JP3587941B2 - Organic photoconductive material and electrophotographic photoreceptor using the same - Google Patents

Organic photoconductive material and electrophotographic photoreceptor using the same Download PDF

Info

Publication number
JP3587941B2
JP3587941B2 JP24039996A JP24039996A JP3587941B2 JP 3587941 B2 JP3587941 B2 JP 3587941B2 JP 24039996 A JP24039996 A JP 24039996A JP 24039996 A JP24039996 A JP 24039996A JP 3587941 B2 JP3587941 B2 JP 3587941B2
Authority
JP
Japan
Prior art keywords
group
photoconductive material
organic photoconductive
charge
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24039996A
Other languages
Japanese (ja)
Other versions
JPH1090923A (en
Inventor
保 堀内
智子 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP24039996A priority Critical patent/JP3587941B2/en
Publication of JPH1090923A publication Critical patent/JPH1090923A/en
Application granted granted Critical
Publication of JP3587941B2 publication Critical patent/JP3587941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は有機光導電性材料及びそれを用いた電子写真感光感光体に関し、詳しくは特定の有機光導電性材料を含有することを特徴とする電子写真感光体に関するものである。
【0002】
【従来の技術】
近年、電子写真方式の利用は複写機の分野に限らず印刷版材、スライドフィルム、マイクロフィルムなどの従来では写真技術が使われていた分野へ広がり、またレーザーやLED、CRTを光源とする高速プリンターへの応用も検討されている。また最近では光導電性材料の電子写真感光体以外の用途、例えば静電記録素子、センサー材料、EL素子などへの応用も検討され始めた。従って光導電性材料及びそれを用いた電子写真感光体に対する要求も高度で幅広いものになりつつある。これまで電子写真方式の感光体としては無機系の光導電性物質、例えばセレン、硫化カドミウム、酸化亜鉛、シリコンなどが知られており、広く研究され、かつ実用化されている。これらの無機物質は多くの長所を持っているのと同時に、種々の欠点をも有している。例えばセレンには製造条件が難しく、熱や機械的衝撃で結晶化しやすいという欠点があり、硫化カドミウムや酸化亜鉛は耐湿性、耐久性に難がある。シリコンについては帯電性の不足や製造上の困難さが指摘されている。更に、セレンや硫化カドミウムには毒性の問題もある。
【0003】
これに対し、有機系の光導電性物質は成膜性がよく、可撓性も優れていて、軽量であり、透明性もよく、適当な増感方法により広範囲の波長域に対する感光体の設計が容易であるなどの利点を有していることから、次第にその実用化が注目を浴びている。
【0004】
ところで、電子写真技術に於て使用される感光体は、一般的に基本的な性質として次のような事が要求される。即ち、(1) 暗所におけるコロナ放電に対して帯電性が高いこと、(2) 得られた帯電電荷の暗所での漏洩(暗減衰)が少ないこと、(3) 光の照射によって帯電電荷の散逸(光減衰)が速やかであること、(4) 光照射後の残留電荷が少ないことなどである。
【0005】
しかしながら、今日まで有機系光導電性物質としてポリビニルカルバゾールを始めとする光導電性ポリマーに関して多くの研究がなされてきたが、これらは必ずしも皮膜性、可撓性、接着性が十分でなく、また上述の感光体としての基本的な性質を十分に具備しているとはいい難い。
【0006】
一方、有機系の低分子光導電性化合物については、感光体形成に用いる結着剤などを選択することにより、皮膜性や接着性、可撓性など機械的強度に優れた感光体を得ることができ得るものの、高感度の特性を保持し得るのに適した化合物を見出すことは困難である。
【0007】
このような点を改良するために電荷発生機能と電荷輸送機能とを異なる物質に分担させ、より高感度の特性を有する有機感光体が開発されている。機能分離型と称されているこのような感光体の特徴はそれぞれの機能に適した材料を広い範囲から選択できることであり、任意の性能を有する感光体を容易に作製し得ることから多くの研究が進められてきた。
【0008】
このうち、電荷発生機能を担当する物質としては、フタロシアニン顔料、スクエアリウム色素、アゾ顔料、ペリレン顔料などの多種の物質が検討され、中でもアゾ顔料は多様な分子構造が可能であり、また、高い電荷発生効率が期待できることから広く研究され、実用化も進んでいる。しかしながら、このアゾ顔料においては、分子構造と電荷発生効率の関係はいまだに明らかになっていない。膨大な合成研究を積み重ねて、最適の構造を探索しているのが実情であるが、先に掲げた感光体として求められている基本的な性質や高い耐久性などの要求を十分に満足するものは、未だ得られていない。
【0009】
一方、電荷輸送機能を担当する物質には正孔輸送物質と電子輸送物質がある。正孔輸送物質としてはヒドラゾン化合物やスチルベン化合物など、電子輸送物質としては2,4,7−トリニトロ−9−フルオレノン、ジフェノキノン誘導体など多種の物質が検討され、実用化も進んでいるが、こちらも膨大な合成研究を積み重ねて最適の構造を探索しているのが実情である。事実、これまでに多くの改良がなされてきたが、先に掲げた感光体として求められている基本的な性質や高い耐久性などの要求を十分に満足するものは、未だ得られていない。
【0010】
以上述べたように電子写真感光体の作製には種々の改良が成されてきたが、先に掲げた感光体として要求される基本的な性質や高い耐久性などの要求を十分に満足するものは未だ得られていないのが現状である。
【0011】
【発明が解決しようとする課題】
本発明の目的は、帯電電位が高く高感度で、繰返し使用しても諸特性が変化せず安定した性能を発揮できる電子写真感光体及びセンサー材料、EL素子、静電記録素子などにも使用可能な有機光導電性材料を提供することである。更に、本発明の別の目的は、製造が容易であり、かつ結着剤との相溶性に優れる電子写真感光体を提供することである。
【0012】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく光導電性材料の研究を行なった結果、特定の構造を有する有機光導電性材料が有効であることを見出し、本発明に至った。上記で特定の構造を有する有機光導電性材料とは、下記一般式(1)で示される化合物である。
【0013】
【化2】

Figure 0003587941
【0014】
一般式(1)において、R1、R2は水素原子、置換基を有していてもよいアルキル基、アルケニル基を示し、R3は置換基を有していてもよいアルキル基、アラルキル基、アリール基、複素環を示す。R4は水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、アルコキシ基を示し、nは0〜2までの整数を示す。R6、R7は、水素原子、置換基を有していてもよいアルキル基、アリール基、複素環基を示す。但し、R6、R7のどちらか一つに必ずアリール基、あるいは複素環を有する。R5は置換基を有していてもよいビニル基、ブタジエニル基、1−シクロヘキセニル基を示す。但し、R 1 =R 2 =HでR 5 がCH 2 =CH−の場合を除く。
【0015】
ここでR、Rの具体例としては、水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基などのアルキル基、アリル基、メタリル基などのアルケニル基を挙げることができる。また、R、Rは置換基を有していてもよいが、その置換基の具体例としては、メトキシ基、エトキシ基などのアルコキシ基、弗素原子、塩素原子などのハロゲン原子などを挙げることができる。
【0016】
また、Rの具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基などのアルキル基、ベンジル基、1−ナフチルメチル基などのアラルキル基、フェニル基、ナフチル基などのアリール基、フリル基、チエニル基などの複素環を挙げることができる。また、Rは置換基を有していてもよいが、その置換基の具体例としては弗素原子、塩素原子などのハロゲン原子、メトキシ基、エトキシ基などのアルコキシ基、上述のアルキル基などを挙げることができる。
【0017】
またR、Rの具体例としては、水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基などのアルキル基、フェニル基、ナフチル基などのアリール基、あるいはフリル基、チエニル基の複素環などを挙げることができる。また、R、Rは置換基を有していてもよく、その具体例としては、弗素原子、塩素原子などのハロゲン原子、上述のアルキル基、メトキシ基、エトキシ基などのアルコキシ基、そして上述のアリール基などを挙げることができる。
【0018】
ここでR5の具体例としては、ビニル基、1−シクロヘキセニル基を挙げることができる。但し、R1=R2=HのときはR5は単なるビニル基(CH2=CH−)を除く。また、R5は置換基を有していてもよいが、その置換基の具体例としてはメチル基、エチル基などのアルキル基、フェニル基、ナフチル基などのアリール基、チエニル基などの複素環基などを挙げることができる。
【0019】
【発明の実施の形態】
本発明の有機光導電性材料は、適度な結晶性を有しているために精製が容易であり、かつ結着剤との相溶性もよい。従って、感光体作製後、感光体表面で結晶化することなく、安定した被膜を形成することが可能である。
【0020】
本発明にかかわる一般式(1)で示される有機光導電性材料の具体例としては、以下に示すC−01〜95の構造を有するものが挙げられるが、これらに限定されるものではない。
【0021】
【化3】
Figure 0003587941
【0022】
【化4】
Figure 0003587941
【0023】
【化5】
Figure 0003587941
【0024】
【化6】
Figure 0003587941
【0025】
【化7】
Figure 0003587941
【0026】
【化8】
Figure 0003587941
【0027】
【化9】
Figure 0003587941
【0028】
【化10】
Figure 0003587941
【0029】
【化11】
Figure 0003587941
【0030】
【化12】
Figure 0003587941
【0031】
【化13】
Figure 0003587941
【0032】
【化14】
Figure 0003587941
【0033】
【化15】
Figure 0003587941
【0034】
本発明の電子写真感光体は、一般式(1)で示される有機光導電性材料及び電荷発生物質をそれぞれ1種類あるいは2種類以上含有することにより得られる。電荷発生物質には無機系電荷発生物質と有機系電荷発生物質があり、前者の例としては例えばセレン、セレン−テルル合金、セレン−ヒ素合金、硫化カドミウム、酸化亜鉛、アモルファスシリコンなどが挙げられる。有機系電荷発生物質の例としては、例えばメチルバイオレット、ブリリアントグリーン、クリスタルバイオレットなどのトリフェニルメタン系染料、メチレンブルーなどのチアジン染料、キニザリンなどのキノン染料、シアニン染料、アクリジン染料、ピリリウム色素、チアピリリウム色素、スクエアリウム色素、ペリノン系顔料、アントラキノン系顔料、金属含有あるいは無金属のフタロシアニン系顔料、ペリレン系顔料などが挙げられ、また、アゾ顔料も用いられる。
【0035】
アゾ顔料としては、例えば特開昭47−37543号公報、特開昭53−95033号公報、特開昭53−132347号公報、特開昭53−133445号公報、特開昭54−12742号公報、特開昭54−20736号公報、特開昭54−20737号公報、特開昭54−21728号公報、特開昭54−22834号公報、特開昭55−69148号公報、特開昭55−69654号公報、特開昭55−79449号公報、特開昭55−117151号公報、特開昭56−46237号公報、特開昭56−116039号公報、特開昭56−116040号公報、特開昭56−119134号公報、特開昭56−143437号公報、特開昭57−63537号公報、特開昭57−63538号公報、特開昭57−63541号公報、特開昭57−63542号公報、特開昭57−63549号公報、特開昭57−66438号公報、特開昭57−74746号公報、特開昭57−78542号公報、特開昭57−78543号公報、特開昭57−90056号公報、特開昭57−90057号公報、特開昭57−90632号公報、特開昭57−116345号公報、特開昭57−202349号公報、特開昭58−4151号公報、特開昭58−90644号公報、特開昭58−144358号公報、特開昭58−177955号公報、特開昭59−31962号公報、特開昭59−33253号公報、特開昭59−71059号公報、特開昭59−72448号公報、特開昭59−78356号公報、特開昭59−136351号公報、特開昭59−201060号公報、特開昭60−15642号公報、特開昭60−140351号公報、特開昭60−179746号公報、特開昭61−11754号公報、特開昭61−90164号公報、特開昭61−90165号公報、特開昭61−90166号公報、特開昭61−112154号公報、特開昭61−269165号公報、特開昭61−281245号公報、特開昭61−51063号公報、特開昭62−267363号公報、特開昭63−68844号公報、特開昭63−89866号公報、特開昭63−139355号公報、特開昭63−142063号公報、特開昭63−183450号公報、特開昭63−282743号公報、特開昭64−21455号公報、特開昭64−78259号公報、特開平1−200267号公報、特開平1−202757号公報、特開平1−319754号公報、特開平2−72372号公報、特開平2−254467号公報、特開平3−95561号公報、特開平3−278063号公報、特開平4−96068号公報、特開平4−96069号公報、特開平4−147265号公報、特開平5−142841号公報、特開平5−303226号公報、特開平6−324504号公報、特開平7−168379号公報などに記載の化合物が挙げられる。
【0036】
また、これらのアゾ顔料に用いられるカプラー成分の構造は多岐に渡る。例えば特開昭54−17735号公報、特開昭54−79632号公報、特開昭57−176055号公報、特開昭59−197043号公報、特開昭60−130746号公報、特開昭60−153050号公報、特開昭60−103048号公報、特開昭60−189759号公報、特開昭63−131146号公報、特開昭63−155052号公報、特開平2−110569号公報、特開平4−149448号公報、特開平6−27705号公報、特開平6−348047号公報などに記載の化合物が挙げられる。
【0037】
上記アゾ顔料の具体例は以下に示すB−1〜40に示す化合物と表1〜14に示すカプラーとの組み合わせからなる全ての化合物を挙げることができるが、これらに限定されるものではない。また、これらの化合物と他の電荷発生物質を併用することも可能である。
【0038】
【化16】
Figure 0003587941
【0039】
【化17】
Figure 0003587941
【0040】
【化18】
Figure 0003587941
【0041】
【化19】
Figure 0003587941
【0042】
【化20】
Figure 0003587941
【0043】
【化21】
Figure 0003587941
【0044】
【化22】
Figure 0003587941
【0045】
【表1】
Figure 0003587941
【0046】
【表2】
Figure 0003587941
【0047】
【表3】
Figure 0003587941
【0048】
【表4】
Figure 0003587941
【0049】
【表5】
Figure 0003587941
【0050】
【表6】
Figure 0003587941
【0051】
【表7】
Figure 0003587941
【0052】
【表8】
Figure 0003587941
【0053】
【表9】
Figure 0003587941
【0054】
【表10】
Figure 0003587941
【0055】
【表11】
Figure 0003587941
【0056】
【表12】
Figure 0003587941
【0057】
【表13】
Figure 0003587941
【0058】
【表14】
Figure 0003587941
【0059】
感光体の形態としては種々のものが知られているが、そのいずれにも用いることができる。例えば、導電性支持体上に電荷発生物質、電荷輸送物質、およびフィルム形成性結着剤樹脂からなる感光層を設けたものがある。また、導電性支持体上に、電荷発生物質と結着剤樹脂からなる電荷発生層と、電荷輸送物質と結着剤樹脂からなる電荷輸送層を設けた積層型の感光体も知られている。電荷発生層と電荷輸送層はどちらが上層となっても構わない。また、必要に応じて導電性支持体と感光層の間に下引き層を、感光体表面にオーバーコート層を、積層型感光体の場合は電荷発生層と電荷輸送層との間に中間層を設けることもできる。本発明の化合物を用いて感光体を作製する支持体としては、金属製ドラム、金属板、導電性加工を施した紙やプラスチックフィルムのシート状、ドラム状あるいはベルト状の支持体などが使用される。
【0060】
それらの支持体上へ感光層を形成するために用いるフィルム形成性結着剤樹脂としては利用分野に応じて種々のものがあげられる。例えば複写用感光体の用途ではポリスチレン樹脂、ポリビニルアセタール樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、酢ビ・クロトン酸共重合体樹脂、ポリエステル樹脂、ポリフェニレンオキサイド樹脂、ポリアリレート樹脂、アルキッド樹脂、アクリル樹脂、メタクリル樹脂、フェノキシ樹脂などが挙げられる。これらの中でも、ポリスチレン樹脂、ポリビニルアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂などは感光体としての電位特性に優れている。また、これらの樹脂は、単独あるいは共重合体のいずれでもよく、またこれらを1種または2種以上を混合して用いることができる。これら結着剤樹脂の光導電性化合物に対して加える量は、20〜1000重量%が好ましく、50〜500重量%がより好ましい。
【0061】
積層型感光体の場合、電荷発生層に含有されるこれらの樹脂は、電荷発生物質に対して10〜500重量%が好ましく、50〜150重量%がより好ましい。樹脂の比率が高くなりすぎると電荷発生効率が低下し、また樹脂の比率が低くなりすぎると成膜性に問題が生じる。また、電荷輸送層に含有されるこれらの樹脂は、電荷輸送物質に対して20〜1000重量%が好ましく、50〜500重量%がより好ましい。樹脂の比率が高すぎると感度が低下し、また、樹脂の比率が低くなりすぎると繰り返し特性の悪化や塗膜の欠損を招くおそれがある。
【0062】
これらの樹脂の中には、引っ張り、曲げ、圧縮などの機械的強度に弱いものがある。この性質を改良するために、可塑性を与える物質を加えることができる。具体的には、フタル酸エステル(例えばDOP、DBPなど)、リン酸エステル(例えばTCP、TOPなど)、セバシン酸エステル、アジピン酸エステル、ニトリルゴム、塩素化炭化水素などが挙げられる。これらの物質は、必要以上に添加すると電子写真特性の悪影響を及ぼすので、その割合は結着剤樹脂に対し20重量%以下が好ましい。
【0063】
その他、感光体中への添加物として酸化防止剤やカール防止剤など、塗工性の改良のためレベリング剤などを必要に応じて添加することができる。
【0064】
一般式(1)で示されるスチルベン化合物は更に他の電荷輸送物質と組み合わせて用いることができる。電荷輸送物質には正孔輸送物質と電子輸送物質がある。前者の例としては、例えば特公昭34−5466号公報などに示されているオキサジアゾール類、特公昭45−555号公報などに示されているトリフェニルメタン類、特公昭52−4188号公報などに示されているピラゾリン類、特公昭55−42380号公報などに示されているヒドラゾン類、特開昭56−123544号公報などに示されているオキサジアゾール類などを挙げることができる。一方、電子輸送物質としては、例えばクロラニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、1,3,7−トリニトロジベンゾチオフェン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキシドなどがある。これらの電荷輸送物質は単独または2種以上組み合わせて用いることができる。
【0065】
また、一般式(1)で示されるスチルベン化合物と電荷移動錯体を形成し、更に増感効果を増大させる増感剤として、ある種の電子吸引性化合物を添加することもできる。この電子吸引性化合物としては例えば、2,3−ジクロロ−1,4−ナフトキノン、1−ニトロアントラキノン、1−クロロ−5−ニトロアントラキノン、2−クロロアントラキノン、フェナントレンキノンなどのキノン類、4−ニトロベンズアルデヒドなどのアルデヒド類、9−ベンゾイルアントラセン、インダンジオン、3,5−ジニトロベンゾフェノン、3,3′,5,5′−テトラニトロベンゾフェノンなどのケトン類、無水フタル酸、4−クロロナフタル酸無水物などの酸無水物、テレフタラルマロノニトリル、9−アントリルメチリデンマロノニトリル、4−ニトロベンザルマロノニトリル、4−(p−ニトロベンゾイルオキシ)ベンザルマロノニトリルなどのシアノ化合物、3−ベンザルフタリド、3−(α−シアノ−p−ニトロベンザル)フタリド、3−(α−シアノ−p−ニトロベンザル)−4,5,6,7−テトラクロロフタリドなどのフタリド類などを挙げることができる。
【0066】
本発明の有機光導電性材料は、感光体の形態に応じて上記の種々の添加物質と共に適当な溶剤中に溶解または分散し、その塗布液を先に述べた導電性支持体上に塗布し、乾燥して感光体を製造することができる。
【0067】
塗布溶剤としてはクロロホルム、ジクロロエタン、ジクロロメタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、ジクロロベンゼンなどのハロゲン化炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、ジオキサン、テトラヒドロフラン、メチルセロソルブ、エチルセロソルブ、エチレングリコールジメチルエーテルなどのエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、メチルイソプロピルケトン、シクロヘキサノンなどのケトン系溶剤、酢酸エチル、ギ酸メチル、メチルセロソルブアセテートなどのエステル系溶剤、N,N−ジメチルホルムアミド、アセトニトリル、N−メチルピロリドン、ジメチルスルホキシドなどの非プロトン性極性溶剤及びn−ブタノール、2−プロパノールなどのアルコール系溶剤などを挙げることができる。これらの溶剤は単独または2種以上の混合溶剤として使用することができる。
【0068】
【実施例】
次に本発明を実施例により更に詳細に説明するが、本発明はこれらに何ら限定されるものではない。
【0069】
【化23】
Figure 0003587941
【0070】
合成例1 例示化合物C−11の合成
上記(2)で示されるアルデヒド体2.02g、及びジエチルシンナミルフォスフォネート2.72gを溶かした1,2−ジメトキシエタン80ml溶液に、室温で撹拌下、カリウムt−ブトキシド1.41gをゆっくりと加えた。30分撹拌を続けた後、反応液を500mlの氷水に注ぎ込んで反応を停止し、酢酸エチルで有機成分を抽出した。分離した有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られたオイル状物質をシリカゲルカラムクロマトグラフィーで精製して化合物C−11を2.10g得た。収率73%。融点112.6℃。
【0071】
【化24】
Figure 0003587941
【0072】
合成例2 例示化合物C−26の合成
上記(3)で示されるアルデヒド体3.34g、及びジエチルシンナミルフォスフォネート4.12gを溶かした1,2−ジメトキシエタン80ml溶液に、室温で撹拌下、カリウムt−ブトキシド3.01gをゆっくりと加えた。30分撹拌を続けた後、反応液を500mlの氷水に注ぎ込んで反応を停止し、酢酸エチルで有機成分を抽出した。分離した有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られたオイル状物質をシリカゲルカラムクロマトグラフィーで精製して化合物C−26を4.03g得た。収率86%。融点99.5℃。
【0073】
実施例1
アゾ顔料(B−1、Cp=A−21)1重量部及びポリエステル樹脂(東洋紡製バイロン200)1重量部をテトラヒドロフラン100重量部と混合し、ペイントコンディショナー装置でガラスビーズと共に2時間分散した。こうして得た分散液を、アプリケーターにてアルミ蒸着ポリエステル上に塗布して乾燥し、膜厚約0.2μmの電荷発生層を形成した。次にスチルベン化合物(例示化合物C−01)を、ポリアリレート樹脂(ユニチカ製U−ポリマー)と1:1の重量比で混合し、ジクロロエタンを溶媒として10重量%の溶液を作り、上記の電荷発生層の上にアプリケーターで塗布して膜厚約20μmの電荷輸送層を形成した。乾燥後にこの層を観察したところ、スチルベン化合物の結晶析出は全く見られなかった。
【0074】
この様にして作製した積層型感光体について、静電記録試験装置(川口電機製SP−428)を用いて電子写真特性の評価を行なった。
測定条件:印加電圧−6kV、スタティックNo. 3(ターンテーブルの回転スピードモード:10m/min )。その結果、帯電電位(V0)が−795V、半減露光量(E1/2)が1.2ルックス・秒と高感度の値を示した。
【0075】
更に同装置を用いて、帯電−除電(除電光:白色光で400ルックス×1秒照射)を1サイクルとする繰返し使用に対する特性評価を行った。5000回での繰返しによる帯電電位の変化を求めたところ、1回目の帯電電位(V0)−795Vに対し、5000回目の帯電電位(V0)は−775Vであり、繰返しによる電位の低下がほとんどなく安定した特性を示した。また、1回目の半減露光量(E1/2)1.2ルックス・秒に対して5000回目の半減露光量(E1/2)は1.2ルックス・秒と変化がなく優れた特性を示した。
【0076】
実施例2〜48
実施例1のアゾ顔料(B−1、Cp=A−21)及び例示化合物C−01の代わりに、それぞれ表15、表16に示すアゾ顔料及びスチルベン化合物を用いた他は、実施例1と同様にして感光体を作製してその特性を評価した。結果を表15、表16に示す。なおこれらの感光体においても実施例1と同様に、乾燥後にスチルベン化合物の結晶析出は全く認められなかった。
【0077】
【表15】
Figure 0003587941
【0078】
【表16】
Figure 0003587941
【0079】
実施例49
アゾ顔料(B−1、Cp=A−21)1重量部とテトラヒドロフラン40重量部を、ペイントコンディショナー装置でガラスビーズと共に8時間分散処理した。こうして得た分散液に、スチルベン化合物(例示化合物C−01)を2.5重量部、ポリカーボネート樹脂(三菱ガス化学製PCZ−200)10重量部、テトラヒドロフラン60重量部を加え、更にペイントコンディショナー装置で30分間分散処理を行った後、アプリケーターにてアルミ蒸着ポリエステル上に塗布し、膜厚約15μmの感光層を形成した。乾燥後、この層を観察したところ、サウチルベン化合物の結晶析出は全く認められなかった。この感光体の電子写真特性を、実施例1と同様にして評価した。ただし、印加電圧のみ+5kVに変更した。その結果、1回目の帯電電位(V0)+410V、半減露光量(E1/2)1.4ルックス・秒、5000回繰り返し後の帯電電位(V0)+390V、半減露光量(E1/2)1.4ルックス・秒と、高感度でしかも変化の少ない、優れた特性を示した。
【0080】
実施例50〜96
実施例49のアゾ顔料(B−12、Cp=A−21)及び例示化合物C−01の代わりに、それぞれ表17、表18に示すアゾ顔料及びスチルベン化合物を用いた他は、実施例49と同様にして感光体を作製してその特性を評価した。結果を表17、表18に示す。なお、これらの感光体においても、実施例49と同様に、スチルベン化合物の結晶析出は全く認められなかった。
【0081】
【表17】
Figure 0003587941
【0082】
【表18】
Figure 0003587941
【0083】
実施例97〜107
実施例1のアゾ顔料の代わりにτ型無金属フタロシアニンを、例示化合物C−01の代わりにそれぞれ表19に示すスチルベン化合物を用いた他は、実施例1と同様にして感光体を作製してその特性を評価した。結果を表19に示す。また、これらの感光体においても実施例1と同様、スチルベン化合物の結晶析出は全く認められなかった。
【0084】
【表19】
Figure 0003587941
【0085】
実施例108〜118
実施例49のアゾ顔料の代わりにY型チタニルオキシフタロシアニンを、例示化合物C−01の代わりにそれぞれ表20に示すスチルベン化合物を用いた他は、実施例1と同様にして感光体を作製してその特性を評価した。結果を表20に示す。また、これらの感光体においても、実施例49と同様、スチルベン化合物の結晶析出は全く認められなかった。
【0086】
【表20】
Figure 0003587941
【0087】
【化25】
Figure 0003587941
【0088】
比較例1
電荷輸送物質として例示化合物C−01の代わりに上記に示す比較化合物(4)を用いた他は、実施例1と同様に感光体を作製した。しかし、比較化合物(4)は結晶性が高く、作製した感光体表面で結晶化してしまった。その感光体の特性を評価した結果、帯電電位は(V0)−280V、 半減露光量(E1/2)は3.7ルックス・秒と帯電電位の低下、並びに感度の低下がみられた。
【0089】
【化26】
Figure 0003587941
【0090】
比較例2
電荷輸送物質として例示化合物C−01の代わりに上記に示す比較化合物(5)を用いた他は、実施例1と同様に感光体を作製した。比較例1と同様に、比較化合物(5)も結晶性が高く、作製した感光体の表面で結晶化してしまった。その感光体の特性を評価した結果、帯電電位(V0)は−300V、半減露光量(E1/2)は2.9ルックス・秒と帯電電位の低下、並びに感度の低下がみられた。
【0091】
【発明の効果】
以上から明らかなように、本発明の有機光導電性材料を用いれば高感度で高耐久性を有し、安定した被膜を形成することが可能な優れた電子写真感光体を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an organic photoconductive material and an electrophotographic photosensitive member using the same, and more particularly, to an electrophotographic photosensitive member containing a specific organic photoconductive material.
[0002]
[Prior art]
In recent years, the use of electrophotography has spread not only in the field of copiers but also in fields where photographic technology has been conventionally used, such as printing plate materials, slide films, and microfilms. Application to printers is also being considered. Recently, the use of a photoconductive material for applications other than the electrophotographic photoreceptor, for example, an electrostatic recording element, a sensor material, an EL element, and the like has been studied. Accordingly, demands for photoconductive materials and electrophotographic photoreceptors using the same are becoming higher and wider. Heretofore, inorganic photoconductive materials such as selenium, cadmium sulfide, zinc oxide, and silicon have been known as electrophotographic photoconductors, and have been widely studied and put to practical use. While these inorganic materials have many advantages, they also have various disadvantages. For example, selenium has drawbacks in that production conditions are difficult and crystallization is easily caused by heat and mechanical shock, and cadmium sulfide and zinc oxide have poor moisture resistance and durability. It has been pointed out that silicon is insufficient in chargeability and difficult to manufacture. In addition, selenium and cadmium sulfide have toxicity problems.
[0003]
On the other hand, organic photoconductive materials have good film-forming properties, excellent flexibility, light weight, good transparency, and the design of photoreceptors over a wide wavelength range by an appropriate sensitization method. Because of its advantages such as ease of use, its practical use is gradually attracting attention.
[0004]
By the way, a photoreceptor used in the electrophotographic technology is generally required to have the following basic properties. That is, (1) high chargeability against corona discharge in a dark place, (2) little leakage (dark decay) of the obtained charge in a dark place, and (3) charge charge by light irradiation. (4) The residual charge after light irradiation is small.
[0005]
However, to date, much research has been conducted on photoconductive polymers such as polyvinyl carbazole as organic photoconductive materials, but these have not always had sufficient film properties, flexibility, and adhesiveness. It is difficult to say that the toner has sufficient basic properties as a photoreceptor.
[0006]
On the other hand, for organic low-molecular-weight photoconductive compounds, it is possible to obtain a photoreceptor having excellent mechanical strength such as film properties, adhesiveness, and flexibility by selecting a binder and the like used for photoreceptor formation. However, it is difficult to find a compound suitable for maintaining high sensitivity characteristics.
[0007]
In order to improve such a point, an organic photoreceptor having higher sensitivity characteristics has been developed in which the charge generation function and the charge transport function are shared by different substances. The feature of such a photoconductor, which is called a function-separated type, is that a material suitable for each function can be selected from a wide range, and a photoconductor with arbitrary performance can be easily manufactured. Has been advanced.
[0008]
Among them, as the substance in charge of the charge generation function, various kinds of substances such as phthalocyanine pigment, squarium dye, azo pigment, and perylene pigment have been studied, and among them, azo pigments can have various molecular structures, Since charge generation efficiency can be expected, it has been widely studied and its practical use has been advanced. However, in this azo pigment, the relationship between the molecular structure and the charge generation efficiency has not yet been clarified. The fact is that we are searching for the optimal structure through extensive synthesis research, but it fully satisfies the basic properties and high durability required for the photoreceptors listed above. Things have not yet been obtained.
[0009]
On the other hand, the substances in charge of the charge transport function include a hole transport substance and an electron transport substance. A wide variety of materials such as hydrazone compounds and stilbene compounds have been studied as hole transport materials, and 2,4,7-trinitro-9-fluorenone and diphenoquinone derivatives have been studied as electron transport materials. The fact is that we are searching for the optimal structure through extensive synthesis research. In fact, many improvements have been made so far, but none of the above-mentioned photoconductors sufficiently satisfy the basic properties and high durability demands of the photoconductors.
[0010]
As described above, various improvements have been made in the production of electrophotographic photoreceptors, but those which sufficiently satisfy the basic properties and high durability required for the photoreceptors listed above. Has not yet been obtained.
[0011]
[Problems to be solved by the invention]
It is an object of the present invention to use in electrophotographic photosensitive members and sensor materials, EL elements, electrostatic recording elements, and the like, which have a high charged potential, high sensitivity, and exhibit stable performance without changing various characteristics even when used repeatedly. It is to provide a possible organic photoconductive material. Further, another object of the present invention is to provide an electrophotographic photoreceptor which is easy to produce and has excellent compatibility with a binder.
[0012]
[Means for Solving the Problems]
The present inventors have conducted research on a photoconductive material to achieve the above object, and as a result, have found that an organic photoconductive material having a specific structure is effective, and reached the present invention. The organic photoconductive material having a specific structure as described above is a compound represented by the following general formula (1).
[0013]
Embedded image
Figure 0003587941
[0014]
In the general formula (1), R 1 and R 2 represent a hydrogen atom, an alkyl group or an alkenyl group which may have a substituent, and R 3 represents an alkyl group or an aralkyl group which may have a substituent. , An aryl group, and a heterocyclic ring. R 4 represents a hydrogen atom, a halogen atom, an alkyl group or an alkoxy group which may have a substituent, and n represents an integer of 0 to 2. R 6 and R 7 represent a hydrogen atom, an alkyl group which may have a substituent, an aryl group, or a heterocyclic group. However, one of R 6 and R 7 always has an aryl group or a heterocyclic ring. R 5 represents optionally vinyl group which may have a substituent group, butadienyl group, a 1-cyclohexenyl group. However, this excludes the case where R 1 = R 2 = H and R 5 is CH 2 = CH-.
[0015]
Here, specific examples of R 1 and R 2 include a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, an n-propyl group and an isopropyl group, and an alkenyl group such as an allyl group and a methallyl group. R 1 and R 2 may have a substituent. Specific examples of the substituent include an alkoxy group such as a methoxy group and an ethoxy group, and a halogen atom such as a fluorine atom and a chlorine atom. be able to.
[0016]
Specific examples of R 3 include alkyl groups such as methyl group, ethyl group, n-propyl group and isopropyl group, aralkyl groups such as benzyl group and 1-naphthylmethyl group, and aryl groups such as phenyl group and naphthyl group. , A furyl group, a thienyl group and the like. R 3 may have a substituent. Specific examples of the substituent include a halogen atom such as a fluorine atom and a chlorine atom, an alkoxy group such as a methoxy group and an ethoxy group, and the above-described alkyl group. Can be mentioned.
[0017]
Specific examples of R 6 and R 7 include a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, an n-propyl group and an isopropyl group, an aryl group such as a phenyl group and a naphthyl group, and a furyl group and a thienyl group. Heterocycles and the like can be mentioned. Further, R 6 and R 7 may have a substituent, and specific examples thereof include a halogen atom such as a fluorine atom and a chlorine atom, the above-described alkyl group, an alkoxy group such as a methoxy group and an ethoxy group, and The above-mentioned aryl groups can be exemplified.
[0018]
Here, specific examples of R 5 include a vinyl group and a 1 -cyclohexenyl group. However, when R 1 = R 2 = H R 5 except a simple vinyl groups (CH 2 = CH-). R 5 may have a substituent. Specific examples of the substituent include an alkyl group such as a methyl group and an ethyl group, an aryl group such as a phenyl group and a naphthyl group, and a heterocyclic group such as a thienyl group. And the like.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Since the organic photoconductive material of the present invention has appropriate crystallinity, it can be easily purified and has good compatibility with a binder. Therefore, it is possible to form a stable film without crystallization on the surface of the photoconductor after the photoconductor is manufactured.
[0020]
Specific examples of the organic photoconductive material represented by the general formula (1) according to the present invention include those having the structures of C-01 to 95 shown below, but are not limited thereto.
[0021]
Embedded image
Figure 0003587941
[0022]
Embedded image
Figure 0003587941
[0023]
Embedded image
Figure 0003587941
[0024]
Embedded image
Figure 0003587941
[0025]
Embedded image
Figure 0003587941
[0026]
Embedded image
Figure 0003587941
[0027]
Embedded image
Figure 0003587941
[0028]
Embedded image
Figure 0003587941
[0029]
Embedded image
Figure 0003587941
[0030]
Embedded image
Figure 0003587941
[0031]
Embedded image
Figure 0003587941
[0032]
Embedded image
Figure 0003587941
[0033]
Embedded image
Figure 0003587941
[0034]
The electrophotographic photoreceptor of the present invention can be obtained by containing one or more of the organic photoconductive material represented by the general formula (1) and the charge generating substance. The charge generating material includes an inorganic charge generating material and an organic charge generating material. Examples of the former include selenium, selenium-tellurium alloy, selenium-arsenic alloy, cadmium sulfide, zinc oxide, amorphous silicon, and the like. Examples of organic charge generating substances include, for example, triphenylmethane dyes such as methyl violet, brilliant green and crystal violet, thiazine dyes such as methylene blue, quinone dyes such as quinizarin, cyanine dyes, acridine dyes, pyrylium dyes, and thiapyrylium dyes And squarium dyes, perinone pigments, anthraquinone pigments, metal-containing or metal-free phthalocyanine pigments, perylene pigments, and the like, and azo pigments are also used.
[0035]
Examples of azo pigments include JP-A-47-37543, JP-A-53-95033, JP-A-53-132347, JP-A-53-133445, and JP-A-54-12742. JP-A-54-20736, JP-A-54-20737, JP-A-54-21728, JP-A-54-22834, JP-A-55-69148, JP-A-55-69148 JP-A-69654, JP-A-55-79449, JP-A-55-117151, JP-A-56-46237, JP-A-56-116039, JP-A-56-116040, JP-A-56-119134, JP-A-56-143439, JP-A-57-63537, JP-A-57-63538, JP-A-57-63541 JP-A-57-63542, JP-A-57-63549, JP-A-57-66438, JP-A-57-74746, JP-A-57-78542, and JP-A-57-64542. JP-A-78543, JP-A-57-90056, JP-A-57-90057, JP-A-57-90632, JP-A-57-116345, JP-A-57-202349, JP-A-58-4151, JP-A-58-90644, JP-A-58-144358, JP-A-58-177555, JP-A-59-31962, JP-A-59-33253. JP-A-59-71059, JP-A-59-72448, JP-A-59-78356, JP-A-59-136351, and JP-A-59-201060. Japanese Patent Application Laid-Open Nos. Sho 60-15642, 60-140351, 60-179746, 61-11754, 61-90164, and 61-90164. 61-90165, JP-A-61-90166, JP-A-61-112154, JP-A-61-269165, JP-A-61-281245, and JP-A-61-51063. JP-A-62-267363, JP-A-63-68844, JP-A-63-89866, JP-A-63-139355, JP-A-63-142063, -183450, JP-A-63-282743, JP-A-64-21455, JP-A-64-78259, JP-A-1-200267, JP-A-1-2-2 JP-A-027557, JP-A-1-319754, JP-A-2-72372, JP-A-2-254467, JP-A-3-95561, JP-A-3-278806, and JP-A-4-96068 JP-A-4-96069, JP-A-4-147265, JP-A-5-142841, JP-A-5-303226, JP-A-6-324504, JP-A-7-168379, etc. And the compounds described in the above.
[0036]
The structure of the coupler component used in these azo pigments is various. For example, JP-A-54-17735, JP-A-54-79632, JP-A-57-176055, JP-A-59-197043, JP-A-60-130746 and JP-A-60-130746. JP-A-153050, JP-A-60-103048, JP-A-60-189759, JP-A-63-131146, JP-A-63-155052, JP-A-2-110569, Compounds described in JP-A-4-149448, JP-A-6-27705, JP-A-6-348047 and the like can be mentioned.
[0037]
Specific examples of the azo pigment include, but are not limited to, all compounds composed of combinations of the compounds shown in B-1 to 40 shown below and the couplers shown in Tables 1 to 14. Further, these compounds can be used in combination with other charge generating substances.
[0038]
Embedded image
Figure 0003587941
[0039]
Embedded image
Figure 0003587941
[0040]
Embedded image
Figure 0003587941
[0041]
Embedded image
Figure 0003587941
[0042]
Embedded image
Figure 0003587941
[0043]
Embedded image
Figure 0003587941
[0044]
Embedded image
Figure 0003587941
[0045]
[Table 1]
Figure 0003587941
[0046]
[Table 2]
Figure 0003587941
[0047]
[Table 3]
Figure 0003587941
[0048]
[Table 4]
Figure 0003587941
[0049]
[Table 5]
Figure 0003587941
[0050]
[Table 6]
Figure 0003587941
[0051]
[Table 7]
Figure 0003587941
[0052]
[Table 8]
Figure 0003587941
[0053]
[Table 9]
Figure 0003587941
[0054]
[Table 10]
Figure 0003587941
[0055]
[Table 11]
Figure 0003587941
[0056]
[Table 12]
Figure 0003587941
[0057]
[Table 13]
Figure 0003587941
[0058]
[Table 14]
Figure 0003587941
[0059]
Various types of photoreceptors are known, and any of them can be used. For example, there is one in which a photosensitive layer comprising a charge generating substance, a charge transporting substance, and a film-forming binder resin is provided on a conductive support. Further, a laminated photoreceptor in which a charge generation layer composed of a charge generation substance and a binder resin and a charge transport layer composed of a charge transport substance and a binder resin are provided on a conductive support is also known. . Either of the charge generation layer and the charge transport layer may be an upper layer. In addition, if necessary, an undercoat layer is provided between the conductive support and the photosensitive layer, an overcoat layer is provided on the surface of the photosensitive member, and in the case of a laminated photosensitive member, an intermediate layer is provided between the charge generation layer and the charge transport layer. Can also be provided. As a support for preparing a photoreceptor using the compound of the present invention, a metal drum, a metal plate, a sheet-like or drum-like or belt-like support of paper or plastic film subjected to conductive processing, and the like are used. You.
[0060]
As the film-forming binder resin used for forming a photosensitive layer on such a support, various resins can be used depending on the field of use. For example, for photoreceptors for copying, polystyrene resin, polyvinyl acetal resin, polysulfone resin, polycarbonate resin, vinyl acetate / crotonic acid copolymer resin, polyester resin, polyphenylene oxide resin, polyarylate resin, alkyd resin, acrylic resin, methacrylic resin And phenoxy resins. Among them, polystyrene resin, polyvinyl acetal resin, polycarbonate resin, polyester resin, polyarylate resin, and the like have excellent potential characteristics as a photoconductor. These resins may be used alone or as a copolymer, and they may be used alone or in combination of two or more. The amount of the binder resin added to the photoconductive compound is preferably 20 to 1000% by weight, and more preferably 50 to 500% by weight.
[0061]
In the case of a laminated photoreceptor, these resins contained in the charge generation layer are preferably from 10 to 500% by weight, more preferably from 50 to 150% by weight, based on the charge generation substance. If the ratio of the resin is too high, the charge generation efficiency is reduced, and if the ratio of the resin is too low, there is a problem in film formability. Further, these resins contained in the charge transporting layer are preferably 20 to 1000% by weight, more preferably 50 to 500% by weight, based on the charge transporting substance. If the ratio of the resin is too high, the sensitivity is lowered, and if the ratio of the resin is too low, the repetition characteristics may be deteriorated or the coating may be damaged.
[0062]
Some of these resins have low mechanical strength such as tension, bending, and compression. In order to improve this property, substances which impart plasticity can be added. Specific examples include phthalic acid esters (eg, DOP, DBP, etc.), phosphoric acid esters (eg, TCP, TOP, etc.), sebacic acid esters, adipic acid esters, nitrile rubber, chlorinated hydrocarbons, and the like. If these substances are added unnecessarily, they adversely affect the electrophotographic properties. Therefore, the proportion is preferably 20% by weight or less based on the binder resin.
[0063]
In addition, as an additive to the photoreceptor, a leveling agent or the like for improving coating properties, such as an antioxidant or an anti-curl agent, can be added as needed.
[0064]
The stilbene compound represented by the general formula (1) can be used in combination with another charge transport substance. The charge transport materials include a hole transport material and an electron transport material. Examples of the former include, for example, oxadiazoles disclosed in JP-B-34-5466, triphenylmethanes disclosed in JP-B-45-5555, and JP-B-52-4188. And the like, hydrazones disclosed in JP-B-55-42380, oxadiazoles disclosed in JP-A-56-123544 and the like. On the other hand, examples of the electron transport material include chloranil, tetracyanoethylene, tetracyanoquinodimethane, 2,4,7-trinitro-9-fluorenone, 2,4,5,7-tetranitro-9-fluorenone, 2,4 , 5,7-tetranitroxanthone, 2,4,8-trinitrothioxanthone, 1,3,7-trinitrodibenzothiophene, 1,3,7-trinitrodibenzothiophene-5,5-dioxide and the like. These charge transport materials can be used alone or in combination of two or more.
[0065]
In addition, a certain kind of electron-withdrawing compound can be added as a sensitizer that forms a charge transfer complex with the stilbene compound represented by the general formula (1) and further increases the sensitizing effect. Examples of the electron-withdrawing compound include quinones such as 2,3-dichloro-1,4-naphthoquinone, 1-nitroanthraquinone, 1-chloro-5-nitroanthraquinone, 2-chloroanthraquinone, and phenanthrenequinone; Aldehydes such as benzaldehyde, ketones such as 9-benzoylanthracene, indandione, 3,5-dinitrobenzophenone, 3,3 ', 5,5'-tetranitrobenzophenone, phthalic anhydride, 4-chloronaphthalic anhydride and the like Acid anhydrides, cyano compounds such as terephthalalmalononitrile, 9-anthrylmethylidene malononitrile, 4-nitrobenzalmalonenitrile, 4- (p-nitrobenzoyloxy) benzalmalononitrile, 3-benzalphthalide, 3 -(Α-cyano-p-ni Robenzaru) phthalide, 3- (alpha-cyano -p- Nitorobenzaru) -4,5,6,7 such phthalides such as tetrachloro phthalide can be cited.
[0066]
The organic photoconductive material of the present invention is dissolved or dispersed in an appropriate solvent together with the various additives described above depending on the form of the photoreceptor, and the coating solution is coated on the conductive support described above. After drying, a photoreceptor can be manufactured.
[0067]
As a coating solvent, halogenated hydrocarbons such as chloroform, dichloroethane, dichloromethane, trichloroethane, trichloroethylene, chlorobenzene, dichlorobenzene, aromatic hydrocarbons such as benzene, toluene, xylene, dioxane, tetrahydrofuran, methyl cellosolve, ethyl cellosolve, ethylene glycol dimethyl ether Ether solvents such as methyl ethyl ketone, methyl isobutyl ketone, methyl isopropyl ketone, and cyclohexanone; ester solvents such as ethyl acetate, methyl formate and methyl cellosolve acetate; N, N-dimethylformamide, acetonitrile and N-methyl Aprotic polar solvents such as pyrrolidone and dimethyl sulfoxide and n-butanol and 2-propanol; Or the like can be mentioned alcohol-based solvent. These solvents can be used alone or as a mixed solvent of two or more.
[0068]
【Example】
Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
[0069]
Embedded image
Figure 0003587941
[0070]
Synthesis Example 1 Synthesis of Exemplified Compound C-11 A solution of 2.02 g of the aldehyde shown in the above (2) and 2.72 g of diethylcinnamylphosphonate in 80 ml of 1,2-dimethoxyethane was stirred at room temperature. And 1.41 g of potassium t-butoxide were slowly added. After stirring was continued for 30 minutes, the reaction solution was poured into 500 ml of ice water to stop the reaction, and an organic component was extracted with ethyl acetate. The separated organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained oily substance was purified by silica gel column chromatography to obtain 2.10 g of compound C-11. 73% yield. 112.6 ° C.
[0071]
Embedded image
Figure 0003587941
[0072]
Synthesis Example 2 Synthesis of Exemplified Compound C-26 A solution of 3.34 g of the aldehyde compound shown in the above (3) and 4.12 g of diethylcinnamylphosphonate in 80 ml of 1,2-dimethoxyethane was stirred at room temperature. And 3.01 g of potassium t-butoxide were slowly added. After stirring was continued for 30 minutes, the reaction solution was poured into 500 ml of ice water to stop the reaction, and an organic component was extracted with ethyl acetate. The separated organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained oily substance was purified by silica gel column chromatography to obtain 4.03 g of compound C-26. 86% yield. Melting point 99.5 ° C.
[0073]
Example 1
1 part by weight of an azo pigment (B-1, Cp = A-21) and 1 part by weight of a polyester resin (Vylon 200 manufactured by Toyobo) were mixed with 100 parts by weight of tetrahydrofuran, and dispersed together with glass beads by a paint conditioner for 2 hours. The dispersion thus obtained was applied on an aluminum-evaporated polyester using an applicator and dried to form a charge generation layer having a thickness of about 0.2 μm. Next, a stilbene compound (exemplified compound C-01) was mixed with a polyarylate resin (U-Polymer manufactured by Unitika) at a weight ratio of 1: 1 to prepare a 10% by weight solution using dichloroethane as a solvent. A charge transport layer having a thickness of about 20 μm was formed on the layer by coating with an applicator. When this layer was observed after drying, no crystal precipitation of the stilbene compound was observed.
[0074]
The electrophotographic characteristics of the laminated photoreceptor thus manufactured were evaluated using an electrostatic recording tester (SP-428 manufactured by Kawaguchi Electric).
Measurement conditions: applied voltage -6 kV, static No. 3 (turntable rotation speed mode: 10 m / min). As a result, the charged potential (V0) was −795 V, and the half-life exposure amount (E1 / 2) was 1.2 lux · sec, which was a high sensitivity value.
[0075]
Further, by using the same apparatus, the characteristic evaluation for repeated use with one cycle of charging-discharging (discharging light: irradiation with white light at 400 lux × 1 second) was performed. When the change of the charging potential due to the repetition of 5000 times was obtained, the charging potential (V0) of the 5000th time was -775 V with respect to the charging potential (V0) of -795 V of the first time, and the potential was hardly reduced by the repetition. It showed stable characteristics. The half-exposure dose (E1 / 2) of the 5000th time was 1.2 lux / sec, which was excellent at 1.2 lux / sec. .
[0076]
Examples 2 to 48
Example 1 was repeated except that the azo pigment of Example 1 (B-1, Cp = A-21) and the exemplified compound C-01 were replaced with azo pigments and stilbene compounds shown in Tables 15 and 16, respectively. Similarly, a photoreceptor was prepared and its characteristics were evaluated. The results are shown in Tables 15 and 16. As in Example 1, no crystal precipitation of the stilbene compound was observed on these photoconductors after drying.
[0077]
[Table 15]
Figure 0003587941
[0078]
[Table 16]
Figure 0003587941
[0079]
Example 49
1 part by weight of an azo pigment (B-1, Cp = A-21) and 40 parts by weight of tetrahydrofuran were dispersed together with glass beads for 8 hours using a paint conditioner. To the dispersion thus obtained, 2.5 parts by weight of a stilbene compound (exemplified compound C-01), 10 parts by weight of a polycarbonate resin (PCZ-200 manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 60 parts by weight of tetrahydrofuran were added. After a dispersion treatment for 30 minutes, the dispersion was applied on an aluminum vapor-deposited polyester with an applicator to form a photosensitive layer having a thickness of about 15 μm. After drying, this layer was observed, and no crystal precipitation of the sautylben compound was observed at all. The electrophotographic characteristics of this photoreceptor were evaluated in the same manner as in Example 1. However, only the applied voltage was changed to +5 kV. As a result, the first charging potential (V0) +410 V, half-exposure amount (E1 / 2) 1.4 lux / sec, and the charging potential (V0) +390 V after 5,000 repetitions, half-exposure amount (E1 / 2) 1. It showed excellent characteristics with high sensitivity and little change of 4 looks / sec.
[0080]
Examples 50 to 96
Example 49 was repeated except that the azo pigment and the stilbene compound shown in Tables 17 and 18 were used instead of the azo pigment (B-12, Cp = A-21) and Exemplified Compound C-01 of Example 49, respectively. Similarly, a photoreceptor was prepared and its characteristics were evaluated. The results are shown in Tables 17 and 18. In addition, also in these photoconductors, as in Example 49, no stilbene compound was crystallized.
[0081]
[Table 17]
Figure 0003587941
[0082]
[Table 18]
Figure 0003587941
[0083]
Examples 97 to 107
A photoconductor was prepared in the same manner as in Example 1, except that the azo pigment of Example 1 was replaced with a τ-type metal-free phthalocyanine, and the stilbene compounds shown in Table 19 were used instead of Exemplified Compound C-01. Its properties were evaluated. The results are shown in Table 19. Also, as in Example 1, no stilbene compound crystals were precipitated on these photosensitive members.
[0084]
[Table 19]
Figure 0003587941
[0085]
Examples 108 to 118
A photoconductor was prepared by the same way as that of Example 1 except that Y-type titanyloxyphthalocyanine was used instead of the azo pigment of Example 49 and stilbene compounds shown in Table 20 instead of Exemplified Compound C-01, respectively. Its properties were evaluated. The results are shown in Table 20. Also, in these photoreceptors, crystal precipitation of the stilbene compound was not observed at all, as in Example 49.
[0086]
[Table 20]
Figure 0003587941
[0087]
Embedded image
Figure 0003587941
[0088]
Comparative Example 1
A photoconductor was prepared by the same way as that of Example 1 except that the comparative compound (4) shown above was used instead of the exemplary compound C-01 as the charge transporting substance. However, Comparative Compound (4) had high crystallinity and crystallized on the surface of the produced photoreceptor. As a result of evaluating the characteristics of the photoreceptor, the charging potential was (V0) -280 V, the half-life exposure amount (E1 / 2) was 3.7 lux / sec, and the charging potential was lowered and the sensitivity was lowered.
[0089]
Embedded image
Figure 0003587941
[0090]
Comparative Example 2
A photoconductor was prepared by the same way as that of Example 1 except that Comparative Compound (5) shown above was used instead of Exemplified Compound C-01 as a charge transporting substance. As in Comparative Example 1, Comparative Compound (5) also had high crystallinity and crystallized on the surface of the produced photoreceptor. As a result of evaluating the characteristics of the photoreceptor, the charging potential (V0) was -300 V, and the half-life exposure amount (E1 / 2) was 2.9 lux · sec.
[0091]
【The invention's effect】
As is clear from the above, the use of the organic photoconductive material of the present invention can provide an excellent electrophotographic photoreceptor having high sensitivity and high durability and capable of forming a stable film. .

Claims (3)

下記一般式(1)で示されることを特徴とする有機光導電性材料。
Figure 0003587941
(一般式(1)において、R1、R2は水素原子、置換基を有していてもよいアルキル基、アルケニル基を示し、R3は置換基を有していてもよいアルキル基、アラルキル基、アリール基、複素環を示す。R4は水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、アルコキシ基を示し、nは0〜2までの整数を示す。R6、R7は、水素原子、置換基を有していてもよいアルキル基、アリール基、複素環基を示す。但し、R6、R7のどちらか一つに必ずアリール基、あるいは複素環を有する。R5は置換基を有していてもよいビニル基、1−シクロヘキセニル基を示す。但し、R1=R2=HでR5がCH2=CH−の場合を除く。)
An organic photoconductive material represented by the following general formula (1).
Figure 0003587941
(In the general formula (1), R 1 and R 2 each represent a hydrogen atom, an optionally substituted alkyl group or an alkenyl group, and R 3 represents an optionally substituted alkyl group or aralkyl. R 4 represents a hydrogen atom, a halogen atom, an alkyl group or an alkoxy group which may have a substituent, and n represents an integer of 0 to 2. R 6 , R 7 represents a hydrogen atom, an alkyl group which may have a substituent, an aryl group, or a heterocyclic group, provided that at least one of R 6 and R 7 has an aryl group or a heterocyclic group. .R 5 good vinyl group which may have a substituent, 1 - shows a cyclohexenyl group, however, R 5 in R 1 = R 2 = H is excluded the case of CH 2 = CH-)..
導電性支持体上に上記一般式(1)で示される有機光導電性材料を含む感光層を有することを特徴とする電子写真感光体。An electrophotographic photoreceptor comprising a photosensitive layer containing an organic photoconductive material represented by the general formula (1) on a conductive support. 感光層が電荷発生物質と電荷輸送物質とを含有し、この電荷輸送物質が上記一般式(1)で示される有機光導電性材料であることを特徴とする請求項2記載の電子写真感光体。3. The electrophotographic photoreceptor according to claim 2, wherein the photosensitive layer contains a charge generating substance and a charge transporting substance, and the charge transporting substance is an organic photoconductive material represented by the general formula (1). .
JP24039996A 1996-09-11 1996-09-11 Organic photoconductive material and electrophotographic photoreceptor using the same Expired - Fee Related JP3587941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24039996A JP3587941B2 (en) 1996-09-11 1996-09-11 Organic photoconductive material and electrophotographic photoreceptor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24039996A JP3587941B2 (en) 1996-09-11 1996-09-11 Organic photoconductive material and electrophotographic photoreceptor using the same

Publications (2)

Publication Number Publication Date
JPH1090923A JPH1090923A (en) 1998-04-10
JP3587941B2 true JP3587941B2 (en) 2004-11-10

Family

ID=17058904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24039996A Expired - Fee Related JP3587941B2 (en) 1996-09-11 1996-09-11 Organic photoconductive material and electrophotographic photoreceptor using the same

Country Status (1)

Country Link
JP (1) JP3587941B2 (en)

Also Published As

Publication number Publication date
JPH1090923A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
JP3685581B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP3587942B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP3730025B2 (en) Organic photoconductive compound and electrophotographic photoreceptor using the same
JP3556391B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JPH09297416A (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP3640756B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP3587941B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP3736910B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP4170840B2 (en) Electrophotographic photoreceptor
JPH1063019A (en) Organic photoconductive material, and electrophotographic photoreceptor using the same
JP2002023396A (en) Electrophotographic photoreceptor
JP3649846B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JPH10260541A (en) Electrophotographic photoreceptor
JP2914462B2 (en) Electrophotographic photoreceptor
JP4162807B2 (en) Organic photoconductive compound and electrophotographic photoreceptor using the same
JP3842911B2 (en) Distilbene compound and electrophotographic photosensitive member using the same
JPH1135540A (en) Organic photoconductive compound and electrophotographic photoreceptor using the same
JPH11271997A (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP2999032B2 (en) Electrophotographic photoreceptor
JP4162808B2 (en) Organic photoconductive compound and electrophotographic photoreceptor using the same
JP3130154B2 (en) Electrophotographic photoreceptor
JP2004045909A (en) Electrophotographic photoreceptor
JP2004061987A (en) Electrophotographic photoreceptor
JP2000219677A (en) Organic photoconductive compound and electrophotographic photoreceptor using the same
JP2002023398A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees