photoconductor can be realized by high charge generation, high electron and hole transfer efficiency.
(C) Oxytitanium phthalocyanine having peaks at 26.3 ° and 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542Å) of CuKα as a charge generating agent Or oxytitanium phthalocyanine and chloroindium phthalocyanine having a maximum peak (maximum diffraction peak) at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542 mm) of CuKα When these mixtures are combined, the sensitivity is high, and fluctuation due to the environment can be further suppressed.

本発明にかかる電子写真感光体によれば、電子移動剤、正孔輸送剤、電荷発生剤の組合せによって、電荷発生及び正孔、電子の移動が効率よく行われ、高感度かつ帯電極性が正負の両極性で使用でき環境変動に対しても安定な感度特性が得られる。また前記電子写真感光体を用いることで安定した画像品質、高スピードな画像形成装置に適用できる。   According to the electrophotographic photoreceptor of the present invention, the combination of an electron transfer agent, a hole transport agent, and a charge generation agent efficiently generates charges and transfers holes and electrons, and has high sensitivity and positive and negative charge polarity. It can be used in both polarities, and stable sensitivity characteristics can be obtained against environmental fluctuations. Further, the use of the electrophotographic photosensitive member can be applied to a stable image quality and a high-speed image forming apparatus.

1 電子写真感光体
2 導電性支持体
3 感光層
1 electrophotographic photoreceptor 2 conductive support 3 photosensitive layer

特許第3778595号公報Japanese Patent No. 3778595

Claims (11)

導電性支持体と、
該導電性支持体上に設けられた感光層と、を備え、
該感光層は、電荷発生剤と、下記一般式(1)で表されるジフェノキノン化合物と、下記一般式(2)で表される正孔移動剤と、を含有することを特徴とする電子写真感光体。
Figure 2010271636

(上記式(1)中、R、R及びRは飽和炭化水素であって、相互に同じであってもよく異なっていてもよい。)
Figure 2010271636

(上記式(2)中、R〜R11は、各々独立に水素、ハロゲン原子、置換基を有していてもよい炭素数1〜6のアルキル基、または炭素数1〜6のアルコキシ基を表す。)
A conductive support;
A photosensitive layer provided on the conductive support,
The photosensitive layer contains a charge generating agent, a diphenoquinone compound represented by the following general formula (1), and a hole transfer agent represented by the following general formula (2). Photoconductor.
Figure 2010271636

(In the above formula (1), R 1 , R 2 and R 3 are saturated hydrocarbons and may be the same or different from each other.)
Figure 2010271636

(In said formula (2), R < 4 > -R < 11 > is hydrogen, a halogen atom, the C1-C6 alkyl group which may have a substituent, or a C1-C6 alkoxy group each independently. Represents.)
前記一般式(1)で表されるジフェノキノン化合物は、下記化学式(1a)で表されることを特徴とする請求項1に記載の電子写真感光体。
Figure 2010271636

(上記式(1a)中、t−Buは、tert−ブチル基を表す。)
The electrophotographic photoreceptor according to claim 1, wherein the diphenoquinone compound represented by the general formula (1) is represented by the following chemical formula (1a).
Figure 2010271636

(In the above formula (1a), t-Bu represents a tert-butyl group.)
前記一般式(2)で表される正孔移動剤は、下記化学式(2a)で表されることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 2010271636
The electrophotographic photosensitive member according to claim 1, wherein the hole transfer agent represented by the general formula (2) is represented by the following chemical formula (2a).
Figure 2010271636
前記一般式(2)で表される正孔移動剤は、下記化学式(2b)で表されることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 2010271636
The electrophotographic photosensitive member according to claim 1, wherein the hole transfer agent represented by the general formula (2) is represented by the following chemical formula (2b).
Figure 2010271636
前記一般式(2)で表される正孔移動剤は、下記化学式(2c)で表されることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 2010271636
The electrophotographic photosensitive member according to claim 1, wherein the hole transfer agent represented by the general formula (2) is represented by the following chemical formula (2c).
Figure 2010271636
前記一般式(2)で表される正孔移動剤は、下記化学式(2d)で表されることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 2010271636
The electrophotographic photosensitive member according to claim 1, wherein the hole transfer agent represented by the general formula (2) is represented by the following chemical formula (2d).
Figure 2010271636
前記一般式(2)で表される正孔移動剤は、下記化学式(2e)で表されることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 2010271636
The electrophotographic photosensitive member according to claim 1, wherein the hole transfer agent represented by the general formula (2) is represented by the following chemical formula (2e).
Figure 2010271636
前記一般式(2)で表される正孔移動剤は、下記化学式(2f)で表されることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 2010271636
The electrophotographic photosensitive member according to claim 1, wherein the hole transfer agent represented by the general formula (2) is represented by the following chemical formula (2f).
Figure 2010271636
前記電荷発生剤は、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2°)として、27.2°に最大回折ピークを有するオキシチタニルフタロシアニンであることを特徴とする請求項1乃至8のいずれか1項に記載の電子写真感光体。   The charge generating agent is oxytitanyl phthalocyanine having a maximum diffraction peak at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.5421.5) of CuKα. The electrophotographic photosensitive member according to any one of claims 1 to 8, wherein 前記電荷発生剤は、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2°)として、27.2°に最大回折ピークを有するオキシチタニルフタロシアニンと、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2°)として、26.3°に最大回折ピークを有するオキシチタニルフタロシアニンと、を含むことを特徴とする請求項1乃至8のいずれか1項に記載の電子写真感光体。   The charge generating agent includes oxytitanyl phthalocyanine having a maximum diffraction peak at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542Å) of CuKα, and CuKα. 2. An oxytitanyl phthalocyanine having a maximum diffraction peak at 26.3 ° as a diffraction peak (± 0.2 °) at a Bragg angle 2θ with respect to characteristic X-rays (wavelength 1.542Å). The electrophotographic photosensitive member according to any one of items 1 to 8. 前記電荷発生剤は、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2°)として、27.2°に最大回折ピークを有するオキシチタニルフタロシアニンと、クロロインジウムフタロシアンンと、を含むことを特徴とする請求項1乃至8のいずれか1項に記載の電子写真感光体。   The charge generating agent includes oxytitanyl phthalocyanine having a maximum diffraction peak at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to a characteristic X-ray (wavelength 1.5421.5) of CuKα, and chloroindium. The electrophotographic photosensitive member according to claim 1, comprising phthalocyanine.
JP2009125342A 2009-05-25 2009-05-25 Electrophotographic photoreceptor Expired - Fee Related JP5552755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009125342A JP5552755B2 (en) 2009-05-25 2009-05-25 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125342A JP5552755B2 (en) 2009-05-25 2009-05-25 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JP2010271636A true JP2010271636A (en) 2010-12-02
JP5552755B2 JP5552755B2 (en) 2014-07-16

Family

ID=43419686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125342A Expired - Fee Related JP5552755B2 (en) 2009-05-25 2009-05-25 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP5552755B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178529A (en) * 2013-03-15 2014-09-25 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus, and process cartridge

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0962018A (en) * 1995-08-21 1997-03-07 Shindengen Electric Mfg Co Ltd Electrophotographic photoreceptor
JPH10239874A (en) * 1997-02-26 1998-09-11 Mita Ind Co Ltd Electrophotographic photoreceptor
JP2000047404A (en) * 1998-07-31 2000-02-18 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2001033999A (en) * 1999-07-22 2001-02-09 Hitachi Chem Co Ltd Electrophotographic photoreceptor
JP2004240056A (en) * 2003-02-04 2004-08-26 Fuji Denki Gazo Device Kk Positive charge type single layer electrophotographic photoreceptor
JP2005157212A (en) * 2003-11-28 2005-06-16 Ricoh Co Ltd Image forming device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0962018A (en) * 1995-08-21 1997-03-07 Shindengen Electric Mfg Co Ltd Electrophotographic photoreceptor
JPH10239874A (en) * 1997-02-26 1998-09-11 Mita Ind Co Ltd Electrophotographic photoreceptor
JP2000047404A (en) * 1998-07-31 2000-02-18 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2001033999A (en) * 1999-07-22 2001-02-09 Hitachi Chem Co Ltd Electrophotographic photoreceptor
JP2004240056A (en) * 2003-02-04 2004-08-26 Fuji Denki Gazo Device Kk Positive charge type single layer electrophotographic photoreceptor
JP2005157212A (en) * 2003-11-28 2005-06-16 Ricoh Co Ltd Image forming device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178529A (en) * 2013-03-15 2014-09-25 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus, and process cartridge

Also Published As

Publication number Publication date
JP5552755B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP4823124B2 (en) Single-layer dispersion type photoreceptor, electrophotographic apparatus
JP2009300590A (en) Electrophotographic photoreceptor
US20100233602A1 (en) Electrophotographic Photoconductor
JP2007271962A (en) Electrophotographic photoreceptor
JP5504702B2 (en) Electrophotographic photoreceptor
JPH0746227B2 (en) Electrophotographic photoconductor
JP2007233351A (en) Electrophotographic photoreceptor and electrophotographic device
JP2000284511A (en) Electrophotographic photoreceptor
JP5552755B2 (en) Electrophotographic photoreceptor
JP4144932B2 (en) Dichlorotin phthalocyanine crystal, process for producing the same, and electrophotographic photosensitive member using the same
JP3778595B2 (en) Electrophotographic photoreceptor and method for synthesizing diphenoquinone compound
US7629096B2 (en) Electrophotographic photoreceptor with an undercoat layer containing a polyimide resin and electrophotographic apparatus with the photoreceptor
JP5472592B2 (en) Electrophotographic photoreceptor
JP3694068B2 (en) Electrophotographic photoreceptor
JP3787164B2 (en) Electrophotographic photoreceptor
JP4767712B2 (en) Triarylamine derivative, process for producing the same and electrophotographic photoreceptor
JP2011074026A (en) Anthraquinone derivative, process for producing the same and electrophotographic photoreceptor
JP2002196519A (en) Electrophotographic photoreceptor
JP4623849B2 (en) Phthalocyanine and production method thereof, photoelectric conversion element using phthalocyanine, and electrophotographic photosensitive member
JP3608877B2 (en) Quinone derivative and electrophotographic photoreceptor using the same
JPH09295972A (en) Diazanaphtho(2,3-b)fluorene derivative and electrophotographic photoreceptor using the same
JPH1026836A (en) Electrophotographic photoreceptor
JP5472579B2 (en) Electrophotographic photoreceptor
JP5472580B2 (en) Electrophotographic photoreceptor
JPH09325508A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R151 Written notification of patent or utility model registration

Ref document number: 5552755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees