JP2010271207A - Diagnosis method of portion receiving compressive stress in concrete structure - Google Patents

Diagnosis method of portion receiving compressive stress in concrete structure Download PDF

Info

Publication number
JP2010271207A
JP2010271207A JP2009123703A JP2009123703A JP2010271207A JP 2010271207 A JP2010271207 A JP 2010271207A JP 2009123703 A JP2009123703 A JP 2009123703A JP 2009123703 A JP2009123703 A JP 2009123703A JP 2010271207 A JP2010271207 A JP 2010271207A
Authority
JP
Japan
Prior art keywords
ultrasonic
oscillator
concrete
compressive stress
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009123703A
Other languages
Japanese (ja)
Other versions
JP5676084B2 (en
Inventor
Yuji Murakami
祐治 村上
Tomoaki Tsutsumi
知明 堤
Nobuhiro Kaizu
信廣 海津
Mitsuo Harada
光男 原田
Yasuyoshi Kobuchi
康義 小淵
Yasuhito Aikyo
泰仁 相京
Atsushi Yamatani
敦 山谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Hazama Gumi Ltd
Tokyo Electric Power Co Inc
Hazama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd, Tokyo Electric Power Co Inc, Hazama Corp filed Critical Hazama Gumi Ltd
Priority to JP2009123703A priority Critical patent/JP5676084B2/en
Publication of JP2010271207A publication Critical patent/JP2010271207A/en
Application granted granted Critical
Publication of JP5676084B2 publication Critical patent/JP5676084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To determine a range of compression failure, a lowering range of compression strength, and a lowering degree of the compression strength in a portion receiving compression stress of a concrete structure. <P>SOLUTION: In this method, an oscillator and a receiver are arranged at a prescribed oscillator-receiver interval on a sound part to measure ultrasonic wave velocity at the sound part by utilizing an ultrasonic wave method, and similar measurement is performed successively by moving a measuring position at a prescribed interval from a position where the compression stress is concentrated toward the sound part, and a velocity ratio at each measuring position acquired by dividing the ultrasonic wave velocity at each measuring position by the ultrasonic wave velocity at the sound part is determined, and the range and the degree of collapse of concrete are determined from the lowering degree of the velocity ratio. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、コンクリート構造物における圧縮応力を受けた部位の診断方法に関し、特に、目視による表面的な観察では把握できないコンクリートの圧壊箇所の範囲及び程度を判定するのに適した、コンクリート構造物における圧縮応力を受けた部位の診断方法に関する。   The present invention relates to a method for diagnosing a portion subjected to compressive stress in a concrete structure, and particularly in a concrete structure suitable for determining the range and degree of concrete crushing sites that cannot be grasped by visual observation. The present invention relates to a method for diagnosing a portion subjected to compressive stress.

ビル、トンネル、橋梁、各種水路、ダムなど既設のコンクリート構造物が地震などの外力を受けて、コンクリートの強度に劣化が生じた場合、その補修、補強が必要となるため、コンクリートの強度を測定する必要がある。コンクリート構造物の強度を測定するためには、そのコンクリート構造物について実際に計測する必要があり、この計測方法としては、計測対象のコンクリート構造物の表面から、通常、直径100mm、高さが直径の2倍の長さ200mm程度の円柱状のコンクリートコアを試験体として採取し、この試験体の上下端面に加圧板を密着させ、荷重を加えて圧縮する載荷試験(圧縮強度試験)を行う方法が知られている。この載荷試験の結果により、例えば図4に示すようなコンクリートの応力−ひずみ曲線を得ることができ、コンクリートの圧縮強度を求めることができる。この種の計測方法は例えば特許文献1などに記載されている。   When existing concrete structures such as buildings, tunnels, bridges, various waterways, and dams are subjected to external forces such as earthquakes, and the concrete strength deteriorates, it is necessary to repair and reinforce the concrete. There is a need to. In order to measure the strength of a concrete structure, it is necessary to actually measure the concrete structure. As a measuring method, the diameter of the concrete structure is usually 100 mm and the height is a diameter from the surface of the concrete structure to be measured. A cylindrical concrete core having a length of about 200 mm, which is twice as long as the test piece, is subjected to a loading test (compressive strength test) in which a pressure plate is brought into close contact with the upper and lower end surfaces of this test body and compressed by applying a load It has been known. From the result of this loading test, for example, a concrete stress-strain curve as shown in FIG. 4 can be obtained, and the compressive strength of the concrete can be obtained. This type of measurement method is described in Patent Document 1, for example.

