JP2010270998A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2010270998A
JP2010270998A JP2009124607A JP2009124607A JP2010270998A JP 2010270998 A JP2010270998 A JP 2010270998A JP 2009124607 A JP2009124607 A JP 2009124607A JP 2009124607 A JP2009124607 A JP 2009124607A JP 2010270998 A JP2010270998 A JP 2010270998A
Authority
JP
Japan
Prior art keywords
floor
air
opening
conditioning system
underfloor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009124607A
Other languages
Japanese (ja)
Other versions
JP5359551B2 (en
Inventor
Ikuro Nagamatsu
郁朗 永松
Junichi Ishimine
潤一 石峰
Seiichi Saito
精一 斎藤
Masahiro Suzuki
正博 鈴木
Tadashi Katsui
忠士 勝井
Yuji Oba
雄次 大庭
Nobuyoshi Yamaoka
伸嘉 山岡
Akira Ueda
晃 植田
Yasushi Uraki
靖司 浦木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009124607A priority Critical patent/JP5359551B2/en
Priority to US12/782,886 priority patent/US20100297927A1/en
Priority to GB1008324.4A priority patent/GB2470481B/en
Priority to CN2010101891236A priority patent/CN101893291B/en
Publication of JP2010270998A publication Critical patent/JP2010270998A/en
Application granted granted Critical
Publication of JP5359551B2 publication Critical patent/JP5359551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/068Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser formed as perforated walls, ceilings or floors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20745Forced ventilation of a gaseous coolant within rooms for removing heat from cabinets, e.g. by air conditioning device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/005Indoor units, e.g. fan coil units characterised by mounting arrangements mounted on the floor; standing on the floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0053Indoor units, e.g. fan coil units characterised by mounting arrangements mounted at least partially below the floor; with air distribution below the floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20827Liquid cooling with phase change within rooms for removing heat from cabinets, e.g. air conditioning devices

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Duct Arrangements (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently prevent generation of hot spots by detour of exhaust gas caused by shortage of an air amount by taking waste heat air from the upper floor to the lower floor for increasing the air amount. <P>SOLUTION: An air conditioner 20 of an air conditioning system 100 blows cooling air to the lower floor and supplies the cooling air to an electronic equipment 40a installed on the upper floor. The electronic equipment 40a is supplied with the cooling air by the air conditioner 20 and blows the waste heat air to the upper floor. The air conditioning system 100 is provided with an opening part 10 on a floor surface which contacts a negative pressure area. As the waste heat air taken into the opening part 10 is exhausted from the upper floor to the lower floor, the cooling air blowing from the air conditioner 20 and the waste heat air taken into the opening part 10 are mixed at the lower floor. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、空調機が冷却風を床下フロアに送風し、冷却風を床上フロアに設置された電子機器に供給する空調システムに関する。   The present invention relates to an air conditioning system in which an air conditioner blows cooling air to a floor below the floor and supplies the cooling air to an electronic device installed on the floor above the floor.

従来より、床下フロアからパネルを通過して電子機器に冷気供給するデータセンタが利用されている。このようなデータセンタは、床下フロアおよび床上フロアを有する二重床構成となっており、床上フロアに電子機器が設置されている。このようなデータセンタにおいて、ラックに搭載されている電子機器の高発熱密度化に伴い、サーバラックあたりの発熱量は増加する傾向にあり、電子機器の排気回り込みによるホットスポットの発生等が問題となっている。   Conventionally, a data center that supplies cold air to an electronic device through a panel from an underfloor floor has been used. Such a data center has a double floor configuration having a floor under the floor and a floor above the floor, and electronic devices are installed on the floor above the floor. In such data centers, the heat generation per server rack tends to increase as the heat generation density of the electronic devices mounted in the rack increases, and the occurrence of hot spots due to the exhaust of the electronic devices is a problem. It has become.

ここで、データセンタにおける風の流れについて図14を用いて説明する。同図に示すように、データセンタにおける風の流れとして、空調機から吹き出してラックに吸い込まれる流れ(図14の(1)参照)と、空調機から吹き出して空調機が吸い込む流れ(図14の(2)参照)と、ラックから排気されて空調機が吸い込む流れ(図14の(3)参照)と、ラックから排気されてラックが吸い込む流れ(図14の(4)参照)がある。   Here, the flow of wind in the data center will be described with reference to FIG. As shown in the figure, as the flow of wind in the data center, a flow that is blown out from the air conditioner and sucked into the rack (see (1) in FIG. 14) and a flow that is blown out from the air conditioner and sucked into the air conditioner (in FIG. 14) (See (2)), a flow exhausted from the rack and sucked into the air conditioner (see (3) in FIG. 14), and a flow exhausted from the rack and sucked into the rack (see (4) in FIG. 14).

ラックから排気されてラックが吸い込む流路の風量が多い場合に、電子機器の排気回り込みによるホットスポットが発生する。また、空調機から吹き出される風量が不足している場合には、図15に示すように、ラック下部に搭載された電子機器が冷却されているのに対して、ラック上部に搭載されている電子機器に対して冷却風が不足して冷却が行えずに、ラック上部でホットスポットが生じる。   When there is a large amount of air in the flow path exhausted from the rack and sucked by the rack, a hot spot is generated due to the exhaust of the electronic equipment. Further, when the air volume blown out from the air conditioner is insufficient, as shown in FIG. 15, the electronic device mounted at the lower part of the rack is cooled, whereas the electronic device mounted at the upper part of the rack is mounted. A cooling spot is insufficient for the electronic equipment and cooling cannot be performed, and a hot spot is generated in the upper part of the rack.

ここで、図15の例について具体的に説明する。図15では、風量300m3/minの冷却風を温度20degC一定で吹き出す空調機20であって、総必要風量320m3/min(約59kW相当)のラックを冷却する場合の例を示す。   Here, the example of FIG. 15 will be specifically described. FIG. 15 shows an example of the air conditioner 20 that blows out cooling air with an air volume of 300 m <3> / min at a constant temperature of 20 degC and cools a rack with a total required air volume of 320 m <3> / min (equivalent to about 59 kW).

図15に示すように、20degCの冷却風が床下フロアとパネルを通過して電子機器搭載ラックに供給される。このとき、冷却風がラック下段に搭載された電子機器から順番に供給されるため、上段と下段で温度のばらつきが生じ、上段に積まれた電子機器が冷却風不足による排気再循環を起こしてホットスポットが生じる。   As shown in FIG. 15, the cooling air of 20 degC is supplied to the electronic equipment mounting rack through the floor under the floor and the panel. At this time, the cooling air is supplied in turn from the electronic devices mounted on the lower stage of the rack. Therefore, temperature variations occur between the upper and lower stages, and the electronic equipment loaded on the upper stage causes exhaust gas recirculation due to insufficient cooling air. Hot spots occur.

このため、このようなホットスポットを防止する方法として、空調機から噴出される風量よりも電子機器の吸い込み風量を大きくする技術が知られている。例えば、空調機吸い込み口面に接した空間である床上フロアで冷気と排気を混合させ、空調機から噴出される風量よりも電子機器の吸い込み風量を大きくする。   For this reason, as a method for preventing such hot spots, a technique is known in which the amount of air sucked by an electronic device is made larger than the amount of air blown from an air conditioner. For example, cold air and exhaust air are mixed on the floor, which is a space in contact with the air conditioner suction port, and the amount of air sucked by the electronic device is made larger than the amount of air blown from the air conditioner.

特開平8−303815号公報JP-A-8-303815

しかしながら、上記した電子機器の吸い込み風量を大きくする技術では、空調機吸い込み口面に接した空間である床上フロアで冷気と排気を混合させるので、床下フロアから床上フロアに吹きだされた空気量のうち、その一部が電子機器に供給されずに空調機吸い込み口に直接戻ってしまい、エネルギーが有効に利用されないという課題があった。   However, in the technology for increasing the intake air volume of the electronic devices described above, the cold air and the exhaust gas are mixed on the floor floor, which is the space in contact with the air conditioner suction inlet, so that the amount of air blown from the floor floor to the floor floor is reduced. Among them, there is a problem that a part of the energy returns directly to the air conditioner suction port without being supplied to the electronic device, and the energy is not effectively used.

そこで、この発明は、上述した従来技術の課題を解決するためになされたものであり、排熱風を床上フロアから床下フロアに取り込んで風量を増やし、風量不足に起因して発生する排気回り込みによるホットスポットの発生を効率的に防止することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems of the prior art, and takes hot exhaust air from the floor above the floor to increase the air volume, and the hot air due to exhaust wrapping generated due to insufficient air volume. An object is to efficiently prevent the generation of spots.

本願の開示する空調システムは、一つの態様において、排熱風を床上フロアから床下フロアに取り込むために、床上フロアの正圧に対して負圧となっている床下フロア内の領域である負圧領域に接する床面に開口部を設ける。   In one aspect, the air conditioning system disclosed in the present application is a negative pressure region that is a region in the underfloor floor that is negative with respect to the positive pressure of the upper floor in order to take the exhaust heat air from the upper floor to the lower floor. An opening is provided on the floor in contact with the floor.

開示のシステムは、排熱風を床上フロアから床下フロアに取り込んで風量を増やし、風量不足に起因して発生する排気回り込みによるホットスポットの発生を効率的に防止することができるという効果を奏する。   The disclosed system takes in the exhaust heat air from the floor above the floor to increase the air volume, and can effectively prevent the occurrence of hot spots due to the exhaust sneaking caused by the shortage of the air volume.

図1は、実施例1に係る空調システムの構成を示すブロック図である。FIG. 1 is a block diagram illustrating the configuration of the air conditioning system according to the first embodiment. 図2は、開口部および空調機の詳しい構成図である。FIG. 2 is a detailed configuration diagram of the opening and the air conditioner. 図3は、ラックの冷却について説明するための図である。FIG. 3 is a diagram for explaining cooling of the rack. 図4は、実施例1に係る空調システムを適用したデータセンタの上面図である。FIG. 4 is a top view of the data center to which the air conditioning system according to the first embodiment is applied. 図5は、実施例1に係る空調システムを適用したデータセンタの横面図である。FIG. 5 is a lateral view of the data center to which the air conditioning system according to the first embodiment is applied. 図6は、実施例1に係る空調システムを適用したデータセンタの斜視図である。FIG. 6 is a perspective view of a data center to which the air conditioning system according to the first embodiment is applied. 図7は、シミュレーション結果を示す図である。FIG. 7 is a diagram illustrating a simulation result. 図8は、シミュレーション結果を示す図である。FIG. 8 is a diagram showing a simulation result. 図9は、シミュレーション結果を示す図である。FIG. 9 is a diagram showing a simulation result. 図10は、圧力分布について説明するための図である。FIG. 10 is a diagram for explaining the pressure distribution. 図11は、開口部の設置位置の例を示す図である。FIG. 11 is a diagram illustrating an example of an installation position of the opening. 図12は、シミュレーション結果を示す図である。FIG. 12 is a diagram showing a simulation result. 図13は、実施例2に係る空調システムの構成を示すブロック図である。FIG. 13 is a block diagram illustrating the configuration of the air conditioning system according to the second embodiment. 図14は、空調システムにおける風の流れを説明するための図である。FIG. 14 is a diagram for explaining the flow of wind in the air conditioning system. 図15は、従来のラックの冷却について説明するための図である。FIG. 15 is a diagram for explaining cooling of a conventional rack.

