JP2010270295A - ポリカーボネート樹脂組成物及びその成形体 - Google Patents

ポリカーボネート樹脂組成物及びその成形体 Download PDF

Info

Publication number
JP2010270295A
JP2010270295A JP2010002165A JP2010002165A JP2010270295A JP 2010270295 A JP2010270295 A JP 2010270295A JP 2010002165 A JP2010002165 A JP 2010002165A JP 2010002165 A JP2010002165 A JP 2010002165A JP 2010270295 A JP2010270295 A JP 2010270295A
Authority
JP
Japan
Prior art keywords
polycarbonate resin
group
compound
resin composition
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010002165A
Other languages
English (en)
Other versions
JP4766172B2 (ja
JP2010270295A5 (ja
Inventor
Toshiki Kadota
敏樹 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2010002165A priority Critical patent/JP4766172B2/ja
Publication of JP2010270295A publication Critical patent/JP2010270295A/ja
Publication of JP2010270295A5 publication Critical patent/JP2010270295A5/ja
Application granted granted Critical
Publication of JP4766172B2 publication Critical patent/JP4766172B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】難燃性、耐衝撃性に優れ、かつアウトガス、金型汚染性が極めて少なく、さらには透明性にも優れるポリカーボネート樹脂組成物、及びそれを成形してなるポリカーボネート樹脂成形体を提供する。
【解決手段】ポリカーボネート樹脂100質量部と、金属塩化合物0.001〜1質量部と、ポリカルボシラン化合物0.005〜5質量部とを配合してなるポリカーボネート樹脂組成物。ポリカルボシラン化合物を金属塩化合物と同時に含有することにより、難燃性を著しく向上させることができる。また、ポリカルボシラン化合物を用いることにより、従来用いられているオルガノシロキサン(シリコーン)化合物やポリシラン化合物と比較して、透明性や耐衝撃性、耐熱性に優れ、かつアウトガスや金型汚染性が低いポリカーボネート樹脂組成物が得られる。
【選択図】なし