特許第2655529号公報Japanese Patent No. 2655529

ところで、このような載荷試験の結果から得られた、図4に示すようなコンクリートの応力−ひずみ曲線は最大圧縮強度に達する前(試験体A)と最大圧縮強度に達した後(試験体B)に分けられるが、圧縮強度がピークに達した後の例えば最大圧縮強度の80%程度の強度である試験体Bの表面と圧縮強度がピークに達する前の試験体Aの表面を観察対比しても、いずれも圧壊部の範囲や程度を把握できないために、コンクリートが受けた応力・ひずみ履歴を予想することは難しい。   By the way, the stress-strain curve of concrete as shown in FIG. 4 obtained from the result of such a loading test is before reaching the maximum compressive strength (test body A) and after reaching the maximum compressive strength (test body B). However, the surface of the specimen B, which is about 80% of the maximum compressive strength after the peak compressive strength, is compared with the surface of the specimen A before the peak compressive strength is observed. However, it is difficult to predict the stress / strain history experienced by the concrete because neither can grasp the range or degree of the collapsed portion.

また、この関連で、例えば、ボックスカルバートのようなコンクリート構造物が地震を受けた場合のコンクリートの強度を計測するために、ボックスカルバートモデルのコンクリート構造物の載荷試験を行ってみたところ、特に圧縮力を受けた箇所では、上記と同様に、圧壊箇所の判定が困難であった。図5に示すように、ボックスカルバートモデルのコンクリート構造物を(図5中に示す矢印方向に)片押しすると、このコンクリート構造物の損傷箇所は圧縮応力を受ける箇所と引張応力を受ける箇所に分けられ、四角で囲まれた部分が圧縮力を受ける箇所であり、その反対側が引張力を受ける箇所である。この載荷試験の結果から、コンクリートの圧壊箇所はコンクリートのひずみが5000μにまで達し、コンクリートが圧壊していることが分かっているものの、その状態がコンクリートの表面に相応のひび割れが発生して外部に現れていれば目視により確認できるが、特に圧縮力を受けた箇所では、表面にひび割れが発生していない、あるいは発生していたとしても目視では確認できないために、表面的な観察では、圧縮破壊されている範囲や圧縮強度が低下している範囲、また圧縮強度の低下の程度を判定することができない。   Also, in this connection, for example, when a concrete structure such as a box culvert was subjected to an earthquake, a load test of the concrete structure of the box culvert model was performed. In the place where the force was received, it was difficult to determine the crushing place as described above. As shown in FIG. 5, when a box culvert model concrete structure is pressed (in the direction of the arrow shown in FIG. 5), the damaged portion of the concrete structure is divided into a portion subjected to compressive stress and a portion subjected to tensile stress. The portion surrounded by the square is a portion that receives a compressive force, and the opposite side is a portion that receives a tensile force. From the results of this loading test, it is known that the concrete crushing location has reached a concrete strain of 5000μ and the concrete is crushing. If it appears, it can be confirmed by visual inspection, but especially in places subjected to compressive force, there is no crack on the surface, or even if it has occurred, it cannot be confirmed by visual inspection. The range in which the compression strength is reduced, the range in which the compression strength is reduced, and the degree of reduction in the compression strength cannot be determined.

そこで、本願発明者らは、コンクリート構造物において、圧縮応力を受け、目視による表面的な観察ではコンクリート表面下の損傷の状態を把握できない部位について、圧縮破壊の範囲及び程度を判定することを目的として、鋭意研究の結果、超音波法を利用して、コンクリート表面下の損傷の状態を把握し、コンクリートの圧縮破壊された範囲や圧縮強度が低下した範囲、圧縮強度の低下の程度を判定することを見出し、本発明を創案するに至った。   Therefore, the inventors of the present invention have an object to determine the extent and extent of compressive fracture in a concrete structure that receives compressive stress and cannot visually recognize the state of damage under the surface of the concrete. As a result of intensive research, the ultrasonic method is used to grasp the state of damage under the concrete surface, and the extent of compressive fracture of the concrete, the range where the compressive strength has decreased, and the degree of decrease in the compressive strength are determined. As a result, the present invention has been invented.

上記目的を達成するために、本発明のコンクリート構造物における圧縮応力を受けた部位の診断方法は、
(1)コンクリート構造物における圧縮応力を受けていない健全部に超音波法による発振子及び受振子を所定の発振子・受振子間距離で配置し、前記発振子により超音波パルスを発振し、前記受振子により当該超音波パルスを受振することにより、前記発振子及び前記受振子間の超音波速度を計測し、
(2)上記(1)と同様の計測をコンクリート表面の圧縮応力が集中する位置から前記健全部に向けて計測位置を所定の間隔で移動して順次行い、当該各計測位置の前記発振子及び前記受振子間の超音波速度を計測し、
(3)上記(2)により得られた当該各計測位置の超音波速度を上記(1)により得られた前記健全部の超音波速度で除して、当該各計測位置の速度比を求め、
(4)上記(3)により得られた当該各計測位置の速度比の低下の度合いにより、コンクリートの圧壊の範囲及び程度を判定する、
ことを要旨とする。
In order to achieve the above object, a method for diagnosing a portion subjected to compressive stress in a concrete structure of the present invention is as follows.
(1) An oscillator and a receiver by an ultrasonic method are arranged at a predetermined distance between the oscillator and the receiver in a sound part that is not subjected to compressive stress in a concrete structure, and an ultrasonic pulse is oscillated by the oscillator. By receiving the ultrasonic pulse by the oscillator, the ultrasonic velocity between the oscillator and the oscillator is measured,
(2) The same measurement as the above (1) is sequentially performed by moving the measurement position at a predetermined interval from the position where the compressive stress on the concrete surface is concentrated toward the sound part, and the oscillators at the respective measurement positions and Measure the ultrasonic velocity between the transducers,
(3) Dividing the ultrasonic velocity of each measurement position obtained by (2) above by the ultrasonic velocity of the sound part obtained by (1) above, obtaining the velocity ratio of each measurement position;
(4) The range and degree of concrete crushing are determined based on the degree of decrease in the speed ratio at each measurement position obtained in (3) above.
This is the gist.

また、本発明のコンクリート構造物における圧縮応力を受けた部位の診断方法は、
(1)コンクリート構造物における圧縮応力を受けていない健全部に超音波法による発振子及び受振子を所定の発振子・受振子間距離で配置し、前記発振子により超音波パルスを発振し、前記受振子により当該超音波パルスを受振することにより、前記発振子及び前記受振子間の超音波速度及び当該受振した超音波の振幅を計測し、
(2)上記(1)と同様の計測をコンクリート表面の圧縮応力が集中する位置から前記健全部に向けて計測位置を所定の間隔で移動して順次行い、当該各計測位置の前記発振子及び前記受振子間の超音波速度及び当該受振した超音波の振幅を計測し、
(3)上記(2)により得られた当該各計測位置の超音波速度及び振幅をそれぞれ、上記(1)により得られた前記健全部の超音波速度及び振幅で除して、当該各計測位置の速度比及び振幅比を求め、
(4)上記(3)により得られた当該各計測位置の速度比及び振幅比の低下の度合いにより、コンクリートの圧壊の範囲及び程度を判定する、
ことを要旨とする。
In addition, the diagnostic method of the part subjected to compressive stress in the concrete structure of the present invention,
(1) An oscillator and a receiver by an ultrasonic method are arranged at a predetermined distance between the oscillator and the receiver in a sound part that is not subjected to compressive stress in a concrete structure, and an ultrasonic pulse is oscillated by the oscillator. By receiving the ultrasonic pulse by the receiver, the ultrasonic velocity between the oscillator and the receiver and the amplitude of the received ultrasonic wave are measured,
(2) The same measurement as the above (1) is sequentially performed by moving the measurement position at a predetermined interval from the position where the compressive stress on the concrete surface is concentrated toward the sound part, and the oscillators at the respective measurement positions and Measure the ultrasonic velocity between the transducers and the amplitude of the received ultrasonic waves,
(3) The ultrasonic velocity and amplitude of each measurement position obtained in (2) above are divided by the ultrasonic velocity and amplitude of the healthy part obtained in (1), respectively. Find the speed ratio and amplitude ratio of
(4) The range and degree of concrete crushing are determined based on the degree of decrease in the speed ratio and amplitude ratio at each measurement position obtained in (3) above.
This is the gist.

本発明のコンクリート構造物における圧縮応力を受けた部位の診断方法によれば、超音波法を利用し、健全部、各測定位置の超音波速度を計測して、各計測位置の超音波速度を健全部の超音波速度で除して得られる各計測位置の速度比を求め、この速度比の低下の度合いにより、コンクリートの圧壊の範囲及び程度を判定するので、圧縮応力を受けた部位について、コンクリートの圧縮破壊の範囲、圧縮強度の低下の範囲、及び圧縮強度の低下の程度を判定することができる、という格別な効果を奏する。   According to the method for diagnosing a part subjected to compressive stress in a concrete structure of the present invention, the ultrasonic velocity is used to measure the ultrasonic velocity at each healthy position and each measurement position, and the ultrasonic velocity at each measurement position is determined. Obtain the speed ratio of each measurement position obtained by dividing by the ultrasonic speed of the healthy part, and determine the range and degree of concrete crushing according to the degree of decrease in this speed ratio, so about the part that received compressive stress, There is an extraordinary effect that the range of compressive fracture of concrete, the range of reduced compressive strength, and the degree of reduced compressive strength can be determined.