以下に添付図面を参照して、この発明に係る空調システムの実施例を詳細に説明する。   Embodiments of an air conditioning system according to the present invention will be described below in detail with reference to the accompanying drawings.

以下の実施例では、実施例1に係る空調システムの構成および処理の流れを順に説明し最後に実施例1による効果を説明する。   In the following examples, the configuration and processing flow of the air conditioning system according to Example 1 will be described in order, and finally the effects of Example 1 will be described.

[空調システムの構成]
次に、図1を用いて、空調システム100の構成を説明する。図1は、実施例1に係る空調システムの構成を示すブロック図である。同図に示すように、この空調システム100は、床上フロア1aおよび床下フロア1bの二重床構成となっており、空調機20が冷却風を床下フロア1bに送風し、床上フロア1aに設置された電子機器40aに冷却風を供給する。電子機器40aに冷却風供給する為の床面開口パネルは排熱風との混合を防ぐ為に、通常、電子機器に隣接するところに設けられる。以下にこれら各部について説明する。
[Configuration of air conditioning system]
Next, the configuration of the air conditioning system 100 will be described with reference to FIG. FIG. 1 is a block diagram illustrating the configuration of the air conditioning system according to the first embodiment. As shown in the figure, this air conditioning system 100 has a double floor configuration of an upper floor 1a and an underfloor floor 1b. Cooling air is supplied to the electronic device 40a. A floor opening panel for supplying cooling air to the electronic device 40a is usually provided at a location adjacent to the electronic device in order to prevent mixing with exhaust heat air. These parts will be described below.

電子機器に冷却風を供給するために電子機器に隣接して設けられた床面開口パネルとは別に設けられた開口部10は、排熱風を床上フロア1aから床下フロア1bに取り込むために、床上フロア1aの正圧に対して負圧となっている床下フロア1b内の領域である負圧領域に接する床面タイル31に設けられている。   The opening 10 provided separately from the floor opening panel provided adjacent to the electronic device for supplying cooling air to the electronic device is provided on the floor in order to take the exhaust heat air from the floor floor 1a to the floor floor 1b. The floor tile 31 is provided in contact with a negative pressure region that is a region in the underfloor floor 1b that is negative with respect to the positive pressure of the floor 1a.

空調機20は、床下フロア1bに送風するブロワ21と、電子機器40aの排熱風を冷却する熱交換器24とを有し、冷却風を床下フロア1bにブロワ21で送風し、冷却風を床面開口パネル50を介して床上フロア1aに設置された電子機器40aに供給する。   The air conditioner 20 has a blower 21 that blows air to the underfloor floor 1b, and a heat exchanger 24 that cools exhaust heat air from the electronic device 40a. The air blower 21 blows cooling air to the underfloor floor 1b, and the cooling air flows to the floor. It supplies to the electronic device 40a installed on the floor 1a through the surface opening panel 50.

ここで、図2を用いて開口部10および空調機20の詳しい構成について説明する。図2は、開口部および空調機の詳しい構成図である。同図に示すように、開口部10は、空調機の近傍における負圧領域に接する床面タイル31上に設置されている。   Here, the detailed structure of the opening part 10 and the air conditioner 20 is demonstrated using FIG. FIG. 2 is a detailed configuration diagram of the opening and the air conditioner. As shown in the figure, the opening 10 is installed on the floor tile 31 in contact with the negative pressure region in the vicinity of the air conditioner.

空調機20は、ブロワ21、空調機吸い込み口23、熱交換器24を有する。ブロワ21は、内蔵されるモータ21aで駆動させて、空調機吹き出し口から床下フロア1bに冷却風を送風する。   The air conditioner 20 includes a blower 21, an air conditioner suction port 23, and a heat exchanger 24. The blower 21 is driven by a built-in motor 21a and blows cooling air from the air conditioner outlet to the lower floor 1b.

熱交換器24は、空調機吸い込み口23によって吸い込まれた電子機器40aの排熱風を冷却し、冷却された冷却風をブロワ21に送風させる。   The heat exchanger 24 cools the exhaust heat air of the electronic device 40 a sucked in by the air conditioner suction port 23 and blows the cooled cooling air to the blower 21.

ここで、図3を用いて、ラックの冷却について詳しく説明する。図3は、ラックの冷却について説明する。図3では、風量300m3/minの冷却風を温度20degC一定で吹き出す空調機20であって、総必要風量320m3/min(約59kW相当)のラックを冷却する場合の例を示す。   Here, the cooling of the rack will be described in detail with reference to FIG. FIG. 3 illustrates rack cooling. FIG. 3 shows an example of a case where the air conditioner 20 blows out cooling air having an air volume of 300 m <3> / min at a constant temperature of 20 degC and cooling a rack having a total required air volume of 320 m <3> / min (equivalent to about 59 kW).

同図に示すように、空調機20で冷却された後、ブロワから吹き出された温度20degC、風量300m3/minの冷却風が開口部10に取り込まれた排熱風30degC、20m3/minと混合して、トータル320m3/minの風が床上フロアに吹き出される。   As shown in the figure, after being cooled by the air conditioner 20, the cooling air blown out of the blower with a temperature of 20 degC and an air volume of 300 m3 / min is mixed with the exhausted hot air of 30 degC and 20 m3 / min taken into the opening 10. A total of 320 m 3 / min of wind is blown out on the floor.

つまり、空調システム1では、電子機器の排熱風を取り込むために、空床下内で風が混合される冷却風の平均温度が上昇するものの、冷却風の風量を増加させることができる結果、ラック吸気面上での温度のバラツキを防止し、ホットスポットを防止することが可能である。   That is, in the air conditioning system 1, in order to take in the exhaust heat air from the electronic equipment, the average temperature of the cooling air mixed with the air under the empty floor rises, but the air volume of the cooling air can be increased. It is possible to prevent temperature variations on the surface and to prevent hot spots.

図1の説明に戻って、電子機器40aは、床面タイル31上に設置されたラック40に搭載されており、空調機20によって冷却風が供給されるとともに、排熱風を床上フロア1aに送風する。   Returning to the description of FIG. 1, the electronic device 40 a is mounted on the rack 40 installed on the floor tile 31, is supplied with cooling air by the air conditioner 20, and blows exhaust heat air to the floor 1 a on the floor. To do.

床面開口パネル50は、床下フロア1bに送風された冷却風を床上フロア1aに供給するために、ラック40近傍の床面タイル上に設置された開口パネルである。   The floor opening panel 50 is an opening panel installed on a floor tile in the vicinity of the rack 40 in order to supply the cooling air blown to the underfloor floor 1b to the floor floor 1a.

ここで、図4〜図12を用いて、実施例1に係る空調システム1を適用したデータセンタをモデル化し、床下フロア高さ、空調機風量、空調機吹き出し開口部面積をパラメータとして行ったシミュレーションの結果について説明する。まず、シミュレーション対象である空調システムを適用したセンタについて、図4〜図6を用いて説明する。図4は、実施例1に係る空調システムを適用したデータセンタの上面図である。図5は、実施例1に係る空調システムを適用したデータセンタの横面図である。図6は、実施例1に係る空調システムを適用したデータセンタの斜視図である。   Here, using FIG. 4 to FIG. 12, a data center to which the air conditioning system 1 according to the first embodiment is applied is modeled, and the simulation is performed using the underfloor floor height, air conditioner air volume, and air conditioner blowout opening area as parameters. The results will be described. First, a center to which an air conditioning system that is a simulation target is applied will be described with reference to FIGS. FIG. 4 is a top view of the data center to which the air conditioning system according to the first embodiment is applied. FIG. 5 is a lateral view of the data center to which the air conditioning system according to the first embodiment is applied. FIG. 6 is a perspective view of a data center to which the air conditioning system according to the first embodiment is applied.

図4〜図6に示すように、シミュレーション対象のデータセンタのモデルとして、部屋サイズが「7.2[m]かける10.8[m](W×D)」、床上フロア高さが「2.5[m]」、床面パネル30のサイズが「0.6[m]×0.6[m](W×D)、開口部10の面積が「0.8[m] × 0.6[m] (W×D)」を設定する。   As shown in FIGS. 4 to 6, as a model of the data center to be simulated, the room size is “7.2 [m] times 10.8 [m] (W × D)”, and the floor-to-floor height is “2”. .5 [m] ”, the size of the floor panel 30 is“ 0.6 [m] × 0.6 [m] (W × D), and the area of the opening 10 is “0.8 [m] × 0.00. 6 [m] (W × D) ”is set.

まず、シミュレーション処理として、パラメータ(床下フロア高さ、空調機風量)を変更した場合に、床上フロアの圧力に対して床下フロアで負圧となる負圧領域の範囲で空調機前面からの最大垂直距離d[m](以下、負圧距離と呼ぶ)の値がどのように変化するかを確認した。   First, as a simulation process, when parameters (floor height under floor, air conditioner air volume) are changed, the maximum vertical distance from the front of the air conditioner within the range of negative pressure that is negative pressure on the floor below the floor floor pressure. It was confirmed how the value of the distance d [m] (hereinafter referred to as negative pressure distance) changes.

このシミュレーション結果を図7〜図9に示す。図7〜図9は、シミュレーション結果を示す図である。図7および図8の例は、床下フロア高さを変更した場合における負圧距離dの値の変化を確認するためのシミュレーション結果である。図7および図8に例示するように、シミュレーション結果では、床下フロア低いほど負圧距離dの値が大きくなっている。   The simulation results are shown in FIGS. 7 to 9 are diagrams showing simulation results. The examples of FIGS. 7 and 8 are simulation results for confirming a change in the value of the negative pressure distance d when the underfloor floor height is changed. As illustrated in FIGS. 7 and 8, in the simulation result, the value of the negative pressure distance d increases as the floor below the floor decreases.

また、図9の例は、空調機風量を変更した場合における負圧距離dの値の変化を確認するためのシミュレーション結果である。図9に示すように、空調機風量が大きいほど負圧距離dの値が大きくなる。   Moreover, the example of FIG. 9 is a simulation result for confirming the change of the value of the negative pressure distance d when the air conditioner air volume is changed. As shown in FIG. 9, the value of the negative pressure distance d increases as the air conditioner air volume increases.

ここで、図10を用いて、床下の圧力分布について説明する。図10は、圧力分布について説明するための図である。同図に示すように、床下フロアの高さを変更した場合における負圧距離dの変化と、床面から−0.04[m]の高さの圧力分布の変化とを示している。ここで、図10の例では、黒い部分が、床上フロアの正圧に対して負圧となっている床下フロア内の領域である負圧領域を示している。図10に示すように、床下フロアの高さが高いほど、負圧距離dが短くなっている。   Here, the pressure distribution under the floor will be described with reference to FIG. FIG. 10 is a diagram for explaining the pressure distribution. As shown in the figure, a change in the negative pressure distance d when the height of the floor under the floor is changed and a change in pressure distribution at a height of −0.04 [m] from the floor surface are shown. Here, in the example of FIG. 10, the black part has shown the negative pressure area | region which is an area | region in the underfloor floor which is a negative pressure with respect to the positive pressure of an upper floor. As shown in FIG. 10, the negative pressure distance d is shorter as the height of the floor under the floor is higher.

また、図10に例示するように、床下フロアの高さが「h=0.9」である場合には、空調機に対して電子機器を設置している側に負圧領域がなく、空調機に対して電子機器を設置している側とは反対側に負圧領域が存在する。このようなデータセンタの場合には、空調機に対して電子機器を設置している側とは反対側に開口部を設けるようにしてもよい。つまり、このようなシミュレーション結果をもとに、データセンタの条件に適した開口部の位置を決めることができる。   Further, as illustrated in FIG. 10, when the height of the underfloor floor is “h = 0.9”, there is no negative pressure region on the side where the electronic device is installed with respect to the air conditioner, and the air conditioning There is a negative pressure region on the opposite side of the machine from the side where the electronic equipment is installed. In the case of such a data center, an opening may be provided on the side opposite to the side where the electronic device is installed with respect to the air conditioner. That is, the position of the opening suitable for the data center conditions can be determined based on the simulation result.

次に、図11、図12を用いて、実施例1に係る空調システム1を適用したデータセンタをモデル化し、床上フロアに対して負圧となる床下エリアに床面開口パネル50を設けてシミュレーションを行った場合のシミュレーション結果である風量増加効果について説明する。図11および図12の例では、空調機の風量が4.0[m3/s]、吹き出し温度が20degCに設定された状態でのシミュレーション行ったものとする。図11は、開口部の設置位置の例を示す図である。図12は、シミュレーション結果を示す図である。   Next, using FIG. 11 and FIG. 12, a data center to which the air conditioning system 1 according to the first embodiment is applied is modeled, and a floor surface opening panel 50 is provided in an underfloor area in which a negative pressure is applied to the floor floor. The effect of increasing the air volume, which is a simulation result when performing the above, will be described. In the examples of FIGS. 11 and 12, it is assumed that the simulation is performed in a state where the air volume of the air conditioner is set to 4.0 [m3 / s] and the blowing temperature is set to 20 degC. FIG. 11 is a diagram illustrating an example of an installation position of the opening. FIG. 12 is a diagram showing a simulation result.

図11に示すように、シミュレーション対象のデータセンタのモデルとして、空調機近傍の負圧領域に開口部が設置されている。また、データセンタの各床面開口パネルに対して識別番号(図12では、「Grill No.」)1〜20が割り当てられている。   As shown in FIG. 11, an opening is provided in the negative pressure region near the air conditioner as a model of the data center to be simulated. Also, identification numbers (“Grill No.” in FIG. 12) 1 to 20 are assigned to the floor opening panels of the data center.

このようなデータセンタにおけるシミュレーション結果を図12に示す。図12では、シミュレーション結果として、開口部10および各床面開口パネル50の風量、開口部10および各床面開口パネル50の吹き出し温度を示す。   The simulation result in such a data center is shown in FIG. In FIG. 12, the air volume of the opening part 10 and each floor surface opening panel 50 and the blowing temperature of the opening part 10 and each floor surface opening panel 50 are shown as a simulation result.

具体的には、図12では、各グリルの識別番号である「Grill No.」と、各グリルから吹き出された風の風量である「Air Flow」と、吹き出された風の温度である「Temperature」とを対応付けて示されている。   Specifically, in FIG. 12, “Grill No.” that is the identification number of each grill, “Air Flow” that is the amount of wind blown from each grill, and “Temperature” that is the temperature of the blown wind. ] In correspondence with each other.

図12に示すように、実施例1に係る空調システム1を適用したデータセンタでは、空調機の風量が4.0[m3/s]に対して0.87[m3/s]の風量増加を達成している。また、実施例1に係る空調システム1を適用したデータセンタでは、各グリルから吹き出された風の温度について、空調機の吹き出し温度20degCに対して0.95〜1.13degCの温度上昇に抑えている。   As shown in FIG. 12, in the data center to which the air conditioning system 1 according to the first embodiment is applied, the air volume of the air conditioner is increased by 0.87 [m3 / s] to 4.0 [m3 / s]. Have achieved. Further, in the data center to which the air conditioning system 1 according to the first embodiment is applied, the temperature of the wind blown from each grill is suppressed to a temperature increase of 0.95 to 1.13 degC with respect to the blowing temperature 20 degC of the air conditioner. Yes.

[実施例1の効果]
上述してきたように、空調システム100は、実施例1の空調システム1では、排熱風を床上フロアから床下フロアに取り込むために、負圧領域に接する床面に開口部4を設けたので、排熱風を床上フロアから床下フロアに取り込んで風量を増やし、風量不足に起因して発生する排気回り込みによるホットスポットの発生を効率的に防止することが可能である。
[Effect of Example 1]
As described above, in the air conditioning system 1 according to the first embodiment, since the opening 4 is provided on the floor surface in contact with the negative pressure region in order to take the exhaust hot air from the floor above the floor to the floor below, Hot air is taken from the floor above the floor to increase the air volume, and it is possible to efficiently prevent the occurrence of hot spots due to exhaust wraparound caused by the shortage of air volume.

ところで、上記の実施例1では、開口部が常に開いている場合を説明したが、本実施例はこれに限定されるものではなく、開口部の開閉を制御できるようにしてもよい。   In the first embodiment, the case where the opening is always open has been described. However, the present embodiment is not limited to this, and the opening / closing of the opening may be controlled.

そこで、以下の実施例2では、開口部を通過する風の向きを検知し、開口部を通過する風の向きに応じて開口部の開閉を制御する場合として、図13を用いて、実施例2に係る空調システムの構成を説明する。図13は、実施例2に係る空調システムの構成を示すブロック図である。   Therefore, in the following second embodiment, the direction of the wind passing through the opening is detected, and the opening and closing of the opening is controlled according to the direction of the wind passing through the opening. The structure of the air conditioning system which concerns on 2 is demonstrated. FIG. 13 is a block diagram illustrating the configuration of the air conditioning system according to the second embodiment.

同図に示すように、実施例2に係る空調システム100aは、実施例1の空調システム100と比較して、風向風速センサ60と、開口パネル制御部70とが新たに設けられている点が異なる。開口部10は、開閉可変となっており、後述する開口パネル制御部70によって開閉が制御されている。   As shown in the figure, the air conditioning system 100a according to the second embodiment is newly provided with a wind direction / air speed sensor 60 and an opening panel control unit 70 as compared with the air conditioning system 100 according to the first embodiment. Different. The opening 10 can be opened and closed, and the opening and closing is controlled by an opening panel controller 70 described later.

風向風速センサ60は、床下に排熱風を取り込む為に設けられた開口部10について、開口部10を通過する風の向きを検知する。そして、風向風速センサ60は、開口パネル制御部70に検知した結果を通知する。   The wind direction / air speed sensor 60 detects the direction of the wind passing through the opening 10 with respect to the opening 10 provided to take in the exhaust heat wind under the floor. The wind direction and wind speed sensor 60 notifies the opening panel control unit 70 of the detected result.

床下に排熱風を取り込む為に設けられた開口部10について、開口パネル制御部70は、風の向きが床上から床下であると検知された場合には、開口部10を開くように制御し、風向風速センサ60によって前記風の向きが床下から床上であると検知された場合には、開口部10を閉じるように制御する。   For the opening 10 provided to take in the exhaust heat wind under the floor, the opening panel control unit 70 controls to open the opening 10 when the direction of the wind is detected from above the floor to below the floor, When the wind direction sensor 60 detects that the wind direction is from below the floor to above the floor, control is performed so as to close the opening 10.

このように、上記の実施例2では、空調システム100aは、開口部10を通過する風の向きを風向風速センサ60で検知する。そして、空調システム100aは、風向風速センサ60によって、床下に排熱風を取り込む為に設けられた開口部10については、風の向きが床上から床下であると検知された場合には、開口部10を開くように制御し、風向風速センサ60によって風の向きが床下から床上であると検知された場合には、開口部10を閉じるように制御する。このため、床下に排熱風を取り込む為に設けられた開口部10について、風の向きが床下から床上であると検知された場合には、開口部10を閉じることで、床上フロアで冷気排気が混合しないようにすることが可能である。   As described above, in the second embodiment, the air conditioning system 100a detects the direction of the wind passing through the opening 10 by the wind direction / air velocity sensor 60. The air-conditioning system 100a detects the opening 10 provided by the wind direction / air speed sensor 60 to take in the exhaust heat wind under the floor, and the opening 10 is detected when the direction of the wind is detected from the floor to the floor. When the wind direction / wind velocity sensor 60 detects that the wind direction is from below the floor to above the floor, the opening 10 is controlled to be closed. For this reason, when it is detected that the direction of the wind is from below the floor to the floor with respect to the opening 10 provided to take in the exhaust heat wind under the floor, the cool air exhaust is performed on the floor above the floor by closing the opening 10. It is possible to avoid mixing.

さて、これまで本発明の実施例について説明したが、本発明は上述した実施例以外にも、種々の異なる形態にて実施されてよいものである。そこで、以下では実施例3として本発明に含まれる他の実施例を説明する。   Although the embodiments of the present invention have been described so far, the present invention may be implemented in various different forms other than the embodiments described above. Therefore, another embodiment included in the present invention will be described below as a third embodiment.

(1)圧力情報を用いて開口部を開閉
上記の実施例2では、開口部を通過する風の向きを検知し、開口部を通過する風の向きに応じて開口部の開閉を制御する場合を説明したが、本実施例はこれに限定されるものではなく、開口部の床下圧力情報を検知し、開口部の床下圧力情報に応じて開口部の開閉を制御してもよい。
(1) Opening and closing the opening using pressure information In the second embodiment, the direction of the wind passing through the opening is detected, and the opening and closing of the opening is controlled according to the direction of the wind passing through the opening. However, the present embodiment is not limited to this, and it is also possible to detect the underfloor pressure information of the opening and control the opening and closing of the opening according to the underfloor pressure information of the opening.

具体的には、空調システムは、開口部の床下圧力情報を検知する床下圧力センサと、開口部の床下圧力情報に応じて開口部の開閉を制御する開口パネル制御部とを有する。そして、空調システムの開口パネル制御部は、床下圧力センサによって検知された床下圧力情報が所定の閾値以下である場合には、床下に排熱風を取り込む為に設けられた開口部については、開口部を開くように制御し、床下圧力センサによって検知された床下圧力情報が所定の閾値以上である場合には、開口部を閉じるように制御する。   Specifically, the air conditioning system includes an underfloor pressure sensor that detects underfloor pressure information of the opening, and an open panel control unit that controls opening and closing of the opening according to the underfloor pressure information of the opening. And the opening panel control part of an air-conditioning system, when the underfloor pressure information detected by the underfloor pressure sensor is equal to or lower than a predetermined threshold, When the underfloor pressure information detected by the underfloor pressure sensor is equal to or greater than a predetermined threshold, the opening is closed.

このように、空調システムは、床下に排熱風を取り込む為に設けられた開口部について、開口部の床下圧力情報を検知し、検知された床下圧力情報が所定の閾値以下である場合には、開口部を開くように制御し、床下圧力センサによって検知された床下圧力情報が所定の閾値以上である場合には、開口部を閉じるように制御する。このため、床下圧力情報が所定の閾値以上である場合には、開口部を閉じることで、床上フロアで冷気排気が混合しないようにすることが可能である。   As described above, the air conditioning system detects the underfloor pressure information of the opening for the opening provided to take in the exhaust heat air under the floor, and when the detected underfloor pressure information is equal to or less than a predetermined threshold, Control is performed to open the opening, and when the underfloor pressure information detected by the underfloor pressure sensor is equal to or greater than a predetermined threshold, the opening is controlled to close. For this reason, when the underfloor pressure information is equal to or greater than a predetermined threshold value, it is possible to prevent cold air exhaust from mixing on the floor above the floor by closing the opening.

1、100 空調システム
1a 床上フロア
1b 床下フロア
10 開口部
20 空調機
21 ブロワ
22 空調機吹き出しダクト
23 空調機吸い込み口
24 熱交換器
31 床面タイル
40 ラック
40a 電子機器
DESCRIPTION OF SYMBOLS 1,100 Air-conditioning system 1a Floor on the floor 1b Floor under floor 10 Opening part 20 Air conditioner 21 Blower 22 Air-conditioner blowing duct 23 Air-conditioner inlet 24 Heat exchanger 31 Floor tile 40 Rack 40a Electronic device

Claims (3)

床下フロアを有し、床に設置された電子機器の冷却を行う空調システムであって
冷却風を前記床下フロアに送風する空調機と、
床面の前記電子機器に冷却風を供給する位置に設けられた床面開口パネルと、
前記空調機の送風時に、前記床上フロアの正圧に対して負圧となっている床下フロア内の領域である負圧領域に接する床面に設けられた開口部と、
を備えることを特徴とする空調システム。
An air conditioning system that has an underfloor floor and that cools electronic devices installed on the floor, and that blows cooling air to the underfloor floor; and
A floor opening panel provided at a position for supplying cooling air to the electronic device on the floor;
When the air conditioner blows, an opening provided on the floor surface in contact with the negative pressure area, which is an area in the under floor floor that is negative with respect to the positive pressure of the floor floor,
An air conditioning system comprising:
床下に排熱風を取り込むために設けられた開口部について、当該開口パネルを通過する風の向きを検知する風向風速センサと、
前記風向風速センサによって前記風の向きが床上から床下であると検知された場合には、前記開口部を開くように制御し、前記風向風速センサによって前記風の向きが床下から床上であると検知された場合には、前記開口部を閉じるように制御する開口パネル制御部と、
をさらに備えることを特徴とする請求項1に記載の空調システム。
A wind direction and wind speed sensor for detecting the direction of the wind passing through the opening panel with respect to the opening provided to take in the exhaust heat wind under the floor,
When the wind direction sensor detects that the wind direction is from above the floor, the opening is controlled to open, and the wind direction sensor detects that the wind direction is from below the floor to above the floor. An opening panel controller that controls the opening to be closed,
The air conditioning system according to claim 1, further comprising:
床下に排熱風を取り込むために設けられた開口部について、当該開口部の床下圧力情報を検知する床下圧力センサと、
前記床下圧力センサによって検知された前記床下圧力情報が所定の閾値以下である場合には、前記開口部を開くように制御し、前記床下圧力センサによって検知された前記床下圧力情報が所定の閾値以上である場合には、前記開口部を閉じるように制御する開口パネル制御部と、
をさらに備えることを特徴とする請求項1に記載の空調システム。
An underfloor pressure sensor that detects underfloor pressure information of the opening with respect to the opening provided to take in the exhaust heat air under the floor,
When the underfloor pressure information detected by the underfloor pressure sensor is less than or equal to a predetermined threshold value, control is performed to open the opening, and the underfloor pressure information detected by the underfloor pressure sensor is greater than or equal to a predetermined threshold value. If so, an opening panel control unit that controls to close the opening,
The air conditioning system according to claim 1, further comprising:
JP2009124607A 2009-05-22 2009-05-22 Air conditioning system Expired - Fee Related JP5359551B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009124607A JP5359551B2 (en) 2009-05-22 2009-05-22 Air conditioning system
US12/782,886 US20100297927A1 (en) 2009-05-22 2010-05-19 Air conditioning installation
GB1008324.4A GB2470481B (en) 2009-05-22 2010-05-19 Air conditioning installation configured to cool an electronic device provided on a floor in a room
CN2010101891236A CN101893291B (en) 2009-05-22 2010-05-24 Air conditioning installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124607A JP5359551B2 (en) 2009-05-22 2009-05-22 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2010270998A true JP2010270998A (en) 2010-12-02
JP5359551B2 JP5359551B2 (en) 2013-12-04

Family

ID=42340963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124607A Expired - Fee Related JP5359551B2 (en) 2009-05-22 2009-05-22 Air conditioning system

Country Status (4)

Country Link
US (1) US20100297927A1 (en)
JP (1) JP5359551B2 (en)
CN (1) CN101893291B (en)
GB (1) GB2470481B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112181009A (en) * 2020-09-14 2021-01-05 科华恒盛股份有限公司 Hotspot tracking control method and device and terminal equipment
JPWO2020121405A1 (en) * 2018-12-11 2021-02-15 三菱電機株式会社 Air conditioner and control method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9119326B2 (en) * 2011-05-13 2015-08-25 Inertech Ip Llc System and methods for cooling electronic equipment
WO2013114528A1 (en) * 2012-01-30 2013-08-08 富士通株式会社 Air-conditioning system
CN104807121B (en) * 2015-04-26 2018-06-22 中国移动通信集团安徽有限公司阜阳分公司 It is a kind of to send cold passage for the intelligent temperature control thermal insulation of communications equipment room
WO2017160346A1 (en) 2016-03-16 2017-09-21 Inertech Ip Llc System and methods utilizing fluid coolers and chillers to perform in-series heat rejection and trim cooling
US10251313B2 (en) * 2016-03-21 2019-04-02 Raymond & Lae Engineering, Inc. Air-grate floor panel sub-plenum retrofit add on multi-directional plume

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248673A (en) * 1992-03-03 1993-09-24 Ohbayashi Corp Indoor ventilation device for building
JPH0735369A (en) * 1993-07-22 1995-02-07 Hibiya Eng Ltd Controller of air-conditioning apparatus having outlet in floor of pressure type
JPH0712848U (en) * 1993-07-09 1995-03-03 鹿島建設株式会社 Floor outlet structure
JPH07190416A (en) * 1993-12-28 1995-07-28 Takenaka Komuten Co Ltd Air conditioner
JP2002122348A (en) * 2000-10-17 2002-04-26 Fujitsu Ltd Cooling method and cooling device for electronic instrument
JP2008128538A (en) * 2006-11-20 2008-06-05 Kitagami Densetsu Kogyo Kk Cooling method for heat generation equipment and cooling device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739707A (en) * 1972-05-01 1973-06-19 Mkm Corp Smoke-fume exhaust system
JP2636617B2 (en) * 1991-12-26 1997-07-30 日立プラント建設株式会社 Air conditioner
US5345779A (en) * 1993-04-23 1994-09-13 Liebert Corporation Modular floor sub-structure for the operational support of computer systems
JP3113793B2 (en) * 1995-05-02 2000-12-04 株式会社エヌ・ティ・ティ ファシリティーズ Air conditioning system
JP3991271B2 (en) * 2003-01-14 2007-10-17 株式会社日立プラントテクノロジー Clean room
US7051946B2 (en) * 2003-05-29 2006-05-30 Hewlett-Packard Development Company, L.P. Air re-circulation index
US7214131B2 (en) * 2004-01-15 2007-05-08 Hewlett-Packard Development Company, L.P. Airflow distribution control system for usage in a raised-floor data center
US7086603B2 (en) * 2004-02-06 2006-08-08 Hewlett-Packard Development Company, L.P. Data collection system having a data collector
US6981915B2 (en) * 2004-03-15 2006-01-03 Hewlett-Packard Development Company, L.P. Airflow volume control system
US8596079B2 (en) * 2005-02-02 2013-12-03 American Power Conversion Corporation Intelligent venting
US7568360B1 (en) * 2005-11-01 2009-08-04 Hewlett-Packard Development Company, L.P. Air re-circulation effect reduction system
JP4647503B2 (en) * 2006-01-20 2011-03-09 東京電力株式会社 Air conditioning system
US20100041327A1 (en) * 2006-12-29 2010-02-18 Stulz Air Technology Systems, Inc. Apparatus, system and method for air conditioning using fans located under flooring

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248673A (en) * 1992-03-03 1993-09-24 Ohbayashi Corp Indoor ventilation device for building
JPH0712848U (en) * 1993-07-09 1995-03-03 鹿島建設株式会社 Floor outlet structure
JPH0735369A (en) * 1993-07-22 1995-02-07 Hibiya Eng Ltd Controller of air-conditioning apparatus having outlet in floor of pressure type
JPH07190416A (en) * 1993-12-28 1995-07-28 Takenaka Komuten Co Ltd Air conditioner
JP2002122348A (en) * 2000-10-17 2002-04-26 Fujitsu Ltd Cooling method and cooling device for electronic instrument
JP2008128538A (en) * 2006-11-20 2008-06-05 Kitagami Densetsu Kogyo Kk Cooling method for heat generation equipment and cooling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020121405A1 (en) * 2018-12-11 2021-02-15 三菱電機株式会社 Air conditioner and control method
CN112181009A (en) * 2020-09-14 2021-01-05 科华恒盛股份有限公司 Hotspot tracking control method and device and terminal equipment
CN112181009B (en) * 2020-09-14 2022-07-05 科华恒盛股份有限公司 Hotspot tracking control method and device and terminal equipment

Also Published As

Publication number Publication date
GB201008324D0 (en) 2010-07-07
CN101893291B (en) 2013-03-27
CN101893291A (en) 2010-11-24
GB2470481A (en) 2010-11-24
GB2470481B (en) 2014-06-18
JP5359551B2 (en) 2013-12-04
US20100297927A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5359551B2 (en) Air conditioning system
JP4837587B2 (en) Air conditioning system
JP5855895B2 (en) Air conditioning systems for communication / information processing equipment rooms, etc.
JP5296457B2 (en) Air conditioning system
JP5402306B2 (en) Air conditioning system, air conditioning control method, and air conditioning control program
JP5605982B2 (en) Ventilation device and air conditioning ventilation system
JP2011190967A (en) Air conditioning system
JP5243094B2 (en) Rack air conditioning system
CN107728750A (en) The air processor based on integrated building for server farm cooling system
JP5804078B2 (en) Information processing device
TW201144997A (en) Air conditioning system of portable data center
JP2011159144A (en) Server room and method of cooling the same
JP2011238764A (en) Cooling system for electronic equipment housing rack group
JP6153772B2 (en) Cooling system and method using chimney effect
JP2011085351A (en) Displacement ventilation equipment for large-spaced room
KR101134468B1 (en) Cooling apparatus and its method of internet data center
JP2012230438A (en) Rack apparatus and cooling method
CN111247374B (en) Air conditioner, control method, and storage medium storing program
JP2008128538A (en) Cooling method for heat generation equipment and cooling device
JP5381739B2 (en) Computer room air conditioning system and its air volume adjustment device
JP2009133617A (en) Air conditioning system
KR20110069972A (en) Cooling controlling apparatus and its method of internet data center
JP5306970B2 (en) Air conditioning system
CN203720764U (en) Cooling device used for closed-door cabinet
JP2012078056A (en) Air conditioning system for server room

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees