JP2010271070A - 渦電流探傷装置および渦電流探傷方法 - Google Patents

渦電流探傷装置および渦電流探傷方法 Download PDF

Info

Publication number
JP2010271070A
JP2010271070A JP2009121059A JP2009121059A JP2010271070A JP 2010271070 A JP2010271070 A JP 2010271070A JP 2009121059 A JP2009121059 A JP 2009121059A JP 2009121059 A JP2009121059 A JP 2009121059A JP 2010271070 A JP2010271070 A JP 2010271070A
Authority
JP
Japan
Prior art keywords
eddy current
current flaw
superconducting coil
coil
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009121059A
Other languages
English (en)
Inventor
Toru Okazaki
徹 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009121059A priority Critical patent/JP2010271070A/ja
Publication of JP2010271070A publication Critical patent/JP2010271070A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】大面積の動かしにくい被測定物についても、傷、割れなどの有無を測定することのできる渦電流探傷装置および渦電流探傷方法を提供する。
【解決手段】渦電流探傷装置10は、超電導コイル14と、駆動部15と、ピックアップコイル12とを備えている。駆動部15は、超電導コイル14を周期的に運動させる。ピックアップコイル12は、被測定物に対して、駆動部15により超電導コイル14を周期的に運動させたときに、被測定物から発生する変動磁場により発生する信号を検出する。
【選択図】図1

Description

本発明は渦電流探傷装置および渦電流探傷方法に関する。
従来より、被測定物の傷、割れ等の有無を検知するシステムとして、渦電流探傷装置が知られている。渦電流探傷装置は、たとえば図8に示すように、回転軸211と、永久磁石213と、ピックアップコイル215とを備えている。この渦電流探傷装置を用いて被測定物200の傷の有無を検知するためには、以下のように動作させる。具体的には、図8の矢印のように回転軸211により回転速度Uで被測定物200を回転させる。これにより、磁場中を被測定物200が運動するので、永久磁石213による磁束密度Bが図8の矢印のように発生し、被測定物200を含む閉回路に、−U×Bの式で表される起電力が発生する。発生した起電力(BおよびU)によって、図8に示す矢印のように渦電流Jが生じる。この渦電流Jが作る磁場をピックアップコイル215で起電力として検出する。被測定物200に傷、割れ等の不具合があると、渦電流の流れが正常の場合と異なるので、被測定物200の異常を定量的に検出することができる。
また、永久磁石213の代わりに、超電導コイルなどを渦電流探傷装置に用いる技術がある。超電導コイルを用いた渦電流探傷装置として、たとえば、特開昭60−147649号公報(特許文献1)、特開平1−41855号公報(特許文献2)、特開平1−44845号公報(特許文献3)、特開平1−176940号公報(特許文献4)などが挙げられる。
特開昭60−147649号公報 特開平1−41855号公報 特開平1−44845号公報 特開平1−176940号公報
しかしながら、永久磁石213として希土類磁石を用いると、希土類磁石の磁場の強度は、被測定物200から距離が離れると急速に落ちる。このため、永久磁石213を渦電流探傷装置に用いると、被測定物200から発生する変動磁場により発生する信号を十分に検出することができなかった。したがって、被測定物200の傷、割れなどの有無を十分に測定することができなかった。
また、上記特許文献1〜4の渦電流探傷装置では、被測定物200を回転させて被測定物200に磁場を印加することにより、被測定物200に誘起される渦電流をピックアップコイル215で感知している。このため、被測定物が大面積などの場合には、被測定物を回転させることができない。つまり、大面積の動かしにくい被測定物に対して、上記特許文献1〜4の渦電流探傷装置を適用することができなかった。
したがって、本発明の目的は、大面積の動かしにくい被測定物についても、傷、割れなどの有無を測定することのできる渦電流探傷装置および渦電流探傷方法を提供することである。
本発明の渦電流探傷装置は、超電導コイルと、駆動部と、ピックアップコイルとを備えている。駆動部は、超電導コイルを周期的に運動させる。ピックアップコイルは、被測定物に対して、駆動部により超電導コイルを周期的に運動させたときに、被測定物から発生する変動磁場により発生する信号を検出する。
本発明の渦電流探傷方法は、以下の工程を備えている。被測定物に対して、超電導コイルを周期的に運動させることにより、一定周期の磁場を発生する。一定周期の磁場からの変動磁場で、被測定物から発生する信号をピックアップコイルで検出する。
本発明の渦電流探傷装置および渦電流探傷方法によれば、磁場を発生させるために超電導コイルを用いている。超電導コイルは、被測定物から距離を離しても、磁場強度の低下を抑制できる。この超電導コイルを周期的に運動させることにより、被測定物に渦電流を発生させることができる。このため、被測定物を動かさなくても、被測定物から変動磁場を発生させることができ、かつ被測定物から発生する変動磁場により発生する信号を検出することができる。したがって、大面積の動かしにくい被測定物についても、傷、割れなどの有無を測定することができる。
上記渦電流探傷装置において好ましくは、超電導コイルを冷却するための冷媒供給部を配置しない状態で、超電導コイルを周期的に運動させる。
上記渦電流探傷方法において好ましくは、磁場を発生する工程では、超電導コイルを冷却するための冷媒供給部を配置しない状態で超電導コイルを周期的に運動させる。
超電導コイルとして、比熱が大きい高温超電導体などを用いることにより、冷媒供給部を備えていない場合であっても、超電導状態にした超電導コイルを用いることができる。これにより、超電導コイルを容易に運動させることができる。したがって、大面積の動かしにくい被測定物について、傷、割れなどの有無を容易に測定することができる。
本発明の渦電流探傷装置および渦電流探傷方法によれば、大面積の動かしにくい被測定物についても、傷、割れなどの有無を測定することのできる。
本発明の実施の形態1における渦電流探傷装置を概略的に示す模式図である。 本発明の実施の形態1における渦電流探傷方法を概略的に示す模式図である。 本発明の実施の形態1における渦電流探傷装置の磁場の流れを概略的に示す模式図である。 本発明の実施の形態1における渦電流探傷装置の磁場の流れを概略的に示す模式図である。 本発明の実施の形態1において、渦電流探傷装置に用いるコイルの特性を示す図である。 本発明の実施の形態2における渦電流探傷装置を概略的に示す模式図である。 本発明の実施の形態3における渦電流探傷装置を概略的に示す模式図である。 比較例における渦電流探傷装置を概略的に示す模式図である。
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には、同一の参照符号を付し、その説明は繰り返さない。
(実施の形態1)
図1を参照して、本発明の実施の形態1における渦電流探傷装置10について説明する。図1に示すように、本実施の形態における渦電流探傷装置10は、台座11と、ピックアップコイル12と、回転軸13と、超電導コイル14と、駆動部15とを備えている。
台座11の中心には、ピックアップコイル12が配置されている。このピックアップコイル12を貫通するように、かつ台座11と接続された回転軸13が設けられている。台座11上であって、かつ回転軸13に対して対称になるように、2つの超電導コイル14がそれぞれ配置されている。また、回転軸13を回転させるために回転軸13と接続された駆動部15が配置されている。つまり、駆動部15により回転軸13を回転させることにより、超電導コイル14を周期的に運動させることができる。
超電導コイル14は、磁場を発生させる。この超電導コイル14が周期的に運動することによって、磁場を超電導コイル14が横切ることになるので、被測定物に渦電流を発生させることができる。
本実施の形態における2つの超電導コイル14は、互いに同じ巻き数で、かつ同じ形状である。なお、超電導コイル14は、3つ以上配置されていてもよく、1つ配置されていてもよい。
また、超電導コイル14を構成する超電導体は、高温超電導体であることが好ましい。高温超電導体とは、たとえばBi−Pb−Sr−Ca−Cu−O系の組成を有するビスマス系超電導体、RExBayCuz7-d(0.7≦x≦1.3、1.7≦y≦2.3、2.7≦z≦3.3)の組成を有するRE123系超電導体などが挙げられる。
超電導コイル14を冷却するための冷媒供給部を配置しない状態で、超電導コイル14を周期的に運動させることが好ましい。つまり、渦電流探傷装置10は、超電導コイル14と接続された冷媒供給部を備えていないことが好ましい。言い換えると、超電導コイル14と冷媒とは分離されていることが好ましい。超電導コイル14を構成する超電導体が高温超電導体である場合、冷却された超電導コイル14を常温で用いても、所定の時間内であれば、超電導コイル14は超電導特性を維持できる。このため、渦電流探傷装置10の近傍には超電導コイル14を冷却するための冷媒を配置しておくことが好ましい。
駆動部15は、超電導コイル14を周期的に運動させる。本実施の形態では、台座11と接続されている回転軸13を回転させることにより、台座11と接続された超電導コイル14を回転させることができる。なお、本実施の形態では、周期的な運動として超電導コイル14を回転させているが、回転に限定されず、たとえばメトロノームのような運動、平行移動、揺動などであってもよい。また、駆動部15は、たとえばモーター、手などである。
ピックアップコイル12は、被測定物に対して、駆動部15により超電導コイル14を周期的に運動させたときに、被測定物から発生する変動磁場により発生する信号を検出する。ピックアップコイル12は、磁場を捕捉するコイルであり、磁場センサである。本実施の形態におけるピックアップコイル12は、固定されていて回転しないが、これに限定されず、超電導コイル14といっしょに回転してもよい。
続いて、本実施の形態における渦電流探傷方法について説明する。本実施の形態では、上述した渦電流探傷装置10を用いて、図2に示す被測定物100の傷、割れなどの有無を測定する。被測定物100は、導電体である。
まず、被測定物100に対して、超電導コイル14を周期的に運動させることにより、一定周期の磁場を発生する。具体的には、渦電流探傷装置10の超電導コイル14を超電導状態にする。また、駆動部15により超電導コイル14を周期的に運動させる。この渦電流探傷装置10を、図2に示すように、被測定物100上に配置する。これにより、被測定物100に対して、一定周期の磁場を発生することができる。
この磁場を発生する工程では、超電導コイル14を冷却するための冷媒供給部(冷媒供給ライン)を配置しない状態で超電導コイル14を周期的に運動させることが好ましい。冷媒供給部を配置しない状態で、超電導コイル14を超電導状態で使用するために、たとえば以下のようにする。
具体的には、渦電流探傷装置10の近傍に超電導コイル14を構成する超電導体の冷媒(たとえば冷媒を入れた容器)を配置し、超電導コイル14を冷却する(たとえば超電導コイル14を冷媒に浸す)。超電導コイル14を周期的に運動させる直前に、超電導状態の超電導コイル14を渦電流探傷装置10に配置する。この状態で、超電導コイル14を周期的に運動させると、超電導コイル14の超電導状態を維持できる。
また、超電導コイル14は、FRP(Fiber Reinforced Plastics:繊維強化プラスチック)などよりなる巻枠に超電導コイルを巻き、FRPで含浸させ、FRPなどよりなる容器に配置してもよい。この場合、FRPなどよりなる容器内の隙間に冷媒を入れることで、被測定物100の傷、割れ等の測定の間(たとえば数十秒間)、超電導コイル14の超電導状態を維持できる。この場合にも、使用直前まで、超電導コイル14を冷媒に浸しておいてもよい。
次に、一定周期の磁場からの変動磁場で、被測定物100から発生する信号をピックアップコイル12で検出する。本実施の形態では、一定周期の磁場を発生する渦電流探傷装置10を、図2に示す矢印に沿って被測定物100上を移動させる。
渦電流探傷装置10において、電流が同じ方向に流れる場合(たとえばN極がどちらも下に向いている場合)には、図3に示す矢印のように磁場が流れ、近傍に被測定物100があると、この移動磁界により超電導コイル14近傍では、誘導電流が生じる。この誘導電流による磁界変化をピックアップコイル12で検知する。本実施の形態では、2つの超電導コイル14は同じ方向に磁場を出しているため、ピックアップコイル12の周辺の磁場変化は回転数によらず変化しない。
被測定物100に傷、割れなどがなければ、その回転数に対してピックアップコイル12は出力しない。被測定物100に傷、割れなどがあり、渦電流の流れが阻害される要件が存在すると、その回転数に合わせてピックアップコイル12に信号が入力される。
また、渦電流探傷装置10において、電流が逆の方向に流れる場合には、図4に示す矢印のように磁場が流れ、近傍に被測定物100があると、この移動磁界により超電導コイル14近傍では、誘導電流が生じる。この場合にも上記と同様に、被測定物100に傷、割れなどが入っていることを検知することができる。特に、被測定物100までの距離が遠い場合には、図4に示すように電流が逆の方向に流すと有利である。
このように、渦電流探傷装置10を被測定物100に沿って移動させることにより、被測定物100に割れ、傷などがある箇所では、ピックアップコイル12に信号が入力される。このため、被測定物100において割れ、傷などがある場合にはその位置を特定することができる。つまり、被測定物100の傷、割れなどの有無を測定することができる。
続いて、本実施の形態における渦電流探傷装置10および渦電流探傷方法の効果について説明する。
本発明者は、渦電流探傷装置に用いる磁石を超電導磁石にすることの効果について、図5に示すような知見を得ている。すなわち、永久磁石として希土類磁石を用いた場合には、磁場強度は距離の約3乗で減衰する。このため、永久磁石を用いた渦電流探傷装置は、被測定物を近距離で測定する場合にしか有効に用いることができない。つまり、渦電流探傷装置に永久磁石を用いても、遠くまで磁場が出ないので、被測定物から発生する変動磁場により発生する信号を検出できない場合が生じる。
一方、本実施の形態の渦電流探傷装置10のように、超電導コイルを用いた場合には、図5に示すように、希土類磁石を用いた場合に比べて、被測定物との距離が離れても磁場強度の低下を抑制できる。
また、永久磁石はオンおよびオフの制御をできない。さらに、500gの希土類磁石は、手工具なしでバンドリングする物としては最大級であり、これを超える物は、万が一鉄板などに吸着すると引き離すのが困難である。作業者の手が挟まれると怪我をする恐れが大きく、使用上の問題がある。
一方、超電導コイル14は、オン動作が不要なときには磁場をゼロにすることができる。つまり、超電導コイル14は、オンおよびオフの制御をすることが可能である。さらに、形状は自在であり、大型化の制限を低減できる。このため、本実施の形態の渦電流探傷装置10のように超電導コイルを用いた場合には、永久磁石を用いた場合より、使用上の問題を低減することができる。
このため、本実施の形態における超電導コイル14を用いた渦電流探傷装置10は、距離が離れても使用が可能で、使用上の問題を低減することができる。
それに加えて、本実施の形態では、超電導コイル14を周期的に運動させることで、被測定物100上に渦電流を発生させ、これをピックアップコイル12で検知している。したがって、被測定物100を周期的に運動させなくても、被測定物100から変動磁場を発生させることができるので、被測定物100の形状等に制限されずに、本実施の形態の渦電流探傷装置10を用いることができる。
特に、本発明者は、超電導コイル14を構成する超電導体として高温超電導体を適用すると、比熱が大きいため、熱容量を持たせておけば(冷媒から取り出しても)、しばらくの間は超電導状態を維持できることを見い出した。たとえば、被測定物100のそばに冷媒入りの容器に超電導コイル14を浸して持参し、被測定物100の測定直前に取り出して被測定物100に当て、磁場を印加することができる。さらに、超電導コイル14を少量の冷媒とともに容器に入れて、渦電流探傷装置10に用いることもできる。このように、本発明者は、被測定物100を測定する時間(空気中で運転する時間)だけ超電導コイル14を超電導状態にすることで、冷媒供給部を配置せずに被測定物100の傷、割れなどを測定できることを見い出した。その結果、渦電流探傷装置10において、超電導コイル14を周期的に運動させることができることを見い出した。
一方、引用文献1〜4の渦電流探傷装置では、超電導コイルを冷却するための冷媒供給部を備えている。このため、超電導コイルを動かすことができない。したがって、被測定物を動かす必要があるので、被測定物の形状等に限定される。
また、希土類磁石および超電導コイル14の代わりに銅コイルを用いると、銅コイルは大きくて重いので、回転軸を大型でかつ複雑にする必要がある。さらに、銅コイルを短時間での使用に限定し、銅コイルの軽量化を図った場合であっても、電源が大型でかつ複雑である。たとえば銅コイルで超電導コイルと同様の磁場強度を得ようとすると、35kgのコイルと、1.5kWの直流電源とが必要となる。つまり、これを回転させるための装置が大掛かりで大変になる。このため、大面積の動かしにくい被測定物に対して、銅コイルを備えた渦電流探傷装置を適用することができない。
以上より、本実施の形態の渦電流探傷装置10および渦電流探傷方法は、距離が離れても磁場強度の低下を抑制し、かつ使用上の問題を低減した超電導コイル14を周期的に運動させている。したがって、大面積の動かしにくい被測定物についても、傷、割れなどの有無を測定することのできる。このため、本実施の形態の渦電流探傷装置10および渦電流探傷方法は、たとえばガスタンクの内面亀裂検査などに好適に用いることができる。
(実施の形態2)
図6を参照して、本実施の形態における渦電流探傷装置20は、基本的には図1に示す実施の形態1の渦電流探傷装置10と同様の構成を備えている。しかし、ピックアップコイル12をそれぞれの超電導コイル14と同じ速さで運動させる点において異なる。つまり、本実施の形態の渦電流探傷装置20は、超電導コイル14と同じ数のピックアップコイル12を備えている。このように、ピックアップコイル12が2個以上配置されていると、被測定物の測定精度を向上することができる。
なお、これ以外の渦電流探傷装置および渦電流探傷方法は、実施の形態1と同様であるので、同一の部材には同一の符号を付し、その説明は繰り返さない。
(実施の形態3)
図7を参照して、本実施の形態における渦電流探傷装置30は、基本的には図1に示す実施の形態1の渦電流探傷装置10と同様の構成を備えている。しかし、ピックアップコイルをオフアクシスで配置した点において異なっている。台座11上でバランスをとるためのカウンターウエイトなどをさらに配置してもよい。
なお、これ以外の渦電流探傷装置および渦電流探傷方法は、実施の形態1と同様であるので、同一の部材には同一の符号を付し、その説明は繰り返さない。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10,20,30 渦電流探傷装置、11 台座、12 ピックアップコイル、13 回転軸、14 超電導コイル、15 駆動部、100 被測定物。

Claims (4)

  1. 超電導コイルと、
    前記超電導コイルを周期的に運動させるための駆動部と、
    被測定物に対して、前記駆動部により前記超電導コイルを周期的に運動させたときに、前記被測定物から発生する変動磁場により発生する信号を検出するためのピックアップコイルとを備えた、渦電流探傷装置。
  2. 前記超電導コイルを冷却するための冷媒供給部を配置しない状態で、前記超電導コイルを周期的に運動させる、請求項1に記載の渦電流探傷装置。
  3. 被測定物に対して、超電導コイルを周期的に運動させることにより、一定周期の磁場を発生する工程と、
    前記一定周期の磁場からの変動磁場で、前記被測定物から発生する信号をピックアップコイルで検出する工程とを備えた、渦電流探傷方法。
  4. 前記磁場を発生する工程では、前記超電導コイルを冷却するための冷媒供給部を配置しない状態で前記超電導コイルを周期的に運動させる、請求項3に記載の渦電流探傷方法。
JP2009121059A 2009-05-19 2009-05-19 渦電流探傷装置および渦電流探傷方法 Withdrawn JP2010271070A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121059A JP2010271070A (ja) 2009-05-19 2009-05-19 渦電流探傷装置および渦電流探傷方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121059A JP2010271070A (ja) 2009-05-19 2009-05-19 渦電流探傷装置および渦電流探傷方法

Publications (1)

Publication Number Publication Date
JP2010271070A true JP2010271070A (ja) 2010-12-02

Family

ID=43419231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121059A Withdrawn JP2010271070A (ja) 2009-05-19 2009-05-19 渦電流探傷装置および渦電流探傷方法

Country Status (1)

Country Link
JP (1) JP2010271070A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150052865A (ko) * 2012-09-06 2015-05-14 인스티튜트 닥터 포에르스테르 게엠베하 운트 코. 카게 도전성 재료의 이상을 검출하는 차동 센서, 검사 시스템, 및 검출 방법
CN111044572A (zh) * 2019-11-27 2020-04-21 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种高温超导线圈无损探伤装置及探伤方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150052865A (ko) * 2012-09-06 2015-05-14 인스티튜트 닥터 포에르스테르 게엠베하 운트 코. 카게 도전성 재료의 이상을 검출하는 차동 센서, 검사 시스템, 및 검출 방법
JP2015531477A (ja) * 2012-09-06 2015-11-02 インスティトゥート ドクトル フェルスター ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 導電性材料の異常を検出するための微分センサ、検査システム、及びその方法
KR102134492B1 (ko) * 2012-09-06 2020-07-16 인스티튜트 닥터 포에르스테르 게엠베하 운트 코. 카게 도전성 재료의 이상을 검출하는 차동 센서, 검사 시스템, 및 검출 방법
CN111044572A (zh) * 2019-11-27 2020-04-21 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种高温超导线圈无损探伤装置及探伤方法

Similar Documents

Publication Publication Date Title
JP6764417B2 (ja) 回転磁場ホール装置、回転磁場ホール装置を動作させる方法、およびコンピューティング・システム
US4803563A (en) Rotor-in-stator examination magnetic carriage and positioning apparatus
CN112313509A (zh) 用于结构的无损评价的精密涡流传感器
JPH06324021A (ja) 非破壊検査装置
WO2013024858A1 (ja) 磁気探傷方法及び磁気探傷装置
JP2008032575A (ja) 渦電流測定用プローブ及びそれを用いた探傷装置
CN107014894A (zh) 基于电磁引力探测的钢结构锈蚀损伤成像系统及方法
JP2004151094A (ja) 試験プローブ
JP2005257425A (ja) 免疫検査装置及び免疫検査方法
Zhao et al. The establishment of an analytical model for coreless HTS linear synchronous motor with a generalized racetrack coil as the secondary
JP2010271070A (ja) 渦電流探傷装置および渦電流探傷方法
Hatsukade et al. Mobile cryocooler-based SQUID NDE system utilizing active magnetic shielding
US20030057961A1 (en) Method and device for inspecting laminated iron cores of electrical machines for interlamination shorts
CN104133184B (zh) 一种永磁体的平均磁场强度的无损伤测试方法及装置
Tanaka et al. Development of Metallic Contaminant Detection System Using Eight-Channel High-$ T_ {c} $ SQUIDs
WO2006046578A1 (ja) 電池外装ケースの傷の検査装置及び検査方法
RU154801U1 (ru) Установка для исследования электрофизических свойств высокотемпературных сверхпроводящих материалов
CN108267700A (zh) 一种永磁体抗退磁能力的检测系统及其检测方法
Tanaka et al. Metallic contaminant detection system using multi-channel high Tc SQUIDs
CN112462149B (zh) 一种超导线圈电感测量方法
Elrefai et al. Magnetic particle detection in unshielded environment using orthogonal fluxgate gradiometer
Dobrodeyev et al. Method for detection of broken bars in induction motors
US11579197B2 (en) System and method for induction motor rotor bar surface magnetic field analysis
WO2019000422A1 (zh) 一种距离测量装置、距离测量方法以及柔性显示装置
Tanaka et al. High Tc SQUID system for detection of small metallic contaminant in industrial products

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807