また、本発明のコンクリート構造物における圧縮応力を受けた部位の診断方法によれば、超音波法を利用し、健全部、各測定位置の超音波速度及び超音波の振幅を計測して、各計測位置の超音波速度及び振幅をそれぞれ、健全部の超音波速度及び振幅で除して得られる各計測位置の速度比及び振幅比を求め、この速度比及び振幅比の低下の度合いにより、コンクリートの圧壊の範囲及び程度を判定するので、圧縮応力を受けた部位について、コンクリートの圧縮破壊の範囲、圧縮強度の低下の範囲、及び圧縮強度の低下の程度を判定することができる、という格別な効果を奏する。   In addition, according to the diagnostic method of a portion subjected to compressive stress in the concrete structure of the present invention, the ultrasonic method is used to measure the sound speed, the ultrasonic velocity and the ultrasonic amplitude of each measurement position, The speed ratio and amplitude ratio of each measurement position obtained by dividing the ultrasonic speed and amplitude of the measurement position by the ultrasonic speed and amplitude of the healthy part are obtained, and the concrete is calculated according to the degree of decrease in the speed ratio and amplitude ratio. Since the range and degree of crushing are determined, it is possible to determine the range of compressive fracture of concrete, the range of decrease in compressive strength, and the degree of decrease in compressive strength for the part subjected to compressive stress. There is an effect.

本発明の一実施の形態におけるコンクリート構造物における圧縮応力を受けた部位の診断方法を示す流れ図The flowchart which shows the diagnostic method of the site | part which received the compressive stress in the concrete structure in one embodiment of this invention 同診断方法において、コンクリート構造物の圧縮応力を受けた部位における発振子及び受振子の配置状態及び超音波速度の計測方法を示す斜視図The perspective view which shows the measuring method of the arrangement state and ultrasonic velocity of an oscillator and a receiver in the site | part which received the compressive stress of the concrete structure in the same diagnostic method 同診断方法において、コンクリート構造物の圧縮応力を受けた部位(隔壁)の高さ位置と速度比との関係を示す図The figure which shows the relationship between the height position of the part (partition) which received the compressive stress of the concrete structure, and the speed ratio in the same diagnostic method 従来の載荷試験により得られたコンクリートの応力−ひずみ曲線を示す図Diagram showing stress-strain curve of concrete obtained by conventional loading test ボックスカルバートモデルのコンクリート構造物の載荷試験から得られた診断結果を示す図The figure which shows the diagnostic result obtained from the loading test of the concrete structure of the box culvert model

次に、この発明を実施するための形態について図を用いて説明する。この実施の形態では、図5に示すボックスカルバートモデルのコンクリート構造物の、特に隔壁における圧縮応力を受けた部位の診断方法について例示する。この診断方法は、図1に示す超音波法を利用した各ステップを実施することにより、コンクリートの圧壊の範囲及び程度を判定するものである。   Next, embodiments for carrying out the present invention will be described with reference to the drawings. In this embodiment, a method for diagnosing a portion of the box culvert model concrete structure shown in FIG. This diagnostic method determines the range and extent of concrete crushing by performing each step using the ultrasonic method shown in FIG.

最初に、コンクリート構造物の圧縮応力を受けていない健全部に、発振子と受振子を所定の発振子・受振子間距離で配置する。この場合、隔壁の上下方向中間部の壁面に発振子と受振子を発振子・受振子間距離を例えば600mm程度として配置する。そして、発振子により超音波パルスを発振し、受振子により当該超音波パルスを受振して、この発振子と受振子との間の超音波の伝播時間から、この発振子及び受振子間の超音波速度を計測し、また併せて、受振した超音波の振幅などを計測する。このようにして隔壁の健全部における超音波速度データ及び振幅データを得る(ステップ1)。   First, an oscillator and a receiver are arranged at a predetermined distance between the oscillator and the receiver in a sound portion of the concrete structure that is not subjected to compressive stress. In this case, the resonator and the resonator are arranged on the wall surface of the middle portion in the vertical direction of the partition wall so that the distance between the resonator and the resonator is about 600 mm, for example. Then, an ultrasonic pulse is oscillated by the oscillator, and the ultrasonic pulse is received by the receiver. From the propagation time of the ultrasonic wave between the oscillator and the receiver, the ultrasonic wave between the oscillator and the receiver is detected. The sound velocity is measured, and the amplitude of the received ultrasonic wave is also measured. In this way, ultrasonic velocity data and amplitude data in the healthy part of the partition are obtained (step 1).

次に、ステップ1と同様の計測を、コンクリート表面の圧縮応力が集中する位置から健全部に向けて測定位置を所定の間隔で移動して順次行う。この場合、隔壁下部のハンチ部が圧縮応力の集中する場所である。したがって、図2に示すように、まず、ハンチ部C1に発振子1と受振子2を所定の発振子・受振子距離(例えば600mm)で配置して、この発振子1及び受振子2間の超音波速度を計測し、また併せて、受振した超音波の振幅を計測する。続いて、このハンチ部C1から上方に向けて、またこれとは反対に下方に向けて計測位置を所定の間隔、この場合、例えば50mm間隔で移動して、各計測位置で同様の計測を順次行い、各計測位置の発振子1及び受振子2間の超音波速度、及び当該受振した超音波の振幅を計測する。一般に、圧縮強度のピーク付近から微細なひび割れが生じ始め、ピークを過ぎるとひび割れが増大することが知られており、微細なひび割れが生じると、超音波はひび割れを迂回して進行するため、速度が低下することになる。このようにして隔壁の圧縮応力を受けた部位における超音波速度データ及び振幅データを得る(ステップ2)。   Next, the same measurement as step 1 is sequentially performed by moving the measurement position at a predetermined interval from the position where the compressive stress on the concrete surface is concentrated toward the healthy part. In this case, the haunch part below the partition wall is a place where compressive stress is concentrated. Therefore, as shown in FIG. 2, first, the resonator 1 and the resonator 2 are arranged in the hunched portion C <b> 1 at a predetermined resonator-resonator distance (for example, 600 mm), and between the resonator 1 and the resonator 2. The ultrasonic velocity is measured, and the amplitude of the received ultrasonic wave is also measured. Subsequently, the measurement positions are moved upward from the haunch portion C1 and downwardly in the opposite direction, and the measurement positions are moved at predetermined intervals, in this case, for example, at intervals of 50 mm, and the same measurement is sequentially performed at each measurement position. Then, the ultrasonic velocity between the oscillator 1 and the vibrator 2 at each measurement position and the amplitude of the received ultrasonic wave are measured. In general, it is known that fine cracks begin to occur near the peak of compressive strength, and cracks increase after passing the peak. Will drop. In this way, ultrasonic velocity data and amplitude data are obtained at the site of the partition wall subjected to the compressive stress (step 2).

次に、ステップ2により得られた各計測位置の超音波速度及び振幅をそれぞれ、ステップ1により得られた健全部の超音波速度及び振幅で除して、各計測位置の速度比及び振幅比を求める(ステップ3)。   Next, the ultrasonic velocity and amplitude of each measurement position obtained in step 2 are respectively divided by the ultrasonic velocity and amplitude of the healthy part obtained in step 1, and the velocity ratio and amplitude ratio of each measurement position are obtained. Obtain (step 3).

そして、ステップ3により得られた各計測位置の速度比及び振幅比の低下の度合いにより、コンクリートの圧壊の範囲及び程度を判定する(ステップ4)。図3に隔壁の高さ位置と速度比との関係を示している。凡例は隔壁の傾きを表す層間変形角である。この図3から明らかなように、層間変形角が26/1000の場合、ハンチ部の速度比が75%までに低下し、その範囲はハンチ部の上方へ100mm程度まで、ハンチ部の下方へ50mm程度まで達していることが分かる。なお、層間変形角が0/1000の場合は、ハンチ部を含めて速度比が100パーセントであり、層間変形角が大きくなると、ハンチ部に集中する圧縮応力も大きくなることが分かる。また併せて、この部分のコンクリートのひずみを測定したところ、この部分のコンクリートのひずみは4000μ程度まで達しており、ポストピークであった。   Then, the range and degree of concrete crushing are determined based on the degree of decrease in the speed ratio and amplitude ratio at each measurement position obtained in step 3 (step 4). FIG. 3 shows the relationship between the height position of the partition wall and the speed ratio. The legend is an interlayer deformation angle representing the inclination of the partition wall. As is apparent from FIG. 3, when the interlayer deformation angle is 26/1000, the speed ratio of the haunch part decreases to 75%, and the range is about 100 mm above the haunch part and 50 mm below the haunch part. It can be seen that the level has been reached. When the interlayer deformation angle is 0/1000, the speed ratio is 100% including the haunch portion, and it can be seen that the compressive stress concentrated on the haunch portion increases as the interlayer deformation angle increases. In addition, when the strain of the concrete in this portion was measured, the strain of the concrete in this portion reached about 4000 μm, which was a post peak.

以上説明したように、このコンクリート構造物における圧縮応力を受けた部位の診断方法によれば、超音波法を利用し、コンクリート構造物の健全部に発振子及び受振子を所定の発振子・受振子間距離で配置して、これら発振子及び受振子間の超音波速度、及び当該受振した超音波の振幅を計測し、これと同様の計測を、コンクリート表面の圧縮応力が集中する位置から健全部に向けて計測位置を所定の間隔で移動して順次行い、各計測位置の発振子及び受振子間の超音波速度、及び当該受振した超音波の振幅を計測して、各計測位置の超音波速度及び振幅をそれぞれ、健全部の超音波速度及び振幅で除して得られる各計測位置の速度比及び振幅比を求め、この速度比及び振幅比の低下の度合いにより、コンクリートの圧壊の範囲及び程度を判定するので、圧縮応力を受けた部位について、コンクリートの圧縮破壊の範囲、圧縮強度の低下の範囲、及び圧縮強度の低下の程度を判定することができる。   As described above, according to the method for diagnosing a portion of a concrete structure that has been subjected to compressive stress, an ultrasonic method is used to place an oscillator and a vibrator on a predetermined part of the concrete structure. Arrange the distance between the pendulums, measure the ultrasonic velocity between the oscillator and the pendulum, and the amplitude of the received ultrasonic wave, and perform the same measurement from the position where the compressive stress on the concrete surface is concentrated. The measurement position is moved toward the part at predetermined intervals and sequentially performed, and the ultrasonic velocity between the oscillator and the vibrator at each measurement position and the amplitude of the received ultrasonic wave are measured, and the superposition of each measurement position is measured. The velocity ratio and amplitude ratio of each measurement position obtained by dividing the sonic velocity and amplitude by the ultrasonic velocity and amplitude of the healthy part are obtained, and the range of concrete crushing is determined by the degree of decrease in the velocity ratio and amplitude ratio. And degree Because a constant, the site receives a compressive stress, it is possible to determine the range of compressive failure of the concrete, the range of decrease of the compressive strength, and the degree of reduction of the compressive strength.

なお、この実施の形態では、超音波法を利用し、健全部、各測定位置の超音波速度及び超音波の振幅を計測して、各計測位置の超音波速度及び振幅を健全部の超音波速度及び振幅で除して得られる各計測位置の速度比及び振幅比の低下の度合いにより、コンクリートの圧壊の範囲及び程度を判定するようにしたが、健全部、各測定位置の超音波速度を計測し、各計測位置の超音波速度を健全部の超音波速度で除して得られる各計測位置の速度比の低下の度合いのみにより、コンクリートの圧壊の範囲及び程度を判定するようにしてもよく、このようにしてもコンクリートの圧縮破壊の範囲、圧縮強度の低下の範囲、及び圧縮強度の低下の程度を判定することができる。   In this embodiment, the ultrasonic method is used to measure the ultrasonic velocity and the amplitude of the ultrasonic wave at each measurement position by measuring the ultrasonic velocity and the amplitude of the ultrasonic wave at each measurement position. The range and degree of concrete crushing were determined based on the speed ratio and amplitude ratio decrease at each measurement position obtained by dividing by speed and amplitude. The range and degree of concrete crushing may be determined only by the degree of decrease in the speed ratio at each measurement position obtained by measuring and dividing the ultrasonic speed at each measurement position by the ultrasonic speed at the sound part. Well, even in this way, it is possible to determine the range of compressive fracture of concrete, the range of decrease in compressive strength, and the degree of decrease in compressive strength.

1 発振子
2 受振子
C1 ハンチ部
1 Oscillator 2 Receiver C1 Hunch

Claims (2)

(1)コンクリート構造物における圧縮応力を受けていない健全部に超音波法による発振子及び受振子を所定の発振子・受振子間距離で配置し、前記発振子により超音波パルスを発振し、前記受振子により当該超音波パルスを受振することにより、前記発振子及び前記受振子間の超音波速度を計測し、
(2)上記(1)と同様の計測をコンクリート表面の圧縮応力が集中する位置から前記健全部に向けて計測位置を所定の間隔で移動して順次行い、当該各計測位置の前記発振子及び前記受振子間の超音波速度を計測し、
(3)上記(2)により得られた当該各計測位置の超音波速度を上記(1)により得られた前記健全部の超音波速度で除して、当該各計測位置の速度比を求め、
(4)上記(3)により得られた当該各計測位置の速度比の低下の度合いにより、コンクリートの圧壊の範囲及び程度を判定する、
ことを特徴とするコンクリート構造物における圧縮応力を受けた部位の診断方法。
(1) An oscillator and a receiver by an ultrasonic method are arranged at a predetermined distance between the oscillator and the receiver in a sound part that is not subjected to compressive stress in a concrete structure, and an ultrasonic pulse is oscillated by the oscillator. By receiving the ultrasonic pulse by the oscillator, the ultrasonic velocity between the oscillator and the oscillator is measured,
(2) The same measurement as the above (1) is sequentially performed by moving the measurement position at a predetermined interval from the position where the compressive stress on the concrete surface is concentrated toward the sound part, and the oscillators at the respective measurement positions and Measure the ultrasonic velocity between the transducers,
(3) Dividing the ultrasonic velocity of each measurement position obtained by (2) above by the ultrasonic velocity of the sound part obtained by (1) above, obtaining the speed ratio of each measurement position;
(4) The range and degree of concrete crushing are determined based on the degree of decrease in the speed ratio at each measurement position obtained in (3) above.
A method for diagnosing a part subjected to compressive stress in a concrete structure characterized by the above.
(1)コンクリート構造物における圧縮応力を受けていない健全部に超音波法による発振子及び受振子を所定の発振子・受振子間距離で配置し、前記発振子により超音波パルスを発振し、前記受振子により当該超音波パルスを受振することにより、前記発振子及び前記受振子間の超音波速度及び当該受振した超音波の振幅を計測し、
(2)上記(1)と同様の計測をコンクリート表面の圧縮応力が集中する位置から前記健全部に向けて計測位置を所定の間隔で移動して順次行い、当該各計測位置の前記発振子及び前記受振子間の超音波速度及び当該受振した超音波の振幅を計測し、
(3)上記(2)により得られた当該各計測位置の超音波速度及び振幅をそれぞれ、上記(1)により得られた前記健全部の超音波速度及び振幅で除して、当該各計測位置の速度比及び振幅比を求め、
(4)上記(3)により得られた当該各計測位置の速度比及び振幅比の低下の度合いにより、コンクリートの圧壊の範囲及び程度を判定する、
ことを特徴とするコンクリート構造物における圧縮応力を受けた部位の診断方法。
(1) An oscillator and a receiver by an ultrasonic method are arranged at a predetermined distance between the oscillator and the receiver in a sound part that is not subjected to compressive stress in a concrete structure, and an ultrasonic pulse is oscillated by the oscillator. By receiving the ultrasonic pulse by the receiver, the ultrasonic velocity between the oscillator and the receiver and the amplitude of the received ultrasonic wave are measured,
(2) The same measurement as the above (1) is sequentially performed by moving the measurement position at a predetermined interval from the position where the compressive stress on the concrete surface is concentrated toward the sound part, and the oscillators at the respective measurement positions and Measure the ultrasonic velocity between the transducers and the amplitude of the received ultrasonic waves,
(3) The ultrasonic velocity and amplitude of each measurement position obtained in (2) above are divided by the ultrasonic velocity and amplitude of the healthy part obtained in (1), respectively. Find the speed ratio and amplitude ratio of
(4) The range and degree of concrete crushing are determined based on the degree of decrease in the speed ratio and amplitude ratio at each measurement position obtained in (3) above.
A method for diagnosing a part subjected to compressive stress in a concrete structure characterized by the above.
JP2009123703A 2009-05-22 2009-05-22 Diagnosis method of parts subjected to compressive stress in concrete structures Active JP5676084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123703A JP5676084B2 (en) 2009-05-22 2009-05-22 Diagnosis method of parts subjected to compressive stress in concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009123703A JP5676084B2 (en) 2009-05-22 2009-05-22 Diagnosis method of parts subjected to compressive stress in concrete structures

Publications (2)

Publication Number Publication Date
JP2010271207A true JP2010271207A (en) 2010-12-02
JP5676084B2 JP5676084B2 (en) 2015-02-25

Family

ID=43419344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123703A Active JP5676084B2 (en) 2009-05-22 2009-05-22 Diagnosis method of parts subjected to compressive stress in concrete structures

Country Status (1)

Country Link
JP (1) JP5676084B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104864990A (en) * 2015-06-18 2015-08-26 中冶建筑研究总院有限公司 Concrete absolute stress measurement device and method
CN109142050A (en) * 2018-07-28 2019-01-04 中国计量大学 Secondary lining concrete crushing strength curve method for building up after a kind of tunnel fire hazard

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032559A (en) * 1989-03-16 1991-01-08 Hitachi Ltd Ultrasonic flaw detecting method
JP2003004712A (en) * 2001-06-22 2003-01-08 Mitsubishi Electric Corp Ultrasonic flaw detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032559A (en) * 1989-03-16 1991-01-08 Hitachi Ltd Ultrasonic flaw detecting method
JP2003004712A (en) * 2001-06-22 2003-01-08 Mitsubishi Electric Corp Ultrasonic flaw detector

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6013042894; 岡田 篤生: '"特集:予防保全に役立つ新技術(調査)"' 特集 土木工法2009 予防保全に役立つ新技術-維持・補修がより手軽にさらにきめ細かく , 20090424, pp.77-81 *
JPN6014022704; 松尾 豊史: '"ハンチの有無がRCボックスカルバートの変形性能及び破壊モードに及ぼす影響"' 土木学会年次学術講演会講演概要集 Vol.57th,部門5,V-097, 20020901, pp.193-194 *
JPN6014022706; 幸左 賢二: '"開削トンネル隅角部の耐震性に関する実験的研究"' コンクリート工学年次論文報告集 Vol.20,No.3, 19980630, pp.1057-1062 *
JPN6014022709; 森濱 和正: '"リバウンドハンマによる強度推定に関する検討"' 土木学会年次学術講演会講演概要集 Vol.63rd,Disk2,5-157, 20080813, pp.313-314 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104864990A (en) * 2015-06-18 2015-08-26 中冶建筑研究总院有限公司 Concrete absolute stress measurement device and method
CN109142050A (en) * 2018-07-28 2019-01-04 中国计量大学 Secondary lining concrete crushing strength curve method for building up after a kind of tunnel fire hazard

Also Published As

Publication number Publication date
JP5676084B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
Basu et al. Nonlinear ultrasonics-based technique for monitoring damage progression in reinforced concrete structures
JP4667228B2 (en) Pile inspection method and sensor crimping device
US20040123665A1 (en) Nondestructive detection of reinforcing member degradation
Russo et al. Experimental analysis of the “Saint Andrea” Masonry Bell Tower in Venice. A new method for the determination of “Tower Global Young’s Modulus E”
CN103424470A (en) Method for ultrasonically detecting bonding state of steel pipes and concrete
JP5403976B2 (en) Concrete structure quality inspection method
WO1979000929A1 (en) A method for investingating an anchored rod-like body having an accessible end,and apparatus for carrying out the method
CN110879252B (en) Method for detecting quality of concrete junction surface by using sound waves
Gehlot et al. Study of concrete quality assessment of structural elements using ultrasonic pulse velocity test
JP5676084B2 (en) Diagnosis method of parts subjected to compressive stress in concrete structures
JP3198840U (en) Prop road boundary inspection system
JPH109847A (en) Method for diagnosing shape of artificial or natural structure
JP2006010595A (en) Method for determining degree of structure damage due to traffic load through the use of acoustic emission sound of secondary causes
Carpinteri et al. Damage diagnosis and life-time assessment of concrete and masonry structures by an acoustic emission technique
WO2015059956A1 (en) Structure diagnosis device, structure diagnosis method, and program
Khan et al. Integrated health monitoring system for damage detection in civil structural components
JP6001576B2 (en) Ultrasonic probe
JP3834660B2 (en) Crack detection device for structures
Yuyama et al. Acoustic emission evaluation in concrete
JPH0768763B2 (en) METHOD AND DEVICE FOR DETECTING INTERNAL STATE OF PACKING GROUT FOR CONCRETE STRUCTURE
Vanniamparambil et al. Integrated nondestructive testing approach for damage detection and quantification in structural components
Akhtar et al. Comparison of damage and undamaged mechanical structure using free vibration analysis
Evans et al. Development of a guided-wave technology capable of the detection of open cracks and microcracks in embedded trunnion anchor rods
CN111595950B (en) Method for detecting concrete joint surface strength by using sound waves
JP4413082B2 (en) Inspection method for buried pipes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5676084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250