JP3694068B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP3694068B2
JP3694068B2 JP18558395A JP18558395A JP3694068B2 JP 3694068 B2 JP3694068 B2 JP 3694068B2 JP 18558395 A JP18558395 A JP 18558395A JP 18558395 A JP18558395 A JP 18558395A JP 3694068 B2 JP3694068 B2 JP 3694068B2
Authority
JP
Japan
Prior art keywords
formula
quinone derivative
photoreceptor
resin
quinone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18558395A
Other languages
Japanese (ja)
Other versions
JPH0934141A (en
Inventor
宏記 鈴木
一仁 土肥
真人 七澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP18558395A priority Critical patent/JP3694068B2/en
Publication of JPH0934141A publication Critical patent/JPH0934141A/en
Application granted granted Critical
Publication of JP3694068B2 publication Critical patent/JP3694068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複写機、レーザープリンタ等に使用される電子写真感光体に関するものである。
【0002】
【従来の技術】
従来、複写機やレーザープリンタ等の感光体には、セレン、セレン−テルル、セレン−砒素、アモルファス−シリコン等が使用されていた。ところが、近年では低価格で環境汚染の少ない有機感光体が主流になりつつある。有機感光体としては、電荷発生層(CGL)と電荷移動層(CTL)を積層した機能分離型感光体や電荷移動物質の媒体中に電荷発生物質を分散させた単層分散型感光体が知られている。
【0003】
これらの感光体の電荷移動物質としては、高移動度の物質が要求されるが、ほとんどの物質が正孔移動性であるため、実用化されている有機感光体は負帯電型に限られている。ところが、感光体の帯電はコロナ放電を利用するため、負帯電型電子写真方法はオゾンの発生が多く、室内環境の汚染や感光体の劣化を早める等の問題がある。これらを防止するため、オゾンを発生させない特殊な帯電方式や、発生したオゾンをろ過するフィルタ等が必要になり、電子写真プロセスや装置が複雑で高価になる等の欠点があった。
【0004】
このようなオゾン発生を少なくするために、正帯電型感光体の市場要求が高まり、その感光体開発のために高移動度の電子移動物質が必要とされる。この電子移動物質としては、例えばトリニトロフルオレノン(TNF)、テトラシアノエチレン、テトラシアノキノジメタン(TCNQ)、キノン、ジフェノキノン、ナフトキノン、アントラキノン及びこれらの誘導体等があるが、バインダ樹脂との相溶性が悪い物質が多く、感光層の電荷移動層中に高濃度に均一分散させることができない。これらの物質について詳しく説明すると、例えば、電子受容性の高いTNFは、毒性が高く実用に適さないという欠点もある。また、TCNQは極めて高い電子受容性を示すが、バインダ樹脂との相溶性が悪く、電荷移動層中に高濃度に均一分散させることができない。さらにTCNQは強く着色しているため、感光層を形成したとき、本来は電荷発生物質に届くべき光を吸収してしまい感度を低下させるという欠点もある。
【0005】
ジフェノキノン誘導体は、バインダ樹脂との相溶性が比較的良いが、分子が大きいため着色性が強くなり、TCNQと同様な理由で感度を低下させる。また、ジフェノキノン骨格において、非対称置換型誘導体が提唱されているが、高感度の正帯電型電子写真感光体を提供するには、電子移動物質として満足できるものではない。以上述べたように、現状では高感度の正帯電型電子写真感光体として、満足できるものが得られていない。
【0006】
【発明が解決しようとする課題】
本発明の目的は、バインダ樹脂との相溶性が良く、着色性が弱い高移動度の電子移動物質を用いて、高感度の電子写真感光体を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は鋭意検討の結果、バインダ樹脂との相溶性の難易は、電子移動物質の分子の非対称性に関係があり、また着色性の強弱は、電子移動物質の分子の大きさと関係があることに着目し、高感度の電子写真特性が得られる新規なキノン誘導体を見出し本発明を達成した。
【0008】
即ち本発明は、導電性基体上に、下記一般式(I)で表される新規なキノン誘導体を含有する感光層を有することを特徴とする電子写真感光体である。

【化2】

Figure 0003694068
(式(I)において、R1 、R2 はシアノ、ニトロ、ハロゲン、非環式炭化水素又は非環式炭化水素のアルコキシ基で、シアノ、ニトロ、ハロゲン基以外は置換基があってもよく、しかもR1 、R2 は同じか異なっていてもよい。)
【0009】
具体的に述べると、本発明者等は、着色性が分子内共役構造の大きさに関係あることに着目し、キノン骨格における検討結果より、p−キノンの片側の置換基を、ジシアノメタン基とすることで電子受容性が高まり、しかも樹脂との相溶性が悪くならないことを見出した。さらに、ジシアノメタン基の反対側の酸素に対し、o−置換基を導入することで、樹脂に対して格段に相溶性が良くなることを見出した。
【0010】
本発明における新規なキノン誘導体は、次に述べるような特性を持つものである。
(1)高感度の正帯電型電子写真感光体を開発するためには、高移動度の電子移動物質が必要となる。電子移動性物質となるためには電子受容性が高くなければならないが、本発明のキノン誘導体は、電子受容性が極めて高い。
(2)本発明のキノン誘導体は、感光層のバインダとして用いる樹脂と相溶性が極めてよく、電荷移動層中に高濃度でしかも均一に含有させることができる。
(3)本発明のキノン誘導体は、着色性が弱く、そのため入射光に対し吸収が低いので、感度を低下させることがほとんどない。
また本発明のキノン誘導体は、負帯電型電子写真感光体に、正孔移動物質と共に添加すると、その電子移動作用によって感度を向上させ、残留電位を低下させる作用があるため、高感度負帯電型電子写真感光体にも使用できる。
【0011】
【発明の実施の形態】
本発明におけるキノン誘導体は、正および負帯電型電子写真感光体において、電子移動物質として電荷移動作用をはたすものであり、感光体において、導電性基体の種類および形状、感光層の構成および膜厚、さらに感光層を構成する他の成分である樹脂、添加剤の種類と濃度に制限されるものではないが、好ましくは感光層中に0.1重量%から80重量%の濃度で添加するのがよい。またキノン誘導体は1種単独で用いてもよいし、2種以上を混合して用いてもよい。
【0012】
本発明の感光体の構成の例を図1及び図2に示す。図1は単層分散型感光体の断面図であり、符号1は導電性の基体、2は電荷移動物質の媒体中に電荷発生物質を分散させた感光層である。図2は機能分離型感光体の断面図であり、符号1は導電性基体、3は電荷発生層、4は電荷移動層であって、電荷発生層3と電荷移動層4とで感光層を形成している。
【0013】
上記導電性基体1としては、導電性を有する種々の材料を使用することができ、アルミニウム、真鍮、ステンレス鋼、ニッケル、クロム、チタン、金、銀、銅、錫、白金、モリブデン、インジウム等の金属単体やその合金、上記金属や炭素等の導電性物質を蒸着、メッキ等の方法で処理し、導電性を持たせたプラスチック板およびフィルム、さらに酸化錫、酸化インジウム、ヨウ化アルミニウムで被覆した導電性ガラスなどがある。一般には円筒状のアルミニウム管単体、表面をアルマイトで処理した物、導電性樹脂を塗工した物などがよく用いられる。
【0014】
電荷発生物質としては、例えば、セレン、セレン−テルル、セレン−砒素、アモルファス−シリコン、フタロシアニン顔料、モノアゾ顔料、ビスアゾ顔料、トリスアゾ顔料、ポリアゾ顔料、インジゴ顔料、スレン顔料、トルイジン顔料、ピラゾリン顔料、ペリレン顔料、キナクリドン顔料、ピリリウム塩等が例示され、これらは単体で用いられるばかりでなく、適切な光感度波長や増感作用を得るために2種類以上を混合して用いる場合もある。
【0015】
高感度化や残留電位の低下など電子写真特性の改良のため、公知の電荷移動物質を添加することもでき、例えば高分子化合物では、ポリビニルカルバゾール、ハロゲン化ポリビニルカルバゾール、ポリビニルピレン、ポリビニルインドロキノキサリン、ポリビニルベンゾチオフェン、ポリビニルアントラセン、ポリビニルアクリジン、ポリビニルピラゾリン、ポリアセチレン、ポリチオフェン、ポリピロール、ポリフェニレン、ポリフェニレンビニレン、ポリイソチアナフテン、ポリアニリン、ポリジアセチレン、ポリヘプタジイエン、ポリピリジンジイル、ポリキノリン、ポリフェニレンスルフィド、ポリフェロセニレン、ポリペリナフチレン、ポリフタロシアニン等の導電性高分子化合物や、ポリエチレンオキシド、ポリプロピレンオキシド、ポリアクリロニトリル、ポリメタクリル酸などに、リチウム等の金属イオンをドープした高分子固体電解質等があげられる。さらに低分子化合物ではアントラセン、ピレン、フェナントレン等の多環芳香族化合物、インドール、カルバゾール、イミダゾール等の含窒素複素環化合物、フルオレノン、フルオレン、オキサジアゾール、オキサゾール、ピラゾリン、ヒドラゾン、トリフェニルメタン、トリフェニルアミン、エナミン、スチルベン化合物など公知のものならばいかなるものでも使用でき、さらにテトラチアフルバレン−テトラシアノキノジメタンで代表される電子供与化合物と電子受容化合物で形成された公知の有機電荷移動錯体等があり、これらを1種または2種以上混合して所望の感光体特性を得ることができる。