Description

本発明は、ポリカーボネート樹脂組成物及びその成形体に関するものである。詳しくは、難燃性、耐衝撃性、耐熱性に優れ、かつアウトガス、金型汚染性が極めて少なく、さらには透明性にも優れるポリカーボネート樹脂組成物と、このポリカーボネート樹脂組成物を成形してなるポリカーボネート樹脂成形体に関するものである。
ポリカーボネート樹脂は、耐熱性、機械的物性、光学特性、電気的特性に優れた樹脂であり、例えば自動車材料、電気電子機器材料、住宅材料、その他の工業分野における部品製造用材料等に幅広く利用されている。特に、難燃性が付与されたポリカーボネート樹脂組成物は、コンピューター、ノートブック型パソコン、携帯電話、プリンター、複写機等のOA・情報機器等の部材や、シート、フィルム部材として好適に使用されている。
ポリカーボネート樹脂に難燃性を付与する手段としては、従来、ハロゲン系難燃剤やリン系難燃剤をポリカーボネート樹脂に配合する方法が採用されてきた。しかしながら、塩素や臭素を含有するハロゲン系難燃剤を配合したポリカーボネート樹脂組成物は、熱安定性の低下や色相の悪化を招いたり、成形加工時における成形機のスクリューや成形金型の腐食を招いたりすることがあった。また、リン系難燃剤を配合したポリカーボネート樹脂組成物は、ポリカーボネート樹脂の特徴である高い透明性を阻害したり、耐衝撃性や耐熱性の低下を招いたりするため、その用途が制限されることがあった。加えて、これらのハロゲン系難燃剤及びリン系難燃剤は、製品の廃棄、回収時に環境汚染を惹起する可能性があるため、近年ではこれらの難燃剤を使用することなくポリカーボネート樹脂に難燃性を付与することが強く望まれている。
かかる状況下、近年、有機アルカリ金属塩化合物及び有機アルカリ土類金属塩化合物に代表される金属塩化合物が有用な難燃剤として数多く検討されている(例えば、特許文献1〜4参照)。このような金属塩化合物を難燃剤として用いると、ポリカーボネート樹脂が本来有する耐衝撃性等の機械的物性、耐熱性、光学特性、電気的特性などの性質を損なわずにある程度の難燃性を付与することができる。
しかしながら、上述の金属塩化合物をポリカーボネート樹脂に配合する手法で得られる難燃性のレベルは決して満足のいくものではなかった。これは、金属塩化合物をポリカーボネート樹脂に配合して得られる難燃効果が、触媒的作用によることに起因していると考えられる。このため、より高い難燃性を得ることを目的に、金属塩化合物の配合量を多くしても、難燃性は向上しないばかりか、かえって悪化する傾向にあり、さらには耐衝撃性等の機械物性、透明性等の光学物性、あるいは耐熱性、湿熱安定性などの諸物性を著しく低下させてしまう課題があった。
一方、オルガノシロキサン(シリコーン)化合物をポリカーボネート樹脂に配合することによって難燃性を向上させる試みもなされている(例えば、特許文献5参照)。
なかでも、主鎖に分岐構造を持ち、さらに芳香族基を含有するオルガノシロキサン化合物を配合する手法が盛んに検討されている(例えば、特許文献6〜8参照)。
また、有機スルホン酸金属塩と上述の主鎖に分岐構造を持ち、さらに芳香族基を含有するオルガノシロキサン化合物を同時に配合する手法も提案されている(例えば、特許文献9〜10参照)。
しかしながら、上述の特許文献5〜8のオルガノシロキサン化合物のみを配合する手法では、実際には難燃性を向上させる効果は極めて小さく、実用レベルの難燃性を得ることができるものではなかった。
また、オルガノシロキサン化合物はポリカーボネート樹脂に対する相溶性、分散性が悪いため、耐衝撃性等の機械物性や熱物性の低下を招き、しかも、少量添加しただけでも、ポリカーボネート樹脂の持つ良好な透明性を著しく低下させてしまうという致命的な欠点を有していた。さらには、樹脂組成物の混練・成形時にガスが多量に発生する;金型汚染を引き起こし易い;樹脂成形体の外観が悪い;表面がべたつく;等の様々な問題点も有していた。
特許文献9〜10で提案されているような有機スルホン酸金属塩とオルガノシロキサン化合物を同時に配合する手法では、オルガノシロキサン化合物の配合量を比較的減らし、難燃性を向上させることができるため、ガスの発生や金型汚染、樹脂成形体の外観不良やべたつきをある程度抑制することができるが、上述のような機械物性や熱物性、特に透明性の低下を防ぐことはできなかった。
透明性を改善する手法としては、ポリカーボネート樹脂との相溶性を上げるために、特定の官能基を含有するオルガノシロキサン化合物を用いる手法(例えば、特許文献11〜13参照)、フェニル基を含有し、重合度の低いオルガノシロキサン化合物を用いる手法(例えば、特許文献14参照)、オルガノシロキサン化合物低分子量体を用いる手法(例えば、特許文献15〜16参照)が提案されている。
また、主鎖にケイ素−ケイ素結合のみからなる繰り返し単位を有するポリシラン化合物を難燃剤として用いる手法も提案されている(例えば、特許文献17参照)。
特公昭47−40445号公報 特公昭54−32456号公報 特開2000−169696号公報 特開2001−181493号公報 特公昭62−60421号公報 特許第3240972号公報 特許第3716754号公報 特許第3835497号公報 特開平11−217494号公報 特開平11−263903号公報 特表2004−524423号公報 特許第3163596号公報 特許第2719486号公報 特許2746519号公報 特許第3503095号公報 特表2003−531940号公報 特開2003−277756号公報
しかしながら、上述の特許文献11〜16の手法は、比較的良好な透明性が得られるものの、未だポリカーボネート樹脂に対するオルガノシロキサン化合物の分散性が不十分であり、安定した難燃性が得られにくく、また分散性を上げるために重合度の低い、あるいは低分子量体のオルガノシロキサン化合物を用いているために少量添加しただけでも樹脂組成物の混練・成形時に多量にガスが発生し、また金型を汚染しやすいという欠点があった。また、安定した難燃性を得るべく、オルガノシロキサン化合物の配合量を多くすると、さらにガスの発生や金型汚染の問題が顕著になるため、実用に耐えうるものではなかった。
さらに、成形体の表面に付着、あるいは成形体からブリードアウトする上述のようなオルガノシロキサン化合物は、一部電気電子用途に用いる場合には、接点不良等の電気的トラブルの原因となる可能性があるため、その使用が避けられている。
このように、オルガノシロキサン化合物を配合して、ポリカーボネート樹脂の機械物性、熱物性、透明性を損なうことなく、ポリカーボネート樹脂に難燃性を付与し、さらにはアウトガスの発生や金型汚染が抑制することは極めて困難であった。
特許文献17ではオルガノシロキサン化合物とは異なるケイ素化合物であるポリシラン化合物を配合した樹脂組成物が提案されているが、このものもやはり、ポリカーボネート樹脂への相溶性、分散性が悪く、耐衝撃性等の機械物性の低下や透明性の低下を抑制することはできなかった。
このようなことから、従来において、難燃性、成形加工性、機械物性、耐熱性及び透明性が同時に優れるポリカーボネート樹脂組成物は、未だ得られていなかった。
本発明は上述の課題に鑑みて創案されたもので、難燃性、耐衝撃性等の機械物性に優れ、かつアウトガス、金型汚染性が極めて少なく、さらには透明性にも優れるポリカーボネート樹脂組成物、及びそれを成形してなるポリカーボネート樹脂成形体を提供することを課題とする。
本発明者は上記課題を解決するために、ポリカーボネート樹脂に配合するケイ素化合物の分子構造、特に主鎖の構造に注目し、鋭意検討した。
その結果、ポリカーボネート樹脂に金属塩化合物と所定の構造を有する有機ケイ素化合物を所定量配合することにより、耐衝撃性及び耐熱性のいずれも損なうことなく、難燃性が著しく向上し、かつアウトガス、金型汚染性が極めて少なく、さらには透明性にも優れたものとなることを見出し、本発明を完成させた。
即ち、本発明のポリカーボネート樹脂組成物は、ポリカーボネート樹脂100質量部と、金属塩化合物0.001〜1質量部と、ポリカルボシラン化合物0.005〜5質量部とを配合してなることを特徴とする(請求項1)。
本発明において、ポリカルボシラン化合物が、下記式(1)〜(3)で表される構造単位のうちの少なくとも1種の構造単位と炭化水素残基とからなる主鎖構造を有するものが好ましい(請求項2)。該炭化水素残基は、二価炭化水素基であることが好ましい(請求項3)。
Figure 2010270295
(式(1)〜(3)中、R、R、Rは、それぞれ独立に、一価炭化水素基、水素原子、又はシリル基を表し、a、b、cは、それぞれ独立に、0又は1を表す。主鎖構造中に含まれる複数のR、R及びRは、それぞれ同一であっても異なるものであってもよい。)
より具体的には、本発明で用いるポリカルボシラン化合物は、下記式(4)、特に下記式(5)、とりわけ下記式(6)で表される繰り返し単位を有する、数平均分子量100〜20000のポリカルボシラン化合物であることが好ましい(請求項4〜6)。
Figure 2010270295
(式(4)中、R、R、a、b、は前記式(1)におけると同義であり、Aは、炭素数1〜12の二価炭化水素基を表し、p、qは、それぞれ独立に、1〜8の整数を表す。R、R及びAは、それぞれ全ての繰り返し単位において同一であっても異なっていてもよい。)
Figure 2010270295
(式(5)中、R、Rは前記式(4)におけると同義であり、Aは炭素数1〜12のアルキレン基を表す。R、R及びAは、それぞれ全ての繰り返し単位において同一であっても異なっていてもよい。)
Figure 2010270295
また、金属塩化合物は、有機スルホン酸のアルカリ金属塩であることが好ましく(請求項7)、該有機スルホン酸のアルカリ金属塩が、含フッ素脂肪族スルホン酸のアルカリ金属塩、及び芳香族スルホン酸のアルカリ金属塩から選ばれる少なくとも1種であることがより好ましい(請求項8)。含フッ素脂肪族スルホン酸のアルカリ金属塩は、パーフルオロアルカンスルホン酸のアルカリ金属塩であることがさらに好ましく(請求項9)、芳香族スルホン酸のアルカリ金属塩は、パラトルエンスルホン酸のアルカリ金属塩であることがさらに好ましい(請求項10)。
また、ポリカーボネート樹脂は、構造粘性指数Nが1.2以上のポリカーボネート樹脂を20質量%以上含むことも好ましく(請求項11)、この構造粘性指数Nが1.2以上のポリカーボネート樹脂は、溶融エステル交換法によって製造されたポリカーボネート樹脂であることも好ましい(請求項12)。
本発明のポリカーボネート樹脂成形体は、このような本発明のポリカーボネート樹脂組成物を成形してなることを特徴とする(請求項13)。
本発明のポリカーボネート樹脂組成物は、難燃性向上に有効な金属塩化合物を含むと共に、この金属塩化合物と共にポリカルボシラン化合物を含むことにより、耐衝撃性等の機械物性や透明性、その他の物性を損なうことなく、また、アウトガスや金型汚染性の問題を引き起こすこともなく、難燃性をより一層向上させることができる。
即ち、ポリカルボシラン化合物は、従来、金属塩化合物と共に併用されてきたオルガノシロキサン(シリコーン)化合物やポリシラン化合物とは異なり、ポリカーボネート樹脂に比較的多量含有させた場合であっても、耐衝撃性、耐熱性及び透明性を損なうことなく、さらにはアウトガスや金型汚染も少ないため、金属塩化合物と共にポリカルボシラン化合物を併用することにより、難燃性、耐衝撃性に優れ、かつアウトガス、金型汚染性が極めて少なく、さらには透明性にも優れるポリカーボネート樹脂組成物を提供することができる。
本発明のポリカーボネート樹脂成形体は、難燃性、耐衝撃性等の機械物性、耐熱性に優れると共に透明性も良好であり、また、アウトガスや金型汚染性の問題もなく、高い生産性にて歩留りよく製造することができ、自動車材料、電気電子機器材料、住宅材料、その他の工業分野における部品製造用材料等として、特に、コンピューター、ノートブック型パソコン、携帯電話、プリンター、複写機等のOA・情報機器等の部材や、シート、フィルム部材として工業的に極めて有用である。
以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施することができる。
[1.概要]
本発明のポリカーボネート樹脂組成物は、少なくとも、ポリカーボネート樹脂と、金属塩化合物と、ポリカルボシラン化合物とを配合してなる。また、本発明のポリカーボネート樹脂組成物は、必要に応じて、その他の成分を含有していてもよい。
ここで、ポリカルボシラン化合物とは、主鎖にケイ素−炭素結合(Si−C結合)を有する繰り返し単位を2以上有するものであり、本発明で用いるポリカルボシラン化合物は、このように主鎖にSi−C結合を有することにより、ポリカーボネート樹脂に対する分散性、相溶性に優れ、オルガノシロキサン(シリコーン)化合物やポリシラン化合物を用いた従来のポリカーボネート樹脂組成物の透明性や耐衝撃性、耐熱性の低下やアウトガスや金型汚染等の問題を改善することができる。
[2.ポリカーボネート樹脂]
本発明のポリカーボネート樹脂組成物に用いるポリカーボネート樹脂の種類に制限は無い。また、ポリカーボネート樹脂は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
なかでも、ポリカーボネート樹脂は、構造粘性指数Nが所定範囲にあるポリカーボネート樹脂を所定の割合で含むものを用いることが好ましい。
本発明におけるポリカーボネート樹脂は、下記式(7)で表される、炭酸結合を有する基本構造の重合体である。
Figure 2010270295
式(7)中、Xは一般的には炭化水素基であるが、種々の特性付与のためヘテロ原子、ヘテロ結合の導入されたXを用いてもよい。
また、ポリカーボネート樹脂は、炭酸結合に直接結合する炭素がそれぞれ芳香族炭素である芳香族ポリカーボネート樹脂、及び脂肪族炭素である脂肪族ポリカーボネート樹脂に分類できるが、いずれを用いることもできる。なかでも、耐熱性、機械的物性、電気的特性等の観点から、芳香族ポリカーボネート樹脂が好ましい。
ポリカーボネート樹脂の具体的な種類に制限は無いが、例えば、ジヒドロキシ化合物とカーボネート前駆体とを反応させてなるポリカーボネート重合体が挙げられる。この際、ジヒドロキシ化合物及びカーボネート前駆体に加えて、ポリヒドロキシ化合物等を反応させるようにしてもよい。また、二酸化炭素をカーボネート前駆体として、環状エーテルと反応させる方法を用いてもよい。ここで、ポリカーボネート重合体は、直鎖状でもよく、分岐鎖状でもよい。さらに、ポリカーボネート重合体は1種の繰り返し単位からなる単独重合体であってもよく、2種以上の繰り返し単位を有する共重合体であってもよい。共重合体の場合、ランダム共重合体、ブロック共重合体等、種々の共重合形態を選択することができる。なお、通常、このようなポリカーボネート重合体は、熱可塑性の樹脂となる。
[2−1.ジヒドロキシ化合物]
ポリカーボネート樹脂の原料となるジヒドロキシ化合物のうち、芳香族ポリカーボネート樹脂の原料となる芳香族ジヒドロキシ化合物の例を挙げると、次のようなものが挙げられる。
1,2−ジヒドロキシベンゼン、
1,3−ジヒドロキシベンゼン(即ち、レゾルシノール)、
1,4−ジヒドロキシベンゼン、
等のジヒドロキシベンゼン類;
2,5−ジヒドロキシビフェニル、
2,2’−ジヒドロキシビフェニル、
4,4’−ジヒドロキシビフェニル、
等のジヒドロキシビフェニル類;
2,2’−ジヒドロキシ−1,1’−ビナフチル、
1,2−ジヒドロキシナフタレン、
1,3−ジヒドロキシナフタレン、
2,3−ジヒドロキシナフタレン、
1,6−ジヒドロキシナフタレン、
2,6−ジヒドロキシナフタレン、
1,7−ジヒドロキシナフタレン、
2,7−ジヒドロキシナフタレン、
等のジヒドロキシナフタレン類;
2,2’−ジヒドロキシジフェニルエーテル、
3,3’−ジヒドロキシジフェニルエーテル、
4,4’−ジヒドロキシジフェニルエーテル、
4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエーテル、
1,4−ビス(3−ヒドロキシフェノキシ)ベンゼン、
1,3−ビス(4−ヒドロキシフェノキシ)ベンゼン、
等のジヒドロキシジアリールエーテル類;
2,2−ビス(4−ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)、
1,1−ビス(4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−メトキシ−4−ヒドロキシフェニル)プロパン、
2−(4−ヒドロキシフェニル)−2−(3−メトキシ−4−ヒドロキシフェニル)プロパン、
1,1−ビス(3−tert−ブチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、
2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、
2−(4−ヒドロキシフェニル)−2−(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、
α,α’−ビス(4−ヒドロキシフェニル)−1,4−ジイソプロピルベンゼン、
1,3−ビス[2−(4−ヒドロキシフェニル)−2−プロピル]ベンゼン、
ビス(4−ヒドロキシフェニル)メタン、
ビス(4−ヒドロキシフェニル)シクロヘキシルメタン、
ビス(4−ヒドロキシフェニル)フェニルメタン、
ビス(4−ヒドロキシフェニル)(4−プロペニルフェニル)メタン、
ビス(4−ヒドロキシフェニル)ジフェニルメタン、
ビス(4−ヒドロキシフェニル)ナフチルメタン、
1,1−ビス(4−ヒドロキシフェニル)エタン、
1,2−ビス(4−ヒドロキシフェニル)エタン、
1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、
1,1−ビス(4−ヒドロキシフェニル)−1−ナフチルエタン、
1,1−ビス(4−ヒドロキシフェニル)ブタン、
2,2−ビス(4−ヒドロキシフェニル)ブタン、
2,2−ビス(4−ヒドロキシフェニル)ペンタン、
1,1−ビス(4−ヒドロキシフェニル)ヘキサン、
2,2−ビス(4−ヒドロキシフェニル)ヘキサン、
1,1−ビス(4−ヒドロキシフェニル)オクタン、
2,2−ビス(4−ヒドロキシフェニル)オクタン、
1−ビス(4−ヒドロキシフェニル)ヘキサン、
2−ビス(4−ヒドロキシフェニル)ヘキサン、
4,4−ビス(4−ヒドロキシフェニル)ヘプタン、
2,2−ビス(4−ヒドロキシフェニル)ノナン、
1,10−ビス(4−ヒドロキシフェニル)デカン、
1,1−ビス(4−ヒドロキシフェニル)ドデカン、
等のビス(ヒドロキシアリール)アルカン類;
1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、
1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、
1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,3−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,4−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,5−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)−3,3,5−トリメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−プロピル−5−メチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−tert−ブチル−シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−4−tert−ブチル−シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−フェニルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−4−フェニルシクロヘキサン、
等のビス(ヒドロキシアリール)シクロアルカン類;
9,9−ビス(4−ヒドロキシフェニル)フルオレン、
9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、
等のカルド構造含有ビスフェノール類;
4,4’−ジヒドロキシジフェニルスルフィド、
4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、
等のジヒドロキシジアリールスルフィド類;
4,4’−ジヒドロキシジフェニルスルホキシド、
4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、
等のジヒドロキシジアリールスルホキシド類;
4,4’−ジヒドロキシジフェニルスルホン、
4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホン、
等のジヒドロキシジアリールスルホン類:
これらの中でもビス(ヒドロキシアリール)アルカン類が好ましく、中でもビス(4−ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性、耐熱性の点から2,2−ビス(4−ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)が好ましい。
なお、芳香族ジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
また、脂肪族ポリカーボネート樹脂の原料となる脂肪族ジヒドロキシ化合物の例を挙げると、次のようなものが挙げられる。
エタン−1,2−ジオール、
プロパン−1,2−ジオール、
プロパン−1,3−ジオール、
2,2−ジメチルプロパン−1,3−ジオール、
2−メチル−2−プロピルプロパン−1,3−ジオール、
ブタン−1,4−ジオール、
ペンタン−1,5−ジオール、
ヘキサン−1,6−ジオール、
デカン−1,10−ジオール、
等のアルカンジオール類;
シクロペンタン−1,2−ジオール、
シクロヘキサン−1,2−ジオール、
シクロヘキサン−1,4−ジオール、
1,4−シクロヘキサンジメタノール、
4−(2−ヒドロキシエチル)シクロヘキサノール、
2,2,4,4−テトラメチル−シクロブタン−1,3−ジオール、
等のシクロアルカンジオール類;
2,2’−オキシジエタノール(即ち、エチレングリコール)、
ジエチレングリコール、
トリエチレングリコール、
プロピレングリコール、
スピログリコール、
等のグリコール類;
1,2−ベンゼンジメタノール、
1,3−ベンゼンジメタノール、
1,4−ベンゼンジメタノール、
1,4−ベンゼンジエタノール、
1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、
1,4−ビス(2−ヒドロキシエトキシ)ベンゼン、
2,3−ビス(ヒドロキシメチル)ナフタレン、
1,6−ビス(ヒドロキシエトキシ)ナフタレン、
4,4’−ビフェニルジメタノール、
4,4’−ビフェニルジエタノール、
1,4−ビス(2−ヒドロキシエトキシ)ビフェニル、
ビスフェノールAビス(2−ヒドロキシエチル)エーテル、
ビスフェノールSビス(2−ヒドロキシエチル)エーテル、
等のアラルキルジオール類;
1,2−エポキシエタン(即ち、エチレンオキシド)、
1,2−エポキシプロパン(即ち、プロピレンオキシド)、
1,2−エポキシシクロペンタン、
1,2−エポキシシクロヘキサン、
1,4−エポキシシクロヘキサン、
1−メチル−1,2−エポキシシクロヘキサン、
2,3−エポキシノルボルナン、
1,3−エポキシプロパン、
等の環状エーテル類;
なお、脂肪族ジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
[2−2.カーボネート前駆体]
ポリカーボネート樹脂の原料となるモノマーのうち、カーボネート前駆体の例を挙げると、カルボニルハライド、カーボネートエステル等が使用される。
なお、カーボネート前駆体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
カルボニルハライドとしては、具体的には例えば、ホスゲン;ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。
カーボネートエステルとしては、具体的には例えば、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;ジヒドロキシ化合物のビスカーボネート体、ジヒドロキシ化合物のモノカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。
[2−3.ポリカーボネート樹脂の製造方法]
ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用することができる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。以下、これらの方法のうち特に好適なものについて具体的に説明する。
<界面重合法>
まず、ポリカーボネート樹脂を界面重合法で製造する場合について説明する。界面重合法では、反応に不活性な有機溶媒及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、ジヒドロキシ化合物とカーボネート前駆体(好ましくは、ホスゲン)とを反応させた後、重合触媒の存在下で界面重合を行うことによってポリカーボネート樹脂を得る。なお、反応系には、必要に応じて分子量調整剤(末端停止剤)を存在させてもよく、ジヒドロキシ化合物の酸化防止のために酸化防止剤を存在させてもよい。
用いるジヒドロキシ化合物及びカーボネート前駆体は、前述の通りである。なお、カーボネート前駆体の中でもホスゲンを用いることが好ましく、ホスゲンを用いた場合の方法は特にホスゲン法と呼ばれる。
反応に不活性な有機溶媒としては、例えば、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素;などが挙げられる。なお、有機溶媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
アルカリ水溶液に含有されるアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム等のアルカリ金属化合物やアルカリ土類金属化合物が挙げられるが、中でも水酸化ナトリウム及び水酸化カリウムが好ましい。なお、アルカリ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
アルカリ水溶液中のアルカリ化合物の濃度に制限は無いが、通常、反応系のpHを10〜12にコントロールするために、5〜10質量%で使用される。また、例えばホスゲンを吹き込むに際しては、水相のpHが10〜12、好ましくは10〜11になる様にコントロールするために、ジヒドロキシ化合物とアルカリ化合物とのモル比を、通常1:1.9以上、中でも1:2.0以上、また、通常1:3.2以下、中でも1:2.5以下とすることが好ましい。
重合触媒としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン等の脂肪族三級アミン;N,N’−ジメチルシクロヘキシルアミン、N,N’−ジエチルシクロヘキシルアミン等の脂環式三級アミン;N,N’−ジメチルアニリン、N,N’−ジエチルアニリン等の芳香族三級アミン;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩;ピリジン;グアニン;グアニジンの塩;等が挙げられる。なお、重合触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
分子量調整剤としては、例えば、一価のフェノール性水酸基を有する芳香族フェノール;メタノール、ブタノールなどの脂肪族アルコール;メルカプタン;フタル酸イミド等が挙げられるが、中でも芳香族フェノールが好ましい。このような芳香族フェノールとしては、具体的に、m−メチルフェノール、p−メチルフェノール、m−プロピルフェノール、p−プロピルフェノール、p−tert−ブチルフェノール、p−長鎖アルキル置換フェノール等のアルキル基置換フェノール;イソプロパニルフェノール等のビニル基含有フェノール;エポキシ基含有フェノール;o−オキシン安息香酸、2−メチル−6−ヒドロキシフェニル酢酸等のカルボキシル基含有フェノール;等が挙げられる。なお、分子量調整剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
分子量調整剤の使用量は、ジヒドロキシ化合物100モルに対して、通常0.5モル以上、好ましくは1モル以上であり、また、通常50モル以下、好ましくは30モル以下である。分子量調整剤の使用量をこの範囲とすることで、得られるポリカーボネート樹脂組成物の熱安定性及び耐加水分解性を向上させることができる。
反応の際に、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。例えば、カーボネート前駆体としてホスゲンを用いた場合には、分子量調整剤はジヒドロキシ化合物とホスゲンとの反応(ホスゲン化)の時から重合反応開始時までの間であれば任意の時期に混合できる。
なお、反応温度は通常0〜40℃であり、反応時間は通常は数分(例えば、10分)〜数時間(例えば、6時間)である。
<溶融エステル交換法>
次に、ポリカーボネート樹脂を溶融エステル交換法で製造する場合について説明する。溶融エステル交換法では、例えば、炭酸ジエステルとジヒドロキシ化合物とのエステル交換反応を行う。
用いるジヒドロキシ化合物は、前述の通りである。
一方、炭酸ジエステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ−tert−ブチルカーボネート等の炭酸ジアルキル化合物;ジフェニルカーボネート;ジトリルカーボネート等の置換ジフェニルカーボネートなどが挙げられる。中でも、ジフェニルカーボネート及び置換ジフェニルカーボネートが好ましく、特にジフェニルカーボネートがより好ましい。なお、炭酸ジエステルは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
ジヒドロキシ化合物と炭酸ジエステルとの比率は所望のポリカーボネート樹脂が得られる限り任意であるが、ジヒドロキシ化合物1モルに対して、炭酸ジエステルを等モル量以上用いることが好ましく、中でも1.01モル以上用いることがより好ましい。なお、上限は通常1.30モル以下である。このような範囲にすることで、末端水酸基量を好適な範囲に調整できる。
ポリカーボネート樹脂では、その末端水酸基量が熱安定性、加水分解安定性、色調等に大きな影響を及ぼす傾向がある。このため、公知の任意の方法によって末端水酸基量を必要に応じて調整してもよい。エステル交換反応においては、通常、炭酸ジエステルとジヒドロキシ化合物との混合比率;エステル交換反応時の減圧度などを調整することにより、末端水酸基量を調整したポリカーボネート樹脂を得ることができる。なお、この操作により、通常は得られるポリカーボネート樹脂の分子量を調整することもできる。
炭酸ジエステルとジヒドロキシ化合物との混合比率を調整して末端水酸基量を調整する場合、その混合比率は前記の通りである。
また、より積極的な調整方法としては、反応時に別途、末端停止剤を混合する方法が挙げられる。この際の末端停止剤としては、例えば、一価フェノール類、一価カルボン酸類、炭酸ジエステル類などが挙げられる。なお、末端停止剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
溶融エステル交換法によりポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。エステル交換触媒は任意のものを使用できる。なかでも、例えばアルカリ金属化合物及び/又はアルカリ土類金属化合物を用いることが好ましい。また補助的に、例えば塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物などの塩基性化合物を併用してもよい。なお、エステル交換触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
溶融エステル交換法において、反応温度は通常100〜320℃である。また、反応時の圧力は通常2mmHg以下の減圧条件である。具体的操作としては、前記の条件で、芳香族ヒドロキシ化合物等の副生成物を除去しながら、溶融重縮合反応を行えばよい。
溶融重縮合反応は、バッチ式、連続式の何れの方法でも行うことができる。バッチ式で行う場合、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望の芳香族ポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。ただし、中でも、得られるポリカーボネート樹脂及びポリカーボネート樹脂組成物の安定性等を考慮すると、溶融重縮合反応は連続式で行うことが好ましい。
溶融エステル交換法においては、必要に応じて、触媒失活剤を用いてもよい。触媒失活剤としてはエステル交換触媒を中和する化合物を任意に用いることができる。その例を挙げると、イオウ含有酸性化合物及びその誘導体などが挙げられる。なお、触媒失活剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
触媒失活剤の使用量は、前記のエステル交換触媒が含有するアルカリ金属又はアルカリ土類金属に対して、通常0.5当量以上、好ましくは1当量以上であり、また、通常10当量以下、好ましくは5当量以下である。更には、ポリカーボネート樹脂に対して、通常1ppm以上であり、また、通常100ppm以下、好ましくは20ppm以下である。
本発明で用いるポリカーボネート樹脂は、比較的安価で、工業的に入手しやすい原料を用いて製造することができることにより、上述のような溶融エステル交換法により製造されたものであることが好ましい。
[2−4.ポリカーボネート樹脂の構造粘性指数]
本発明におけるポリカーボネート樹脂は、構造粘性指数Nが所定範囲にあるポリカーボネート樹脂を一定割合以上含有することが好ましい。
構造粘性指数Nとは、溶融体の流動特性を評価する指標である。通常、ポリカーボネート樹脂の溶融特性は、数式:γ=a・σにより表示することができる。なお、前記式中、γ:剪断速度、a:定数、σ:応力、N:構造粘性指数、を表す。
上述の数式において、N=1のときはニュートン流動性を示し、Nの値が大きくなるほど非ニュートン流動性が大きくなる。つまり、構造粘性指数Nの大小により溶融体の流動特性が評価される。一般に、構造粘性指数Nが大きいポリカーボネート樹脂は、低剪断領域における溶融粘度が高くなる傾向がある。このため、構造粘性指数Nが大きいポリカーボネート樹脂を別のポリカーボネート樹脂と混合した場合、得られるポリカーボネート樹脂組成物の燃焼時の滴下を抑制し、難燃性を向上させることができる。ただし、得られるポリカーボネート樹脂組成物の成形性を良好な範囲に維持するためには、このポリカーボネート樹脂の構造粘性指数Nは過度に大きくないことが好ましい。
従って、本発明のポリカーボネート樹脂組成物におけるポリカーボネート樹脂は、構造粘性指数Nが、通常1.2以上、好ましくは1.25以上、より好ましくは1.28以上であり、また、通常1.8以下、好ましくは1.7以下のポリカーボネート樹脂、好ましくは芳香族ポリカーボネート樹脂を一定割合以上含有することが好ましい。このように構造粘性指数Nが高いポリカーボネート樹脂、特には芳香族ポリカーボネート樹脂を含有することにより、本発明のポリカーボネート樹脂組成物の燃焼時の滴下を抑制し、難燃性を向上させることができる。
なお、「構造粘性指数N」は、例えば特開2005−232442号公報に記載されているように、上述の式を誘導した、Logη=〔(1−N)/N〕×Logγ+Cによって表示することも可能である。なお、前記式中、N:構造粘性指数、γ:剪断速度、C:定数、η:見かけの粘度、を表す。この式から分かるように、粘度挙動が大きく異なる低剪断領域におけるγとηからN値を評価することもできる。例えば、γ=12.16sec−1及びγ=24.32sec−1でのηからN値を決定することができる。
本発明のポリカーボネート樹脂組成物において、ポリカーボネート樹脂は、上述した構造粘性指数Nが所定範囲にあるポリカーボネート樹脂(以下、このポリカーボネート樹脂を「所定Nポリカーボネート樹脂」と称す場合がある。)、好ましくは芳香族ポリカーボネート樹脂(以下、「所定N芳香族ポリカーボネート樹脂」と称す場合がある。)を、ポリカーボネート樹脂中、通常20質量%以上、好ましくは50質量%以上、より好ましくは60質量%以上含むことが望ましい。これは、所定Nポリカーボネート樹脂と組み合わせることにより、本発明に係る金属塩化合物及びポリカルボシラン化合物の特有の相乗効果を顕著に発揮することができるからである。なお、ポリカーボネート樹脂中の、所定Nポリカーボネート樹脂、好ましくは所定N芳香族ポリカーボネート樹脂の含有量の上限に制限は無く、通常100質量%以下であるが、好ましくは90質量%以下であり、より好ましくは85質量%以下である。
なお、所定Nポリカーボネート樹脂は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
また、ポリカーボネート樹脂は、上述した所定Nポリカーボネート樹脂以外に、構造粘性指数Nが上記の所定範囲外であるポリカーボネート樹脂を含んでいてもよい。その種類に制限は無いが、なかでも直鎖状ポリカーボネート樹脂が好ましい。所定Nポリカーボネート樹脂と直鎖状ポリカーボネート樹脂とを組み合わせることにより、得られるポリカーボネート樹脂組成物の難燃性(滴下防止性)と成形性(流動性)のバランスをとりやすいという利点が得られる。この観点から、ポリカーボネート樹脂は、所定Nポリカーボネート樹脂と、直鎖状ポリカーボネート樹脂とから構成されるものを用いることが特に好ましい。
なお、この直鎖状ポリカーボネート樹脂の構造粘性指数Nは通常1〜1.15程度である。
ポリカーボネート樹脂が直鎖状ポリカーボネート樹脂を含む場合、ポリカーボネート樹脂に占める直鎖状ポリカーボネート樹脂の割合は、通常80質量%以下、好ましくは50質量%以下、より好ましくは40質量%以下であり、また、通常0質量%より多く、好ましくは10質量%以上、より好ましくは15質量%以上である。ポリカーボネート樹脂中の直鎖状ポリカーボネート樹脂の含有量を上記範囲とすることにより、難燃剤としての金属塩化合物及びポリカルボシラン化合物やその他の添加剤の良好な分散性が得られやすく、難燃性、成形性に優れるポリカーボネート樹脂が得られやすいという利点が得られる。
なお、ポリカーボネート樹脂は、構造粘性指数Nが上記の所定範囲からはずれるポリカーボネート樹脂を、1種だけ含んでいてもよく、2種以上を任意の組み合わせ及び比率で含んでいてもよい。即ち、本発明に係るポリカーボネート樹脂は、直鎖状ポリカーボネート樹脂を、1種だけ含んでいてもよく、2種以上を任意の組み合わせ及び比率で含んでいてもよい。
[2−5.所定Nポリカーボネート樹脂の製造方法]
所定Nポリカーボネート樹脂は、前述のポリカーボネート樹脂の製造法に従って製造すればよい。この際、分岐構造を有するポリカーボネート樹脂(以下、適宜「分岐ポリカーボネート樹脂」という。)を製造するようにすると、所定Nポリカーボネート樹脂が得られやすく、好ましい。分岐ポリカーボネート樹脂は構造粘性指数Nが高くなる傾向があるためである。
分岐ポリカーボネート樹脂の製造方法の例を挙げると、特開平8−259687号公報、特開平8−245782号公報等に記載の方法が挙げられる。これらの文献に記載の方法では、溶融エステル交換法により芳香族ジヒドロキシ化合物と炭酸ジエステルとを反応させる際、触媒の条件又は製造条件を選択することにより、分岐剤を使用することなく、構造粘性指数Nが高く、加水分解安定性に優れたポリカーボネート樹脂を得ることができる。
また、分岐ポリカーボネート樹脂を製造する他の方法として、前述のポリカーボネート樹脂の原料である、ジヒドロキシ化合物とカーボネート前駆体の他に、三官能以上の多官能性化合物(分岐剤)を用い、界面重合法又は溶融エステル交換法にて、これらを共重合する方法が挙げられる。
この場合に用いられる三官能以上の多官能性化合物としては、例えば、次のようなものが挙げられる。
1,3,5−トリヒドロキシベンゼン(フロログルシン)、
4,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプテン−2、
4,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプタン、
2,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプテン−3、
1,3,5−トリ(4−ヒドロキシフェニル)べンゼン、
3,3−ビス(4−ヒドロキシアリール)オキシインド−ル(即ち、イサチンビスフェノール)、
5−クロロイサチン、
5,7−ジクロロイサチン、
5−ブロムイサチン等;
−Si−(O−SiMe−C−C−OH)
−Si−(O−SiPh−C−C−OH)
−Si−(O−SiMe−C−C−OH)
−Si−(O−SiPh−C−C−OH)
−Si−([O−SiMe−C−C−OH)
−Si−([O−SiMe10−C−C−OH)
−Si−([O−SiMe50−C−C−OH)
−Si−([O−SiPh50−C−C−OH)
−Si−([O−SiMe−[O−SiPh−C−C−OH)
−Si−([O−SiMe16−[O−SiPh−C−C−OH)
等のケイ素原子含有トリスフェノール化合物(ここで、Meはメチル基、Phはフェニル基を表す。);
下記式(8)〜(9)で表されるトリスフェノール化合物等のポリヒドロキシ化合物類;
Figure 2010270295
(式(8)中、Rは、炭素数1〜5のアルキル基を表し、R、R、R、R、R及びR10は、それぞれ独立に、水素原子又は炭素数1〜10のアルキル基を表す。)
Figure 2010270295
式(9)中、R11、R12、R13及びR14は、それぞれ独立に、炭素数1〜10のアルキル基、炭素数5〜10のシクロアルキル基、又は炭素数5〜10のシクロアリール基を表し、R15、R16及びR17は、それぞれ独立に、水素原子又は炭素数1〜10のアルキル基を表す。)
式(8)で表される化合物の具体例としては、次のようなものが挙げられる。
1,1,1−トリス(4−ヒドロキシフェニル)−メタン、
1,1,1−トリス(4−ヒドロキシフェニル)−エタン、
1,1,1−トリス(4−ヒドロキシフェニル)−プロパン、
1,1,1−トリス(2−メチル−4−ヒドロキシフェニル)−メタン、
1,1,1−トリス(2−メチル−4−ヒドロキシフェニル)−エタン、
1,1,1−トリス(3−メチル−4−ヒドロキシフェニル)−メタン、
1,1,1−トリス(3−メチル−4−ヒドロキシフェニル)−エタン、
1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)−メタン、
1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)−エタン等
式(9)においてR11、R12、R13及びR14としては、なかでもメチル基が好ましい。R11、R12、R13及びR14のシクロアルキル基のシクロアルキル環は、炭素1〜4のアルキル基、好ましくはメチル基で置換されていてもよい。また、R15、R16及びR17は、なかでも水素原子が好ましい。
式(9)で表される化合物としては、なかでも特に好ましい化合物として、下記式(10)で表される化合物が挙げられる。
Figure 2010270295
多官能性化合物は、前記原料ジヒドロキシ化合物の一部を置換して使用することができる。多官能性化合物の使用量は、ジヒドロキシ化合物に対して、通常0.01モル%以上、好ましくは0.1モル%以上であり、また、通常10モル%以下、好ましくは3モル%以下である。
なお、多官能性化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
溶融エステル交換法によって得られた分岐ポリカーボネート樹脂に含まれる分岐構造は、例えば、下記式(11)〜(14)で表される構造が挙げられる。なお、下記式(11)〜(14)において、X、X、X及びXは、単結合、炭素数1〜8のアルキレン基、炭素数2〜8のアルキリデン基、炭素数5〜15のシクロアルキレン基、炭素数5〜15のシクロアルキリデン基、又は、−O−、−S−、−CO−、−SO−、−SO−で示される二価の基からなる群より選ばれるものを示す。
Figure 2010270295
分岐ポリカーボネート樹脂の製造方法としては、前述した方法の中でも、溶融エステル交換法による方法が特に好ましい。これは、前述のポリカーボネート樹脂の製造方法において記載したように、比較的安価で、工業的入手のしやすい原料により製造できるためである。
[2−6.ポリカーボネート樹脂に関するその他の事項]
本発明で用いるポリカーボネート樹脂の分子量は任意であり、適宜選択して決定すればよいが、溶液粘度から換算した粘度平均分子量[Mv]は、通常10000以上、好ましくは16000以上、より好ましくは18000以上であり、また、通常40000以下、好ましくは30000以下である。粘度平均分子量を上記範囲の下限値以上とすることにより、本発明のポリカーボネート樹脂組成物の機械的強度をより向上させることができ、機械的強度の要求の高い用途に用いる場合により好ましいものとなる。一方、粘度平均分子量を上記範囲の上限値以下とすることにより、本発明のポリカーボネート樹脂組成物の流動性低下を抑制して改善でき、成形加工性を高めて成形加工を容易に行えるようになる。なお、粘度平均分子量の異なる2種類以上のポリカーボネート樹脂を混合して用いてもよく、この場合には、粘度平均分子量が上記の好適な範囲外であるポリカーボネート樹脂を混合してもよい。
なお、粘度平均分子量[Mv]とは、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、η=1.23×10−4Mv0.83、から算出される値を意味する。また極限粘度[η]とは、各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記式により算出した値である。
Figure 2010270295
ポリカーボネート樹脂の末端水酸基濃度は任意であり、適宜選択して決定すればよいが、通常1000ppm以下、好ましくは800ppm以下、より好ましくは600ppm以下である。末端水酸基濃度がこの上限値以下であることにより、本発明のポリカーボネート樹脂組成物の滞留熱安定性及び色調をより向上させることができる。また、その下限は、特に溶融エステル交換法で製造されたポリカーボネート樹脂では、通常10ppm以上、好ましくは30ppm以上、より好ましくは40ppm以上である。末端水酸基濃度がこの下限値以上であることにより、分子量の低下を抑制し、本発明のポリカーボネート樹脂組成物の機械的特性をより向上させることができる。
なお、末端水酸基濃度の単位は、ポリカーボネート樹脂の重量に対する、末端水酸基の重量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量法(Macromol.Chem.88 215(1965)に記載の方法)である。
ポリカーボネート樹脂は、ポリカーボネート樹脂単独(ポリカーボネート樹脂単独とは、ポリカーボネート樹脂の1種のみを含む態様に限定されず、例えば、モノマー組成や分子量、物性等が互いに異なる複数種のポリカーボネート樹脂を含む態様を含む意味で用いる。)で用いてもよく、ポリカーボネート樹脂と他の熱可塑性樹脂とを組み合わせてアロイ(混合物)として用いてもよい。さらに、例えば、難燃性や耐衝撃性をさらに高める目的で、ポリカーボネート樹脂を、シロキサン構造を有するオリゴマー又はポリマーとの共重合体;熱酸化安定性や難燃性をさらに向上させる目的でリン原子を有するモノマー、オリゴマー又はポリマーとの共重合体;熱酸化安定性を向上させる目的で、ジヒドロキシアントラキノン構造を有するモノマー、オリゴマー又はポリマーとの共重合体;光学的性質を改良するためにポリスチレン等のオレフィン系構造を有するオリゴマー又はポリマーとの共重合体;耐薬品性を向上させる目的でポリエステル樹脂オリゴマー又はポリマーとの共重合体;等の、ポリカーボネート樹脂を主体とする共重合体として構成してもよい。
また、成形品の外観の向上や流動性の向上を図るため、ポリカーボネート樹脂は、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量[Mv]は、通常1500以上、好ましくは2000以上であり、また、通常9500以下、好ましくは9000以下である。この場合、本発明のポリカーボネート樹脂組成物中に含有されるポリカーボネートオリゴマーは、ポリカーボネート樹脂(ポリカーボネートオリゴマーを含む)の30質量%以下とすることが好ましい。
さらにポリカーボネート樹脂は、バージン原料だけでなく、使用済みの製品から再生されたポリカーボネート樹脂(いわゆるマテリアルリサイクルされたポリカーボネート樹脂)であってもよい。この使用済みの製品としては、例えば、光学ディスク等の光記録媒体;導光板;自動車窓ガラス、自動車ヘッドランプレンズ、風防等の車両透明部材;水ボトル等の容器;メガネレンズ;防音壁、ガラス窓、波板等の建築部材などが挙げられる。また、製品の不適合品、スプルー、ランナー等から得られた粉砕品又はそれらを溶融して得たペレット等も使用可能である。
ただし、再生されたポリカーボネート樹脂は、本発明のポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂のうち、80質量%以下であることが好ましく、中でも50質量%以下であることがより好ましい。再生されたポリカーボネート樹脂は、熱劣化や経年劣化等の劣化を受けている可能性が高いため、このようなポリカーボネート樹脂を上記上限値よりも多く用いた場合、色相や機械的物性を低下させる可能性があるためである。
[3.金属塩化合物]
本発明のポリカーボネート樹脂組成物は金属塩化合物を含有する。このように金属塩化合物を含有することで、本発明のポリカーボネート樹脂組成物の難燃性を向上させることができる。
金属塩化合物が有する金属の種類としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)等のアルカリ金属;マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等のアルカリ土類金属;並びに、アルミニウム(Al)、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブテン(Mo)等が挙げられるが、なかでもアルカリ金属又はアルカリ土類金属であることが好ましい。
これは、本発明のポリカーボネート樹脂組成物の燃焼時の炭化層形成を促進し、難燃性をより高めることができると共に、ポリカーボネート樹脂が有する耐衝撃性等の機械的物性、耐熱性、電気的特性などの性質を良好に維持できるからである。従って、金属塩化合物としては、アルカリ金属塩及びアルカリ土類金属塩からなる群より選ばれる少なくとも1種の金属塩化合物がより好ましく、なかでもアルカリ金属塩化合物がさらに好ましく、ナトリウム塩化合物、カリウム塩化合物、セシウム塩化合物が特に好ましい。
また、金属塩化合物としては、例えば、有機金属塩化合物、無機金属塩化合物などが挙げられるが、ポリカーボネート樹脂への分散性がよいという点から有機金属塩化合物が好ましい。
有機金属塩化合物としては、例えば、有機スルホン酸金属塩、有機スルホンアミドの金属塩、有機カルボン酸金属塩、有機ホウ酸金属塩、有機リン酸金属塩等が挙げられる。中でも、ポリカーボネート樹脂と混合した場合の熱安定性の点から、有機スルホン酸金属塩、有機スルホンアミドの金属塩、有機リン酸金属塩が好ましく、有機スルホン酸金属塩が特に好ましい。
有機スルホン酸金属塩の例を挙げると、有機スルホン酸リチウム(Li)塩、有機スルホン酸ナトリウム(Na)塩、有機スルホン酸カリウム(K)塩、有機スルホン酸ルビジウム(Rb)塩、有機スルホン酸セシウム(Cs)塩、有機スルホン酸マグネシウム(Mg)塩、有機スルホン酸カルシウム(Ca)塩、有機スルホン酸ストロンチウム(Sr)塩、有機スルホン酸バリウム(Ba)塩、等が挙げられる。この中でも特に、有機スルホン酸ナトリウム(Na)塩、有機スルホン酸カリウム(K)塩化合物、有機スルホン酸セシウム(Cs)塩化合物等の有機スルホン酸アルカリ金属塩が好ましい。
金属塩化合物のうち、好ましいものの例としては、含フッ素脂肪族スルホン酸の金属塩、含フッ素脂肪族スルホン酸イミドの金属塩、芳香族スルホン酸の金属塩、芳香族スルホンアミドの金属塩が挙げられる。その中でも好ましいものの具体例を挙げると、次の通りである。
<含フッ素脂肪族スルホン酸の金属塩>
パーフルオロブタンスルホン酸カリウム、パーフルオロブタンスルホン酸リチウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸セシウム、トリフルオロメタンスルホン酸リチウム、トリフルオロメタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸カリウム、パーフルオロエタンスルホン酸カリウム、パーフルオロプロパンスルホン酸カリウム等の、分子中に少なくとも1つのC−F結合を有する含フッ素脂肪族スルホン酸のアルカリ金属塩;
パーフルオロブタンスルホン酸マグネシウム、パーフルオロブタンスルホン酸カルシウム、パーフルオロブタンスルホン酸バリウム、トリフルオロメタンスルホン酸マグネシウム、トリフルオロメタンスルホン酸カルシウム、トリフルオロメタンスルホン酸バリウム等の、分子中に少なくとも1つのC−F結合を有する含フッ素脂肪族スルホン酸のアルカリ土類金属塩;
パーフルオロメタンジスルホン酸ジナトリウム、パーフルオロメタンジスルホン酸ジカリウム、パーフルオロエタンジスルホン酸ナトリウム、パーフルオロエタンジスルホン酸ジカリウム、パーフルオロプロパンジスルホン酸ジカリウム、パーフルオロイソプロパンジスルホン酸ジカリウム、パーフルオロブタンジスルホン酸ジナトリウム、パーフルオロブタンジスルホン酸ジカリウム、パーフルオロオクタンジスルホン酸ジカリウム等の、分子中に少なくとも1つのC−F結合を有する含フッ素脂肪族ジスルホン酸のアルカリ金属塩;等
<含フッ素脂肪族スルホン酸イミドの金属塩>
ビス(パーフルオロプロパンスルホニル)イミドリチウム、ビス(パーフルオロプロパンスルホニル)イミドナトリウム、ビス(パーフルオロプロパンスルホニル)イミドカリウム、ビス(パーフルオロブタンスルホニル)イミドリチウム、ビス(パーフルオロブタンスルホニル)イミドナトリウム、ビス(パーフルオロブタンスルホニル)イミドカリウム、トリフルオロメタン(ペンタフルオロエタン)スルホニルイミドカリウム、トリフルオロメタン(ノナフルオロブタン)スルホニルイミドナトリウム、トリフルオロメタン(ノナフルオロブタン)スルホニルイミドカリウム等の、分子中に少なくとも1つのC−F結合を有する含フッ素脂肪族スルホン酸イミドのアルカリ金属塩;
シクロ−ヘキサフルオロプロパン−1,3−ビス(スルホニル)イミドリチウム、シクロ−ヘキサフルオロプロパン−1,3−ビス(スルホニル)イミドナトリウム、シクロ−ヘキサフルオロプロパン−1,3−ビス(スルホニル)イミドカリウム等の、分子中に少なくとも1つのC−F結合を有する環状含フッ素脂肪族スルホン酸イミドのアルカリ金属塩;等
<芳香族スルホン酸の金属塩>
ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3−スルホン酸カリウム、ベンゼンスルホン酸ナトリウム、(ポリ)スチレンスルホン酸ナトリウム、パラトルエンスルホン酸ナトリウム、(分岐)ドデシルベンゼンスルホン酸ナトリウム、トリクロロベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸カリウム、スチレンスルホン酸カリウム、(ポリ)スチレンスルホン酸カリウム、パラトルエンスルホン酸カリウム、(分岐)ドデシルベンゼンスルホン酸カリウム、トリクロロベンゼンスルホン酸カリウム、ベンゼンスルホン酸セシウム、(ポリ)スチレンスルホン酸セシウム、パラトルエンスルホン酸セシウム、(分岐)ドデシルベンゼンスルホン酸セシウム、トリクロロベンゼンスルホン酸セシウム等の、分子中に少なくとも1種の芳香族基を有する芳香族スルホン酸のアルカリ金属塩;
パラトルエンスルホン酸マグネシウム、パラトルエンスルホン酸カルシウム、パラトルエンスルホン酸ストロンチウム、パラトルエンスルホン酸バリウム、(分岐)ドデシルベンゼンスルホン酸マグネシウム、(分岐)ドデシルベンゼンスルホン酸カルシウム等の、分子中に少なくとも1種の芳香族基を有する芳香族スルホン酸のアルカリ土類金属塩;等
<芳香族スルホン酸アミドの金属塩>
サッカリンのナトリウム塩、N−(p−トリルスルホニル)−p−トルエンスルホイミドのカリウム塩、N−(N’−ベンジルアミノカルボニル)スルファニルイミドのカリウム塩、N−(フェニルカルボキシル)−スルファニルイミドのカリウム塩等の、分子中に少なくとも1種の芳香族基を有する芳香族スルホンアミドのアルカリ金属塩;等
上述した例示物の中でも、含フッ素脂肪族スルホン酸金属塩、芳香族スルホン酸金属塩がより好ましく、含フッ素脂肪族スルホン酸金属塩が、特に好ましい。
また、含フッ素脂肪族スルホン酸金属塩としては分子中に少なくとも1つのC−F結合を有する含フッ素脂肪族スルホン酸のアルカリ金属塩がより好ましく、パーフルオロアルカンスルホン酸のアルカリ金属塩が特に好ましく、具体的にはパーフルオロブタンスルホン酸カリウム等が好ましい。
芳香族スルホン酸金属塩としては芳香族スルホン酸のアルカリ金属塩がより好ましく、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3−スルホン酸カリウム等のジフェニルスルホン−スルホン酸のアルカリ金属塩;パラトルエンスルホン酸ナトリウム、パラトルエンスルホン酸カリウム、パラトルエンスルホン酸セシウム等のパラトルエンスルホン酸のアルカリ金属塩;が特に好ましく、パラトルエンスルホン酸のアルカリ金属塩がさらに好ましい。
なお、金属塩化合物は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
本発明のポリカーボネート樹脂組成物における金属塩化合物の含有量は、ポリカーボネート樹脂100質量部に対して、0.01質量部以上、好ましくは0.02質量部以上、より好ましくは0.03質量部以上、特に好ましくは0.05質量部以上であり、1質量部以下、好ましくは0.75質量部以下、より好ましくは0.5質量部以下、特に好ましくは0.3質量部以下である。金属塩化合物の含有量が少なすぎると得られるポリカーボネート樹脂組成物の難燃性が不十分となる可能性があり、逆に多すぎてもポリカーボネート樹脂組成物の熱安定性の低下、並びに、成形体の外観不良及び機械的強度の低下が生ずる可能性がある。
[4.ポリカルボシラン化合物]
本発明のポリカーボネート樹脂組成物は、ポリカルボシラン化合物、即ち、主鎖にケイ素−炭素結合を有するケイ素化合物を含有する。本発明では、このポリカルボシラン化合物を金属塩化合物と同時に含有することで、本発明のポリカーボネート樹脂組成物の難燃性を著しく向上させることができる。また、本発明に係るポリカルボシラン化合物を用いることで、従来用いられているオルガノシロキサン(シリコーン)化合物やポリシラン化合物と比較して、透明性や耐衝撃性、耐熱性に優れ、かつアウトガスや金型汚染性が低いポリカーボネート樹脂組成物が得られる。これは、以下の理由による。
従来用いられているオルガノシロキサン(シリコーン)は、主鎖が、ケイ素−酸素結合からなるケイ素化合物である。また、ポリシラン化合物は、主鎖が、ケイ素−ケイ素結合からなるケイ素化合物である。このため、これらのケイ素化合物は、無機的性質が強いため、有機樹脂であるポリカーボネート樹脂への相溶性が悪く、分散性に劣ることから、耐衝撃性等の機械物性を阻害しやすく、また透明性も得られにくい。
特に、オルガノシロキサンは、通常融点が低いためポリカーボネート樹脂へ配合させた場合、樹脂組成物の耐熱性を低下させやすい傾向にあり、またアウトガスが多く、それに伴い金型汚染を引き起こしやすい。さらに、透明性を得ようと、比較的分子量の小さいものを選択すると、アウトガスや金型汚染はますます増加する。一方、ポリシラン化合物は、耐熱性の点ではオルガノシロキサン化合物と比較し、改善される傾向にあるものの、上記と同様の理由から、機械物性の低下が著しく、透明性が得られにくく、さらにアウトガスや金型汚染も多い。
これに対し、主鎖にケイ素−炭素結合を有するポリカルボシラン化合物は、主鎖に有機成分(有機残基)を含有するため、有機的性質が強くなる。このため、オルガノシロキサンやポリシラン化合物と比較し、ポリカーボネート樹脂への分散性が著しく向上し、耐衝撃性等の機械物性の低下や、透明性を阻害することなく難燃性を向上させることができる。また、本発明に係るポリカルボシラン化合物は、耐熱性にも優れるため、ポリカーボネート樹脂組成物の耐熱性の低下が少なく、アウトガス、金型汚染等を著しく少なくすることができる。
また、従来、オルガノシロキサン(シリコーン)化合物を用いて難燃性を向上させる手法においては、オルガノシロキサンが持つ、ケイ素−酸素結合が燃焼時にSiO成分となって難燃性を向上させるため重要であると考えられてきた。しかしながら、本発明者が検討したところ、オルガノシロキサンでは、ケイ素−酸素結合よりも、ケイ素原子と側鎖(例えば、メチル基、フェニル基)との結合、つまりケイ素−炭素結合が、難燃性に深く寄与することが明らかとなった。これは、燃焼時に、ケイ素−炭素結合が解裂し、有機成分がガス化することによって、発泡層を形成するためと推察される。
本発明に係るポリカルボシラン化合物は、側鎖の他に、主鎖にもケイ素−炭素結合を含有するため、オルガノシロキサンやポリシラン化合物と比較し、効率的に難燃性を高められるとう利点も持つ。
本発明における、ポリカルボシラン化合物は、本発明の目的を損なわない限り、主鎖に、ケイ素原子と炭素以外の原子との結合を含んでいてもよい。このような結合としては、例えば、ケイ素−ケイ素(Si−Si)結合、ケイ素−酸素(Si−O)結合、ケイ素−窒素(Si−N)結合、ケイ素−ホウ素(Si−B)結合、ケイ素−リン(Si−P)結合、ケイ素−チタン(Si−Ti)結合等が挙げられる。このような、結合は、実質的にケイ素−炭素結合のみからなるケイ素化合物を製造する場合に、原料、触媒等の成分より導入される他、非意図的に酸化作用等によって導入される可能性がある。
本発明に用いるポリカルボシラン化合物は、主鎖にケイ素−炭素結合(Si−C結合)を有する繰り返し単位を2以上有するものであれば、その化学構造、形態に特に制限はないが、ケイ素又はケイ素−ケイ素結合単位と、炭化水素残基とが交互に連続してなる主鎖構造を有するケイ素化合物、なかでも、下記式(1)〜(3)で表される構造単位のうちの少なくとも1種の構造単位と炭化水素残基とからなる主鎖構造を有するものが好ましい。
Figure 2010270295
(式(1)〜(3)中、R、R、Rは、それぞれ独立に、一価炭化水素基、水素原子、又はシリル基を表し、a、b、cは、それぞれ独立に、0又は1を表す。主鎖構造中に含まれる複数のR、R及びRは、それぞれ同一であっても異なるものであってもよい。)
このようなポリカルボシラン化合物としては、例えば、上記式(1)で表される構造単位と炭化水素残基とからなる直鎖状、又は環状ポリカルボシラン化合物、上記式(2)又は(3)で表される構造単位と炭化水素残基とからなる分岐状、又は網目状ポリカルボシラン化合物、上記式(1)〜(3)で表される構造単位の組合せ、例えば式(1)と式(2)、式(1)と式(3)、式(2)と式(3)、式(1)〜(3)、と炭化水素残基とからなるポリカルボシラン化合物等が挙げられる。なかでも、上記式(1)で表される構造単位と二価炭化水素残基とからなる主鎖構造を有する直鎖状ポリカルボシラン化合物が、ポリカーボネート樹脂への分散性に優れる傾向にあるため好ましいが、該直鎖状ポリカルボシラン化合物が、分岐、網目状になっていてもよい。
上述のような式(1)で表される構造単位と二価炭化水素残基とからなる主鎖構造を有する直鎖状ポリカルボシラン化合物としては、なかでも、下記式(4)で表される繰り返し単位を有するものが好ましい。
Figure 2010270295
(式(4)中、R、R、a、b、は前記式(1)におけると同義であり、Aは、炭素数1〜12の二価炭化水素基を表し、p、qは、それぞれ独立に、1〜8の整数を表す。R、R及びAは、それぞれ全ての繰り返し単位において同一であっても異なっていてもよい。)
上記式(4)において、p、qはそれぞれ1〜8の整数を表すが、p、qはそれぞれ、1〜4であることがより好ましく、1又は2であることがより好ましく、1であることが好ましい。
このような直鎖状ポリカルボシラン化合物としては、下記式(5)で表される繰り返し単位を有するものが好ましい。このような直鎖状構造を有することで、ポリカーボネート樹脂への分散性が向上し、本発明のポリカーボネート樹脂組成物の透明性や機械物性が向上する傾向にある。
Figure 2010270295
(式(5)中、R、Rは前記式(4)におけると同義であり、Aは炭素数1〜12のアルキレン基を表す。R、R及びAは、それぞれ全ての繰り返し単位において同一であっても異なっていてもよい。)
前記式(1)〜(5)において、R、R、及びRで表される基は、一価炭化水素基、水素原子、及びシリル基から選ばれる少なくとも1種を表す。一価炭化水素基としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、アラルキル基等が挙げられるが、なかでもアルキル基、アリール基が好ましく、アルキル基が特に好ましく、メチル基がさらに好ましい。なお、上記R、R、及びRで表される置換基は、それぞれ全ての繰り返し単位において同一であっても2以上が異なっていてもよい。
上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等が挙げられるが、通常炭素数1〜12のアルキル基が好ましく、なかでもメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t−ブチル基、ペンチル基、ヘキシル基等の炭素数1〜6のアルキル基が好ましく、メチル基が特に好ましい。
シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等の炭素数5〜14のシクロアルキル基が挙げられるが、なかでも炭素数5〜8のシクロアルキル基が好ましい。
アルケニル基としては、例えば、ビニル基、アリル基等の炭素数2〜8のアルケニル基が挙げられ、シクロアルケニル基としては、例えば、シクロペンチル基、シクロヘキシル基等の炭素数5〜12のシクロアルケニル基が挙げられる。
アルキニル基としては、例えば、エチニル基、プロピニル基等の炭素数2〜8のアルキニル基やエチニルベンゼン基等のアリールアルキニル等も挙げられる。
アリール基としては、例えば、フェニル基、メチルフェニル(即ち、トリル)基、ジメチルフェニル(即ち、キシリル)基、ナフチル基等の炭素数6〜20のアリール基が挙げられるが、なかでも炭素数6〜10のアリール基が好ましく、フェニル基が特に好ましい。
また、アラルキル基としては、例えば、ベンジル基、フェネチル基、フェニルプロピル基等の炭素数6〜20のアラルキル基が挙げられるが、なかでも炭素数6〜10のアラルキル基が好ましく、ベンジル基が特に好ましい。
シリル基としては、例えば、シリル基、ジシラニル基、トリシラニル基等のケイ素数1〜10のシリル基が挙げられるが、中でもケイ素数1〜6のシリル基が好ましい。前記シリル基である場合は、その水素原子の少なくとも1つがアルキル基、アリール基、アルコキシ基等の官能基で置換されていてもよい。
上記式(1)〜(5)における、R、R、及びRで表される置換基としては、それぞれ独立に、なかでも一価炭化水素基、又は水素原子であることがより好ましく、アルキル基、又は水素原子がさらに好ましく、メチル基、又は水素原子であることが特に好ましい。
また、上記式(1)〜(4)における、a、b、及びcは、0又は1を表す。a、b、及びcが、0の場合、ポリカルボシラン化合物のケイ素原子が、置換基として、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、アラルキル基、又はシリル基を有するか、或いは無置換(水素原子を有する)であることを意味し、a、b、及びcが1の場合は、ポリカルボシラン化合物のケイ素原子が、置換基として、アルコキシ基、シクロアルキルオキシ基、アルケニルオキシ基、シクロアルケニルオキシ基、アルキニルオキシ基、アリールオキシ基、アラルキルオキシ基、又は水酸基を有することを意味する。ポリカルボシラン化合物の耐熱性の観点からは、a、b、及びcは、0であることが好ましいが、樹脂との親和性を改善する為に意図的に、あるいは酸化作用等によって非意図的に、1となっていてもよい。
一方、前述の式(1)〜(3)で表される構造単位と結合してポリカルボシラン化合物の主鎖構造を構成する炭化水素残基としては、特に制限はなく、直鎖であっても分岐鎖、環式構造を有していてもよく、また飽和結合のみならず不飽和結合を含んでいてもよい。また、炭素原子、水素原子以外に、酸素原子、窒素原子、硫黄原子、リン原子、フッ素原子等のヘテロ原子を含んでいてもよい。なかでも二価〜四価の炭化水素基が好ましく、二価炭化水素基が特に好ましい。
前記式(1)〜(3)で表される構造単位に結合してポリカルボシラン化合物の主鎖構造を構成する二価炭化水素残基としては、具体的には次のような直鎖又は分岐状の二価炭化水素残基が挙げられる。
メチレン基、エチレン基、トリメチレン基、プロピレン基、イソプロピリデン基、テトラメチレン基、イソブチレン基、tert−ブチレン基、イソブチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基等の炭素数1〜12のアルキレン基;
エチリデン基、プロピリデン基、ブチリデン基、sec−ブチリデン基、イソヘキシリデン基等の炭素数2〜12のアルキリデン基;
シクロペンチレン基、シクロへキシレン基、メチルシクロヘキシレン基、トリメチルシクロヘキシレン基、シクロペプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基等の炭素数3〜12のシクロアルキレン基;
ビニレン基、プロペニレン基、1−ブテニレン基、2−ブテニレン基、1,3−ブタジエニレン基、1−メチルプロペニレン基、1−メチル−2−プロペニレン基、1−ペンテニレン基、2−ペンテニレン基、1,3−ペンタジエニレン基、1,4−ペンタジエニレン基、1−メチルブテニレン基、1−メチル−1,2−ブタジエニレン基、1−ヘキセニレン基、2−ヘキセニレン基、3−ヘキセニレン基、1−メチルペンテニレン基、2−メチル−2−ペンテニレン基、1,1−ジメチル−2−プロペニレン基、1−エチル−2−プロペニレン基、1,2−ジメチルプロペニレン基、1−メチル−1−ブテニレン基、1−ヘプテニレン基、1−メチルヘキセニレン基、2−メチル−2−ヘキセニレン基、1,2−ジメチルペンテニレン基、1−オクテニレン基、2−オクテニレン基、3−ノネニレン基、4−デセニレン基等の炭素数2〜12のアルケニレン基;
ビニリデン基、プロピニリデン基、アリリデン基等の炭素数2〜12のアルケニリデン基;
1−シクロプロペニレン基、2−シクロペンテニレン基、2,4−シクロペンタジエニレン基、1−シクロヘキセニレン基、2−シクロヘキセニレン基、1−シクロヘプテニレン基、2−シクロノネニレン基、3−シクロデセニレン基、2−シクロドデセニレン基等の炭素数3〜12のシクロアルケニレン基;
エチニレン基、1,3−(1−プロピニレン)基、3,3−(1−プロピニレン)基、1,4−(1−ブチニレン)基、1,5−(1−ペンチニレン)基、1,6−(1−ヘキシニレン)基、1,12−(1−ドデシニレン)基等の炭素数2〜12のアルキニレン基;
o−フェニレン基、m−フェニレン基、p−フェニレン基、メチルフェニレン基、ジメチルフェニレン基、p−キシレン−α,α’−ジイル基、ビフェニレン基、ナフチレン基等の炭素数6〜12のアリーレン基;
−CH−C−、−CH−C−CH−、−CHCH−C−、−CHCH−C−CH−、−CHCHCH−C−、−CH(CH)CH−C−、−CHCHCHCH−C−、−CHCHCH(CH)−C−等の炭素数6〜12のアラルキレン基;等
また、前記式(1)〜(3)で表される構造単位と結合してポリカルボシラン化合物の主鎖構造を構成する三価炭化水素基としては、下記式(15)〜(16)で表されるものが挙げられる。
Figure 2010270295
また、前記式(1)〜(3)で表される構造単位と結合してポリカルボシラン化合物の主鎖構造を構成する四価炭化水素基としては、下記式(17)で表されるものが挙げられる。
Figure 2010270295
炭化水素残基としては、前述の如く、二価炭化水素基であることが好ましく、なかでもアルキレン基、アルケニレン基、アルキニレン基、アリーレン基が好ましく、アルキレン基、アリーレン基が特に好ましく、アルキレン基が最も好ましい。また、アルキレン基としては、炭素数1〜8のアルキレン基がより好ましく、炭素数1〜4のアルキレン基が特に好ましく、メチレン基が最も好ましい。
なお、前記式(4)におけるAは、炭素数1〜12の直鎖又は分岐状の二価炭化水素基を表し、具体的には上述の二価炭化水素残基が挙げられる。また、前記式(5)におけるAは、炭素数1〜12のアルキレン基を表し、具体的には上述の炭素数1〜12のアルキレン基が挙げられる。A,Aのアルキレン基としては、炭素数1〜8のアルキレン基がより好ましく、炭素数1〜4のアルキレン基が特に好ましく、メチレン基が最も好ましい。
本発明で用いられるポリカルボシラン化合物の例を挙げると、以下に示す繰り返し単位を有するものが挙げられる。ただし、ポリカルボシラン化合物は以下の例示物に限定されるものではない。また、本発明のポリカーボネート樹脂組成物は、ポリカルボシラン化合物を1種類だけ含有していてもよく、2種類以上を任意の組み合わせ及び任意の比率で含んでいてもよい。
Figure 2010270295
Figure 2010270295
Figure 2010270295
Figure 2010270295
Figure 2010270295
Figure 2010270295
Figure 2010270295
なかでも、下記式(6)で表される繰り返し単位を有するポリカルボシラン化合物が特に好ましい。このようなポリカルボシラン化合物は、ポリジメチルシランの熱分解によって、容易に得られやすく、収率も高いため、工業的メリットが大きい。
Figure 2010270295
なお、上記例示式において、nは、ポリカルボシラン化合物の重合度を表し、通常2以上、より好ましくは3以上、特に好ましくは5以上、さらに好ましくは10以上であり、また通常20000以下、より好ましくは5000以下、特に好ましくは1000以下、さらに好ましくは500以下である。nを上記範囲の下限値以上とすることで本発明のポリカーボネート樹脂組成物のアウトガスの発生や金型汚染を低減することができ、好ましいものとなる。一方、nを上記範囲の上限値以下とすることで、本発明のポリカーボネート樹脂に対する分散性が向上し、本発明のポリカーボネート樹脂組成物の機械物性も向上する傾向にある。
本発明に係るポリカルボシラン化合物の分子量は任意であり、適宜選択して決定すればよいが、数平均分子量[Mn]として、通常100以上、好ましくは200以上、より好ましくは300以上、特に好ましくは500以上であり、また通常20000以下、好ましくは10000以下、より好ましくは5000以下、特に好ましくは3000以下である。数平均分子量を上記範囲の下限値以上とすることで本発明のポリカーボネート樹脂組成物のアウトガスや金型汚染を低減することができ、好ましいものとなる。一方、数平均分子量を上記範囲の上限値以下とすることで、本発明のポリカーボネート樹脂組成物の流動性低下を抑制して改善でき、成形加工性を高めて成形加工を容易に行えるようになるほか、機械物性も向上する傾向にある。なお、数平均分子量の異なる2種類以上のポリカルボシラン化合物を混合して用いてもよく、この場合には、数平均分子量が上記の好適な範囲外であるポリカルボシラン化合物を混合してもよい。
なお、ここで数平均分子量[Mn]とは、溶媒としてテトラヒドロフランを使用し、温度40℃の条件で、ゲル浸透クロマトグラフィー(GPC)(装置:Tosho8020、カラム:Tosoh TSKgel MultiporeHxl−M)にて測定した値である。
また、本発明に係るポリカルボシラン化合物の融点は任意であり、適宜選択して決定すればよいが、通常20℃以上、好ましくは30℃以上、より好ましくは40℃以上、特に好ましくは60℃以上であり、また通常500℃以下、好ましくは300℃以下、より好ましくは280℃以下、特に好ましくは260℃以下である。融点を上記範囲の下限値以上とすることで本発明のポリカーボネート樹脂組成物の金型汚染を低減することができ、好ましいものとなる。一方、融点を上記範囲の上限値以下とすることで、本発明のポリカーボネート樹脂に対する分散性が向上し、本発明のポリカーボネート樹脂組成物の機械物性も向上する傾向にある。なお、融点の異なる2種類以上のポリカルボシラン化合物を混合して用いてもよく、この場合には、融点が上記の好適な範囲外であるポリカルボシラン化合物を混合してもよい。
本発明に係るポリカルボシラン化合物の製造方法は、任意であり、適宜選択して決定すればよいが、なかでも直接合成法、熱分解法等が挙げられる。
直接合成法としては、例えば、アルカリ金属等の触媒下、少なくとも1種のジハロゲンシラン及び少なくとも1種のジハロゲン炭化水素を共縮合する手法が挙げられる。このとき、反応は、一般に、溶媒を用いたアルカリ金属等の触媒の懸濁液中で行われる。該懸濁液に用いられる溶媒としては、例えば好ましくは炭化水素系溶媒が挙げられ、より好ましくはトルエン、キシレン、デカリン等が挙げられる。該触媒懸濁液中にその他の成分(ジハロゲンシラン、ジハロゲン炭化水素)を導入し、反応を行った後、それぞれ適当な方法によって反応混合物から目的物を得ることができる。ポリカルボシラン化合物が、例えば溶媒中で溶解性である場合は、他の不溶解成分は濾過によって分離されることがある。次に、溶媒中に残留するポリカルボシラン化合物は水を用いて洗浄されることによって浄化され、かつ溶媒を除去されることによって粉末に乾燥することができる。一方、合成されたポリカルボシラン化合物が溶媒中で不溶解性である場合には、ポリカルボシラン化合物は適当な溶媒によって抽出され、引続き水を用いた洗浄によって浄化され、かつ溶媒の除去によって粉末状に乾燥することができる。
また、熱分解法としては、例えば、テトラメチルシラン等のアルキルシランやポリジメチルシラン(ポリメチルシリレン)等のポリシランを、高温で加熱することにより、熱分解転移反応によってポリカルボシラン化合物を得る手法が挙げられる。なお、この際の加熱温度は、一般に350〜1000℃であり、より好ましくは400〜800℃である。また、反応は常圧下で行っても、高圧下で行ってもよいが、高圧化で行う方が、収率が向上する傾向にあるため好ましい。また、ポリボロジフェニルシロキサン等のホウ素化合物を触媒量添加することも好ましい。前記、ホウ素化合物の添加量は、前記アルキルシランやポリシラン100質量部に対し、通常0.1質量部以上、好ましくは0.2質量部以上、より好ましくは0.5質量部以上であり、また通常5質量部以下、好ましくは3質量部以下、より好ましくは2質量部以下である。ホウ素化合物の含有量を上記範囲の下限値以上とすることで、本発明に係るポリカルボシラン化合物の収率が向上する傾向にあり、またホウ素化合物の含有量を上記範囲の上限値以下とすることで、本発明に係るポリカルボシラン化合物の酸素含有量を抑制し、耐熱性の低下やポリカーボネート樹脂への分散性の低下等を抑制できる。
本発明に係るポリカルボシラン化合物の製造方法としては、なかでも上記ポリシラン化合物から熱分解法によって得る手法が品質やコストの点から好ましい。なお、製造方法の異なる2種類以上のポリカルボシラン化合物を混合して用いてもよく、この場合には、製造方法が上記の好適な範囲外であるポリカルボシラン化合物を混合してもよい。
本発明のポリカーボネート樹脂組成物におけるポリカルボシラン化合物の含有量は、ポリカーボネート樹脂100質量部に対して、0.005質量部以上、好ましくは0.01質量部以上、より好ましくは0.02質量部以上、特に好ましくは0.05質量部以上、最も好ましくは0.1質量部以上であり、5質量部以下、好ましくは3質量部以下、より好ましくは2質量部以下、特に好ましくは1質量部以下である。ポリカルボシラン化合物の含有量が少なすぎると得られるポリカーボネート樹脂組成物の難燃性が不十分となる可能性があり、逆に多すぎても効果が頭打ちになり経済的でないばかりでなく、ポリカーボネート樹脂組成物の機械的強度の低下が生ずる可能性がある。
なお、本発明に係るポリカルボシラン化合物は単独で又は2種以上組み合わせて使用することができる。
[5.その他の成分]
本発明のポリカーボネート樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、上述したもの以外にその他の成分を含有していてもよい。その他の成分の例を挙げると、ポリカーボネート樹脂以外の樹脂、各種樹脂添加剤などが挙げられる。なお、その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
<その他の樹脂>
本発明のポリカーボネート樹脂組成物中にポリカーボネート樹脂と共に併用配合し得るその他の樹脂としては、例えば、次のようなものが挙げられる。
ポリエチレンテレフタレート樹脂(PET樹脂)、ポリトリメチレンテレフタレート(PTT樹脂)、ポリブチレンテレフタレート樹脂(PBT樹脂)、ポリ乳酸(PLA)、ポリブチレンサクシネート樹脂(PBS)、ポリカプロラクトン(PCL)等の熱可塑性ポリエステル樹脂;
ポリスチレン樹脂(PS樹脂)、高衝撃ポリスチレン樹脂(HIPS)、アクリロニトリル−スチレン共重合体(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、アクリロニトリル−スチレン−アクリルゴム共重合体(ASA樹脂)、アクリロニトリル−エチレンプロピレン系ゴム−スチレン共重合体(AES樹脂)等のスチレン系樹脂;
ポリエチレン樹脂(PE樹脂)、ポリプロピレン樹脂(PP樹脂)、環状シクロオレフィン樹脂(COP樹脂)、環状シクロオレフィン共重合体樹脂(COC樹脂)等のポリオレフィン樹脂;
ポリアミド樹脂(PA樹脂);ポリイミド樹脂(PI樹脂);ポリエーテルイミド樹脂(PEI樹脂);ポリウレタン樹脂(PU樹脂);ポリフェニレンエーテル樹脂(PPE樹脂);ポリフェニレンサルファイド樹脂(PPS樹脂);ポリスルホン樹脂(PSU樹脂);ポリメチルメタクリレート樹脂(PMMA樹脂);等
これらのその他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
<樹脂添加剤>
樹脂添加剤としては、例えば、熱安定剤、酸化防止剤、離型剤、紫外線吸収剤、染顔料、難燃剤、滴下防止剤、光拡散剤、帯電防止剤、防曇剤、滑剤、アンチブロッキング剤、流動性改良剤、摺動性改質剤、可塑剤、分散剤、抗菌剤などが挙げられる。なお、樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
以下、本発明のポリカーボネート樹脂組成物に好適な樹脂添加剤の例について具体的に説明する。
(熱安定剤)
熱安定剤としては、例えばリン系化合物が挙げられる。
リン系化合物としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など周期表第1族又は第2B族金属のリン酸塩;有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられる。
これらの中でも、下記式(18)〜(20)で表される有機ホスファイト化合物、下記式(21)で表される有機ホスホナイト化合物、下記式(22)で表される有機ホスフェート化合物が好ましい。
Figure 2010270295
上記式(18)〜(22)において、R18、R19、R20、R21、R22、R23、R24、R25、R26、R27及びR28はアルキル基又はアリール基を表す。なかでもR18、R19、R20、R21、R22、R23、R24、R25、R26、R27及びR28は、炭素数が通常1以上、好ましくは2以上であり、通常30以下、好ましくは25以下のアルキル基、又は、炭素数が通常6以上であり、通常30以下のアリール基であることがより好ましい。さらに、R18、R19、R20、R22及びR23はアルキル基よりもアリール基が好ましく、R21、R24、R25、R26、R27及びR28は、アリール基よりもアルキル基が好ましい。なお、R18、R19、R20、R21、R22、R23、R24、R25、R26、R27及びR28はそれぞれ同一であっても異なっていてもよい。
また、式(19)、(21)において、X、Xは、炭素数6〜30のアリール残基を表し、式(22)において、dは、通常0以上、好ましくは1以上であり、また、通常2以下の整数を表す。
上記式(18)で表される有機ホスファイト化合物としては、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト等が挙げられる。このような、有機ホスファイト化合物としては、具体的には、例えば、アデカ社製「アデカスタブ1178」、「アデカスタブ2112」、城北化学工業社製「JP−351」、「JP−360」、「JP−3CP」、チバ・スペシャルテイ・ケミカルズ社製「イルガフォス168」等が挙げられる。
式(19)で表される有機ホスファイト化合物としては、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト等が挙げられる。このような、有機ホスファイト化合物としては、具体的には、例えば、アデカ社製「アデカスタブHP−10」等が挙げられる。
式(20)で表される有機ホスファイト化合物としては、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト等が挙げられる。このような、有機ホスファイト化合物としては、具体的には、例えば、アデカ社製「アデカスタブPEP−8」、「アデカスタブPEP−24G」、「アデカスタブPEP−36」、城北化学工業社製「JPP−2000」等が挙げられる。
式(21)で表される有機ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレン−ジ−ホスホナイト等が挙げられる。このような、有機ホスホナイト化合物としては、具体的には、例えば、Sandoz社製「サンドスタブP−EPQ」等が挙げられる。
式(22)で表される有機ホスフェート化合物としては、モノ−ステアリン酸ホスフェート、ジ−ステアリン酸ホスフェート、モノ−2−エチルヘキシル酸ホスフェート、ジ−2−エチルヘキシル酸ホスフェート、モノオレイル酸ホスフェート、ジ−オレイル酸ホスフェート等が挙げられる。このような、有機ホスフェート化合物としては、具体的には、例えば、アデカ社製「アデカスタブAX−71」、城北化学工業社製「JP−508」、「JP−518−O」等が挙げられる。
なお、熱安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
本発明のポリカーボネート樹脂組成物中の熱安定剤の含有量は、ポリカーボネート樹脂100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上、より好ましくは0.03質量部以上であり、また、通常1質量部以下、好ましくは0.7質量以下、より好ましくは0.5質量部以下である。熱安定剤の含有量が上記範囲の下限値以下の場合は、熱安定効果が不十分となる可能性があり、熱安定剤の含有量が上記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。
(酸化防止剤)
酸化防止剤としては、例えばヒンダードフェノール系酸化防止剤が挙げられる。その具体例としては、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサン−1,6−ジイルビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニルプロピオナミド)、2,4−ジメチル−6−(1−メチルペンタデシル)フェノール、ジエチル[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ホスフォエート、3,3’,3’’,5,5’,5’’−ヘキサ−tert−ブチル−a,a’,a’’−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、4,6−ビス(オクチルチオメチル)−o−クレゾール、エチレンビス(オキシエチレン)ビス[3−(5−tert−ブチル−4−ヒドロキシ−m−トリル)プロピオネート]、ヘキサメチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン,2,6−ジ−tert−ブチル−4−(4,6−ビス(オクチルチオ)−1,3,5−トリアジン−2−イルアミノ)フェノール等が挙げられる。
なかでも、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが好ましい。このようなフェノール系酸化防止剤としては、具体的には、例えば、チバ・スペシャルテイ・ケミカルズ社製「イルガノックス1010」、「イルガノックス1076」、アデカ社製「アデカスタブAO−50」、「アデカスタブAO−60」等が挙げられる。
なお、酸化防止剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
本発明のポリカーボネート樹脂組成物中の酸化防止剤の含有量は、ポリカーボネート樹脂100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常1質量部以下、好ましくは0.5質量部以下である。酸化防止剤の含有量が上記範囲の下限値以下の場合は、酸化防止剤としての効果が不十分となる可能性があり、酸化防止剤の含有量が上記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。
(離型剤)
離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200〜15000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルなどが挙げられる。
脂肪族カルボン酸としては、例えば、飽和又は不飽和の脂肪族一価、二価又は三価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。これらの中で好ましい脂肪族カルボン酸は炭素数6〜36の一価又は二価カルボン酸であり、炭素数6〜36の脂肪族飽和一価カルボン酸がさらに好ましい。かかる脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸などが挙げられる。
脂肪族カルボン酸とアルコールとのエステルにおける脂肪族カルボン酸としては、例えば、前記脂肪族カルボン酸と同じものが使用できる。一方、アルコールとしては、例えば、飽和又は不飽和の一価又は多価アルコールが挙げられる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の一価又は多価の飽和アルコールが好ましく、炭素数30以下の脂肪族飽和一価アルコール又は脂肪族飽和多価アルコールがさらに好ましい。なお、ここで脂肪族とは、脂環式化合物も含有する。
かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2−ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。
なお、上記のエステルは、不純物として脂肪族カルボン酸及び/又はアルコールを含有していてもよい。また、上記のエステルは、純物質であってもよいが、複数の化合物の混合物であってもよい。さらに、結合して一つのエステルを構成する脂肪族カルボン酸及びアルコールは、それぞれ、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
なお、脂肪族カルボン酸とアルコールとのエステルには、脂肪族カルボン酸の有するカルボキシル基のすべてがエステル化されたフルエステルと、その一部がエステル化された部分エステルとがあるが、本発明で用いる脂肪族カルボン酸とアルコールとのエステルは、フルエステルであっても、部分エステルであってもよい。
脂肪族カルボン酸とアルコールとのエステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。
数平均分子量200〜15000の脂肪族炭化水素としては、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックス、フィッシャ−トロプシュワックス、炭素数3〜12のα−オレフィンオリゴマー等が挙げられる。なお、ここで脂肪族炭化水素としては、脂環式炭化水素も含まれる。また、これらの炭化水素は部分酸化されていてもよい。
これらの中では、パラフィンワックス、ポリエチレンワックス又はポリエチレンワックスの部分酸化物が好ましく、パラフィンワックス、ポリエチレンワックスがさらに好ましい。
また、前記の脂肪族炭化水素の数平均分子量は、好ましくは5000以下である。
なお、脂肪族炭化水素は単一物質であってもよいが、構成成分や分子量が様々なものの混合物であっても、主成分が上記の範囲内であれば使用できる。
ポリシロキサン系シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、ジフェニルシリコーンオイル、フッ素化アルキルシリコーン等が挙げられる。
なお、上述した離型剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
本発明のポリカーボネート樹脂組成物中の離型剤の含有量は、ポリカーボネート樹脂100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常2質量部以下、好ましくは1質量部以下である。離型剤の含有量が上記範囲の下限値以下の場合は、離型性の効果が十分でない場合があり、離型剤の含有量が上記範囲の上限値を超える場合は、耐加水分解性の低下、射出成形時の金型汚染などが生じる可能性がある。
(紫外線吸収剤)
紫外線吸収剤としては、例えば、酸化セリウム、酸化亜鉛などの無機紫外線吸収剤;ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリシレート化合物、シアノアクリレート化合物、トリアジン化合物、オギザニリド化合物、マロン酸エステル化合物、ヒンダードアミン化合物などの有機紫外線吸収剤などが挙げられる。これらの中では有機紫外線吸収剤が好ましく、ベンゾトリアゾール化合物がより好ましい。有機紫外線吸収剤を選択することで、本発明のポリカーボネート樹脂組成物の透明性や機械物性が良好なものになる。
ベンゾトリアゾール化合物の具体例としては、例えば、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−[2’−ヒドロキシ−3’,5’−ビス(α,α−ジメチルベンジル)フェニル]−ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチル−フェニル)−ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール)、2−(2’−ヒドロキシ−3’,5’−ジ−tert−アミル)−ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2N−ベンゾトリアゾール−2−イル)フェノール]等が挙げられ、なかでも2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2N−ベンゾトリアゾール−2−イル)フェノール]が好ましく、特に2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾールが好ましい。
このようなベンゾトリアゾール化合物の市販品としては、例えば、シプロ化成社製「シーソーブ701」、「シーソーブ705」、「シーソーブ703」、「シーソーブ702」、「シーソーブ704」、「シーソーブ709」、共同薬品社製「バイオソーブ520」、「バイオソーブ582」、「バイオソーブ580」、「バイオソーブ583」、ケミプロ化成社製「ケミソーブ71」、「ケミソーブ72」、サイテックインダストリーズ社製「サイアソーブUV5411」、アデカ社製「LA−32」、「LA−38」、「LA−36」、「LA−34」、「LA−31」、チバ・スペシャリティケミカルズ社製「チヌビンP」、「チヌビン234」、「チヌビン326」、「チヌビン327」、「チヌビン328」等が挙げられる。
ベンゾフェノン化合物の具体例としては、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−n−ドデシロキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン等が挙げられる。
このようなベンゾフェノン化合物の市販品としては、例えば、シプロ化成社製「シーソーブ100」、「シーソーブ101」、「シーソーブ101S」、「シーソーブ102」、「シーソーブ103」、共同薬品社製「バイオソーブ100」、「バイオソーブ110」、「バイオソーブ130」、ケミプロ化成社製「ケミソーブ10」、「ケミソーブ11」、「ケミソーブ11S」、「ケミソーブ12」、「ケミソーブ13」、「ケミソーブ111」、BASF社製「ユビヌル400」、BASF社製「ユビヌルM−40」、BASF社製「ユビヌルMS−40」、サイテックインダストリーズ社製「サイアソーブUV9」、「サイアソーブUV284」、「サイアソーブUV531」、「サイアソーブUV24」、アデカ社製「アデカスタブ1413」、「アデカスタブLA−51」等が挙げられる。
サリシレート化合物の具体例としては、例えば、フェニルサリシレート、4−tert−ブチルフェニルサリシレート等が挙げられ、このようなサリシレート化合物の市販品としては、例えば、シプロ化成社製「シーソーブ201」、「シーソーブ202」、ケミプロ化成社製「ケミソーブ21」、「ケミソーブ22」等が挙げられる。
シアノアクリレート化合物の具体例としては、例えば、エチル−2−シアノ−3,3−ジフェニルアクリレート、2−エチルヘキシル−2−シアノ−3,3−ジフェニルアクリレート等が挙げられ、このようなシアノアクリレート化合物の市販品としては、例えば、シプロ化成社製「シーソーブ501」、共同薬品社製「バイオソーブ910」、第一化成社製「ユビソレーター300」、BASF社製「ユビヌルN−35」、「ユビヌルN−539」等が挙げられる。
オギザニリド化合物の具体例としては、例えば、2−エトキシ−2’−エチルオキザリニックアシッドビスアリニド等が挙げられ、このようなオキザリニド化合物の市販品としては、例えば、クラリアント社製「サンデュボアVSU」等が挙げられる。
マロン酸エステル化合物としては、2−(アルキリデン)マロン酸エステル類が好ましく、2−(1−アリールアルキリデン)マロン酸エステル類がより好ましい。このようなマロン酸エステル化合物の市販品としては、例えば、クラリアントジャパン社製「PR−25」、チバ・スペシャリティケミカルズ社製「B−CAP」等が挙げられる。
本発明のポリカーボネート樹脂組成物中の紫外線吸収剤の含有量は、ポリカーボネート樹脂100質量部に対して、通常0.01質量部以上、好ましくは0.1質量部以上であり、また、通常3質量部以下、好ましくは1質量部以下である。紫外線吸収剤の含有量が上記範囲の下限値以下の場合は、耐候性の改良効果が不十分となる可能性があり、紫外線吸収剤の含有量が上記範囲の上限値を超える場合は、モールドデボジット等が生じ、金型汚染を引き起こす可能性がある。なお、紫外線吸収剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
(染顔料)
染顔料としては、例えば、無機顔料、有機顔料、有機染料などが挙げられる。
無機顔料としては、例えば、カーボンブラック;カドミウムレッド、カドミウムイエロー等の硫化物系顔料;群青などの珪酸塩系顔料;酸化チタン、亜鉛華、弁柄、酸化クロム、鉄黒、チタンイエロー、亜鉛−鉄系ブラウン、チタンコバルト系グリーン、コバルトグリーン、コバルトブルー、銅−クロム系ブラック、銅−鉄系ブラック等の酸化物系顔料;黄鉛、モリブデートオレンジ等のクロム酸系顔料;紺青などのフェロシアン系顔料などが挙げられる。
有機顔料及び有機染料としては、例えば、銅フタロシアニンブルー、銅フタロシアニングリーン等のフタロシアニン系染顔料;ニッケルアゾイエロー等のアゾ系染顔料;チオインジゴ系、ペリノン系、ペリレン系、キノリン系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系などの縮合多環染顔料;アンスラキノン系、複素環系、メチル系の染顔料などが挙げられる。
これらの中では、熱安定性の点から、酸化チタン、カーボンブラック、シアニン系、キノリン系、アンスラキノン系、フタロシアニン系化合物などが好ましい。
なお、染顔料は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。また、染顔料は、押出時のハンドリング性改良、樹脂組成物中への分散性改良の目的のために、ポリスチレン系樹脂、ポリカーボネート系樹脂、アクリル系樹脂とマスターバッチ化されたものも用いてもよい。
本発明のポリカーボネート樹脂組成物中の染顔料の含有量は、ポリカーボネート樹脂100質量部に対して、通常5質量部以下、好ましくは3質量部以下、より好ましくは2質量部以下である。染顔料の含有量が多すぎると耐衝撃性が十分でなくなる可能性がある。
(滴下防止剤)
滴下防止剤としては、例えば、フルオロポリマーが挙げられ、なかでもフルオロオレフィン樹脂が好ましい。フルオロオレフィン樹脂は、通常フルオロエチレン構造を含む重合体あるいは共重合体であり、具体例としては、ジフルオロエチレン樹脂、テトラフルオロエチレン樹脂、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合樹脂等が挙げられるが、なかでもテトラフルオロエチレン樹脂が好ましい。
フルオロポリマーとしては、特に、フィブリル形成能を有するものが好ましく、具体的には、フィブリル形成能を有するフルオロオレフィン樹脂が挙げられる。このように、フィブリル形成能を有することで、燃焼時の滴下防止性が著しく向上する傾向にある。
フィブリル形成能を有するフルオロオレフィン樹脂の市販品としては、例えば、三井・デュポンフロロケミカル社製「テフロン(登録商標)6J」、ダイキン化学工業社製「ポリフロン(登録商標)F201L」、「ポリフロン(登録商標)F103」などが挙げられる。さらに、フルオロオレフィン樹脂の水性分散液の市販品として、例えば、三井デュポンフロロケミカル社製「テフロン(登録商標)30J」、「テフロン(登録商標)31−JR」ダイキン化学工業社製「フルオン(登録商標)D−1」等が挙げられる。
滴下防止剤としては、さらに、有機重合体被覆フルオロオレフィン樹脂も好適に使用することができる。有機重合体被覆フルオロオレフィン樹脂を用いることで、分散性が向上し、成形体の表面外観が向上し、表面異物を抑制できる傾向にある。有機重合体被覆フルオロオレフィン樹脂は、公知の種々の方法により製造でき、例えば、(1)ポリフルオロエチレン粒子水性分散液と有機系重合体粒子水性分散液とを混合して、凝固又はスプレードライにより粉体化して製造する方法、(2)ポリフルオロエチレン粒子水性分散液存在下で、有機系重合体を構成する単量体を重合した後、凝固又はスプレードライにより粉体化して製造する方法、(3)ポリフルオロエチレン粒子水性分散液と有機系重合体粒子水性分散液とを混合した分散液中で、エチレン性不飽和結合を有する単量体を乳化重合した後、凝固又はスプレードライにより粉体化して製造する方法、等が挙げられる。
フルオロオレフィン樹脂を被覆する有機系重合体としては、特に制限されるものではなく、このような有機系重合体を生成するための単量体の具体例としては、次のようなものが挙げられる。
スチレン、α−メチルスチレン、p−メチルスチレン、o−メチルスチレン、tert−ブチルスチレン、o−エチルスチレン、p−クロロスチレン、o−クロロスチレン、2,4−ジクロロスチレン、p−メトキシスチレン、o−メトキシスチレン、2,4−ジメチルスチレン等の芳香族ビニル系単量体;
アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸−2−エチルヘキシル、メタクリル酸−2−エチルヘキシル、アクリル酸ドデシル、メタクリル酸ドデシル、アクリル酸トリデシル、メタクリル酸トリデシル、アクリル酸オクタデシル、メタクリル酸オクタデシル、アクリル酸シクロヘキシル、メタクリル酸シクロヘキシル等の(メタ)アクリル酸エステル系単量体;
アクリロニトリル、メタクリロニトリル等のシアン化ビニル系単量体;
無水マレイン酸等のα,β−不飽和カルボン酸;
N−フェニルマレイミド、N−メチルマレイミド、N−シクロヘキシルマレイミド等のマレイミド系単量体;
グリシジルメタクリレート等のグリシジル基含有単量体;
ビニルメチルエーテル、ビニルエチルエーテル等のビニルエーテル系単量体;
酢酸ビニル、酪酸ビニル等のカルボン酸ビニル系単量体;
エチレン、プロピレン、イソブチレン等のオレフィン系単量体;
ブタジエン、イソプレン、ジメチルブタジエン等のジエン系単量体等
なお、これらの単量体は、単独で、又は2種以上を混合して用いることができる。
なかでもフルオロオレフィン樹脂を被覆する有機系重合体を生成するための単量体としては、ポリカーボネート樹脂に配合する際の分散性の観点から、ポリカーボネート樹脂との親和性が高いものが好ましく、芳香族ビニル系単量体、(メタ)アクリル酸エステル系単量体、シアン化ビニル系単量体がより好ましい。
また、有機重合体被覆フルオロオレフィン樹脂中のフルオロオレフィン樹脂の含有比率は、通常30質量%以上、好ましくは35質量%以上、より好ましくは40質量%以上、特に好ましくは45質量%以上であり、通常95質量%以下、好ましくは90質量%以下、より好ましくは80質量%以下、特に好ましくは75質量%以下である。有機重合体被覆フルオロオレフィン樹脂中のフルオロオレフィン樹脂の含有比率を、上述の範囲とすることで、難燃性と成形体外観のバランスに優れる傾向にあるため好ましい。
このような有機重合体被覆フルオロオレフィン樹脂の市販品としては、具体的には、三菱レイヨン社製「メタブレン(登録商標)A−3800」、GEスペシャリティケミカル社製「ブレンデックス(登録商標)449」、PIC社製「Poly TS AD001」等が挙げられる。
なお、滴下防止剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
本発明のポリカーボネート樹脂組成物中の滴下防止剤の含有量は、ポリカーボネート樹脂100質量部に対して、通常0.001質量部以上、好ましくは0.005質量部以上、より好ましくは0.01質量部以上、特に好ましくは0.02質量部以上であり、また、通常1質量部以下、好ましくは0.5質量部以下、より好ましくは0.3質量部以下、特に好ましくは0.1質量部以下である。滴下防止剤の含有量が上記範囲の下限値以下の場合は、滴下防止剤による難燃性の効果が不十分となる可能性があり、滴下防止剤の含有量が上記範囲の上限値を超える場合は、このポリカーボネート樹脂組成物を成形して得られる成形体の外観不良や機械的強度の低下が生じたり、透明性が著しく低下したりする可能性がある。
(光拡散剤)
光拡散剤は、微粒子状の無機又は有機粒子であり、例えばガラス微粒子、ポリスチレン樹脂、(メタ)アクリル樹脂、シリコーン樹脂等の有機微粒子が挙げられ、光拡散性や粒子の分散性の点で有機微粒子が好ましい。
光拡散剤としての有機微粒子としては、ポリカーボネート樹脂の成形温度まで加熱してもポリカーボネート樹脂中に溶融しない、架橋した有機微粒子が好ましく、従って、架橋した(メタ)アクリル樹脂、架橋したシリコーン樹脂などが好ましい。より具体的には、部分架橋したポリメタクリル酸メチルのポリマー微粒子、架橋シリコーン樹脂粒子、シリコーンゴムをシリコーンレジンで被覆したシリコーンゴムパウダー等が挙げられる。
光拡散剤の形状としては、光拡散効果の点から球状であるものが好ましい。
微粒子状の光拡散剤の好ましい平均粒径は0.1〜50μmであり、より好ましくは0.5〜10μmであり、特には1〜5μmのものである。光拡散剤の平均粒径が小さ過ぎると、十分な光分散効果が得られず、大き過ぎると成形体表面に肌荒れを起こしたり、成形品の機械的強度が低下したりする。ここで、光拡散剤の平均粒径とは、コールターカウンター法にて測定した体積平均粒子径を採用する。コールカウンター法は、サンプル粒子を懸濁させた電解質を細孔(アパチャ−)に通過させ、そのときに粒子の体積に比例して発生する電圧パルスの変化を読み取って粒子径を定量するもので、また電圧パルス高を1個ずつ計測処理して、サンプル粒子の体積分布ヒストグラムを得ることができる。このようなコールカウンター法による粒径又は粒径分布測定は、粒度分布測定装置として最も多用されているものである。
なお、本発明においては、異なる材質或いは異なる平均粒径の光拡散剤を2種類以上混合して使用してもよい。
本発明のポリカーボネート樹脂組成物が光拡散剤を含む場合、光拡散剤の好ましい含有量は、ポリカーボネート樹脂100質量部に対して、通常0.1〜20質量部であり、0.3〜10質量部がより好ましい。光拡散剤の含有量が少な過ぎると、光拡散性が不足し、光源が透けて見えやすく、眩しさ低減効果が不十分となり、光拡散剤の配合量が多すぎると必要な照明輝度が得られなくなる。
[6.ポリカーボネート樹脂組成物の製造方法]
本発明のポリカーボネート樹脂組成物の製造方法に制限はなく、公知のポリカーボネート樹脂組成物の製造方法を広く採用できる。
具体例を挙げると、ポリカーボネート樹脂、金属塩化合物、及びポリカルボシラン化合物、並びに、必要に応じて配合されるその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。
また、例えば、各成分を予め混合せずに、又は、一部の成分のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練して、本発明のポリカーボネート樹脂組成物を製造することもできる。
また、例えば、一部の成分を予め混合して押出機に供給して溶融混練することで得られる樹脂組成物をマスターバッチとし、このマスターバッチを再度残りの成分と混合し、溶融混練することによって本発明のポリカーボネート樹脂組成物を製造することもできる。
また、例えば、分散し難い成分を混合する際には、その分散し難い成分を予め水や有機溶剤等の溶媒に溶解又は分散させ、その溶液又は分散液と混練するようにすることで、分散性を高めることもできる。
[7.ポリカーボネート樹脂成形体]
本発明のポリカーボネート樹脂組成物は、通常、任意の形状に成形してポリカーボネート樹脂成形体として用いることができる。この成形体の形状、模様、色彩、寸法などに制限はなく、その成形体の用途に応じて任意に設定すればよい。
成形体の例を挙げると、電気電子機器、OA機器、情報端末機器、機械部品、家電製品、車輌部品、建築部材、各種容器、レジャー用品・雑貨類、照明機器等の部品が挙げられる。これらの中でも、特に電気電子機器、OA機器、情報端末機器、家電製品、照明機器等の部品へ用いて好適であり、電気電子機器の部品に用いて特に好適である。
前記の電気電子機器としては、例えば、パソコン、ゲーム機、テレビなどのディスプレイ装置、プリンター、コピー機、スキャナー、ファックス、電子手帳やPDA、電子式卓上計算機、電子辞書、カメラ、ビデオカメラ、携帯電話、電池パック、記録媒体のドライブや読み取り装置、マウス、テンキー、CDプレーヤー、MDプレーヤー、携帯ラジオ・オーディオプレーヤー等が挙げられる。
成形体の製造方法は、特に限定されず、ポリカーボネート樹脂組成物について一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)法、インサート成形法、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法などが挙げられる。また、ホットランナー方式を使用した成形法を用いることも出来る。
本発明のポリカーボネート樹脂組成物を成形してなる本発明のポリカーボネート樹脂成形体は、ポリカーボネート樹脂本来の優れた性質を損なうことなく、透明性、難燃性、機械物性、その他の諸特性に優れ、実用的な成形体として幅広い分野に用いることが可能である。
以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
[実施例1〜11、比較例1〜11]
<樹脂ペレットの製造>
後述する表2a,2bに記した各成分を、表3a〜3dに記した割合(質量比)で配合し、タンブラーにて20分混合した後、1ベントを備えた日本製鋼所社製(TEX30HSST)に供給し、スクリュー回転数200rpm、吐出量15kg/時間、バレル温度290℃の条件で混練した。その後、ストランド状に押出された溶融樹脂を水槽にて急冷し、ペレタイザーを用いてペレット化してポリカーボネート樹脂組成物のペレットを得た。
<試験片の作製>
上述の製造方法で得られたペレットを120℃で5時間乾燥させた後、日本製鋼所製のJ50−EP型射出成形機を用いて、シリンダー温度260℃、金型温度80℃、成形サイクル30秒の条件で射出成形し、長さ125mm、幅13mmで、厚さ3.2mm(1/8インチ)及び厚さ1.6mm(1/16インチ)のUL試験用試験片を成形した。
また、同様に上述の製造方法で得られたペレットを120℃で5時間乾燥させた後、名機製作所製のM150AII−SJ型射出成形機を用いて、シリンダー温度280℃、金型温度80℃、成形サイクル55秒の条件で射出成形し、ASTM試験片(3.2mm厚のノッチ付き試験片)、平板状試験片(90mm×50mm×3mm厚)を成形した。
<難燃性評価>
各ポリカーボネート樹脂組成物の難燃性の評価は、上述の方法で得られたUL試験用試験片を温度23℃、湿度50%の恒温室の中で48時間調湿し、米国アンダーライターズ・ラボラトリーズ(UL)が定めているUL94試験(機器の部品用プラスチック材料の燃焼試験)に準拠して行なった。UL94Vとは、鉛直に保持した所定の大きさの試験片にバーナーの炎を10秒間接炎した後の残炎時間やドリップ性から難燃性を評価する方法であり、V−0、V−1及びV−2の難燃性を有するためには、以下の表1に示す基準を満たすことが必要となる。
Figure 2010270295
ここで残炎時間とは、着火源を遠ざけた後の、試験片の有炎燃焼を続ける時間の長さである。また、ドリップによる綿着火とは、試験片の下端から約300mm下にある標識用の綿が、試験片からの滴下(ドリップ)物によって着火されるかどうかによって決定される。さらに、5試料のうち、1つでも上記基準を満たさないものがある場合、V−2を満足しないとしてNR(not rated)と評価した。
結果を表3a〜3dに示す。
<耐衝撃性評価>
ASTM D256に準拠して、上記で作製したASTM試験片(3.2mm厚のノッチ付き試験片)を使用し、23℃においてIzod衝撃強度(単位:J/m)を測定した。
結果を表3a〜3dに示す。なお、表3a〜3d中、耐衝撃性は「Izod」と表記する。
<アウトガス性評価>
平板状試験片の作製において射出成形を行う際、射出成形機のノズル先端から発生するガスの様子を目視観察により判断し、ガスの発生がほとんど認められないものを「○」、著しいガスの発生が認められるものを「×」と評価した。
結果を表3a〜3dに示す。なお、表3a〜3d中、アウトガス性は「低ガス性」と表記する。
<金型汚染性評価>
住友重機械工業社製ミニマットM8/7A成形機を用い、前述の製造方法で得られたペレットを雫型金型を用いて、成形温度290℃、金型温度60℃で500ショット連続成形し、終了後金型の付着物の有無を目視観察により判断し、以下の基準で評価した。
結果を表3a〜3dに示す。
◎:金型の付着物がほとんど認められない。
○:金型の付着物がわずかに認められる。
×:金型の付着物が非常に多い。
<透明度評価>
JIS K−7105に準じ、前述の平板状試験片(3mm厚)を試験片とし、日本電色工業(株)製のNDH−2000型ヘイズメーターでヘイズ値(単位「%」)及び全光線透過率(単位「%」)を測定した。
ヘイズ(Haze)は、樹脂の濁度の尺度として用いられる値であり、数値が小さい程、透明性が高いことを示し、好ましい。また、全光線透過率は、樹脂の光線透過度の尺度として用いられる値であり、数値が大きい程、好ましい。
結果を表3a〜3dに示す。
なお、表3a〜3d中、ヘイズ値を「3mmHaze」、全光線透過率を、「3mm透過率」と表記する。
Figure 2010270295
Figure 2010270295
Figure 2010270295
Figure 2010270295
Figure 2010270295
Figure 2010270295
以上の結果より、ポリカーボネート樹脂に金属塩化合物とポリカルボシラン化合物とを配合してなる本発明のポリカーボネート樹脂組成物は、難燃性、耐衝撃性、透明性に優れ、アウトガスや金型汚染性も改善されていることが分かる。
[実施例12、比較例12]
<樹脂ペレットの製造>
前述の表2a,2bに記した各成分を、表4に記した割合(質量比)で配合し、タンブラーにて20分混合した後、1ベントを備えた日本製鋼所社製(TEX30HSST)に供給し、スクリュー回転数200rpm、吐出量15kg/時間、バレル温度290℃の条件で混練した。その後、ストランド状に押出された溶融樹脂を水槽にて急冷し、ペレタイザーを用いてペレット化してポリカーボネート樹脂組成物のペレットを得た。
<流動性(Q値)評価>
上述の製造方法で得られたペレットを120℃で4時間以上乾燥した後、JIS K7210 付属書Cに記載の方法にて高荷式フローテスターを用いて、280℃、荷重160kgfの条件下で組成物の単位時間あたりの流出量Q値(単位:×10−2cm/sec)を測定し、流動性を評価した。なお、オリフィスは直径1mm×長さ10mmのものを使用した。Q値が高いほど、流動性に優れていることを示す。結果を表4に示す。
<試験片の作製>
上述の製造方法で得られたペレットを120℃で5時間乾燥させた後、日本製鋼所製のJ50−EP型射出成形機を用いて、シリンダー温度280℃、金型温度80℃、成形サイクル30秒の条件で射出成形し、長さ125mm、幅13mmで、厚さ1.2mm又は1.0mmのUL試験用試験片を成形した。
また、上述の製造方法で得られたペレットを120℃で5時間乾燥させた後、名機製作所製のM150AII−SJ型射出成形機を用いて、シリンダー温度280℃、金型温度80℃、成形サイクル55秒の条件で射出成形し、平板状試験片(90mm×50mm×1−2−3mmの3段厚み)を成形した。
また、同様に上述の製造方法で得られたペレットを120℃で5時間乾燥させた後、住友重機械工業社製のサイキャップM−2、型締め力75Tを用いて、シリンダー温度290℃、金型温度80℃、成形サイクル45秒の条件で射出成形し、ISO多目的試験片(4mm)とISO多目的試験片(3mm)を成形した。
<難燃性評価>
上述のUL試験用試験片を用い、実施例1におけると同様にUL試験を行い、同様に評価を行った。
結果を表4に示す。
<濁度評価>
JIS K−7136に準拠し、上述の平板状試験片(1−2−3mmの3段厚み)を試験片とし、厚み3mm部分を用いて、日本電色工業社製のNDH−2000型濁度計で測定した。濁度は、樹脂の白濁の尺度として用い、数値が小さい程、透明性が高いことを示す。結果を表4に示す。
<拡散率・分散度評価>
上述の平板状試験片(1−2−3mmの3段厚み)を試験片とし、MURAKAMI COLOR RESEARCH LABORATORY社製のGP−5 GONIOPHOTOMETERを用い、入射光:0°、煽り角:0°、受光範囲:0°〜90°、光束絞り:2.0、受光絞り:3.0の条件で、1mm厚み部分及び2mm厚み部分の輝度を測定し、下式により拡散率(%)を求めた。分散度は、受光角0°、即ち、光源から試験片を透過した後に直進する光線における輝度値に対して、輝度値が50%になる受光角を指す。結果を表4に示す。
拡散率(%)=100×[(受光角20°の輝度値+受光角70°の輝度値)/{2×(受光角5°の輝度値)}]
<耐熱性評価>
ISO多目的試験片(4mm)を用い、ISO75−1及びISO75−2に準拠して荷重1.80MPaの条件で荷重たわみ温度を測定した。結果を表4に示す。なお、表中「DTUL」と表記する。
<曲げ特性評価>
ISO多目的試験片(4mm)を用い、ISO178に準拠し、23℃の条件で曲げ応力及び曲げ弾性率を測定した。結果を表4に示す。
<耐衝撃性評価>
ISO多目的試験片(3mm)を用い、ISO179に準拠し、23℃の条件で、ノッチ有りシャルピー耐衝撃強度(単位:kJ/m)を測定した。結果を表4に示す。
Figure 2010270295
表4より、光拡散剤を配合することにより、良好な光拡散効果が得られることが分かる。
本発明は産業上の幅広い分野に利用することが可能であり、例えば、電気電子機器やその部品、OA機器、情報端末機器、機械部品、家電製品、車輌部品、建築部材、各種容器、レジャー用品・雑貨類、照明機器などの分野に用いて好適である。

Claims (13)

  1. ポリカーボネート樹脂100質量部と、
    金属塩化合物0.001〜1質量部と、
    ポリカルボシラン化合物0.005〜5質量部とを配合してなることを特徴とするポリカーボネート樹脂組成物。
  2. 前記ポリカルボシラン化合物が、下記式(1)〜(3)で表される構造単位のうちの少なくとも1種の構造単位と炭化水素残基とからなる主鎖構造を有することを特徴とする請求項1に記載のポリカーボネート樹脂組成物。
    Figure 2010270295
    (式(1)〜(3)中、R、R、Rは、それぞれ独立に、一価炭化水素基、水素原子、又はシリル基を表し、a、b、cは、それぞれ独立に、0又は1を表す。主鎖構造中に含まれる複数のR、R及びRは、それぞれ同一であっても異なるものであってもよい。)
  3. 前記炭化水素残基が、二価炭化水素基であることを特徴とする請求項2に記載のポリカーボネート樹脂組成物。
  4. 前記ポリカルボシラン化合物が、下記式(4)で表される繰り返し単位を有する、数平均分子量100〜20000のポリカルボシラン化合物であることを特徴とする請求項3に記載のポリカーボネート樹脂組成物。
    Figure 2010270295
    (式(4)中、R、R、a、b、は前記式(1)におけると同義であり、Aは、炭素数1〜12の二価炭化水素基を表し、p、qは、それぞれ独立に、1〜8の整数を表す。R、R及びAは、それぞれ全ての繰り返し単位において同一であっても異なっていてもよい。)
  5. 前記ポリカルボシラン化合物が、下記式(5)で表される繰り返し単位を有する、数平均分子量100〜20000のポリカルボシラン化合物であることを特徴とする請求項4に記載のポリカーボネート樹脂組成物。
    Figure 2010270295
    (式(5)中、R、Rは前記式(4)におけると同義であり、Aは炭素数1〜12のアルキレン基を表す。R、R及びAは、それぞれ全ての繰り返し単位において同一であっても異なっていてもよい。)
  6. 前記ポリカルボシラン化合物が、下記式(6)で表される繰り返し単位を有する、数平均分子量100〜20000のポリカルボシラン化合物であることを特徴とする請求項5に記載のポリカーボネート樹脂組成物。
    Figure 2010270295
  7. 前記金属塩化合物が、有機スルホン酸のアルカリ金属塩であることを特徴とする請求項1乃至6の何れか1項に記載のポリカーボネート樹脂組成物。
  8. 前記有機スルホン酸のアルカリ金属塩が、含フッ素脂肪族スルホン酸のアルカリ金属塩、及び芳香族スルホン酸のアルカリ金属塩から選ばれる少なくとも1種であることを特徴とする請求項7に記載のポリカーボネート樹脂組成物。
  9. 前記含フッ素脂肪族スルホン酸のアルカリ金属塩が、パーフルオロアルカンスルホン酸のアルカリ金属塩であることを特徴とする請求項8に記載のポリカーボネート樹脂組成物。
  10. 前記芳香族スルホン酸のアルカリ金属塩が、パラトルエンスルホン酸のアルカリ金属塩であることを特徴とする請求項8に記載のポリカーボネート樹脂組成物。
  11. ポリカーボネート樹脂が、構造粘性指数Nが、1.2以上のポリカーボネート樹脂を20質量%以上含むことを特徴とする請求項1乃至10の何れか1項に記載のポリカーボネート樹脂組成物。
  12. 構造粘性指数Nが1.2以上のポリカーボネート樹脂が、芳香族ジヒドロキシ化合物と炭酸ジエステルとの溶融エステル交換反応により製造されたポリカーボネート樹脂であることを特徴とする請求項11に記載のポリカーボネート樹脂組成物。
  13. 請求項1乃至12の何れか1項に記載のポリカーボネート樹脂組成物を成形してなることを特徴とするポリカーボネート樹脂成形体。
JP2010002165A 2009-04-20 2010-01-07 ポリカーボネート樹脂組成物及びその成形体 Active JP4766172B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010002165A JP4766172B2 (ja) 2009-04-20 2010-01-07 ポリカーボネート樹脂組成物及びその成形体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009102104 2009-04-20
JP2009102104 2009-04-20
JP2010002165A JP4766172B2 (ja) 2009-04-20 2010-01-07 ポリカーボネート樹脂組成物及びその成形体

Publications (3)

Publication Number Publication Date
JP2010270295A true JP2010270295A (ja) 2010-12-02
JP2010270295A5 JP2010270295A5 (ja) 2011-04-21
JP4766172B2 JP4766172B2 (ja) 2011-09-07

Family

ID=43418574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002165A Active JP4766172B2 (ja) 2009-04-20 2010-01-07 ポリカーボネート樹脂組成物及びその成形体

Country Status (1)

Country Link
JP (1) JP4766172B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147996A1 (ja) * 2011-04-28 2012-11-01 帝人化成株式会社 導光体用ポリカーボネート樹脂組成物、並びにそれからなる導光体および面光源体
JP2016117811A (ja) * 2014-12-19 2016-06-30 三菱化学株式会社 ポリカーボネート樹脂組成物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026704A (ja) * 1999-07-13 2001-01-30 Mitsubishi Engineering Plastics Corp 難燃性ポリカーボネート樹脂組成物
JP2002138204A (ja) * 2000-11-02 2002-05-14 Kanegafuchi Chem Ind Co Ltd 難燃性樹脂組成物
JP2003268247A (ja) * 2002-03-19 2003-09-25 Osaka Gas Co Ltd 樹脂用改質剤
JP2003277756A (ja) * 2002-03-26 2003-10-02 Osaka Gas Co Ltd ケイ素系難燃剤
JP2003277617A (ja) * 2002-03-20 2003-10-02 Osaka Gas Co Ltd 樹脂用潤滑剤
JP2004351887A (ja) * 2003-05-30 2004-12-16 Sony Corp 光学ディスクの再資源化方法及び難燃樹脂組成物、難燃樹脂成形体
JP2005232442A (ja) * 2004-01-22 2005-09-02 Mitsubishi Engineering Plastics Corp 難燃性樹脂組成物
JP2005232258A (ja) * 2004-02-18 2005-09-02 Sumitomo Chemical Co Ltd 有機材料組成物及び有機ケイ素化合物
JP2006008810A (ja) * 2004-06-24 2006-01-12 Sony Corp ディスク回収物の再資源化方法、難燃樹脂組成物及び難燃樹脂成形体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026704A (ja) * 1999-07-13 2001-01-30 Mitsubishi Engineering Plastics Corp 難燃性ポリカーボネート樹脂組成物
JP2002138204A (ja) * 2000-11-02 2002-05-14 Kanegafuchi Chem Ind Co Ltd 難燃性樹脂組成物
JP2003268247A (ja) * 2002-03-19 2003-09-25 Osaka Gas Co Ltd 樹脂用改質剤
JP2003277617A (ja) * 2002-03-20 2003-10-02 Osaka Gas Co Ltd 樹脂用潤滑剤
JP2003277756A (ja) * 2002-03-26 2003-10-02 Osaka Gas Co Ltd ケイ素系難燃剤
JP2004351887A (ja) * 2003-05-30 2004-12-16 Sony Corp 光学ディスクの再資源化方法及び難燃樹脂組成物、難燃樹脂成形体
JP2005232442A (ja) * 2004-01-22 2005-09-02 Mitsubishi Engineering Plastics Corp 難燃性樹脂組成物
JP2005232258A (ja) * 2004-02-18 2005-09-02 Sumitomo Chemical Co Ltd 有機材料組成物及び有機ケイ素化合物
JP2006008810A (ja) * 2004-06-24 2006-01-12 Sony Corp ディスク回収物の再資源化方法、難燃樹脂組成物及び難燃樹脂成形体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147996A1 (ja) * 2011-04-28 2012-11-01 帝人化成株式会社 導光体用ポリカーボネート樹脂組成物、並びにそれからなる導光体および面光源体
KR20140026424A (ko) * 2011-04-28 2014-03-05 데이진 가부시키가이샤 도광체용 폴리카보네이트 수지 조성물, 그리고 그것으로 이루어지는 도광체 및 면광원체
EP2703710A1 (en) * 2011-04-28 2014-03-05 Teijin Limited Polycarbonate resin composition for transparent body, as well as transparent body and surface light source formed from same
JP5663659B2 (ja) * 2011-04-28 2015-02-04 帝人株式会社 導光体用ポリカーボネート樹脂組成物、並びにそれからなる導光体および面光源体
EP2703710A4 (en) * 2011-04-28 2015-03-25 Teijin Ltd POLYCARBONATE RESIN COMPOSITION FOR TRANSPARENT BODY, TRANSPARENT BODY, AND LUMINOUS SURFACE SOURCE COMPRISING THE SAME
US9817174B2 (en) 2011-04-28 2017-11-14 Teijin Limited Polycarbonate resin composition for light guides, and light guide and surface light source body comprising the same
KR102118219B1 (ko) * 2011-04-28 2020-06-02 데이진 가부시키가이샤 도광체용 폴리카보네이트 수지 조성물, 그리고 그것으로 이루어지는 도광체 및 면광원체
JP2016117811A (ja) * 2014-12-19 2016-06-30 三菱化学株式会社 ポリカーボネート樹脂組成物

Also Published As

Publication number Publication date
JP4766172B2 (ja) 2011-09-07

Similar Documents

Publication Publication Date Title
EP2743314B1 (en) Polycarbonate resin composition and molded object thereof
JP4700770B2 (ja) ポリカーボネート樹脂組成物及び成形体
JP5304836B2 (ja) ポリカーボネート樹脂組成物
JPWO2012067108A6 (ja) ポリカーボネート樹脂組成物及び成形体
JP5723223B2 (ja) ポリカーボネート樹脂組成物及び成形体
CN112399993A (zh) 热塑性树脂组合物和成形品
JP5540934B2 (ja) ポリカーボネート樹脂組成物
JP6411173B2 (ja) ポリカーボネート樹脂組成物および成形品
JP4766172B2 (ja) ポリカーボネート樹脂組成物及びその成形体
JP4766173B2 (ja) ポリカーボネート樹脂組成物
JP4582257B1 (ja) 熱可塑性樹脂組成物及びその成形体
JP4743324B2 (ja) ポリカーボネート樹脂組成物及びその成形体
JP6026129B2 (ja) ポリカーボネート樹脂組成物、それからなる成形体およびその製造方法
JP6143357B2 (ja) ポリカーボネート樹脂組成物

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110303

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent or registration of utility model

Ref document number: 4766172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250