【0016】
感光層を形成するために用いられるバインダ樹脂は、ポリカーボネート樹脂、スチレン樹脂、アクリル樹脂、スチレン−アクリル樹脂、エチレン−酢酸ビニル樹脂、ポリプロピレン樹脂、塩化ビニル樹脂、塩化ビニル−酢酸ビニル樹脂、ポリエステル樹脂、アルキッド樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ジアリレート樹脂、シリコーン樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエーテル樹脂、フェノール樹脂等、エポキシアリレート等の光硬化性樹脂があり、これらを1種または2種以上を混合して使用する。また硬度や耐摩耗性を改善するため分子量の異なった樹脂を混合することもできる。
【0017】
塗工液に使用する溶剤は、メタノール、エタノール、n−プロパノール、i−プロパノール、ブタノール等のアルコール類、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロヘプタン等の飽和脂肪族炭化水素、トルエン、キシレン等の芳香族炭化水素、ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンゼン等の塩素系炭化水素、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、メトキシエタノール等のエーテル系類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル類、N,N−ジメチルホルムアミド、ジメチルスルホキシド等があり、これらは1種または2種以上を混合して用いられる。塗工方法は公知の塗布手段によって行われる。
【0018】
本発明の感光体を製造するための塗工液には、電子写真感光体特性を損なわない範囲で公知の物質、例えば、酸化防止剤、紫外線吸収剤、ラジカル捕捉剤、軟化剤、硬化剤、架橋剤等を添加することができ、これによって感光体の特性、耐久性、機械特性等が向上する。さらに分散安定剤、沈降防止剤、色分かれ防止剤、レベリング剤、消泡剤、増粘剤、艶消し剤等を添加することで、感光体の仕上がり外観、塗工液の寿命改善が図られる。
【0019】
本発明の電子写真感光体では、導電性基体と感光層との間に接着機能、バリヤー機能、基体表面の欠陥被覆機能などを持つ下引層を設けてもよい。この下引層としては、酸化アルミニウム、ポリエチレン樹脂、アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、ポリアミド樹脂、ナイロン樹脂などを単独あるいは混合して用いることができる。また、樹脂中に金属酸化物やカーボンを分散した下引層も用いることができる。
【0020】
また感光層の上に、感光体の耐久性の向上などを目的として表面保護層を設けることができ、その材料としてはポリビニルホルマール樹脂、ポリカーボネート樹脂、フッ素樹脂、ポリウレタン樹脂、シリコン樹脂などがある。また、シランカップリング剤の加水分解物で形成されるシロキサン構造体からなる表面保護層でもよい。
【0021】
キノン誘導体の製造例
上記の式(I)のキノン誘導体は次の方法により製造される。
第1法は、p−キノンの2,6位に目的の置換基が置換された物質が市販されている場合に用いられ、この反応はp−キノン化合物の片側の酸素原子をジシアノメタン化し、式(I)のキノン誘導体を得る方法である。
【0022】
【化3】
Figure 0003694068
【0023】
〔製造例1〕
3,5−ジメチルベンゾキノン10.0gとマロノニトリル5.0gとをジクロロメタン240mlに溶解し、氷浴により撹拌した。温度を10℃以下に保ちながら、四塩化チタン6.6mlをゆっくり滴下した後、同様にピリジン24.0mlをゆっくり滴下し、撹拌しながら室温で5時間反応させた。減圧蒸留し、残留物に10%塩酸200mlを加えて激しく撹拌し、ろ過後、数回水で洗浄し乾燥させた。これをヘキサンより再結晶して精製し、3,5−ジメチル−4−オキソ−1−ジシアノメチレンシクロヘキサジエン(I)aの4.0gを収率32%で得た。
【0024】
〔製造例2〕
3,5−ジクロロベンゾキノン10.0gとマロノニトリル4.0gとをジクロロメタン240mlに溶解し、氷浴により撹拌した。温度を10℃以下に保ちながら、四塩化チタン6.6mlをゆっくり滴下した後、同様にピリジン24.0mlをゆっくり滴下し、撹拌しながら室温で5時間反応させた。減圧蒸留し、残留物に10%塩酸200mlを加えて激しく撹拌し、ろ過後、数回水で洗浄し乾燥させた。これをヘキサンより再結晶して精製し、3,5−ジクロロ−4−オキソ−1−ジシアノメチレンシクロヘキサジエン(I)bの3.6gを収率28%で得た。
【0025】
第2法は、p−キノンの2,6位に目的の置換基が置換された物質が市販されていない場合に用いられ、本法では先ず2,6位に置換基の付いたフェノール化合物よりp−キノン化合物とし、これを前記製造例1,2と同一の反応で式(I)のキノン誘導体とする。
【0026】
【化4】
Figure 0003694068
【0027】
〔製造例3〕
原料の3,5−ジ−tBu−ヒドロキシルアニソール33.0gをアセトニトリル300mlに溶解し、窒素ガス下で温度を0〜10℃に保ち、臭素を7.8ml加えて撹拌した。温度を10℃以下に保ちながら、ピリジン34.8mlとアセトニトリル60mlの混合溶液を滴下した。撹拌しながら10℃以下で1時間、室温で2時間、さらに冷水450mlを加えて3時間反応させた。これをヘキサンで抽出し、ヘキサン溶液を90%メタノール水溶液で洗浄後、ヘキサンを減圧除去し、3,5−ジ−tBu−ベンゾキノン21.0gを収量87%で褐色の液体として得た。
【0028】
3,5−ジ−tBu−ベンゾキノン18.0gとマロノニトリル5.3gをジクロロメタン240mlに溶解し氷浴上で撹拌した。温度を10℃以下に保ちながら四塩化チタン8.8mlをゆっくり滴下した後、同様にピリジン32.2mlをゆっくり滴下し、撹拌しながら室温で5時間反応させた。減圧濃縮によりジクロロメタンを除去し、残留物に10%塩酸200mlを加えて激しく撹拌し、ろ過後残留物を水で数回洗浄してから乾燥させた。さらにヘキサンで再結晶操作し、3,5−ジ−tBu−4−オキソ−1−ジシアノメチレンシクロヘキサジエン(I)cの3.8gを収率17.3%で得た。
【0029】
第3法は式(I)のキノン誘導体において、2,6位に任意に置換基を導入する方法であり、電子移動物質の製造法として有益である。本法ではニトロマロンアルデヒドとアルキルケトンを反応させ、2,6置換型p−ニトロフェノール化合物を合成し、これをキノン化合物とした後、製造例1,2と同一の反応で式(I)のキノン誘導体とする。
【0030】
【化5】
Figure 0003694068
【0031】
〔製造例4〕
水24.3mlと亜硝酸ナトリウム25.0gを撹拌しながら温めて溶解した。ムコブロム酸25.0gの95%エタノール溶液24.3mlを温度54±1℃に保ちながら滴下した。滴下後、54±1℃に保ち10分間撹拌した。0〜5℃に冷却し、沈澱をろ過後95%エタノール80mlと水20mlの混合液に熱しながら溶解し、溶解後ろ過して液を0〜5℃に冷却し、ニトロマロンアルデヒドナトリウム・一水和物6.0gを収率39%で得た。
【0032】
1,3ジフェニル−2−プロパン8.8gのエタノール溶液44mlと水酸化ナトリウム3.3gの水溶液15mlとニトロマロンアルデヒドナトリウム・一水和物7.4gの水溶液64mlを2時間還流し、室温で2日間撹拌した。減圧蒸留により溶媒を除去し残渣に10%塩酸を撹拌しながら加えてろ過した。1〜2滴の濃塩酸を含んだ酢酸/エタノールより再結晶させ、2,6−ジフェニル−4−ニトロフェノール8.9gを収率65%で得た。
【0033】
酢酸50mlに四酢酸鉛8.9g、2,6−ジフェニル−4−ニトロフェノール6.7gを加え24時間撹拌した。反応溶液をエーテルで抽出後に水で洗浄し、さらに5%水酸化ナトリウム水溶液、水の順で洗浄した。これを硫酸ナトリウムで脱水後、エーテルを除去してエタノールで再結晶し、2,6−ジフェニル−1,4−ベンゾキノン3.4gを収率57%で得た。
【0034】
ジクロロメタン150mlに2,6−ジフェニル−1,4−ベンゾキノン5.7g、マロノニトリル1.7gを加え、N2 下で撹拌した。温度を10℃以下に保ち、四塩化チタン2.8ml、続いてピリジン10.0mlをゆっくり滴下し、室温で5時間撹拌後、減圧蒸留により溶媒を除去した。残渣を温ヘキサンで抽出後、1N塩酸、続いて水で洗浄し溶媒を除去した。シリカゲルを充填剤とし、溶離液はヘキサン/酢酸エチル=2(体積比)を用いてカラムクロマトグラフィで精製し、3,5−ジフェニル−4−オキソ−1−ジシアノメチレンシクロヘキサジエン(I)dの0.8gを収率11%で得た。
【0035】
〔製造例5〕
製造例4の1,3ジフェニル−2−プロパンに代えて、3−ヘキサノン4.2gを用いて、3−エチル−5−メチル−4−オキソ−1−ジシアノメチレンシクロヘキサジエン(I)eの1.3gを収率15%で得た。
【0036】
上述した製造例1〜5で得られたキノン誘導体(I)a〜(I)eを次に示す。
【0037】
【化6】
Figure 0003694068
【0038】
【化7】
Figure 0003694068
【0039】
【化8】
Figure 0003694068
【0040】
【化9】
Figure 0003694068
【0041】
【化10】
Figure 0003694068
【0042】
【実施例】
以下本発明に係る電子写真感光体についての実施例を示す。なお、本発明はその要旨を越えない限りにおいて以下の実施例に限定されるものではない。
【0043】
〔実施例1〕
電荷発生剤として式(II)に示すジスアゾ顔料1重量部、バインダとしてポリカーボネート10重量部、溶媒としてTHF80重量部を、サンドミルで10時間混練分散し、更に式(III)のTPD誘導体9重量部と式(I)aのキノン誘導体1重量部を加えて溶解した後この液を用いてアルミニウム製ドラム上に浸漬法で塗工し、厚さ20μmの電荷発生と電荷移動を兼ねた単層分散型の感光層2を形成し、80℃で1時間乾燥して電子写真感光体を製造した。
【0044】
【化11】
Figure 0003694068
【0045】
【化12】
Figure 0003694068
【0046】
〔実施例2〕
実施例1の式(I)aのキノン誘導体に代えて、式(I)bのキノン誘導体を用いて感光体を製造した。
【0047】
〔実施例3〕
実施例1の式(I)aのキノン誘導体に代えて、式(I)cのキノン誘導体を用いて感光体を製造した。
【0048】
〔実施例4〕
実施例1の式(I)aのキノン誘導体に代えて、式(I)dのキノン誘導体を用いて感光体を製造した。
【0049】
〔実施例5〕
実施例1の式(I)aのキノン誘導体に代えて、式(I)eのキノン誘導体を用いて感光体を製造した。
【0050】
〔比較例1〕
実施例1の式(I)aのキノン誘導体に代えて、3,5−ジクロロキノンを用いて感光体を製造した。
【0051】
〔比較例2〕
実施例1の式(I)aのキノン誘導体に代えて、3,5−ジフェニルキノンを用いて感光体を製造した。
【0052】
〔比較例3〕
実施例1の式(I)aのキノン誘導体に代えて、テトラシアノキノジメタンを用いて感光体を製造した。
【0053】
〔実施例6〕
電荷発生剤として高純度オキシチタニルフタロシアニン1重量部、バインダとしてポリカーボネート10重量部、溶媒としてTHF80重量部を、サンドミルで10時間混練分散し、更に式(III)のTPD誘導体9重量部と式(I)aのキノン誘導体1重量部を加えて溶解した後この液を用いてアルミニウム製ドラム上に浸漬法で塗工し、厚さ20μmの電荷発生と電荷移動を兼ねた単層分散型の感光層2を形成し、80℃で1時間乾燥して電子写真感光体を製造した。
【0054】
〔実施例7〕
実施例6の式(I)aのキノン誘導体に代えて、式(I)bのキノン誘導体を用いて感光体を製造した。
【0055】
〔実施例8〕
実施例6の式(I)aのキノン誘導体に代えて、式(I)cのキノン誘導体を用いて感光体を製造した。
【0056】
〔実施例9〕
実施例6の式(I)aのキノン誘導体に代えて、式(I)dのキノン誘導体を用いて感光体を製造した。
【0057】
〔実施例10〕
実施例6の式(I)aのキノン誘導体に代えて、式(I)eのキノン誘導体を用いて感光体を製造した。
【0058】
〔比較例4〕
実施例6の式(I)aのキノン誘導体に代えて、3,5−ジクロロキノンを用いて感光体を製造した。
【0059】
〔比較例5〕
実施例6の式(I)aのキノン誘導体に代えて、3,5−ジフェニルキノンを用いて感光体を製造した。
【0060】
〔比較例6〕
実施例6の式(I)aのキノン誘導体に代えて、テトラシアノキノジメタンを用いて感光体を製造した。
【0061】
〔実施例11〕
上記式(II)に示したジスアゾ顔料2重量部と、バインダとしてポリビニルブチラール1重量部とを乾式混練した後、溶媒として1,4−ジオキサン16重量部とアセトン4重量部とを加えサンドミルにて2時間分散し、これを塗工液としてアルミニウム製ドラム上に浸漬塗布したのち乾燥させて厚さ0.5μmの電荷発生層3を形成した。次いで、式(I)aのキノン誘導体10重量部に対しポリカーボネート10重量部とTHF100重量部とを加え溶解した塗工液を電荷発生層3の表面に浸漬塗布して厚さ20μmの電荷移動層4を形成し、80℃で1時間乾燥して機能分離型の電子写真感光体を製造した。
【0062】
〔実施例12〕
実施例11の式(I)aのキノン誘導体に代えて、式(I)bのキノン誘導体を用いて感光体を製造した。
【0063】
〔実施例13〕
実施例11の式(I)aのキノン誘導体に代えて、式(I)cのキノン誘導体を用いて感光体を製造した。
【0064】
〔実施例14〕
実施例11の式(I)aのキノン誘導体に代えて、式(I)dのキノン誘導体を用いて感光体を製造した。
【0065】
〔実施例15〕
実施例11の式(I)aのキノン誘導体に代えて、式(I)eのキノン誘導体を用いて感光体を製造した。
【0066】
〔比較例7〕
実施例11の式(I)aのキノン誘導体に代えて、3,5−ジクロロキノンを用いて感光体を製造した。
【0067】
〔比較例8〕
実施例11の式(I)aのキノン誘導体に代えて、3,5−ジフェニルキノンを用いて感光体を製造した。
【0068】
〔比較例9〕
実施例11の式(I)aのキノン誘導体に代えて、テトラシアノキノジメタンを用いて感光体を製造した。
【0069】
〔実施例16〕
導電性基体であるアルミニウム製ドラム上に圧力10-5torr、加熱温度500℃で膜厚500オングストロームになるように、高純度オキシチタニルフタロシアニンを蒸着して図2に示したような電荷発生層3を形成した。次いで、式(I)aのキノン誘導体10重量部に対しポリカーボネート10重量部とTHF100重量部とを加え溶解した塗工液を電荷発生層3の表面に浸漬塗布して厚さ20μmの電荷移動層4を形成し、80℃で1時間乾燥して機能分離型の電子写真感光体を製造した。
【0070】
〔実施例17〕
実施例16の式(I)aのキノン誘導体に代えて、式(I)bのキノン誘導体を用いて感光体を製造した。
【0071】
〔実施例18〕
実施例16の式(I)aのキノン誘導体に代えて、式(I)cのキノン誘導体を用いて感光体を製造した。
【0072】
〔実施例19〕
実施例16の式(I)aのキノン誘導体に代えて、式(I)dのキノン誘導体を用いて感光体を製造した。
【0073】
〔実施例20〕
実施例16の式(I)aのキノン誘導体に代えて、式(I)eのキノン誘導体を用いて感光体を製造した。
【0074】
〔比較例10〕
実施例16の式(I)aのキノン誘導体に代えて、3,5−ジクロロキノンを用いて感光体を製造した。
【0075】
〔比較例11〕
実施例16の式(I)aのキノン誘導体に代えて、3,5−ジフェニルキノンを用いて感光体を製造した。
【0076】
〔比較例12〕
実施例16の式(I)aのキノン誘導体に代えて、テトラシアノキノジメタンを用いて感光体を製造した。
【0077】
〔実施例21〕
高純度オキシチタニルフタロシアニン5gをガラスビーズ50mlと共にペイントシェイカで100時間乾式粉砕する。次に、n−プロパノール50mlと、ポリビニルブチラール5gを加え、1時間湿式ミリングする。更に、メチルエチルケトン100mlを加えて10時間分散する。分散して得られた溶液をアルミニウム製ドラム上に浸漬塗布し、乾燥させて厚さ0.2μmの電荷発生層3を形成した。次いで、式(I)aのキノン誘導体10重量部に対しポリカーボネート10重量部とTHF100重量部とを加え溶解した塗工液を電荷発生層3の表面に浸漬塗布して厚さ20μmの電荷移動層4を形成し、80℃で1時間乾燥して機能分離型の電子写真感光体を製造した。
【0078】
〔実施例22〕
実施例21の式(I)aのキノン誘導体に代えて、式(I)bのキノン誘導体を用いて感光体を製造した。
【0079】
〔実施例23〕
実施例21の式(I)aのキノン誘導体に代えて、式(I)cのキノン誘導体を用いて感光体を製造した。
【0080】
〔実施例24〕
実施例21の式(I)aのキノン誘導体に代えて、式(I)dのキノン誘導体を用いて感光体を製造した。
【0081】
〔実施例25〕
実施例21の式(I)aのキノン誘導体に代えて、式(I)eのキノン誘導体を用いて感光体を製造した。
【0082】
〔比較例13〕
実施例21の式(I)aのキノン誘導体に代えて、3,5−ジクロロキノンを用いて感光体を製造した。
【0083】
〔比較例14〕
実施例21の式(I)aのキノン誘導体に代えて、3,5−ジフェニルキノンを用いて感光体を製造した。
【0084】
〔比較例15〕
実施例21の式(I)aのキノン誘導体に代えて、テトラシアノキノジメタンを用いて感光体を製造した。
【0085】
〔実施例26〕
上記式(II)に示すジスアゾ顔料2重量部と、バインダとしてポリビニルブチラール1重量部を乾式混練した後、溶媒として1,4−ジオキサン16重量部とアセトン4重量部とを加えサンドミルにて2時間分散し、これを塗工液としてアルミニウム製ドラム上に浸漬塗布したのち乾燥させて厚さ0.5μmの電荷発生層3を形成した。次いで、式(III)のTPD誘導体10重量部に対しポリカーボネート10重量部とTHF100重量部、更に式(I)aのキノン誘導体1重量部を加え溶解した塗工液を電荷発生層3の表面に浸漬塗布し、厚さ20μmの電荷移動層4を形成したのち、80℃で1時間乾燥して機能分離型の電子写真感光体を製造した。
【0086】
〔実施例27〕
実施例26の式(I)aのキノン誘導体に代えて、式(I)bのキノン誘導体を用いて感光体を製造した。
【0087】
〔実施例28〕
実施例26の式(I)aのキノン誘導体に代えて、式(I)cのキノン誘導体を用いて感光体を製造した。
【0088】
〔実施例29〕
実施例26の式(I)aのキノン誘導体に代えて、式(I)dのキノン誘導体を用いて感光体を製造した。
【0089】
〔実施例30〕
実施例26の式(I)aのキノン誘導体に代えて、式(I)eのキノン誘導体を用いて感光体を製造した。
【0090】
〔比較例16〕
実施例26の式(I)aのキノン誘導体に代えて、3,5−ジクロロキノンを用いて感光体を製造した。
【0091】
〔比較例17〕
実施例26の式(I)aのキノン誘導体に代えて、3,5−ジフェニルキノンを用いて感光体を製造した。
【0092】
〔比較例18〕
実施例26の式(I)aのキノン誘導体に代えて、テトラシアノキノジメタンを用いて感光体を製造した。
【0093】
実施例1〜25および比較例1〜15において、電子写真感光体の感度である半減露光エネルギ(lux*sec)の測定を以下の方法で行った。先ずコロナ放電電流が17μAとなるように電圧設定された印加電圧によって暗所でコロナ放電を行い、感光体を正帯電させた後、白色光で露光し、表面電位が700Vから350Vに半減する露光エネルギを求めた。
【0094】
表1に示す実施例1〜5の本発明の結果において、式(II)のジスアゾ顔料を電荷発生剤とした単層分散型正帯電感光体は、比較例1〜3の感光体に比べて明らかに高感度である。
【0095】
【表1】
Figure 0003694068
【0096】
表2に示す実施例6〜10の本発明の結果において、オキシチタニルフタロシアニンを電荷発生剤とした単層分散型正帯電感光体は比較例4〜6の感光体と比べて明らかに高感度である。
【0097】
【表2】
Figure 0003694068
【0098】
表3に示す実施例11〜15の本発明の結果において、式(II)のジスアゾ顔料を樹脂と共に分散後塗工して電荷発生層を形成した機能分離型正帯電感光体は、感度特性を示しているが、比較例7〜9は感度をまったく示していない。
【0099】
【表3】
Figure 0003694068
【0100】
表4に示す実施例16〜20の本発明の結果において、オキシチタニルフタロシアニンを真空蒸着により電荷発生層を形成した機能分離型正帯電感光体は、感度特性を示しているが、比較例10〜12は感度をまったく示していない。
【0101】
【表4】
Figure 0003694068
【0102】
表5に示す実施例21〜25の本発明の結果において、オキシチタニルフタロシアニンを樹脂と共に分散後塗工して電荷発生層を形成した機能分離型正帯電感光体は、感度特性を示しているが、比較例13〜15は感度をまったく示していない。
【0103】
【表5】
Figure 0003694068
【0104】
実施例26〜30および比較例16〜18において、電子写真感光体の感度である半減露光エネルギ(lux*sec)の測定を以下の方法で行った。先ずコロナ放電電流が17μAとなるよう電圧設定された印加電圧によって暗所でコロナ放電を行い、感光体を負帯電させた後、白色光で露光し、表面電位が−700Vから−350Vに半減する露光エネルギを求めた。
【0105】
表6に示す実施例26〜30の本発明の結果において、上記式(II)のジスアゾ顔料を樹脂と共に分散後塗工して電荷発生層を形成した機能分離型正帯電感光体は、比較例16〜18に比べて明らかに高感度である。
【0106】
【表6】
Figure 0003694068
【0107】
【発明の効果】
以上説明したように、本発明に係る電子写真感光体によれば、バインダ樹脂との相溶性が良く、着色性が弱く、また高移動度の電子移動物質であるキノン誘導体を感光層として用いたので、耐久性があり実用に耐える高感度の電子写真感光体を得ることができた。
【図面の簡単な説明】
【図1】本発明の単層分散型感光体の構成図である。
【図2】本発明の機能分離型感光体の構成図である。
【符号の説明】
1 導電性基体
2 感光層
3 電荷発生層
4 電荷移動層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photosensitive member used for a copying machine, a laser printer, and the like.
[0002]
[Prior art]
Conventionally, selenium, selenium-tellurium, selenium-arsenic, amorphous-silicon, and the like have been used for photoconductors such as copying machines and laser printers. However, in recent years, organic photoreceptors that are inexpensive and have low environmental pollution are becoming mainstream. Known organic photoreceptors include a functional separation type photoreceptor in which a charge generation layer (CGL) and a charge transfer layer (CTL) are laminated, and a single layer dispersion type photoreceptor in which a charge generation substance is dispersed in a medium of a charge transfer substance. It has been.
[0003]
As a charge transfer material for these photoconductors, a material with high mobility is required, but since most materials have hole mobility, practically available organic photoconductors are limited to negatively charged types. Yes. However, since charging of the photoreceptor uses corona discharge, the negatively charged electrophotographic method generates a lot of ozone, and has problems such as contamination of the indoor environment and deterioration of the photoreceptor. In order to prevent these problems, a special charging method that does not generate ozone, a filter that filters generated ozone, and the like are required, and there are disadvantages such as an electrophotographic process and apparatus becoming complicated and expensive.
[0004]
In order to reduce the generation of ozone, the market demand for positively charged photoconductors increases, and high-mobility electron transfer materials are required for developing the photoconductors. Examples of the electron transfer material include trinitrofluorenone (TNF), tetracyanoethylene, tetracyanoquinodimethane (TCNQ), quinone, diphenoquinone, naphthoquinone, anthraquinone, and derivatives thereof, but are compatible with the binder resin. Many substances are bad, and cannot be uniformly dispersed at a high concentration in the charge transfer layer of the photosensitive layer. When these substances are described in detail, for example, TNF having a high electron accepting property has a drawback that it is highly toxic and is not suitable for practical use. TCNQ exhibits extremely high electron acceptability, but has poor compatibility with the binder resin, and cannot be uniformly dispersed at a high concentration in the charge transfer layer. Further, since TCNQ is strongly colored, when the photosensitive layer is formed, there is a disadvantage that the light that should originally reach the charge generating material is absorbed and the sensitivity is lowered.
[0005]
The diphenoquinone derivative has relatively good compatibility with the binder resin, but has a large molecule and thus becomes highly colored, and lowers the sensitivity for the same reason as TCNQ. Further, although an asymmetric substitution type derivative has been proposed for the diphenoquinone skeleton, it is not satisfactory as an electron transfer material to provide a highly sensitive positively charged electrophotographic photoreceptor. As described above, at present, satisfactory high-sensitivity positively charged electrophotographic photosensitive members have not been obtained.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a high-sensitivity electrophotographic photosensitive member using a high-mobility electron-transfer material having good compatibility with a binder resin and low colorability.
[0007]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the difficulty of compatibility with the binder resin is related to the asymmetry of the molecule of the electron transfer material, and the strength of the color is related to the size of the molecule of the electron transfer material. Focusing on this fact, the present inventors have found a novel quinone derivative capable of obtaining highly sensitive electrophotographic characteristics.
[0008]
      That is, the present invention is an electrophotographic photosensitive member having a photosensitive layer containing a novel quinone derivative represented by the following general formula (I) on a conductive substrate.

[Chemical 2]
Figure 0003694068
(In the formula (I), R1 and R2 are cyano, nitro, halogen, acyclic hydrocarbon.Or acyclic hydrocarbonIn addition to cyano, nitro, and halogen groups, there may be substituents, and R1 and R2 may be the same or different.. )
[0009]
Specifically, the inventors focused on the fact that the colorability is related to the size of the intramolecular conjugated structure, and based on the results of studies on the quinone skeleton, the substituent on one side of p-quinone was converted to a dicyanomethane group. As a result, it was found that the electron acceptability is increased and the compatibility with the resin is not deteriorated. Furthermore, it discovered that compatibility was improved remarkably with respect to resin by introduce | transducing o-substituent with respect to the oxygen of the other side of a dicyanomethane group.
[0010]
The novel quinone derivative in the present invention has the following characteristics.
(1) In order to develop a highly sensitive positively charged electrophotographic photosensitive member, a high mobility electron transfer material is required. In order to become an electron transfer substance, electron acceptability must be high, but the quinone derivative of the present invention has extremely high electron acceptability.
(2) The quinone derivative of the present invention has extremely good compatibility with the resin used as the binder for the photosensitive layer, and can be uniformly contained in the charge transfer layer at a high concentration.
(3) The quinone derivative of the present invention has low colorability, and therefore has low absorption with respect to incident light, so that the sensitivity is hardly lowered.
Further, the quinone derivative of the present invention, when added together with a hole transfer substance to a negatively charged electrophotographic photosensitive member, has the effect of improving sensitivity and lowering the residual potential due to its electron transfer action, so that it has a high sensitivity negative charge type. It can also be used for electrophotographic photoreceptors.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The quinone derivative in the present invention has a charge transfer action as an electron transfer substance in positive and negative charge type electrophotographic photosensitive members. In the photosensitive member, the type and shape of the conductive substrate, the structure and the film thickness of the photosensitive layer. Further, it is not limited to the type and concentration of the resin and additives which are other components constituting the photosensitive layer, but preferably it is added to the photosensitive layer at a concentration of 0.1 wt% to 80 wt%. Is good. Moreover, a quinone derivative may be used individually by 1 type, and 2 or more types may be mixed and used for it.
[0012]
Examples of the structure of the photoreceptor of the present invention are shown in FIGS. FIG. 1 is a cross-sectional view of a single-layer dispersion type photoconductor, where reference numeral 1 is a conductive substrate, and 2 is a photosensitive layer in which a charge generating material is dispersed in a medium of a charge transfer material. FIG. 2 is a cross-sectional view of the function-separated type photoconductor. Reference numeral 1 denotes a conductive substrate, 3 denotes a charge generation layer, 4 denotes a charge transfer layer, and the charge generation layer 3 and the charge transfer layer 4 form a photosensitive layer. Forming.
[0013]
As the conductive substrate 1, various materials having conductivity can be used, such as aluminum, brass, stainless steel, nickel, chromium, titanium, gold, silver, copper, tin, platinum, molybdenum, and indium. Conductive substances such as metal simple substance and alloys thereof, conductive metals such as the above metals and carbon are deposited and plated, and coated with conductive plastic plates and films, and further coated with tin oxide, indium oxide, and aluminum iodide. Examples include conductive glass. Generally, a cylindrical aluminum tube alone, a surface treated with alumite, a material coated with a conductive resin, etc. are often used.
[0014]
Examples of the charge generating substance include selenium, selenium-tellurium, selenium-arsenic, amorphous-silicon, phthalocyanine pigment, monoazo pigment, bisazo pigment, trisazo pigment, polyazo pigment, indigo pigment, selenium pigment, toluidine pigment, pyrazoline pigment, perylene. Examples thereof include pigments, quinacridone pigments, pyrylium salts and the like, and these are not only used alone, but may be used in combination of two or more in order to obtain an appropriate photosensitivity wavelength and sensitizing action.
[0015]
In order to improve electrophotographic characteristics such as higher sensitivity and lower residual potential, a known charge transfer material can be added. For example, as a polymer compound, polyvinyl carbazole, halogenated polyvinyl carbazole, polyvinyl pyrene, polyvinyl indoloquinoxaline , Polyvinylbenzothiophene, polyvinylanthracene, polyvinylacridine, polyvinylpyrazoline, polyacetylene, polythiophene, polypyrrole, polyphenylene, polyphenylenevinylene, polyisothianaphthene, polyaniline, polydiacetylene, polyheptadiene, polypyridinediyl, polyquinoline, polyphenylene sulfide, Conductive polymer compounds such as polyferrocenylene, polyperinaphthylene, polyphthalocyanine, polyethylene oxide, polypropylene oxide De, polyacrylonitrile, etc. polymethacrylic acid, solid polymer electrolyte, etc. doped with metal ions of lithium, and the like. In addition, low molecular weight compounds include polycyclic aromatic compounds such as anthracene, pyrene, phenanthrene, nitrogen-containing heterocyclic compounds such as indole, carbazole, imidazole, fluorenone, fluorene, oxadiazole, oxazole, pyrazoline, hydrazone, triphenylmethane, triphenylmethane, Any known compounds such as phenylamine, enamine and stilbene compounds can be used, and further known organic charge transfer complexes formed by electron donating compounds and electron accepting compounds represented by tetrathiafulvalene-tetracyanoquinodimethane The desired photoreceptor characteristics can be obtained by mixing one or more of them.
[0016]
The binder resin used to form the photosensitive layer is polycarbonate resin, styrene resin, acrylic resin, styrene-acrylic resin, ethylene-vinyl acetate resin, polypropylene resin, vinyl chloride resin, vinyl chloride-vinyl acetate resin, polyester resin, Photocurable resins such as alkyd resin, polyamide resin, polyurethane resin, epoxy resin, polyarylate resin, polysulfone resin, diarylate resin, silicone resin, ketone resin, polyvinyl butyral resin, polyether resin, phenol resin, epoxy arylate, etc. These are used singly or in combination of two or more. In addition, resins having different molecular weights can be mixed in order to improve hardness and wear resistance.
[0017]
Solvents used in the coating solution are alcohols such as methanol, ethanol, n-propanol, i-propanol and butanol, saturated aliphatic hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane and cycloheptane, toluene and xylene. Aromatic hydrocarbons such as dichloromethane, chlorinated hydrocarbons such as dichloromethane, dichloroethane, chloroform, chlorobenzene, ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, methoxyethanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, Esters such as ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, N, N-dimethylformamide, dimethyl sulfoxide, etc. , Which may be used alone or in combination. The coating method is performed by a known coating means.
[0018]
In the coating liquid for producing the photoreceptor of the present invention, a known substance, for example, an antioxidant, an ultraviolet absorber, a radical scavenger, a softener, a curing agent, as long as the electrophotographic photoreceptor characteristics are not impaired. A crosslinking agent or the like can be added, which improves the characteristics, durability, mechanical characteristics and the like of the photoreceptor. Furthermore, by adding dispersion stabilizers, anti-settling agents, anti-color separation agents, leveling agents, antifoaming agents, thickeners, matting agents, etc., the finished appearance of the photoreceptor and the life of the coating solution can be improved. .
[0019]
In the electrophotographic photoreceptor of the present invention, an undercoat layer having an adhesion function, a barrier function, a defect covering function on the surface of the substrate, and the like may be provided between the conductive substrate and the photosensitive layer. As the undercoat layer, aluminum oxide, polyethylene resin, acrylic resin, epoxy resin, polycarbonate resin, polyurethane resin, vinyl chloride resin, vinyl acetate resin, polyvinyl butyral resin, polyamide resin, nylon resin, etc. are used alone or in combination. be able to. An undercoat layer in which a metal oxide or carbon is dispersed in a resin can also be used.
[0020]
Further, a surface protective layer can be provided on the photosensitive layer for the purpose of improving the durability of the photoreceptor, and examples thereof include polyvinyl formal resin, polycarbonate resin, fluorine resin, polyurethane resin, and silicon resin. Moreover, the surface protective layer which consists of a siloxane structure formed with the hydrolyzate of a silane coupling agent may be sufficient.
[0021]
Production examples of quinone derivatives
The quinone derivative of the above formula (I) is produced by the following method.
The first method is used when a substance in which the target substituent is substituted at positions 2 and 6 of p-quinone is commercially available, and this reaction dicyanomethanates the oxygen atom on one side of the p-quinone compound, This is a method for obtaining a quinone derivative of formula (I).
[0022]
[Chemical 3]
Figure 0003694068
[0023]
[Production Example 1]
10.0 g of 3,5-dimethylbenzoquinone and 5.0 g of malononitrile were dissolved in 240 ml of dichloromethane and stirred in an ice bath. While keeping the temperature at 10 ° C. or less, 6.6 ml of titanium tetrachloride was slowly added dropwise, and then 24.0 ml of pyridine was slowly added dropwise and reacted at room temperature for 5 hours with stirring. The residue was distilled under reduced pressure, 200 ml of 10% hydrochloric acid was added to the residue, stirred vigorously, filtered, washed several times with water and dried. This was purified by recrystallization from hexane to obtain 4.0 g of 3,5-dimethyl-4-oxo-1-dicyanomethylenecyclohexadiene (I) a in a yield of 32%.
[0024]
[Production Example 2]
10.0 g of 3,5-dichlorobenzoquinone and 4.0 g of malononitrile were dissolved in 240 ml of dichloromethane and stirred in an ice bath. While keeping the temperature at 10 ° C. or less, 6.6 ml of titanium tetrachloride was slowly added dropwise, and then 24.0 ml of pyridine was slowly added dropwise and reacted at room temperature for 5 hours with stirring. The residue was distilled under reduced pressure, 200 ml of 10% hydrochloric acid was added to the residue, stirred vigorously, filtered, washed several times with water and dried. This was purified by recrystallization from hexane to obtain 3.6 g of 3,5-dichloro-4-oxo-1-dicyanomethylenecyclohexadiene (I) b in a yield of 28%.
[0025]
The second method is used when a substance in which the target substituent is substituted at positions 2 and 6 of p-quinone is not commercially available. In this method, first, a phenol compound having a substituent at positions 2 and 6 is used. This is a p-quinone compound, which is converted into a quinone derivative of the formula (I) by the same reaction as in Production Examples 1 and 2.
[0026]
[Formula 4]
Figure 0003694068
[0027]
[Production Example 3]
33.0 g of 3,5-di-tBu-hydroxylanisole as a raw material was dissolved in 300 ml of acetonitrile, the temperature was kept at 0 to 10 ° C. under nitrogen gas, and 7.8 ml of bromine was added and stirred. While maintaining the temperature at 10 ° C. or lower, a mixed solution of 34.8 ml of pyridine and 60 ml of acetonitrile was added dropwise. While stirring, the reaction was carried out at 10 ° C. or lower for 1 hour, at room temperature for 2 hours, and 450 ml of cold water was further added and reacted for 3 hours. This was extracted with hexane, the hexane solution was washed with 90% aqueous methanol solution, and then hexane was removed under reduced pressure to obtain 21.0 g of 3,5-di-tBu-benzoquinone as a brown liquid with a yield of 87%.
[0028]
18.0 g of 3,5-di-tBu-benzoquinone and 5.3 g of malononitrile were dissolved in 240 ml of dichloromethane and stirred on an ice bath. While maintaining the temperature at 10 ° C. or lower, 8.8 ml of titanium tetrachloride was slowly dropped, and similarly, 32.2 ml of pyridine was slowly dropped and reacted at room temperature for 5 hours with stirring. Dichloromethane was removed by concentration under reduced pressure, 200 ml of 10% hydrochloric acid was added to the residue and stirred vigorously. After filtration, the residue was washed several times with water and dried. Furthermore, recrystallization operation was performed with hexane to obtain 3.8 g of 3,5-di-tBu-4-oxo-1-dicyanomethylenecyclohexadiene (I) c in a yield of 17.3%.
[0029]
The third method is a method in which a substituent is introduced arbitrarily at the 2,6-positions in the quinone derivative of the formula (I), and is useful as a method for producing an electron transfer substance. In this method, a nitromalonaldehyde and an alkyl ketone are reacted to synthesize a 2,6-substituted p-nitrophenol compound, which is converted into a quinone compound, and then the same reaction as in Production Examples 1 and 2 is performed. A quinone derivative is used.
[0030]
[Chemical formula 5]
Figure 0003694068
[0031]
[Production Example 4]
24.3 ml of water and 25.0 g of sodium nitrite were dissolved while warming with stirring. 24.3 ml of 95% ethanol solution of 25.0 g of mucobromic acid was added dropwise while maintaining the temperature at 54 ± 1 ° C. After dropping, the mixture was kept at 54 ± 1 ° C. and stirred for 10 minutes. Cool to 0-5 ° C, filter the precipitate and dissolve it in a mixture of 80% 95% ethanol and 20 ml of water with heating, dissolve and filter to cool the solution to 0-5 ° C. 6.0 g of the Japanese product was obtained with a yield of 39%.
[0032]
44 ml of an ethanol solution of 8.8 g of 1,3 diphenyl-2-propane, 15 ml of an aqueous solution of 3.3 g of sodium hydroxide and 64 ml of an aqueous solution of 7.4 g of nitromalonaldehyde sodium monohydrate were refluxed for 2 hours, Stir for days. The solvent was removed by distillation under reduced pressure, and 10% hydrochloric acid was added to the residue with stirring, followed by filtration. Recrystallization from acetic acid / ethanol containing 1 to 2 drops of concentrated hydrochloric acid gave 8.9 g of 2,6-diphenyl-4-nitrophenol in a yield of 65%.
[0033]
To 50 ml of acetic acid, 8.9 g of lead tetraacetate and 6.7 g of 2,6-diphenyl-4-nitrophenol were added and stirred for 24 hours. The reaction solution was extracted with ether and then washed with water, and further washed with a 5% aqueous sodium hydroxide solution and water in this order. This was dehydrated with sodium sulfate, ether was removed and recrystallized with ethanol to obtain 3.4 g of 2,6-diphenyl-1,4-benzoquinone in a yield of 57%.
[0034]
To 150 ml of dichloromethane were added 5.7 g of 2,6-diphenyl-1,4-benzoquinone and 1.7 g of malononitrile.2Stirred under. While maintaining the temperature at 10 ° C. or lower, 2.8 ml of titanium tetrachloride and then 10.0 ml of pyridine were slowly added dropwise, stirred for 5 hours at room temperature, and then the solvent was removed by distillation under reduced pressure. The residue was extracted with warm hexane, washed with 1N hydrochloric acid and then with water to remove the solvent. Purified by column chromatography using silica gel as the packing material and hexane / ethyl acetate = 2 (volume ratio) as the eluent, and 3,5-diphenyl-4-oxo-1-dicyanomethylenecyclohexadiene (I) d 0 0.8 g was obtained with a yield of 11%.
[0035]
[Production Example 5]
Instead of 1,3diphenyl-2-propane of Production Example 4, 4.2 g of 3-hexanone was used, and 1 of 3-ethyl-5-methyl-4-oxo-1-dicyanomethylenecyclohexadiene (I) e was used. .3 g was obtained with a yield of 15%.
[0036]
The quinone derivatives (I) a to (I) e obtained in Production Examples 1 to 5 described above are shown below.
[0037]
[Chemical 6]
Figure 0003694068
[0038]
[Chemical 7]
Figure 0003694068
[0039]
[Chemical 8]
Figure 0003694068
[0040]
[Chemical 9]
Figure 0003694068
[0041]
[Chemical Formula 10]
Figure 0003694068
[0042]
【Example】
Examples of the electrophotographic photoreceptor according to the present invention will be described below. In addition, this invention is not limited to a following example, unless the summary is exceeded.
[0043]
[Example 1]
1 part by weight of a disazo pigment represented by formula (II) as a charge generator, 10 parts by weight of polycarbonate as a binder, 80 parts by weight of THF as a solvent were kneaded and dispersed in a sand mill for 10 hours, and further 9 parts by weight of a TPD derivative of formula (III) After adding 1 part by weight of the quinone derivative of the formula (I) a and dissolving, this solution is applied onto an aluminum drum by a dipping method, and a single-layer dispersion type having a thickness of 20 μm that serves both as charge generation and charge transfer The photosensitive layer 2 was formed and dried at 80 ° C. for 1 hour to produce an electrophotographic photoreceptor.
[0044]
Embedded image
Figure 0003694068
[0045]
Embedded image
Figure 0003694068
[0046]
[Example 2]
Instead of the quinone derivative of the formula (I) a in Example 1, a photoreceptor was produced using the quinone derivative of the formula (I) b.
[0047]
Example 3
Instead of the quinone derivative of the formula (I) a in Example 1, a photoreceptor was produced using the quinone derivative of the formula (I) c.
[0048]
Example 4
Instead of the quinone derivative of the formula (I) a in Example 1, a photoreceptor was produced using the quinone derivative of the formula (I) d.
[0049]
Example 5
In place of the quinone derivative of the formula (I) a in Example 1, a photoreceptor was produced using the quinone derivative of the formula (I) e.
[0050]
[Comparative Example 1]
A photoconductor was produced using 3,5-dichloroquinone instead of the quinone derivative of formula (I) a in Example 1.
[0051]
[Comparative Example 2]
In place of the quinone derivative of the formula (I) a in Example 1, 3,5-diphenylquinone was used to produce a photoreceptor.
[0052]
[Comparative Example 3]
A photoconductor was produced using tetracyanoquinodimethane instead of the quinone derivative of the formula (I) a of Example 1.
[0053]
Example 6
1 part by weight of high-purity oxytitanyl phthalocyanine as a charge generating agent, 10 parts by weight of polycarbonate as a binder, and 80 parts by weight of THF as a solvent are kneaded and dispersed in a sand mill for 10 hours. 1) 1 part by weight of the quinone derivative of a was added and dissolved, and then this solution was applied onto an aluminum drum by a dipping method, and a monolayer dispersion type photosensitive layer having a thickness of 20 μm and both charge generation and charge transfer. 2 was formed and dried at 80 ° C. for 1 hour to produce an electrophotographic photosensitive member.
[0054]
Example 7
In place of the quinone derivative of the formula (I) a in Example 6, a photoreceptor was produced using the quinone derivative of the formula (I) b.
[0055]
Example 8
In place of the quinone derivative of formula (I) a in Example 6, a photoreceptor was produced using the quinone derivative of formula (I) c.
[0056]
Example 9
In place of the quinone derivative of the formula (I) a in Example 6, a photoreceptor was produced using the quinone derivative of the formula (I) d.
[0057]
Example 10
Instead of the quinone derivative of the formula (I) a in Example 6, a photoreceptor was produced using the quinone derivative of the formula (I) e.
[0058]
[Comparative Example 4]
A photoconductor was produced using 3,5-dichloroquinone instead of the quinone derivative of formula (I) a in Example 6.
[0059]
[Comparative Example 5]
A photoconductor was produced using 3,5-diphenylquinone instead of the quinone derivative of formula (I) a in Example 6.
[0060]
[Comparative Example 6]
A photoconductor was produced using tetracyanoquinodimethane instead of the quinone derivative of formula (I) a in Example 6.
[0061]
Example 11
After dry kneading 2 parts by weight of the disazo pigment represented by the above formula (II) and 1 part by weight of polyvinyl butyral as a binder, 16 parts by weight of 1,4-dioxane and 4 parts by weight of acetone are added as a solvent in a sand mill. This was dispersed for 2 hours, dip coated on an aluminum drum as a coating solution, and then dried to form a charge generation layer 3 having a thickness of 0.5 μm. Next, a coating solution prepared by adding 10 parts by weight of polycarbonate and 100 parts by weight of THF to 10 parts by weight of the quinone derivative of formula (I) a is dip-coated on the surface of the charge generation layer 3 to form a charge transfer layer having a thickness of 20 μm. 4 was dried at 80 ° C. for 1 hour to produce a function-separated electrophotographic photosensitive member.
[0062]
Example 12
In place of the quinone derivative of the formula (I) a in Example 11, a photoreceptor was produced using the quinone derivative of the formula (I) b.
[0063]
Example 13
In place of the quinone derivative of formula (I) a in Example 11, a photoreceptor was produced using the quinone derivative of formula (I) c.
[0064]
Example 14
In place of the quinone derivative of the formula (I) a in Example 11, a photoreceptor was produced using the quinone derivative of the formula (I) d.
[0065]
Example 15
In place of the quinone derivative of formula (I) a in Example 11, a photoreceptor was produced using the quinone derivative of formula (I) e.
[0066]
[Comparative Example 7]
A photoconductor was produced using 3,5-dichloroquinone instead of the quinone derivative of formula (I) a in Example 11.
[0067]
[Comparative Example 8]
A photoconductor was produced using 3,5-diphenylquinone instead of the quinone derivative of formula (I) a in Example 11.
[0068]
[Comparative Example 9]
A photoconductor was produced using tetracyanoquinodimethane instead of the quinone derivative of formula (I) a in Example 11.
[0069]
Example 16
A pressure of 10 on an aluminum drum as a conductive substrate.-FiveA high-purity oxytitanyl phthalocyanine was vapor-deposited so as to have a film thickness of 500 angstroms at a heating temperature of 500 ° C. to form the charge generation layer 3 as shown in FIG. Next, a coating solution prepared by adding 10 parts by weight of polycarbonate and 100 parts by weight of THF to 10 parts by weight of the quinone derivative of formula (I) a is dip-coated on the surface of the charge generation layer 3 to form a charge transfer layer having a thickness of 20 μm. 4 was dried at 80 ° C. for 1 hour to produce a function-separated electrophotographic photosensitive member.
[0070]
Example 17
In place of the quinone derivative of formula (I) a in Example 16, a photoreceptor was produced using the quinone derivative of formula (I) b.
[0071]
Example 18
In place of the quinone derivative of formula (I) a in Example 16, a photoreceptor was produced using the quinone derivative of formula (I) c.
[0072]
Example 19
In place of the quinone derivative of formula (I) a in Example 16, a quinone derivative of formula (I) d was used to produce a photoreceptor.
[0073]
Example 20
In place of the quinone derivative of formula (I) a in Example 16, a photoreceptor was produced using the quinone derivative of formula (I) e.
[0074]
[Comparative Example 10]
A photoconductor was produced using 3,5-dichloroquinone instead of the quinone derivative of formula (I) a in Example 16.
[0075]
[Comparative Example 11]
A photoconductor was produced using 3,5-diphenylquinone instead of the quinone derivative of the formula (I) a of Example 16.
[0076]
[Comparative Example 12]
A photoconductor was produced using tetracyanoquinodimethane instead of the quinone derivative of formula (I) a in Example 16.
[0077]
Example 21
5 g of high-purity oxytitanyl phthalocyanine is dry-pulverized for 100 hours with a paint shaker along with 50 ml of glass beads. Next, 50 ml of n-propanol and 5 g of polyvinyl butyral are added and wet milled for 1 hour. Further, 100 ml of methyl ethyl ketone is added and dispersed for 10 hours. The solution obtained by dispersion was dip-coated on an aluminum drum and dried to form a charge generation layer 3 having a thickness of 0.2 μm. Next, a coating solution prepared by adding 10 parts by weight of polycarbonate and 100 parts by weight of THF to 10 parts by weight of the quinone derivative of formula (I) a is dip-coated on the surface of the charge generation layer 3 to form a charge transfer layer having a thickness of 20 μm. 4 was dried at 80 ° C. for 1 hour to produce a function-separated electrophotographic photosensitive member.
[0078]
[Example 22]
In place of the quinone derivative of the formula (I) a in Example 21, a photoreceptor was produced using the quinone derivative of the formula (I) b.
[0079]
Example 23
In place of the quinone derivative of formula (I) a in Example 21, a photoreceptor was produced using the quinone derivative of formula (I) c.
[0080]
Example 24
In place of the quinone derivative of formula (I) a in Example 21, a photoreceptor was produced using a quinone derivative of formula (I) d.
[0081]
Example 25
In place of the quinone derivative of formula (I) a in Example 21, a photoreceptor was produced using the quinone derivative of formula (I) e.
[0082]
[Comparative Example 13]
A photoconductor was produced using 3,5-dichloroquinone instead of the quinone derivative of formula (I) a in Example 21.
[0083]
[Comparative Example 14]
A photoconductor was produced using 3,5-diphenylquinone instead of the quinone derivative of formula (I) a in Example 21.
[0084]
[Comparative Example 15]
A photoconductor was produced using tetracyanoquinodimethane instead of the quinone derivative of the formula (I) a in Example 21.
[0085]
Example 26
After dry kneading 2 parts by weight of the disazo pigment represented by the above formula (II) and 1 part by weight of polyvinyl butyral as a binder, 16 parts by weight of 1,4-dioxane and 4 parts by weight of acetone are added as a solvent for 2 hours in a sand mill. This was dispersed, applied as an application liquid onto an aluminum drum, and then dried to form a charge generation layer 3 having a thickness of 0.5 μm. Subsequently, 10 parts by weight of polycarbonate and 100 parts by weight of THF with respect to 10 parts by weight of the TPD derivative of formula (III) and further 1 part by weight of the quinone derivative of formula (I) a were added and dissolved on the surface of the charge generation layer 3. After dipping and forming the charge transfer layer 4 having a thickness of 20 μm, it was dried at 80 ° C. for 1 hour to produce a function-separated electrophotographic photosensitive member.
[0086]
Example 27
Instead of the quinone derivative of formula (I) a in Example 26, a quinone derivative of formula (I) b was used to produce a photoreceptor.
[0087]
Example 28
In place of the quinone derivative of formula (I) a in Example 26, a quinone derivative of formula (I) c was used to produce a photoreceptor.
[0088]
Example 29
Instead of the quinone derivative of formula (I) a in Example 26, a quinone derivative of formula (I) d was used to produce a photoreceptor.
[0089]
Example 30
Instead of the quinone derivative of formula (I) a in Example 26, a quinone derivative of formula (I) e was used to produce a photoreceptor.
[0090]
[Comparative Example 16]
A photoconductor was produced using 3,5-dichloroquinone instead of the quinone derivative of the formula (I) a in Example 26.
[0091]
[Comparative Example 17]
Instead of the quinone derivative of formula (I) a in Example 26, 3,5-diphenylquinone was used to produce a photoreceptor.
[0092]
[Comparative Example 18]
A photoconductor was produced using tetracyanoquinodimethane instead of the quinone derivative of formula (I) a in Example 26.
[0093]
In Examples 1 to 25 and Comparative Examples 1 to 15, the half exposure energy (lux * sec), which is the sensitivity of the electrophotographic photosensitive member, was measured by the following method. First, corona discharge is performed in the dark with an applied voltage set so that the corona discharge current is 17 μA, the photosensitive member is positively charged, then exposed to white light, and the surface potential is reduced to half from 700 V to 350 V. I asked for energy.
[0094]
In the results of the present invention of Examples 1 to 5 shown in Table 1, the monolayer dispersion type positively charged photoreceptor using the disazo pigment of the formula (II) as a charge generating agent is compared with the photoreceptors of Comparative Examples 1 to 3. Clearly high sensitivity.
[0095]
[Table 1]
Figure 0003694068
[0096]
In the results of the present invention of Examples 6 to 10 shown in Table 2, the single-layer dispersed positively charged photoreceptor using oxytitanyl phthalocyanine as a charge generator is clearly more sensitive than the photoreceptors of Comparative Examples 4 to 6. is there.
[0097]
[Table 2]
Figure 0003694068
[0098]
In the results of the present invention of Examples 11 to 15 shown in Table 3, the function-separated positively charged photoreceptor formed by dispersing the disazo pigment of the formula (II) together with the resin and coating it to form a charge generation layer has a sensitivity characteristic. Although shown, Comparative Examples 7-9 do not show any sensitivity.
[0099]
[Table 3]
Figure 0003694068
[0100]
In the results of the present invention of Examples 16 to 20 shown in Table 4, the function-separated positively charged photoreceptor in which the charge generation layer is formed by vacuum deposition of oxytitanyl phthalocyanine shows sensitivity characteristics. 12 shows no sensitivity at all.
[0101]
[Table 4]
Figure 0003694068
[0102]
In the results of Examples 21 to 25 of the present invention shown in Table 5, the function-separated positively charged photoreceptor in which the charge generation layer is formed by dispersing and coating oxytitanyl phthalocyanine together with the resin exhibits sensitivity characteristics. Comparative Examples 13 to 15 do not show any sensitivity.
[0103]
[Table 5]
Figure 0003694068
[0104]
In Examples 26-30 and Comparative Examples 16-18, the half exposure energy (lux * sec), which is the sensitivity of the electrophotographic photosensitive member, was measured by the following method. First, corona discharge is performed in the dark with an applied voltage set so that the corona discharge current is 17 μA, the photosensitive member is negatively charged and then exposed to white light, and the surface potential is halved from −700 V to −350 V. The exposure energy was determined.
[0105]
In the results of the present invention of Examples 26 to 30 shown in Table 6, the function-separated positively charged photoreceptor in which the charge generation layer is formed by dispersing the disazo pigment of the above formula (II) together with the resin and coating it is a comparative example. It is clearly more sensitive than 16-18.
[0106]
[Table 6]
Figure 0003694068
[0107]
【The invention's effect】
As described above, according to the electrophotographic photoreceptor of the present invention, a quinone derivative, which is a high mobility electron transfer material, has good compatibility with the binder resin, low colorability, and is used as the photosensitive layer. Therefore, it was possible to obtain a highly sensitive electrophotographic photosensitive member that is durable and practical.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a single-layer dispersion type photoreceptor of the present invention.
FIG. 2 is a configuration diagram of a function-separated type photoreceptor of the present invention.
[Explanation of symbols]
1 Conductive substrate
2 Photosensitive layer
3 Charge generation layer
4 Charge transfer layer

Claims (1)

導電性基体上に、下記一般式(I)で表されるキノン誘導体を含有する感光層を有することを特徴とする電子写真感光体。

Figure 0003694068
(式(I)において、R1 、R2 はシアノ、ニトロ、ハロゲン、非環式炭化水素又は非環式炭化水素のアルコキシ基で、シアノ、ニトロ、ハロゲン基以外は置換基があってもよく、しかもR1 、R2 は同じか異なっていてもよい。)
An electrophotographic photoreceptor comprising a photosensitive layer containing a quinone derivative represented by the following general formula (I) on a conductive substrate.

Figure 0003694068
(In the formula (I), R1 and R2 are cyano, nitro, halogen, acyclic hydrocarbon or an acyclic hydrocarbon alkoxy group, and there may be substituents other than cyano, nitro and halogen groups; R1 and R2 may be the same or different .)
JP18558395A 1995-07-21 1995-07-21 Electrophotographic photoreceptor Expired - Fee Related JP3694068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18558395A JP3694068B2 (en) 1995-07-21 1995-07-21 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18558395A JP3694068B2 (en) 1995-07-21 1995-07-21 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH0934141A JPH0934141A (en) 1997-02-07
JP3694068B2 true JP3694068B2 (en) 2005-09-14

Family

ID=16173351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18558395A Expired - Fee Related JP3694068B2 (en) 1995-07-21 1995-07-21 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP3694068B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009197A1 (en) * 1996-08-27 1998-03-05 Konica Corporation Electrophotography photosensitive element
JP3787164B2 (en) 1997-07-04 2006-06-21 新電元工業株式会社 Electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPH0934141A (en) 1997-02-07

Similar Documents

Publication Publication Date Title
JP4823124B2 (en) Single-layer dispersion type photoreceptor, electrophotographic apparatus
JP3572649B2 (en) Terphenyl derivative and electrophotographic photoreceptor using the same
JPH0592936A (en) Dinaphthoquinone derivative and photosensitizer using the same
JP5504702B2 (en) Electrophotographic photoreceptor
JP3685581B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP2000284511A (en) Electrophotographic photoreceptor
JP3587942B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP3694068B2 (en) Electrophotographic photoreceptor
JP3778595B2 (en) Electrophotographic photoreceptor and method for synthesizing diphenoquinone compound
JPH11286618A (en) Dichlorotin phthalocyanine compound, its production, and electrophotographic photoreceptor using it
JP3787164B2 (en) Electrophotographic photoreceptor
JP3640756B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JPH09297416A (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP3556391B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP4162807B2 (en) Organic photoconductive compound and electrophotographic photoreceptor using the same
JP3649846B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP4623849B2 (en) Phthalocyanine and production method thereof, photoelectric conversion element using phthalocyanine, and electrophotographic photosensitive member
JP2001064246A (en) Dicyanomethylene compound, electron transfer agent using the same dicyanomethylene compound and electrophotographic photoreceptor using the same dicyanomethylene compound
JP2000219677A (en) Organic photoconductive compound and electrophotographic photoreceptor using the same
JPH09304953A (en) Electrophotographic photosensitive body
JP3587941B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP4162808B2 (en) Organic photoconductive compound and electrophotographic photoreceptor using the same
JP3707192B2 (en) Electrophotographic photoreceptor
JP5472592B2 (en) Electrophotographic photoreceptor
JPH10260539A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees