JP2010268683A - Electric vehicle, and vehicle charging system - Google Patents

Electric vehicle, and vehicle charging system Download PDF

Info

Publication number
JP2010268683A
JP2010268683A JP2010197958A JP2010197958A JP2010268683A JP 2010268683 A JP2010268683 A JP 2010268683A JP 2010197958 A JP2010197958 A JP 2010197958A JP 2010197958 A JP2010197958 A JP 2010197958A JP 2010268683 A JP2010268683 A JP 2010268683A
Authority
JP
Japan
Prior art keywords
heat
air
refrigerant
charging
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010197958A
Other languages
Japanese (ja)
Other versions
JP5152282B2 (en
Inventor
Tomonari Taguchi
知成 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010197958A priority Critical patent/JP5152282B2/en
Publication of JP2010268683A publication Critical patent/JP2010268683A/en
Application granted granted Critical
Publication of JP5152282B2 publication Critical patent/JP5152282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • B60H1/00499Heat or cold storage without phase change including solid bodies, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric vehicle which maintains running performance using an electromotor while ensuring comfort for occupants, and to provide a vehicle charging system. <P>SOLUTION: When a current flows to a battery 30a, resistance loss proportional to the square of current is generated by its internal resistance component INR. When the temperature of a thermal capacity element THC is raised, charging current is controlled such that a predetermined thermal energy is applied to the thermal capacity element THC by the resistance loss. Air is sucked into a power supply unit 30 through a cabin air exhaust duct 40b. Consequently, thermal energy stored in the thermal capacity element THC is moved to the air sucked into the power supply unit 30. The air to which thermal energy is applied from the thermal capacity element THC is blown off by a fan 42 toward the cabin space. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、充放電可能に構成された蓄電装置を搭載する電動車両に対して外部電源による充電を行なうための技術に関し、特に充電電力に加えて、熱エネルギーを車両内部に蓄積する技術に関するものである。   The present invention relates to a technique for charging an electric vehicle equipped with a power storage device configured to be chargeable / dischargeable by an external power source, and more particularly to a technique for storing thermal energy in addition to charging power in the vehicle. It is.

電気自動車、ハイブリッド自動車、燃料電池自動車などの、いわゆる電動車両は、二次電池やキャパシタなどからなる蓄電装置を搭載し、当該蓄電装置に蓄えられた電力から電動機を介して駆動力を発生する。   A so-called electric vehicle such as an electric vehicle, a hybrid vehicle, or a fuel cell vehicle is equipped with a power storage device such as a secondary battery or a capacitor, and generates driving force from the electric power stored in the power storage device via the electric motor.

このような電動車両に搭載された蓄電装置を系統電源や太陽電池などの外部電源により充電する構成、いわゆるプラグイン方式が提案されている。特に、ハイブリッド自動車では、搭載される内燃機関による発電コストに比較して、外部電源のコストが低い場合には、蓄電装置を外部電源で充電することにより、全体としての走行コストを抑制できる。   A so-called plug-in method has been proposed in which a power storage device mounted on such an electric vehicle is charged by an external power source such as a system power source or a solar battery. In particular, in a hybrid vehicle, when the cost of the external power supply is low compared to the power generation cost of the internal combustion engine installed, the overall travel cost can be suppressed by charging the power storage device with the external power supply.

ところで、蓄電装置は、電気化学的な作用を利用した二次電池で構成されることが多く、その充放電特性は温度によって大きく影響を受ける。そのため、蓄電装置を外部電源により充電可能に構成された電動車両において、蓄電装置の温度低下を抑制する構成が提案されている。   By the way, the power storage device is often composed of a secondary battery using an electrochemical action, and its charge / discharge characteristics are greatly affected by temperature. Therefore, in an electric vehicle configured to be able to charge the power storage device with an external power supply, a configuration for suppressing a temperature decrease of the power storage device has been proposed.

たとえば、特開平08−214412号公報(特許文献1)には、充電が指示されたときにおける電気自動車用蓄電装置の放電量と検出される電源電圧値と予め定められた充電電流値とに基づいて必要充電期間を演算する充電期間演算手段と、指令された乗車予定時刻と演算された必要充電期間とに基づいて指令された乗車予定時間に充電を終了させるための充電開始時刻を演算する充電開始時刻演算手段とを備える電気自動車用蓄電装置充電制御装置が開示されている。この特開平08−214412号公報(特許文献1)に開示される発明によれば、乗車予定時刻に充電が終了するので、充電後の放置時間が短くて済み、温度低下による容量低下を少なくできる。   For example, in Japanese Patent Application Laid-Open No. 08-214414 (Patent Document 1), based on a discharge amount of a power storage device for an electric vehicle when charging is instructed, a detected power supply voltage value, and a predetermined charging current value. Charging period calculating means for calculating a required charging period and charging for calculating a charging start time for ending charging at a scheduled boarding time based on the commanded scheduled boarding time and the calculated required charging period An electric vehicle power storage device charge control device including a start time calculation means is disclosed. According to the invention disclosed in Japanese Patent Application Laid-Open No. 08-214412 (Patent Document 1), the charging is completed at the scheduled boarding time. Therefore, it is possible to reduce the time for leaving after charging and to reduce the capacity decrease due to the temperature decrease. .

特開平08−214412号公報Japanese Patent Laid-Open No. 08-214414

しかしながら、実用化される電動車両では、蓄電装置だけではなく、乗員に対する快適性を確保する必要もある。すなわち、冬季や夏季などにおいては、車室空間の空調(暖房または冷房)を行なう必要がある。このような車室内空調には、比較的大きな動力源が必要となる。そのため、車両駆動力の発生に使用すべき電力が車室内空調のために使用され、蓄電装置による走行性能が制約される可能性があった。すなわち、蓄電装置に蓄えられる電力量のうち、車両走行のために確保できる電力量が減少し、走行可能距離が短縮されてしまうという可能性があった。また、蓄電装置からの放電可能電力のうち、車両走行のため確保できる電力が減少し、発生可能な駆動力が低下するという可能性もあった。   However, in an electric vehicle to be put into practical use, it is necessary to ensure not only a power storage device but also a passenger comfort. That is, it is necessary to air-condition (heat or cool) the passenger compartment space in winter or summer. Such vehicle interior air conditioning requires a relatively large power source. Therefore, the electric power that should be used for generating the vehicle driving force is used for air conditioning in the vehicle interior, and there is a possibility that the traveling performance of the power storage device is restricted. That is, among the amount of power stored in the power storage device, there is a possibility that the amount of power that can be secured for vehicle travel is reduced, and the travelable distance is shortened. In addition, among the electric power that can be discharged from the power storage device, there is a possibility that the electric power that can be secured for running the vehicle is reduced, and the driving force that can be generated is reduced.

この発明は、このような問題点を解決するためになされたものであって、その目的は、乗員に対する快適性を確保しつつ、電動機による走行性能を維持できる電動車両および車両充電システムを提供することである。   The present invention has been made to solve such problems, and an object of the present invention is to provide an electric vehicle and a vehicle charging system capable of maintaining the traveling performance of the electric motor while ensuring the comfort for the occupant. That is.

この発明のある局面によれば、充放電可能に構成された蓄電装置を搭載し、かつ外部電源により蓄電装置を充電可能に構成された電動車両である。この発明に係る電動車両は、充電時に外部電源を供給するためのコネクタ部と連結可能に構成される。そして、この発明に係る電動車両は、熱エネルギーを蓄積可能に構成された熱容量要素と、充電時にコネクタ部を介して車両外部から供給される外部エネルギーを用いて、熱容量要素に熱エネルギーを蓄積するための蓄熱機構と、空調要求に応じて、熱容量要素に蓄積された熱エネルギーを用いて、車室空間の空調を行なうための空調機構とを備える。   According to an aspect of the present invention, there is provided an electric vehicle that includes a power storage device configured to be chargeable / dischargeable and configured to be able to charge the power storage device with an external power source. The electric vehicle according to the present invention is configured to be connectable to a connector portion for supplying an external power source during charging. The electric vehicle according to the present invention stores heat energy in the heat capacity element using the heat capacity element configured to be able to store heat energy and external energy supplied from the outside of the vehicle via the connector portion during charging. And an air conditioning mechanism for performing air conditioning of the passenger compartment space using the thermal energy accumulated in the heat capacity element in response to an air conditioning request.

この局面によれば、この発明に係る電動車両は、搭載する蓄電装置を外部電源により充電するに際して、外部からのエネルギーを受けて熱エネルギーを蓄積する。そして、充電完了後に空調要求を受けると、蓄電装置に蓄えられる電力ではなく、当該蓄積した熱エネルギーを用いて車室空間の空調を行なう。これにより、車室空間の空調を行なうために、蓄電装置からの放電電力を使用せずに済む。よって、蓄電装置からの放電電力の多くを電動機のために確保できるので、乗員に対する快適性を確保しつつ、電動機による走行性能を維持できる。   According to this aspect, the electric vehicle according to the present invention accumulates thermal energy by receiving energy from the outside when charging the power storage device to be mounted by the external power source. When the air conditioning request is received after the completion of charging, the passenger compartment space is air-conditioned using the stored thermal energy instead of the electric power stored in the power storage device. Thereby, in order to air-condition the passenger compartment space, it is not necessary to use the discharge power from the power storage device. Therefore, most of the electric power discharged from the power storage device can be secured for the electric motor, so that the traveling performance of the electric motor can be maintained while ensuring the comfort for the passenger.

好ましくは、熱容量要素は、蓄電装置の構成部材の少なくとも一部により構成される。
さらに好ましくは、蓄熱機構は、蓄電装置の充電電流に伴う抵抗性発熱によって蓄電装置に所定の熱エネルギーが与えられるように、充電電流を制御する充電電流制御手段を含む。
Preferably, the heat capacity element is configured by at least a part of the constituent members of the power storage device.
More preferably, the heat storage mechanism includes charging current control means for controlling the charging current so that predetermined heat energy is given to the power storage device by resistive heat generation accompanying the charging current of the power storage device.

またさらに好ましくは、この発明に係る電動車両は、充電時に、外部電源に加えてコネクタ部を介して車両外部から所定の熱エネルギーを有する外部熱媒体を受入れ可能に構成され、蓄熱機構は、コネクタ部を介して供給される外部熱媒体と蓄電装置との間で熱交換を生じるように構成された熱媒体経路をさらに含む。   Still more preferably, the electric vehicle according to the present invention is configured to accept an external heat medium having a predetermined thermal energy from the outside of the vehicle via a connector portion in addition to an external power source during charging, and the heat storage mechanism is a connector A heat medium path configured to cause heat exchange between the external heat medium supplied via the unit and the power storage device.

さらに好ましくは、外部熱媒体として、車両外部の空調された建物内の空調空気が供給される。   More preferably, conditioned air in an air-conditioned building outside the vehicle is supplied as an external heat medium.

また好ましくは、この発明に係る電動車両は、車室空間と連通するように構成され、かつ車室空間の空気を取込んで蓄電装置との間で熱交換をするように構成された車室空気経路をさらに備え、空調機構は、蓄電装置との間で熱交換された空気が車室空間に向けて吹き出されるように、車室空気経路において車室空間からの空気の取込み方向とは逆方向に空気の流れを形成するための逆流機構を含む。   Preferably, the electric vehicle according to the present invention is configured to communicate with the passenger compartment space, and is configured to take in the air in the passenger compartment space and exchange heat with the power storage device. An air path is further provided, and the air-conditioning mechanism is a direction in which air is taken in from the passenger compartment space in the passenger compartment air path so that air exchanged with the power storage device is blown out toward the passenger compartment space. It includes a reverse flow mechanism for creating an air flow in the reverse direction.

好ましくは、この発明に係る電動車両は、外部電源から蓄電装置を充電するための充電電流を生成可能な電力変換部と、電力変換部を第1の冷媒を介して冷却するためのラジエタ部と、電力変換部およびラジエタ部を含む循環経路で第1の冷媒を循環させるための循環機構と、循環経路に介挿され、第1の冷媒を貯蔵可能に構成された貯蔵部とをさらに備える。そして、熱容量要素は、第1の冷媒を含み、電力変換部は、スイッチング素子を含んで構成される。さらに、蓄熱機構は、充電時に、ラジエタ部における冷却能力を抑制するとともに、電力変換部で発生するスイッチング動作に伴う熱損失により第1の冷媒に所定の熱エネルギーが与えられるように、電力変換部を制御する電力変換部制御手段をさらに含む。   Preferably, the electric vehicle according to the present invention includes a power conversion unit capable of generating a charging current for charging the power storage device from an external power source, and a radiator unit for cooling the power conversion unit via the first refrigerant. And a circulation mechanism for circulating the first refrigerant in the circulation path including the power conversion unit and the radiator, and a storage unit that is inserted in the circulation path and configured to store the first refrigerant. The heat capacity element includes a first refrigerant, and the power conversion unit includes a switching element. Furthermore, the heat storage mechanism suppresses the cooling capacity of the radiator unit during charging, and the predetermined heat energy is given to the first refrigerant due to heat loss caused by the switching operation generated in the power conversion unit. It further includes a power converter control means for controlling the power.

好ましくは、この発明に係る電動車両は、星型結線された相コイルを有する回転電機をさらに備え、電力変換部は、回転電機の中性点を介して、外部電源を受入れるように構成され、循環経路は、回転電機をさらに含むように形成される。そして、電力変換部制御手段は、さらに、回転電機の相コイルで発生する抵抗性発熱により第1の冷媒に所定の熱エネルギーが与えられるように、電力変換部を制御する。   Preferably, the electric vehicle according to the present invention further includes a rotating electrical machine having a star-connected phase coil, and the power conversion unit is configured to receive an external power supply via a neutral point of the rotating electrical machine, The circulation path is formed so as to further include a rotating electrical machine. The power conversion unit control means further controls the power conversion unit such that predetermined heat energy is given to the first refrigerant by the resistive heat generated by the phase coil of the rotating electrical machine.

また好ましくは、空調機構は、車室空間に空調空気を吹き出すための吹出機構と、第1の冷媒を吹出機構に導くための第1の冷媒導入経路と、第1の冷媒導入経路を介して導かれる第1の冷媒との間で熱交換を生じさせて空調空気を生成するための第1の熱交換部とをさらに含む。   Preferably, the air-conditioning mechanism has a blow-out mechanism for blowing conditioned air into the passenger compartment space, a first refrigerant introduction path for guiding the first refrigerant to the blow-out mechanism, and a first refrigerant introduction path. It further includes a first heat exchanging unit for generating conditioned air by causing heat exchange with the first refrigerant to be guided.

好ましくは、熱容量要素は、蓄冷槽に格納される蓄冷剤を含み、蓄熱機構は、充電時に、外部電源を受けて冷凍サイクルを実行することにより、熱エネルギーを蓄冷材に蓄積する冷凍サイクル機構をさらに含む。   Preferably, the heat capacity element includes a cold storage agent stored in the cold storage tank, and the heat storage mechanism includes a refrigeration cycle mechanism that accumulates thermal energy in the cold storage material by receiving an external power source and executing a refrigeration cycle during charging. In addition.

さらに好ましくは、空調機構は、車室空間に空調空気を吹き出すための吹出機構と、第2の冷媒と蓄冷材との間で熱交換を生じるように形成され、かつ熱交換後の第2の冷媒を吹出機構に導くための第2の冷媒導入経路と、第2の冷媒導入経路を介して導かれる第2の冷媒との間で熱交換を生じさせて空調空気を生成するための第2の熱交換部とをさらに含む。   More preferably, the air conditioning mechanism is formed so as to cause heat exchange between the blowing mechanism for blowing conditioned air into the passenger compartment space, and the second refrigerant and the cold storage material, and the second after the heat exchange. Second for generating heat-conditioned air by causing heat exchange between the second refrigerant introduction path for introducing the refrigerant to the blowing mechanism and the second refrigerant introduced through the second refrigerant introduction path. And a heat exchange part.

この発明の別の局面によれば、充放電可能に構成された蓄電装置を搭載する電動車両と、電動車両に搭載された蓄電装置を外部電源により充電するための車両充電装置とを備える車両充電システムである。車両充電装置は、充電時に電動車両と連結され、電動車両に外部電源を供給するためのコネクタ部を含む。そして、電動車両は、熱エネルギーを蓄積可能に構成された熱容量要素と、充電時にコネクタ部を介して車両外部から供給される外部エネルギーを用いて、熱容量要素に熱エネルギーを蓄積するための蓄熱機構と、空調要求に応じて、熱容量要素に蓄積された熱エネルギーを用いて、車室空間の空調を行なうための空調機構とを含む。さらに、熱容量要素は、蓄電装置の構成部材の少なくとも一部により構成され、車両充電装置は、充電時に、外部電源に加えてコネクタ部を介して車両外部から所定の熱エネルギーを有する外部熱媒体を供給するように構成され、蓄熱機構は、コネクタ部を介して供給される外部熱媒体と蓄電装置との間で熱交換を生じるように構成された熱媒体経路を含む。   According to another aspect of the present invention, vehicle charging including an electric vehicle equipped with a power storage device configured to be chargeable / dischargeable, and a vehicle charging device for charging the power storage device mounted on the electric vehicle with an external power source. System. The vehicle charging device is connected to an electric vehicle at the time of charging and includes a connector portion for supplying an external power source to the electric vehicle. The electric vehicle uses a heat capacity element configured to be able to store heat energy, and a heat storage mechanism for storing heat energy in the heat capacity element using external energy supplied from the outside of the vehicle via the connector portion during charging. And an air-conditioning mechanism for air-conditioning the passenger compartment space using the thermal energy accumulated in the heat capacity element in response to the air-conditioning request. Further, the heat capacity element is configured by at least a part of the constituent members of the power storage device, and the vehicle charging device uses an external heat medium having a predetermined heat energy from the outside of the vehicle via the connector portion in addition to the external power source during charging. The heat storage mechanism is configured to supply, and includes a heat medium path configured to cause heat exchange between the external heat medium supplied via the connector unit and the power storage device.

この局面によれば、この発明に係る車充電システムは、搭載する蓄電装置を外部電源により充電するに際して、外部からのエネルギーを受けて熱エネルギーを蓄積する。そして、充電完了後に空調要求を受けると、蓄電装置に蓄えられる電力ではなく、当該蓄積した熱エネルギーを用いて車室空間の空調を行なう。これにより、車室空間の空調を行なうために、蓄電装置からの放電電力を使用せずに済む。よって、蓄電装置からの放電電力の多くを電動機のために確保できるので、乗員に対する快適性を確保しつつ、電動機による走行性能を維持できる。 According to this aspect, engagement Ru car both the charging system in this invention, when charging power storage device mounted by the external power source, for storing thermal energy by receiving energy from the outside. When the air conditioning request is received after the completion of charging, the passenger compartment space is air-conditioned using the stored thermal energy instead of the electric power stored in the power storage device. Thereby, in order to air-condition the passenger compartment space, it is not necessary to use the discharge power from the power storage device. Therefore, most of the electric power discharged from the power storage device can be secured for the electric motor, so that the traveling performance of the electric motor can be maintained while ensuring the comfort for the passenger.

好ましくは、車両充電装置は、外部熱媒体として、車両外部の空調された建物内の空調空気を電動車両に供給する。   Preferably, the vehicle charging device supplies conditioned air in an air-conditioned building outside the vehicle to the electric vehicle as an external heat medium.

また好ましくは、電動車両は、車室空間と連通するように構成され、かつ車室空間の空気を取込んで蓄電装置との間で熱交換をするように構成された車室空気経路をさらに含み、空調機構は、蓄電装置との間で熱交換された空気が車室空間に向けて吹き出されるように、車室空気経路において車室空間からの空気の取込み方向とは逆方向に空気の流れを形成するための逆流機構を含む。   Preferably, the electric vehicle further includes a passenger compartment air path configured to communicate with the passenger compartment space and configured to take in air in the passenger compartment space and exchange heat with the power storage device. The air conditioning mechanism includes air in a direction opposite to a direction in which the air is taken in from the passenger compartment space in the passenger compartment air path so that the air exchanged with the power storage device is blown out toward the passenger compartment space. A reverse flow mechanism for forming the flow of

この発明によれば、乗員に対する快適性を確保しつつ、蓄電装置による走行性能を維持できる電動車両および車両充電システムを実現できる。   According to the present invention, it is possible to realize an electric vehicle and a vehicle charging system capable of maintaining the traveling performance of the power storage device while ensuring comfort for passengers.

この発明の実施の形態1に従う車両充電システムの模式図である。1 is a schematic diagram of a vehicle charging system according to a first embodiment of the present invention. 図1に示す電動車両の上面図である。It is a top view of the electric vehicle shown in FIG. 電動車両に供給される空調空気の流れを説明するための図である。It is a figure for demonstrating the flow of the conditioned air supplied to an electric vehicle. 電源ユニットの空気の流れを説明するための図である。It is a figure for demonstrating the flow of the air of a power supply unit. この発明の実施の形態1に従う車両充電システムの制御構造を示す概略構成図である。It is a schematic block diagram which shows the control structure of the vehicle charging system according to Embodiment 1 of this invention. 暖房要求に備えて熱容量要素を昇温する場合の時間的変化の一例を示す図である。It is a figure which shows an example of the time change when heating up a heat capacity element in preparation for a heating request. この発明の実施の形態2に従う電動車両においてバッテリの充電に係る要部を示す概略構成図である。It is a schematic block diagram which shows the principal part which concerns on charge of a battery in the electric vehicle according to Embodiment 2 of this invention. 零電圧ベクトルを生成する場合における、インバータ装置ならびに電動機の零相等価回路である。It is the zero phase equivalent circuit of an inverter apparatus and an electric motor in the case of producing | generating a zero voltage vector. この発明の実施の形態2に従う電動車両における車室内空調に係る模式図である。It is a schematic diagram which concerns on the vehicle interior air conditioning in the electric vehicle according to Embodiment 2 of this invention. 車室空間の暖房に係る動作を説明するための図である。It is a figure for demonstrating the operation | movement which concerns on the heating of vehicle interior space. 図7に示す外部電流と外部電圧との時間波形を示す図である。It is a figure which shows the time waveform of the external current and external voltage which are shown in FIG. 図11に示す外部電流と外部電圧との位相関係を示すベクトル図である。FIG. 12 is a vector diagram showing a phase relationship between the external current and the external voltage shown in FIG. 11. 車室空間の冷房に係る動作を説明するための図である。It is a figure for demonstrating the operation | movement which concerns on the cooling of vehicle interior space.

この発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。   Embodiments of the present invention will be described in detail with reference to the drawings. Note that the same or corresponding parts in the drawings are denoted by the same reference numerals and description thereof will not be repeated.

[実施の形態1]
図1は、この発明の実施の形態1に従う車両充電システム100の模式図である。
[Embodiment 1]
FIG. 1 is a schematic diagram of a vehicle charging system 100 according to the first embodiment of the present invention.

図1を参照して、この発明の実施の形態1に従う車両充電システム100は、電動車両1と、車両充電装置2とからなる。   Referring to FIG. 1, a vehicle charging system 100 according to the first embodiment of the present invention includes an electric vehicle 1 and a vehicle charging device 2.

電動車両1は、一例として、ハイブリッド自動車であり、電源ユニット30を搭載する。電源ユニット30は、主として、電動車両1の駆動力を発生する電動機(図示しない)に電力を供給するためのものであり、充放電可能に構成された蓄電装置を含んで構成される。蓄電装置は、二次電池のみならず、燃料電池、キャパシタなどであってもよい。また、蓄電装置が二次電池である場合には、鉛蓄電池、リチウムイオン電池およびニッケル水素電池のいずれであっても、それらとは別の種類の電池であってもよい。なお、電源ユニット30を搭載するものであれば、電動車両1は、電気自動車または燃料電池自動車などであってもよい。   The electric vehicle 1 is a hybrid vehicle as an example, and includes a power supply unit 30. The power supply unit 30 is mainly for supplying electric power to an electric motor (not shown) that generates driving force of the electric vehicle 1, and includes a power storage device configured to be chargeable / dischargeable. The power storage device may be not only a secondary battery but also a fuel cell, a capacitor, or the like. Further, when the power storage device is a secondary battery, it may be any of a lead storage battery, a lithium ion battery, and a nickel metal hydride battery, or a different type of battery. As long as the power supply unit 30 is mounted, the electric vehicle 1 may be an electric vehicle or a fuel cell vehicle.

以下の説明では、蓄電装置は二次電池(以下では、単に「バッテリ」とも称す)であり、複数のバッテリモジュールから構成されるバッテリパックを含む場合について説明する。   In the following description, a case where the power storage device is a secondary battery (hereinafter, also simply referred to as “battery”) and includes a battery pack including a plurality of battery modules will be described.

そして、電動車両1は、エンジン(図示しない)による駆動力および電動機による駆動力を併用して走行可能であるとともに、制動時などにおいて電動車両1の運動エネルギーをバッテリに回収する。特に、本実施形態に従う電動車両1は、エンジンおよび電動機を併用して走行する「通常走行モード」に加えて、電動機からの駆動力のみで走行する「EV(Electrical Vehicle:電気自動車)走行モード」を有する。以下の説明では、主として、充電時および「EV走行モード」における動作について説明する。   The electric vehicle 1 can travel using both the driving force of the engine (not shown) and the driving force of the electric motor, and collects the kinetic energy of the electric vehicle 1 in the battery during braking. In particular, the electric vehicle 1 according to the present embodiment travels only by the driving force from the electric motor in addition to the “normal traveling mode” in which the engine and the electric motor are used in combination, and the “EV (Electrical Vehicle: electric vehicle) traveling mode” Have In the following description, operations at the time of charging and in the “EV traveling mode” will be mainly described.

本実施形態においては、バッテリの構成部材の一部が熱容量要素として構成され、電動車両1は、充電時に車両外部から供給される外部エネルギーを用いて、当該熱容量要素(バッテリ)に熱エネルギーを蓄積する。具体的には、バッテリを構成する複数のバッテリモジュールに含まれる電解液やセパレータなどの比較的比熱の大きな構成部材が熱容量要素として機能する。なお、本明細書において「熱エネルギー」とは、周囲温度に比較して温度差が存在する状態を意味し、周囲温度に比較して温度が高い状態、および周囲温度に比較して温度が低い状態のいずれをも含む。そして、電動車両1では、乗員などからの空調要求に応じて、当該熱容量に蓄積された熱エネルギーを用いて、電動車両1の車室空間の空調が行なわれる。   In the present embodiment, a part of the constituent members of the battery is configured as a heat capacity element, and the electric vehicle 1 accumulates heat energy in the heat capacity element (battery) using external energy supplied from outside the vehicle during charging. To do. Specifically, components having relatively large specific heat, such as electrolytes and separators included in a plurality of battery modules constituting the battery, function as a heat capacity element. In this specification, “thermal energy” means a state where there is a temperature difference compared to the ambient temperature, a state where the temperature is higher than the ambient temperature, and a temperature lower than the ambient temperature. Includes any of the states. In the electric vehicle 1, the cabin space of the electric vehicle 1 is air-conditioned using the thermal energy accumulated in the heat capacity in response to an air conditioning request from an occupant or the like.

車両充電装置2は、充電ステーション3と、コネクタ部4と、電力供給線8と、外部熱媒体導管6とからなる。   The vehicle charging device 2 includes a charging station 3, a connector unit 4, a power supply line 8, and an external heat medium conduit 6.

コネクタ部4は、電動車両1と連結可能に構成されるとともに、電力供給線8および外部熱媒体導管6を介して、充電ステーション3と接続される。そして、コネクタ部4は、充電時に外部電源を電動車両1に供給するとともに、所定の熱エネルギーを有する外部熱媒体を電動車両1に供給する。   The connector unit 4 is configured to be connectable to the electric vehicle 1 and is connected to the charging station 3 through the power supply line 8 and the external heat medium conduit 6. The connector unit 4 supplies an external power source to the electric vehicle 1 during charging and supplies an external heat medium having a predetermined thermal energy to the electric vehicle 1.

電力供給線8は、電動車両1に搭載されたバッテリを充電するための外部電源を供給する電力線であり、その一端がコネクタ部4を介して電動車両1と接続されるとともに、その他端が電力系統10と電気的に接続される。すなわち、電力供給線8は、電力系統10を介して供給される系統電源と電動車両1とを電気的に接続する。なお、系統電源に代えて、建物70の屋根などに設置される太陽電池パネルが発電する電力を電動車両1に供給するようにしてもよい。または、電力供給線8は、コネクタ部4を自在に取回しできるように可とう性を有するキャブタイヤケーブルなどで構成される。   The power supply line 8 is a power line that supplies an external power source for charging a battery mounted on the electric vehicle 1. One end of the power supply line 8 is connected to the electric vehicle 1 via the connector portion 4, and the other end is power. It is electrically connected to the system 10. That is, the power supply line 8 electrically connects the system power source supplied via the power system 10 and the electric vehicle 1. Instead of the system power supply, the electric vehicle 1 may be supplied with electric power generated by a solar panel installed on the roof of the building 70 or the like. Or the electric power supply line 8 is comprised with the cabtire cable etc. which have flexibility so that the connector part 4 can be managed freely.

外部熱媒体導管6は、車外空調空気供給導管6aと、車外空調空気排出導管6bとからなり、可とう性を有するゴムチューブなどで構成される。車外空調空気供給導管6aの一端がコネクタ部4に接続されるとともに、その他端は、建物70内に挿入される。建物70内には、エアコン72などが設置され、所定の快適温度(たとえば、18℃〜25℃)に空調される。そのため、車外空調空気供給導管6aを介して、建物70内の空調された空気(以下、単に「車外空調空気」と称す)を外部熱媒体として電動車両1へ供給可能となる。また、車外空調空気排出導管6bの一端がコネクタ部4に接続されるとともに、その他端は建物70外の大気中に配置される。そのため、電動車両1内の車外空調空気排出導管6bを介して輸送される車外空調空気は、建物70外に放出されることになる。   The external heat medium conduit 6 includes an outside air-conditioned air supply conduit 6a and an outside air-conditioned air discharge conduit 6b, and is configured by a flexible rubber tube or the like. One end of the outside air-conditioned air supply conduit 6 a is connected to the connector portion 4, and the other end is inserted into the building 70. An air conditioner 72 or the like is installed in the building 70 and air-conditioned to a predetermined comfortable temperature (for example, 18 ° C. to 25 ° C.). Therefore, the air-conditioned air in the building 70 (hereinafter simply referred to as “air-conditioned air outside the vehicle”) can be supplied to the electric vehicle 1 as an external heat medium via the vehicle air-conditioned air supply conduit 6a. One end of the outside air-conditioned air discharge conduit 6 b is connected to the connector portion 4, and the other end is disposed in the atmosphere outside the building 70. Therefore, the outside air-conditioned air transported via the outside air-conditioned air discharge conduit 6 b in the electric vehicle 1 is released outside the building 70.

充電ステーション3は、電動車両1の駐車スペースおよび建物70のいずれにも近接するように設置され、電力供給線8および外部熱媒体導管6についての巻取機構やコネクタ部4の収納機構(いずれも図示しない)などを備える。さらに、充電ステーション3には、使用者に対するセキュリティ機構や課金機構などを備えてもよい。   The charging station 3 is installed so as to be close to both the parking space of the electric vehicle 1 and the building 70, and a winding mechanism for the power supply line 8 and the external heat medium conduit 6 and a storage mechanism for the connector portion 4 (both are (Not shown). Furthermore, the charging station 3 may be provided with a security mechanism, a charging mechanism, and the like for the user.

図2は、図1に示す電動車両1の上面図である。
図1および図2を参照して、電源ユニット30は、電動車両1の車室空間に配置されるリヤシート36のさらに後方であって、かつラゲッジルームフロアの上方に配置される。そして、電動車両1には、コネクタ部4が連結されて外部電源による充電が行なわれる際に、車外空調空気供給導管6aを介して供給される車外空調空気を電源ユニット30に導くための車外空気吸気ダクト32aが配置される。
FIG. 2 is a top view of electric vehicle 1 shown in FIG.
Referring to FIGS. 1 and 2, power supply unit 30 is disposed further rearward of rear seat 36 disposed in the passenger compartment space of electric vehicle 1 and above the luggage room floor. The electric vehicle 1 is connected to the connector portion 4 and is charged by an external power source. The outside air for supplying outside air-conditioned air supplied through the outside air-conditioned air supply conduit 6 a to the power supply unit 30 is connected to the electric vehicle 1. An intake duct 32a is disposed.

そして、電源ユニット30内において、バッテリは、導かれた車外空調空気との間で熱交換を生じるように配置される。そのため、車外空調空気が有する熱エネルギーは、バッテリに移動し、バッテリの熱容量要素に蓄えられる。さらに、電動車両1には、その熱エネルギーが移動した後の車外空調空気を車外空調空気排出導管6bに導くための車外空気排気ダクト32bが配置される。   And in the power supply unit 30, a battery is arrange | positioned so that heat exchange may be performed between the derived | led-out conditioned air outside. Therefore, the thermal energy that the outside air-conditioned air has moves to the battery and is stored in the heat capacity element of the battery. Further, the electric vehicle 1 is provided with an outside air exhaust duct 32b for guiding outside air-conditioned air after the thermal energy has moved to the outside air-conditioned air discharge conduit 6b.

本実施形態においては、上述のように車両外部から供給される外部熱媒体(すなわち、建物70内からの車外空調空気)によりバッテリの熱容量要素に熱エネルギーを蓄積する構成と、バッテリの充電電流に伴う抵抗性発熱により熱エネルギーを蓄積する構成とを併用する態様について例示する。   In the present embodiment, as described above, the heat energy is stored in the heat capacity element of the battery by the external heat medium supplied from the outside of the vehicle (that is, the outside air-conditioned air from inside the building 70), and the charging current of the battery An example in which a configuration in which thermal energy is accumulated by accompanying resistive heat generation is used together will be described.

図3は、電動車両1に供給される空調空気の流れを説明するための図である。
図3を参照して、充電時において、コネクタ部4は、電動車両1に形成されるコネクタ差込部5と連結される。そして、車外空気吸気ダクト32aおよび車外空気排気ダクト32bは、それぞれ車外空調空気供給導管6aおよび車外空調空気排出導管6bと連通するように、コネクタ差込部5によって位置決めされる。
FIG. 3 is a diagram for explaining the flow of conditioned air supplied to the electric vehicle 1.
Referring to FIG. 3, connector portion 4 is connected to connector insertion portion 5 formed in electric vehicle 1 during charging. The outside air intake duct 32a and the outside air exhaust duct 32b are positioned by the connector insertion portion 5 so as to communicate with the outside air conditioned air supply conduit 6a and the outside air conditioned air exhaust conduit 6b, respectively.

コネクタ部4には、車外空調空気供給導管6aを介して供給される車外空調空気を、電動車両1の内部で循環させるための送風ファン12が配置される。送風ファン12は、車外空調空気供給導管6aに介挿され、所定の吐出圧で車外空調空気を圧送する。この送風ファン12により、車外空調空気供給導管6aを介して供給される車外空調空気は、車外空気吸気ダクト32a、電源ユニット30、車外空気排気ダクト32b、車外空調空気排出導管6bの順で流れる。なお、送風ファン12を車外空調空気供給導管6aに介挿する構成に代えて、もしくはその構成に加えて、車外空気排気ダクト32bに吸引ファンを介挿してもよい。   The connector unit 4 is provided with a blower fan 12 for circulating outside-vehicle conditioned air supplied through the outside-vehicle conditioned air supply conduit 6 a inside the electric vehicle 1. The blower fan 12 is inserted in the outside air-conditioned air supply conduit 6a and pumps outside air-conditioned air at a predetermined discharge pressure. By this blower fan 12, the outside air-conditioned air supplied via the outside air-conditioned air supply conduit 6a flows in the order of the outside air intake duct 32a, the power supply unit 30, the outside air exhaust duct 32b, and the outside air-conditioned air discharge conduit 6b. Instead of or in addition to the configuration in which the blower fan 12 is inserted in the outside air-conditioned air supply conduit 6a, a suction fan may be inserted in the outside air exhaust duct 32b.

電源ユニット30内には、その一部の構成部材が熱容量要素として機能するバッテリ30aが配置されるとともに、車外空気吸気ダクト32aを介して供給される車外空調空気がバッテリ30aの表面に接触しながら流れるように配置される。すなわち、バッテリ30aは、車外空調空気との間で熱交換を生じるように構成され、車外空調空気の熱エネルギーは、バッテリ30aとの間を移動する。   In the power supply unit 30, a battery 30a in which a part of the constituent members functions as a heat capacity element is arranged, and outside air-conditioned air supplied through the outside air intake duct 32a is in contact with the surface of the battery 30a. Arranged to flow. That is, the battery 30a is configured to exchange heat with the outside air-conditioned air, and the heat energy of the outside air-conditioned air moves between the battery 30a.

さらに、電源ユニット30には、主として「通常走行モード」において、車室空間の空気(以下、単に「車室空気」とも称す)を取込んでバッテリ30aとの間で熱交換を行なうための車室空気吸気ダクト40aが設けられる。なお、車室空間とは、主に乗員が存在する空間を意味する。この車室空気吸気ダクト40aは、エンジン排熱を用いた暖房やエンジンの駆動力を用いた冷房が可能な「通常走行モード」において、車室空気をバッテリ30aの温度管理に使用するために設けられるものである。具体的には、車室空気吸気ダクト40aは、電動車両1のリヤシート36の側部(乗員の背部や肩部と接触しない領域)に配置された吸気孔38を介して車室空間と連通するように構成され、その中間部にファン42が介挿される。   Further, the power supply unit 30 is a vehicle for taking in the air in the vehicle compartment space (hereinafter also simply referred to as “vehicle compartment air”) and exchanging heat with the battery 30a mainly in the “normal travel mode”. A room air intake duct 40a is provided. The vehicle interior space means a space where passengers mainly exist. The passenger compartment air intake duct 40a is provided to use the passenger compartment air for temperature management of the battery 30a in the "normal traveling mode" in which heating using engine exhaust heat or cooling using the driving force of the engine is possible. It is what Specifically, the passenger compartment air intake duct 40a communicates with the passenger compartment space via an intake hole 38 disposed on a side portion of the rear seat 36 of the electric vehicle 1 (a region not in contact with the back or shoulder of the occupant). The fan 42 is inserted in the intermediate part.

また、電源ユニット30には、バッテリ30aの温度管理に使用された後の車室空気をラゲッジルームに排出するための車室空気排気ダクト40bが設けられる。   Further, the power supply unit 30 is provided with a passenger compartment air exhaust duct 40b for discharging the passenger compartment air after being used for temperature management of the battery 30a to the luggage room.

ファン42は、可逆ファンであり、車室空間から車室空気を誘引して電源ユニット30に導くことが可能であるとともに、電源ユニット30から車室空間に向けて空気を送出することが可能に構成される。なお、車室空間から電源ユニット30に向けて車室空間を誘引するための誘引ファンと、電源ユニット30から車室空間に向けて空気を送出するための送出ファンとを車室空気吸気ダクト40aに並列に配置してもよい。   The fan 42 is a reversible fan, and can attract the passenger compartment air from the passenger compartment space and guide the passenger compartment air to the power source unit 30, and can send air from the power source unit 30 toward the passenger compartment space. Composed. In addition, the vehicle compartment air intake duct 40a includes an induction fan for attracting the vehicle compartment space from the vehicle compartment space toward the power supply unit 30 and a delivery fan for sending air from the power supply unit 30 toward the vehicle compartment space. May be arranged in parallel.

さらに、電源ユニット30には、切換ダンパ44a,44bが設けられる。切換ダンパ44aは、車外空気吸気ダクト32aおよび車室空気吸気ダクト40aのいずれか一方と電源ユニット30とを連通するように動作する。同様に、切換ダンパ44bは、車外空気排気ダクト32bおよび車室空気排気ダクト40bのいずれか一方と電源ユニット30と連通するように動作する。   Furthermore, the power supply unit 30 is provided with switching dampers 44a and 44b. The switching damper 44a operates so as to communicate either the outside air intake duct 32a or the cabin air intake duct 40a with the power supply unit 30. Similarly, switching damper 44b operates to communicate power source unit 30 with either one of vehicle exterior air exhaust duct 32b and vehicle interior air exhaust duct 40b.

図4は、電源ユニット30の空気の流れを説明するための図である。
図4(a)は、「通常走行モード」の場合を示す。
FIG. 4 is a diagram for explaining the air flow of the power supply unit 30.
FIG. 4A shows the case of the “normal travel mode”.

図4(b)は、熱エネルギーを蓄積する場合(充電時)を示す。
図4(c)は、「EV走行モード」の場合を示す。
FIG. 4B shows a case where thermal energy is accumulated (during charging).
FIG. 4C shows the case of the “EV traveling mode”.

図3および図4(a)を参照して、「通常走行モード」において、バッテリ30aでは、電動車両1の走行状況に応じた充放電電流の授受が行なわれる。この「通常走行モード」では、主としてエンジンの駆動力を用いた空調(暖房または冷房)が行なわれる。そこで、ファン42は、車室空間からの車室空気が電源ユニット30に向けて誘引されるように動作する。このとき、切換ダンパ44aは、車室空気吸気ダクト40aと電源ユニット30とを連通するように切換えられる。また、切換ダンパ44bは、電源ユニット30と車室空気排気ダクト40bとを連通するように切換えられる。   Referring to FIGS. 3 and 4A, in “normal traveling mode”, charging / discharging current according to the traveling state of electric vehicle 1 is performed in battery 30a. In this “normal travel mode”, air conditioning (heating or cooling) is performed mainly using the driving force of the engine. Therefore, the fan 42 operates so that the passenger compartment air from the passenger compartment space is attracted toward the power supply unit 30. At this time, the switching damper 44a is switched so that the passenger compartment air intake duct 40a and the power supply unit 30 communicate with each other. Further, the switching damper 44b is switched so as to communicate the power supply unit 30 and the passenger compartment air exhaust duct 40b.

すると、ファン42によって誘引された車室空気は、電源ユニット30内においてバッテリ30aとの間で熱交換を生じる。そのため、バッテリ30aは、車室空間の温度とほぼ等しい温度に維持される。さらに、バッテリ30aとの間で熱交換された後の車室空気は、車室空気排気ダクト40bを介してラゲッジルームに排出される。   Then, the passenger compartment air attracted by the fan 42 causes heat exchange with the battery 30 a in the power supply unit 30. Therefore, the battery 30a is maintained at a temperature substantially equal to the temperature of the passenger compartment space. Further, the passenger compartment air after heat exchange with the battery 30a is discharged to the luggage room via the passenger compartment air exhaust duct 40b.

図3および図4(b)を参照して、外部電源によるバッテリ30aの充電時において、バッテリ30aに含まれる熱容量要素THCに熱エネルギーが蓄積される。具体的には、乗員から与えられることが予測される空調要求(暖房要求または冷房要求)に応じて、熱容量要素THCを昇温または冷却する。なお、乗員から与えられることが予測される空調要求は、車両外部の周囲温度を測定する温度センサ(図示しない)からの測定値に基づいて判断することが可能である。代替的に、前回走行時に与えられた空調要求、もしくは現時点の日時(季節)に基づいて決定することも可能である。   With reference to FIG. 3 and FIG. 4B, thermal energy is accumulated in the heat capacity element THC included in the battery 30a when the battery 30a is charged by the external power source. Specifically, the heat capacity element THC is heated or cooled in accordance with an air conditioning request (heating request or cooling request) predicted to be given by the passenger. The air conditioning request predicted to be given by the occupant can be determined based on a measured value from a temperature sensor (not shown) that measures the ambient temperature outside the vehicle. Alternatively, it is also possible to make a determination based on the air conditioning request given during the previous run or the current date and time (season).

そして、熱容量要素THCに蓄えるべき熱エネルギーに応じて、バッテリ30aに与えられる充電電流、ならびにバッテリ30aに与えられる車外空調空気の温度および風量の少なくとも一方が調整される。すなわち、熱容量要素THCへの熱エネルギーの蓄積には、外部電源および車外空調空気が外部エネルギーとして用いられる。   Then, according to the thermal energy to be stored in the heat capacity element THC, at least one of the charging current given to the battery 30a and the temperature and air volume of the outside air-conditioned air given to the battery 30a is adjusted. That is, an external power source and outside air-conditioned air are used as external energy for accumulating heat energy in the heat capacity element THC.

なお、切換ダンパ44aは、車外空気吸気ダクト32aと電源ユニット30とを連通するように切換えられる。また、切換ダンパ44bは、電源ユニット30と車外空気排気ダクト32bとを連通するように切換えられる。   The switching damper 44a is switched so that the outside air intake duct 32a communicates with the power supply unit 30. The switching damper 44b is switched so as to communicate the power supply unit 30 and the outside air exhaust duct 32b.

(1)熱容量要素THCの昇温(暖房要求)
熱容量要素THCを昇温する場合には、バッテリ30aの充電電流に伴う抵抗性発熱が大きくなるように充電電流が制御される。バッテリ30aに電流が流れると、その内部抵抗成分INRによって、電流の二乗に比例した抵抗損失が発生する。この抵抗損失は、熱エネルギーに変換される。そこで、この抵抗損失によって、熱容量要素THCに所定の熱エネルギーが与えられるように、充電電流が制御される。上述したように、抵抗損失は、充電電流の二乗に比例して生じるので、充電電流は可能な限り大きな方がより効率的である。一方、バッテリ30aには、SOC(State Of Charge:充電状態)に応じた充電可能電流が定められる。この充電可能電流は、各時点において許容される充電電流の最大値を示すものである。そのため、バッテリ30aに対する充電電流は、各時点の充電可能電流と一致するようにその値を制御される。
(1) Temperature rise of heat capacity element THC (heating requirement)
When the temperature of the heat capacity element THC is increased, the charging current is controlled so that the resistive heat generation accompanying the charging current of the battery 30a is increased. When a current flows through the battery 30a, a resistance loss proportional to the square of the current is generated by the internal resistance component INR. This resistance loss is converted into thermal energy. Therefore, the charging current is controlled by the resistance loss so that predetermined heat energy is given to the heat capacity element THC. As described above, since the resistance loss occurs in proportion to the square of the charging current, it is more efficient that the charging current is as large as possible. On the other hand, a chargeable current corresponding to the SOC (State Of Charge) is determined for the battery 30a. This chargeable current indicates the maximum value of the charging current allowed at each time point. Therefore, the value of the charging current for the battery 30a is controlled so as to match the chargeable current at each time point.

さらに、車外空調空気の有する熱エネルギーを熱容量要素THCに与えるようにしてもよい。車外空調空気が所定の熱エネルギーを有する、すなわち所定の温度以上の車外空調空気が供給可能な場合には、バッテリ30aと車外空調空気との接触量を増大させるために、送風ファン12(図3)による送風量を比較的大きく設定される。   Furthermore, you may make it give the thermal energy which external vehicle conditioned air has to the heat capacity element THC. When the outside air-conditioned air has predetermined heat energy, that is, when outside air-conditioned air having a predetermined temperature or higher can be supplied, the blower fan 12 (FIG. 3) is used to increase the contact amount between the battery 30a and the outside air-conditioned air. ) Is set relatively large.

なお、供給される車外空調空気の温度が所定値以下の場合には、熱容量要素THCから放熱される熱エネルギー(熱エネルギー損失)を抑制するために、送風ファン12(図3)による送風を停止してもよい。   When the temperature of the outside air-conditioned air supplied is equal to or lower than a predetermined value, the blowing by the blower fan 12 (FIG. 3) is stopped in order to suppress the heat energy (heat energy loss) radiated from the heat capacity element THC. May be.

(2)熱容量要素THCの冷却(冷房要求)
熱容量要素THCを冷却する場合には、車外空調空気の有する熱エネルギーを熱容量要素THCに与えるように、送風ファン12(図3)による送風量が制御される。上述したように、本実施形態においては、車両外部の建物70(図1)内からの車外空調空気が供給される。そのため、比較的温度の低い外部熱媒体を確保可能である。そして、バッテリ30aと車外空調空気との接触量を増大させて、バッテリ30aから吸熱を促進するために、送風ファン12(図3)による送風量が比較的大きく設定される。
(2) Cooling of the heat capacity element THC (cooling request)
When the heat capacity element THC is cooled, the amount of air blown by the blower fan 12 (FIG. 3) is controlled so that the heat energy of the outside air-conditioned air is given to the heat capacity element THC. As described above, in the present embodiment, conditioned air outside the vehicle is supplied from inside the building 70 (FIG. 1) outside the vehicle. Therefore, it is possible to secure an external heat medium having a relatively low temperature. And in order to increase the contact amount of battery 30a and conditioned air outside a vehicle, and to accelerate | stimulate heat absorption from battery 30a, the ventilation volume by the ventilation fan 12 (FIG. 3) is set comparatively large.

一方、バッテリ30aの充電電流に伴う抵抗性発熱は、熱容量要素THCの冷却を阻害する。そのため、熱容量要素THCを冷却する場合には、バッテリ30aの充電電流が可能な限り小さくなるように制御される。具体的には、予め設定される電動車両1の走行開始予定時刻に基づいて、許容されるバッテリ30aの最大充電時間が決定される。そして、当該決定された最大充電時間と、バッテリ30aに必要な充電量との関係から、最低限の充電電流の値が決定される。   On the other hand, the resistive heat generation accompanying the charging current of the battery 30a inhibits the cooling of the heat capacity element THC. Therefore, when cooling the heat capacity element THC, the charging current of the battery 30a is controlled to be as small as possible. Specifically, the allowable maximum charging time of battery 30a is determined based on a preset scheduled start time of electric vehicle 1 set in advance. The minimum charging current value is determined from the relationship between the determined maximum charging time and the amount of charge required for the battery 30a.

図3および図4(c)を参照して、バッテリ30aの充電が完了し、電動車両1が「EV走行モード」で走行する場合において、熱容量要素THCに蓄えられた熱エネルギーが車室空間の空調に用いられる。   Referring to FIGS. 3 and 4C, when charging of battery 30a is completed and electric vehicle 1 travels in the “EV travel mode”, the thermal energy stored in heat capacity element THC is stored in the passenger compartment space. Used for air conditioning.

具体的には、ファン42は、電源ユニット30から車室空間に向けて空気を送出するように動作する。すなわち、ファン42は、車室空気吸気ダクト40aにおいて車室空気の取込み方向とは逆方向に空気の流れを形成する。切換ダンパ44aは、車室空気吸気ダクト40aと電源ユニット30とを連通するように切換えられる。また、切換ダンパ44bは、電源ユニット30と車室空気排気ダクト40bとを連通するように切換えられる。   Specifically, the fan 42 operates to send air from the power supply unit 30 toward the passenger compartment space. That is, the fan 42 forms an air flow in the direction opposite to the direction in which the passenger compartment air is taken in the passenger compartment air intake duct 40a. The switching damper 44a is switched so as to communicate between the passenger compartment air intake duct 40a and the power supply unit 30. Further, the switching damper 44b is switched so as to communicate the power supply unit 30 and the passenger compartment air exhaust duct 40b.

このような動作の結果、車室空気排気ダクト40bを介して電源ユニット30内に誘引される空気がバッテリ30aとの間で熱交換を生じる。すなわち、熱容量要素THCに蓄えられた熱エネルギーが、電源ユニット30内に誘引された空気へ移動する。そして、熱容量要素THCから熱エネルギーを与えられた空気がファン42により車室空間に向けて吹き出される。このように車室空間に向けて吹き出される空気は、「EV走行モード」における車室空調空気50(図3)となる。   As a result of such an operation, the air drawn into the power supply unit 30 through the passenger compartment air exhaust duct 40b causes heat exchange with the battery 30a. That is, the thermal energy stored in the heat capacity element THC moves to the air attracted in the power supply unit 30. Then, air given thermal energy from the heat capacity element THC is blown out by the fan 42 toward the passenger compartment space. Thus, the air blown toward the passenger compartment space becomes the passenger compartment conditioned air 50 (FIG. 3) in the “EV traveling mode”.

図5は、この発明の実施の形態1に従う車両充電システム100の制御構造を示す概略構成図である。   FIG. 5 is a schematic configuration diagram showing a control structure of vehicle charging system 100 according to the first embodiment of the present invention.

図5を参照して、車両充電装置2のコネクタ部4は、コネクタ制御部14と、車外空調空気温度センサ16とをさらに含む。電動車両1は、PCU(Power Control Unit)46と、車両制御部34と、操作表示部48とをさらに含む。   Referring to FIG. 5, connector unit 4 of vehicle charging device 2 further includes a connector control unit 14 and an outside air-conditioned air temperature sensor 16. Electric vehicle 1 further includes a PCU (Power Control Unit) 46, a vehicle control unit 34, and an operation display unit 48.

電力供給線8は、コネクタ部4およびコネクタ差込部5を介して、PCU46と電気的に接続される。PCU46は、電力変換部であり、電力供給線8を介して供給される外部電源(交流電源)からバッテリ30aを充電するための充電電流(直流電流)を生成し、バッテリ30aに供給する。そして、PCU46は、車両制御部34からの電流設定値に応じて、バッテリ30aに供給する充電電流の大きさを制御する。   The power supply line 8 is electrically connected to the PCU 46 via the connector portion 4 and the connector insertion portion 5. The PCU 46 is a power conversion unit, generates a charging current (DC current) for charging the battery 30a from an external power supply (AC power supply) supplied via the power supply line 8, and supplies the charging current (DC current) to the battery 30a. Then, the PCU 46 controls the magnitude of the charging current supplied to the battery 30a in accordance with the current setting value from the vehicle control unit 34.

操作表示部48は、運転席前方のインパネ部またはカーナビゲーションシステムなどに組込まれ、乗員からの操作指令を受付可能に構成されるとともに、各機器の状態を表示可能に構成される。   The operation display unit 48 is incorporated in an instrument panel unit in front of the driver's seat, a car navigation system, or the like, and is configured to be able to receive an operation command from an occupant and to be able to display the status of each device.

コネクタ制御部14と車両制御部34とは、コネクタ部4およびコネクタ差込部5を介して、双方向通信を可能に構成される。そして、コネクタ制御部14および車両制御部34は、互いに連係して、図4(b)に示すような熱容量要素THCへの熱エネルギーの蓄積を制御する。   The connector control unit 14 and the vehicle control unit 34 are configured to be capable of bidirectional communication via the connector unit 4 and the connector insertion unit 5. The connector control unit 14 and the vehicle control unit 34 control the accumulation of heat energy in the heat capacity element THC as shown in FIG.

具体的には、車両制御部34は、スケジューラ34aを含んで構成される。スケジューラ34aは、操作表示部48を介して乗員などにより設定される走行開始予定時刻を受付ける。そして、スケジューラ34aは、乗員から与えられることが予測される空調要求を判断するとともに、バッテリ30aのSOCを取得して、充電開始時刻を決定する。さらに、スケジューラ34aは、充電時におけるバッテリ30aに対する充電電流の大きさも決定する。一方、コネクタ制御部14は、車外空調空気温度センサ16から車外空調空気供給導管6aに与えられる車外空調空気の温度を取得し、車両制御部34へ送信する。そして、車両制御部34は、スケジューラ34aが決定した充電開始時刻が到来すると、切換ダンパ44aおよび44bに切換指令を与えるとともに、送風ファン12に対する送風量指令をコネクタ制御部14へ送信する。この送風量指令に応答して、コネクタ制御部14は、送風ファン12に対応の回転数指令を与える。   Specifically, the vehicle control unit 34 includes a scheduler 34a. The scheduler 34a receives a scheduled start time of travel set by an occupant or the like via the operation display unit 48. Then, the scheduler 34a determines an air conditioning request that is predicted to be given from the occupant, acquires the SOC of the battery 30a, and determines the charging start time. Furthermore, the scheduler 34a also determines the magnitude of the charging current for the battery 30a during charging. On the other hand, the connector control unit 14 acquires the temperature of the outside conditioned air supplied from the outside conditioned air temperature sensor 16 to the outside conditioned air supply conduit 6 a and transmits the temperature to the vehicle control unit 34. Then, when the charging start time determined by the scheduler 34 a arrives, the vehicle control unit 34 gives a switching command to the switching dampers 44 a and 44 b and transmits a blowing amount command for the blowing fan 12 to the connector control unit 14. In response to the blower amount command, the connector control unit 14 gives a corresponding rotation speed command to the blower fan 12.

このような手順によって、バッテリ30aの充電時において、熱容量要素THCに熱エネルギーが蓄積される。   Through such a procedure, thermal energy is accumulated in the heat capacity element THC when the battery 30a is charged.

バッテリ30aの充電が完了し、コネクタ部4が電動車両1と切離された後、乗員などから空調要求を受けた車両制御部34は、熱容量要素THCに蓄積された熱エネルギーを用いて車室空間の空調を行なう。具体的には、車両制御部34は、切換ダンパ44aおよび44bに切換指令を与えるとともに、空調要求に応じた回転数指令をファン42に与える。   After the charging of the battery 30a is completed and the connector unit 4 is disconnected from the electric vehicle 1, the vehicle control unit 34 that receives an air conditioning request from an occupant or the like uses the thermal energy accumulated in the heat capacity element THC. Air-condition the space. Specifically, the vehicle control unit 34 gives a switching command to the switching dampers 44a and 44b, and gives a rotational speed command corresponding to the air conditioning request to the fan 42.

図6は、暖房要求に備えて熱容量要素THCを昇温する場合の時間的変化の一例を示す図である。   FIG. 6 is a diagram illustrating an example of a temporal change when the heat capacity element THC is heated in preparation for a heating request.

図5および図6を参照して、車両制御部34のスケジューラ34aは、乗員などから与えられる走行開始予定時刻に基づいて、充電開始時刻および充電完了時刻を決定する。この例では、充電完了時刻は、走行開始予定時刻と一致するように決定される。   Referring to FIGS. 5 and 6, scheduler 34 a of vehicle control unit 34 determines a charging start time and a charging completion time based on a scheduled traveling start time given by an occupant or the like. In this example, the charging completion time is determined to coincide with the scheduled travel start time.

充電開始時刻が到来すると、車両制御部34は、PCU46に電流指令を与えて、バッテリ30aへの充電電流の供給を開始する。この充電電流の供給に伴って、バッテリ30aのSOCは増加を開始する。   When the charging start time arrives, the vehicle control unit 34 gives a current command to the PCU 46 and starts supplying the charging current to the battery 30a. With the supply of the charging current, the SOC of the battery 30a starts to increase.

このバッテリ30aの充電動作と行して、充電電流に伴う抵抗性発熱によって熱容量要素THCに熱エネルギーが与えられる。また、車外空調空気の有する熱エネルギーが熱容量要素THCに移動する。この熱エネルギーの供給によりバッテリ30aの電池温度Tbは上昇する。 And charging operation and parallel rows in the battery 30a, the thermal energy is given to the heat capacity element THC by resistive heating due to the charging current. Further, the thermal energy of the outside air-conditioned air moves to the heat capacity element THC. The battery temperature Tb of the battery 30a rises due to the supply of this thermal energy.

そして、充電完了時刻には、バッテリ30aのSOCは所定の値まで到達するとともに、熱容量要素THCには所定の熱エネルギーが蓄積され、バッテリ30aの電池温度Tbも所定の値まで達する。   At the charging completion time, the SOC of the battery 30a reaches a predetermined value, predetermined heat energy is accumulated in the heat capacity element THC, and the battery temperature Tb of the battery 30a also reaches a predetermined value.

その後、コネクタ部4が切離されて、電動車両1が「EV走行モード」による走行を開始すると、バッテリ30aに蓄えられていた電力は、主として電動機からの駆動力発生に消費される。また、バッテリ30aの熱容量要素THCに蓄えられていた熱エネルギーは、車室内の空調に使用される。短距離の移動であれば、バッテリ30aのSOCおよび電池温度Tbが「EV走行モード」において許容される下限値に達するまでに、目的地に到着することも多い。すなわち、送り迎えや買い物などの比較的短距離の使用においては、乗員に対する快適性を確保しつつも、エンジンを作動させる必要がなくなる。よって、環境に配慮した電動車両を実現できる。   After that, when the connector unit 4 is disconnected and the electric vehicle 1 starts traveling in the “EV traveling mode”, the electric power stored in the battery 30a is mainly consumed for generating driving force from the electric motor. Further, the thermal energy stored in the heat capacity element THC of the battery 30a is used for air conditioning in the passenger compartment. If the movement is a short distance, the battery 30a often reaches the destination before the SOC and the battery temperature Tb reach the lower limit values allowed in the “EV traveling mode”. In other words, in a relatively short distance use such as pick-up and shopping, it is not necessary to operate the engine while ensuring comfort for the passenger. Therefore, an electric vehicle in consideration of the environment can be realized.

なお、上述のこの発明の実施の形態1では、バッテリ30aの充電電流に伴う抵抗性発熱により熱エネルギーを蓄積する構成と、車外空調空気により熱エネルギーを蓄積する構成とを併用する態様について例示したが、いずれか一方の構成のみでも本発明の作用を奏することができる。すなわち、暖房のみが要求される寒冷地などでは、熱容量要素THCを昇温できれば十分であり、バッテリ30aの充電電流に伴う抵抗性発熱による熱エネルギーを蓄積する構成のみを備えるようにしてもよい。   In the first embodiment of the present invention described above, the configuration in which the thermal energy is accumulated by the resistive heat generation accompanying the charging current of the battery 30a and the configuration in which the thermal energy is accumulated by the outside air-conditioned air are exemplified. However, the operation of the present invention can be achieved with only one of the configurations. In other words, in a cold district where only heating is required, it is sufficient if the temperature of the heat capacity element THC can be raised, and only a configuration for accumulating thermal energy due to resistive heat generation associated with the charging current of the battery 30a may be provided.

この発明の実施の形態1では、車外空気吸気ダクト32aおよび車外空気排気ダクト32bが「熱媒体経路」に対応し、車室空気吸気ダクト40aが「車室空気経路」に対応し、ファン42が「逆流機構」に対応する。そして、車両制御部34が「充電電流制御手段」を実現する。   In the first embodiment of the present invention, the outside air intake duct 32a and the outside air exhaust duct 32b correspond to the “heat medium path”, the inside air intake duct 40a corresponds to the “inside air path”, and the fan 42 Corresponds to the “backflow mechanism”. And the vehicle control part 34 implement | achieves a "charging current control means."

この発明の実施の形態1によれば、電動車両1は、搭載するバッテリ30aを外部電源により充電するに際して、外部電源および車外空調空気を受けて熱エネルギーを蓄積する。そして、充電完了後に乗員などから空調要求を受けると、バッテリ30aに蓄えられる電力ではなく、バッテリ30aの熱容量要素に蓄積した熱エネルギーを用いて車室空間の空調を行なう。これにより、車室空間の空調を行なうために、バッテリ30aからの放電電力を使用せずに済む。よって、バッテリ30aからの放電電力の多くを電動機のために確保できるので、乗員に対する快適性を確保しつつ、「EV走行モード」における走行性能を維持できる。   According to Embodiment 1 of the present invention, electric vehicle 1 accumulates thermal energy by receiving external power supply and conditioned air outside the vehicle when battery 30a to be mounted is charged by the external power supply. When an air conditioning request is received from a passenger or the like after completion of charging, the passenger compartment space is air-conditioned not using the electric power stored in the battery 30a but using the thermal energy stored in the heat capacity element of the battery 30a. Thereby, in order to air-condition the passenger compartment space, it is not necessary to use the discharge power from the battery 30a. Therefore, most of the discharged power from the battery 30a can be secured for the electric motor, so that the traveling performance in the “EV traveling mode” can be maintained while ensuring the comfort for the passenger.

さらに、「EV走行モード」における走行性能を維持できる結果、エンジンを作動させる必要がなく、エンジン排ガス量の削減や低騒音化などを実現できる。   Further, as a result of maintaining the traveling performance in the “EV traveling mode”, it is not necessary to operate the engine, and it is possible to realize a reduction in engine exhaust gas amount and a reduction in noise.

また、この発明の実施の形態1によれば、従来のハイブリッド自動車にも搭載されるバッテリを熱容量要素として用いるので、熱エネルギーを蓄積するために特別な熱容量要素を搭載する必要はない。よって、比較的安価に本発明を実施できる。   In addition, according to the first embodiment of the present invention, since a battery mounted in a conventional hybrid vehicle is used as a heat capacity element, it is not necessary to mount a special heat capacity element in order to store heat energy. Therefore, the present invention can be implemented relatively inexpensively.

[実施の形態2]
上述のこの発明の実施の形態1では、バッテリの一部が熱容量要素として構成される態様について例示したが、これ以外の熱容量要素を構成してもよい。この発明の実施の形態2においては、PCUなどの冷却経路を熱容量要素として用いる構成について例示する。
[Embodiment 2]
In the above-described first embodiment of the present invention, the aspect in which a part of the battery is configured as the heat capacity element is illustrated, but other heat capacity elements may be configured. In the second embodiment of the present invention, a configuration using a cooling path such as a PCU as a heat capacity element is illustrated.

本実施形態における車両充電システムの全体構成は、図1に示すこの発明の実施の形態1に従う車両充電システム100と同様であるので、詳細な説明は繰返さない。なお、本実施形態においては、必ずしも車両外部から車外空調空気を供給される必要はない。すなわち、本実施形態では、熱容量要素に熱エネルギーを蓄積するための外部エネルギーとして、外部電源のみを使用する。   Since the overall configuration of the vehicle charging system in the present embodiment is the same as that of vehicle charging system 100 according to the first embodiment of the present invention shown in FIG. 1, detailed description will not be repeated. In the present embodiment, it is not always necessary to supply the outside air-conditioned air from the outside of the vehicle. That is, in the present embodiment, only an external power source is used as external energy for storing thermal energy in the heat capacity element.

図7は、この発明の実施の形態2に従う電動車両1#においてバッテリ30aの充電に係る要部を示す概略構成図である。   FIG. 7 is a schematic configuration diagram showing a main part related to charging of battery 30a in electrically powered vehicle 1 # according to the second embodiment of the present invention.

図7を参照して、この発明の実施の形態2に従う電動車両1#は、この発明の実施の形態1に従う電動車両1と同様に、ハイブリッド自動車である。そして、電動車両1#は、コネクタ差込部5と、正側受入線9aおよび負側受入線9bと、電動機MG1およびMG2と、エンジン60と、動力分割機構64と、動力伝達機構62と、PCU46と、バッテリ30aと、コンプレッサ(COMP)108と、制御部34#とを含む。   Referring to FIG. 7, electrically powered vehicle 1 # according to the second embodiment of the present invention is a hybrid vehicle, similarly to electrically powered vehicle 1 according to the first embodiment of the present invention. Electric vehicle 1 # includes connector insertion portion 5, positive side receiving line 9a and negative side receiving line 9b, electric motors MG1 and MG2, engine 60, power split mechanism 64, power transmission mechanism 62, PCU 46, battery 30a, compressor (COMP) 108, and control unit 34 # are included.

コネクタ差込部5は、充電時にコネクタ部4と連結され、電力供給線8を介して外部電源を受入れる。なお、外部電源は2つの相電圧を含む、単相交流もしくは2相交流であり、電力供給線8は、正側供給線8aおよび負側供給線8bとからなる。   The connector insertion portion 5 is connected to the connector portion 4 during charging, and receives an external power supply via the power supply line 8. The external power source is a single-phase AC or a two-phase AC including two phase voltages, and the power supply line 8 includes a positive supply line 8a and a negative supply line 8b.

正側受入線9aおよび負側受入線9bの一端は、それぞれ電動機MG1およびMG2の中性点と電気的に接続される。そして、正側受入線9aおよび負側受入線9bの他端は、コネクタ差込部5およびコネクタ部4を介して、それぞれ正側供給線8aおよび負側供給線8bと電気的に接続される。   One end of each of positive side receiving line 9a and negative side receiving line 9b is electrically connected to a neutral point of electric motors MG1 and MG2. The other ends of the positive-side receiving line 9a and the negative-side receiving line 9b are electrically connected to the positive-side supply line 8a and the negative-side supply line 8b through the connector insertion portion 5 and the connector portion 4, respectively. .

電動機MG1およびMG2は、一例として、永久磁石が埋設されたロータを備える三相交流回転電機である。さらに、本実施形態では、電動機MG1およびMG2は、三相分の相コイルを含むステータを備え、各相コイルの一端は互いに電気的に接続される。すなわち、電動機MG1およびMG2は、Y結線(星型結線)された三相分の相コイルを含み、各相コイルが互いに電気的に接続されたノードがそれぞれ中性点N1およびN2に相当する。   The electric motors MG1 and MG2 are, for example, three-phase AC rotating electric machines including a rotor in which permanent magnets are embedded. Furthermore, in the present embodiment, electric motors MG1 and MG2 include a stator including phase coils for three phases, and one end of each phase coil is electrically connected to each other. That is, electric motors MG1 and MG2 include phase coils for three phases that are Y-connected (star-connected), and nodes at which the phase coils are electrically connected to each other correspond to neutral points N1 and N2, respectively.

電動機MG1およびMG2の出力軸は、動力分割機構64を介して、エンジン60と機械的に連結される。そして、「通常走行モード」においては、走行状況に応じてエンジン60が間欠的に作動し、その駆動力は、動力伝達機構62を介して車輪(図示しない)に伝達される。また、その駆動力の一部は、電動機MG1およびMG2のいずれかに与えられて、発電に用いられる。また、「EV走行モード」においては、電動機MG1およびMG2の少なくとも一方がバッテリ30aからの放電電力を受けて駆動力を発生し、その発生した駆動力は、動力伝達機構62を介して車輪(図示しない)に伝達される。   Output shafts of electric motors MG1 and MG2 are mechanically connected to engine 60 through power split mechanism 64. In the “normal traveling mode”, the engine 60 is intermittently operated according to the traveling state, and the driving force is transmitted to the wheels (not shown) via the power transmission mechanism 62. A part of the driving force is given to one of the electric motors MG1 and MG2 and used for power generation. In the “EV traveling mode”, at least one of the electric motors MG1 and MG2 receives a discharge power from the battery 30a to generate a driving force, and the generated driving force is transmitted to the wheels (illustrated) via the power transmission mechanism 62. Not transmitted).

バッテリ30aは、上述のこの発明の実施の形態1と同様であるので、詳細な説明は繰返さない。   Since battery 30a is similar to that of the first embodiment of the present invention described above, detailed description will not be repeated.

PCU46は、バッテリ30aからの放電電力を受けて、電動機MG1およびMG2を駆動するための駆動電力を生成可能に構成される。また、PCU46は、電動車両1#の制動時などにおいて、発電機として機能する電動機MG1およびMG2が発生する回生電力を、バッテリ30aに変換可能に構成される。   PCU 46 is configured to receive drive power from battery 30a and generate drive power for driving motors MG1 and MG2. PCU 46 is configured to be able to convert regenerative power generated by electric motors MG1 and MG2 functioning as a generator into a battery 30a during braking of electric vehicle 1 #.

さらに、PCU46は、車両外部から供給される外部電源(交流電源)からバッテリ30aを充電するための充電電流(直流電流)を生成して、バッテリ30aに供給可能に構成される。すなわち、PCU46は、それぞれ電動機MG1およびMG2の中性点N1およびN2を介して、外部電源を受入れるように構成され、当該受入れた外部電源によりバッテリ30aを充電する。   Further, the PCU 46 is configured to generate a charging current (DC current) for charging the battery 30a from an external power supply (AC power supply) supplied from the outside of the vehicle and supply the battery 30a to the battery 30a. That is, PCU 46 is configured to receive an external power supply via neutral points N1 and N2 of electric motors MG1 and MG2, respectively, and charges battery 30a with the received external power supply.

より詳細には、PCU46は、インバータ装置INV1およびINV2と、平滑コンデンサCと、DC/DCコンバータCONVと、正母線MPLと、負母線MNLとを含む。   More specifically, PCU 46 includes inverter devices INV1 and INV2, a smoothing capacitor C, a DC / DC converter CONV, a positive bus MPL, and a negative bus MNL.

インバータ装置INV1、インバータ装置INV2およびDC/DCコンバータCONVは、正母線MPLおよび負母線MNLを介して、互いに電気的に接続される。さらに、正母線MPLと負母線MNLとの線間には、平滑コンデンサCが接続される。平滑コンデンサCは、正母線MPLと負母線MNLとの間の線間電圧を安定化する。   Inverter device INV1, inverter device INV2, and DC / DC converter CONV are electrically connected to each other via positive bus MPL and negative bus MNL. Further, a smoothing capacitor C is connected between the positive bus MPL and the negative bus MNL. Smoothing capacitor C stabilizes the line voltage between positive bus MPL and negative bus MNL.

インバータ装置INV1およびINV2は、それぞれ電動機MG1およびMG2と電気的に接続される。また、DC/DCコンバータCONVは、バッテリ30aと電気的に接続される。インバータ装置INV1およびINV2、ならびにDC/DCコンバータCONVは、IGBT(Insulated Gated Bipolar Transistor)などのスイッチング素子を含んで構成される。   Inverter devices INV1 and INV2 are electrically connected to electric motors MG1 and MG2, respectively. The DC / DC converter CONV is electrically connected to the battery 30a. The inverter devices INV1 and INV2 and the DC / DC converter CONV are configured to include switching elements such as IGBTs (Insulated Gated Bipolar Transistors).

特に、インバータ装置INV1およびINV2は、三相分のスイッチング素子を含むブリッジ回路で構成される。すなわち、インバータ装置INV1およびINV2の各々は、上アーム側(正側)に3個のスイッチング素子、および下アーム側(負側)に3個のスイッチング素子を含む。そして、電動機を駆動する場合には、インバータ装置INV1およびINV2の各々は、上アーム側のスイッチング素子のうち1個、および下アーム側のスイッチング素子のうち1個をそれぞれ時間的に切換えてオン状態に駆動することで、三相交流電流を生成する。   In particular, inverter devices INV1 and INV2 are configured by a bridge circuit including switching elements for three phases. That is, each of inverter devices INV1 and INV2 includes three switching elements on the upper arm side (positive side) and three switching elements on the lower arm side (negative side). When driving the electric motor, each of the inverter devices INV1 and INV2 is switched on in time by switching one of the switching elements on the upper arm side and one of the switching elements on the lower arm side. To generate a three-phase alternating current.

一方、バッテリ30aを充電する場合には、一方、上アーム側および下アーム側の各々において、3個のスイッチング素子を一括してオン/オフ動作させることで、直流電流(充電電流)を生成する。   On the other hand, when charging the battery 30a, on the other hand, on each of the upper arm side and the lower arm side, the three switching elements are collectively turned on / off to generate a direct current (charging current). .

このような動作モードにおいては、上アーム側の3個のスイッチング素子は、互いに同じスイッチング状態(すべてオン、または、すべてオフ)とみなすことができ、また、下アーム側の3個のスイッチング素子も互いに同じスイッチング状態とみなすことができる。そのため、それぞれの相電圧は互いに等しくなるので、中性点を基準とする零電圧ベクトルを定義することができる。   In such an operation mode, the three switching elements on the upper arm side can be regarded as the same switching state (all on or all off), and the three switching elements on the lower arm side are also They can be regarded as the same switching state. Therefore, since the phase voltages are equal to each other, a zero voltage vector based on the neutral point can be defined.

図8は、零電圧ベクトルを生成する場合における、インバータ装置INV1およびINV2、ならびに電動機MG1およびMG2の零相等価回路である。   FIG. 8 is a zero-phase equivalent circuit of inverter devices INV1 and INV2 and electric motors MG1 and MG2 when generating a zero voltage vector.

図8を参照して、インバータ装置INV1およびINV2が上述のような零電圧ベクトルを生じるような動作モードで駆動される場合には、インバータ装置INV1の上アーム側の3個のスイッチング素子TRは、上アームARM1pとしてまとめて示される。また、インバータ装置INV1の下アーム側の3個のスイッチング素子TRは、下アームARM1nとしてまとめて示される。同様に、インバータ装置INV2の上アーム側および下アーム側の3個のスイッチング素子TRは、それぞれ上アームARM2pおよび下アームARM2nとしてまとめて示される。   Referring to FIG. 8, when inverter devices INV1 and INV2 are driven in an operation mode that generates a zero voltage vector as described above, three switching elements TR on the upper arm side of inverter device INV1 are: It is shown collectively as an upper arm ARM1p. Further, the three switching elements TR on the lower arm side of the inverter device INV1 are collectively shown as a lower arm ARM1n. Similarly, the three switching elements TR on the upper arm side and the lower arm side of the inverter device INV2 are collectively shown as an upper arm ARM2p and a lower arm ARM2n, respectively.

図8に示される零相等価回路は、正母線MPLおよび負母線MNLを介して供給される直流電力を単相交流電力に変換し、正側受入線9aおよび負側受入線9bを介して出力することが可能な単相インバータ装置とみることができる。この単相インバータ装置は、順変換(コンバータ)動作も可能であり、電動機MG1およびMG2の中性点N1およびN2を介して受入れる単相交流電力を整流して直流電力を生成できる。さらに、この単相インバータ装置は、正母線MPLおよび負母線MNLを介して、生成した直流電力をバッテリ30aへ供給可能である。   The zero-phase equivalent circuit shown in FIG. 8 converts the DC power supplied through the positive bus MPL and the negative bus MNL into single-phase AC power, and outputs it through the positive receiving line 9a and the negative receiving line 9b. It can be regarded as a single-phase inverter device that can be used. This single-phase inverter device can also perform forward conversion (converter) operation, and can rectify single-phase AC power received via neutral points N1 and N2 of electric motors MG1 and MG2 to generate DC power. Furthermore, this single-phase inverter device can supply the generated DC power to battery 30a via positive bus MPL and negative bus MNL.

再度、図7を参照して、コンプレッサ108は、後述する冷凍サイクル機構を作動させるための動力源であり、正側受入線9aおよび負側受入線9bを介して与えられる外部電源により作動する。   Referring to FIG. 7 again, compressor 108 is a power source for operating a refrigeration cycle mechanism, which will be described later, and is operated by an external power supply provided through positive side receiving line 9a and negative side receiving line 9b.

制御部34#は、バッテリ30aの充電時にPCU46に制御指令(スイッチング指令PWC,PWM1,PWM2)を与える。さらに、制御部34#は、乗員から与えられることが予測される空調要求に応じて、充電時に、PCU46に対する制御指令を調整し、もしくはコンプレッサ108を作動させる。さらに、制御部34#は、充電完了後の電動車両1の走行時に、乗員からの空調要求に応じて、車室空間が空調されるように各機器に指令を与える。   Control unit 34 # gives a control command (switching commands PWC, PWM1, PWM2) to PCU 46 when battery 30a is charged. Furthermore, control unit 34 # adjusts a control command for PCU 46 or activates compressor 108 during charging in accordance with an air conditioning request that is predicted to be given by the occupant. Further, control unit 34 # gives a command to each device so that the vehicle interior space is air-conditioned in response to an air conditioning request from the occupant during traveling of electric powered vehicle 1 after completion of charging.

図9は、この発明の実施の形態2に従う電動車両1#における車室内空調に係る模式図である。   FIG. 9 is a schematic diagram relating to vehicle interior air conditioning in electrically powered vehicle 1 # according to the second embodiment of the present invention.

図9を参照して、電動車両1#には、吹出口86が車室空間の前方側に配置される。そして、吹出口86は、吹出口86と連通される空調空気生成ダクト122内で生成される空調空気120を車室空間に吹き出す。空調空気生成ダクト122内には、外気または内気を送出するための送風ファン90と、暖房用の空調空気を生成するための暖房熱交換部88と、冷房用の空調空気を生成するための冷房熱交換部112とが配置される。   Referring to FIG. 9, the electric vehicle 1 # has an air outlet 86 disposed on the front side of the passenger compartment space. And the blower outlet 86 blows off the conditioned air 120 produced | generated in the conditioned air production | generation duct 122 connected with the blower outlet 86 to vehicle interior space. In the conditioned air generation duct 122, a blower fan 90 for sending outside air or inside air, a heating heat exchanger 88 for generating conditioned air for heating, and cooling for generating conditioned air for cooling. A heat exchanging unit 112 is arranged.

暖房熱交換部88は、PCU46ならびに電動機MG1およびMG2を含む第1冷媒循環経路96に流れる第1冷媒が有する熱エネルギー(温熱)と、送風ファン90により送出される空気との間で熱交換を行なう。すなわち、暖房熱交換部88には、第1冷媒循環経路96から分岐された第1冷媒導入路94aを介して第1冷媒が導入される。なお、第1冷媒としては、一例としてLLC(Long Life Coolant)などの液状物質が用いられる。   Heating heat exchanging unit 88 exchanges heat between the heat energy (hot heat) of the first refrigerant flowing in first refrigerant circulation path 96 including PCU 46 and electric motors MG1 and MG2 and the air sent by blower fan 90. Do. That is, the first refrigerant is introduced into the heating heat exchanger 88 via the first refrigerant introduction path 94a branched from the first refrigerant circulation path 96. In addition, as a 1st refrigerant | coolant, liquid substances, such as LLC (Long Life Coolant), are used as an example.

そして、暖房熱交換部88において熱交換された後の第1冷媒は、第1冷媒戻り路94bを介して、第1冷媒循環経路96に戻される。さらに、第1冷媒循環経路96と第1冷媒導入路94aおよび第1冷媒戻り路94bとの分岐点には、それぞれ切換弁92aおよび92bが設けられる。後述するように、第1冷媒循環経路96を流れる第1冷媒を暖房熱交換部88へ導く必要があるか否かに応じて、切換弁92aおよび92bは切換えられる。   And the 1st refrigerant | coolant after heat exchange in the heating heat exchange part 88 is returned to the 1st refrigerant | coolant circulation path 96 via the 1st refrigerant | coolant return path 94b. Further, switching valves 92a and 92b are provided at branch points of the first refrigerant circulation path 96, the first refrigerant introduction path 94a, and the first refrigerant return path 94b, respectively. As will be described later, the switching valves 92a and 92b are switched depending on whether or not the first refrigerant flowing through the first refrigerant circulation path 96 needs to be guided to the heating heat exchange unit 88.

第1冷媒循環経路96には、ラジエタ部80、循環ポンプ124、および蓄熱タンク84がさらに含まれる。ラジエタ部80は、電動車両1#の前方に配置され、第1冷媒が有する熱エネルギーを車両外部に放出して、第1冷媒を冷却する。すなわち、ラジエタ部80は、第1冷媒を介して、PCU46ならびに電動機MG1およびMG2を冷却する。さらに、ラジエタ部80に近接して、ラジエタ冷却ファン82が設けられる。ラジエタ冷却ファン82は、ラジエタ部80と車両外部の空気との接触量を増大させ、第1冷媒の冷却能力を向上させる。   The first refrigerant circulation path 96 further includes a radiator unit 80, a circulation pump 124, and a heat storage tank 84. Radiator unit 80 is disposed in front of electric vehicle 1 #, and releases the thermal energy of the first refrigerant to the outside of the vehicle to cool the first refrigerant. That is, radiator unit 80 cools PCU 46 and electric motors MG1 and MG2 through the first refrigerant. Further, a radiator cooling fan 82 is provided in the vicinity of the radiator unit 80. The radiator cooling fan 82 increases the contact amount between the radiator 80 and the air outside the vehicle, and improves the cooling capacity of the first refrigerant.

なお、第1冷媒循環経路96は、PCU46に含まれるスイッチング素子や電動機MG1およびMG2のステータコイルなどに近接して形成され、各部からの放熱を第1冷媒に吸収するように構成される。   The first refrigerant circulation path 96 is formed in the vicinity of the switching element included in the PCU 46, the stator coils of the electric motors MG1 and MG2, and the like, and is configured to absorb heat released from each part into the first refrigerant.

循環ポンプ124は、第1冷媒を第1冷媒循環経路96で循環させるために、所定の吐出圧で第1冷媒を送出する。   The circulation pump 124 sends out the first refrigerant at a predetermined discharge pressure in order to circulate the first refrigerant in the first refrigerant circulation path 96.

蓄熱タンク84は、第1冷媒循環経路96に介挿され、所定量の第1冷媒を貯蔵可能に構成される。蓄熱タンク84は、その周囲が断熱された保温構造を有し、第1冷媒が有する熱エネルギーを蓄えることができる。   The heat storage tank 84 is inserted in the first refrigerant circulation path 96 and configured to store a predetermined amount of the first refrigerant. The heat storage tank 84 has a heat insulating structure in which the periphery thereof is insulated, and can store the thermal energy of the first refrigerant.

本来、第1冷媒循環経路96は、PCU46ならびに電動機MG1およびMG2を冷却することを主目的とするが、本実施形態では、この第1冷媒を熱容量要素として利用する。すなわち、充電時において、外部電流がPCU46ならびに電動機MG1およびMG2を流れるので、当該外部電流に伴う抵抗性発熱を利用して、第1冷媒に熱エネルギーを蓄える。このとき、ラジエタ部80における冷却能力を抑制して、第1冷媒に蓄えられる熱エネルギーの放散を低減する。そして、充電完了後の暖房要求に応じて、第1冷媒に蓄えられた熱エネルギーを用いて、車室空間の暖房が行なわれる。   Originally, the main purpose of the first refrigerant circulation path 96 is to cool the PCU 46 and the electric motors MG1 and MG2, but in the present embodiment, the first refrigerant is used as a heat capacity element. That is, since external current flows through PCU 46 and motors MG1 and MG2 during charging, thermal energy is stored in the first refrigerant by using resistive heat generation associated with the external current. At this time, the cooling capacity in the radiator unit 80 is suppressed, and the dissipation of the heat energy stored in the first refrigerant is reduced. And according to the heating request | requirement after completion of charge, heating of vehicle interior space is performed using the thermal energy stored in the 1st refrigerant | coolant.

一方、冷房熱交換部112は、第2冷媒循環経路116を流れる第2冷媒(たとえば、フロン類)が有する熱エネルギー(冷熱)と、送風ファン90により送出される空気との間で熱交換を行なう。第2冷媒循環経路116には、第2冷媒を循環させるための循環ポンプ114が介挿されるとともに、循環する第2冷媒と蓄冷槽106に格納される蓄冷剤との間で熱交換を生じさせるための熱交換部118が形成される。そのため、蓄冷槽106に格納される蓄冷剤が有する熱エネルギーは、第2冷媒循環経路116を循環する第2冷媒に与えられて、冷房熱交換部112へ運ばれる。   On the other hand, the cooling heat exchange unit 112 exchanges heat between the thermal energy (cold heat) of the second refrigerant (for example, chlorofluorocarbons) flowing through the second refrigerant circulation path 116 and the air sent by the blower fan 90. Do. A circulation pump 114 for circulating the second refrigerant is inserted in the second refrigerant circulation path 116, and heat exchange occurs between the second refrigerant circulating and the cold storage agent stored in the cold storage tank 106. A heat exchanging portion 118 is formed. Therefore, the thermal energy of the cool storage agent stored in the cool storage tank 106 is given to the second refrigerant circulating in the second refrigerant circulation path 116 and is carried to the cooling heat exchange unit 112.

蓄冷槽106は、その周囲に保温構造を有し、その内部に格納される蓄冷剤を周囲から断熱する。蓄冷剤は、たとえば、水(もしくは氷)などのように、熱エネルギーをその状態変化(相転移)として蓄積する物質である。一例として、蓄冷剤は、熱エネルギー(凝固熱)を吸収されて、その状態を液体から固体に変化させる一方、その状態を固体から液体に変化させる過程において、熱エネルギー(融解熱)を吸収する。   The cool storage tank 106 has a heat retaining structure around it, and insulates the cool storage agent stored therein from the surroundings. A cold storage agent is a substance that accumulates thermal energy as its state change (phase transition), such as water (or ice). As an example, a cold storage agent absorbs thermal energy (heat of solidification) and changes its state from liquid to solid, while absorbing its thermal energy (heat of fusion) in the process of changing its state from solid to liquid. .

蓄冷槽106内には、エバポレータ(蒸発器)104がさらに配置される。エバポレータ104と、コンプレッサ108と、コンデンサ(凝縮器)102とは、冷凍サイクル機構110を構成する。この冷凍サイクル機構110は、エバポレータ104を介して蓄冷槽106の蓄冷剤から熱エネルギー(温熱)を吸収する。   An evaporator (evaporator) 104 is further arranged in the cold storage tank 106. The evaporator 104, the compressor 108, and the condenser (condenser) 102 constitute a refrigeration cycle mechanism 110. The refrigeration cycle mechanism 110 absorbs thermal energy (hot heat) from the cold storage agent in the cold storage tank 106 via the evaporator 104.

冷凍サイクル機構110では、たとえば、フロン類などからなる第3冷媒がその状態を変化させながら循環する。具体的には、第3冷媒は、コンプレッサ108により圧縮されて高温高圧となった後、コンデンサ102で冷却されて液体状態に変化する。さらに、液体状態になった第3冷媒は、エバポレータ104で急速に気化される。第3冷媒の気化に伴い、所定の熱エネルギー(気化熱)が必要であるので、エバポレータ104は、蓄冷槽106内の蓄冷剤からその気化に必要な熱エネルギー(気化熱)を吸収する。すると、蓄冷剤には、熱エネルギー(冷熱)が蓄積される。   In the refrigeration cycle mechanism 110, for example, a third refrigerant made of chlorofluorocarbons circulates while changing its state. Specifically, the third refrigerant is compressed by the compressor 108 to become a high temperature and a high pressure, and then is cooled by the condenser 102 and changes to a liquid state. Further, the third refrigerant in a liquid state is rapidly vaporized by the evaporator 104. Since the predetermined heat energy (vaporization heat) is required along with the vaporization of the third refrigerant, the evaporator 104 absorbs the heat energy (vaporization heat) necessary for the vaporization from the cold storage agent in the cold storage tank 106. Then, thermal energy (cold heat) is accumulated in the cold storage agent.

ここで、コンプレッサ108は、充電時に供給される外部電源により作動するように構成される。すなわち、冷凍サイクル機構110は、バッテリ30aの充電時に作動し、車室内の空調(冷房)を行なうためのエネルギーを蓄積する。   Here, the compressor 108 is configured to be operated by an external power source supplied at the time of charging. That is, the refrigeration cycle mechanism 110 operates when the battery 30a is charged, and accumulates energy for air conditioning (cooling) in the passenger compartment.

(車室空間の暖房動作)
図10は、車室空間の暖房に係る動作を説明するための図である。
(Heating operation in the cabin space)
FIG. 10 is a diagram for explaining an operation related to heating of the passenger compartment space.

図10(a)は、充電時における熱エネルギーの蓄積動作を示す。
図10(b)は、「EV走行モード」における車室空間の暖房動作を示す。
FIG. 10A shows a heat energy accumulation operation during charging.
FIG. 10B shows the heating operation of the passenger compartment space in the “EV traveling mode”.

図10(a)を参照して、充電時には、第1冷媒が第1冷媒循環経路96を循環するように、切換弁92aおよび92bが切換えられる。すなわち、第1冷媒は、暖房熱交換部88に導かれない。そして、ラジエタ冷却ファン82が停止され、ラジエタ部80における冷却能力が抑制される。   Referring to FIG. 10A, at the time of charging, switching valves 92a and 92b are switched so that the first refrigerant circulates through first refrigerant circulation path 96. That is, the first refrigerant is not guided to the heating heat exchange unit 88. And the radiator cooling fan 82 is stopped and the cooling capacity in the radiator part 80 is suppressed.

すると、バッテリ30aの充電に伴って、PCU46ならびに電動機MG1およびMG2では発熱を生じ、その発熱による所定の熱エネルギーが第1冷媒に与えられる。具体的には、PCU46では、スイッチング動作に伴うスイッチング素子で生じる熱損失が第1冷媒に与えられる。より多くの熱エネルギーを発生させるために、制御部34#(図7)は、より高周波数のスイッチング指令PWC,PWM1,PWM2をPCU46へ与える。   Then, as the battery 30a is charged, the PCU 46 and the electric motors MG1 and MG2 generate heat, and predetermined heat energy due to the generated heat is given to the first refrigerant. Specifically, in the PCU 46, heat loss generated in the switching element accompanying the switching operation is given to the first refrigerant. In order to generate more thermal energy, control unit 34 # (FIG. 7) gives higher frequency switching commands PWC, PWM1, PWM2 to PCU 46.

また、電動機MG1およびMG2では、各相コイルを流れる外部電流に伴う抵抗性発熱による熱エネルギーが第1冷媒に与えられる。より多くの熱エネルギーを発生させるために、制御部34#は、より多くの外部電流が流れるようにPCU46を制御する。   Further, in electric motors MG1 and MG2, thermal energy due to resistive heat generation accompanying external current flowing through each phase coil is given to the first refrigerant. In order to generate more heat energy, the control unit 34 # controls the PCU 46 so that more external current flows.

図11は、図7に示す外部電流Iinと外部電圧Vinとの時間波形を示す図である。
図11(a)は、熱エネルギーの発生を必要としない通常充電時の時間波形を示す。
FIG. 11 is a diagram showing time waveforms of the external current Iin and the external voltage Vin shown in FIG.
FIG. 11A shows a time waveform during normal charging that does not require generation of thermal energy.

図11(b)は、熱エネルギーの発生が必要とされる蓄熱充電時の時間波形を示す。
図12は、図11に示す外部電流Iinと外部電圧Vinとの位相関係を示すベクトル図である。
FIG.11 (b) shows the time waveform at the time of the thermal storage charge in which generation | occurrence | production of a thermal energy is required.
FIG. 12 is a vector diagram showing a phase relationship between the external current Iin and the external voltage Vin shown in FIG.

図12(a)は、図11(a)におけるベクトル図である。
図12(b)は、図12(b)におけるベクトル図である。
FIG. 12A is a vector diagram in FIG.
FIG. 12B is a vector diagram in FIG.

図11(a)および図12(a)を参照して、通常充電時には、制御部34#は、外部電流Iinと外部電圧Vinとの位相差が実質的にゼロ(同相)となるように、PCU46へスイッチング指令を与える。このように、外部電流Iinと外部電圧Vinとが同相である場合には、外部電力Pin=外部電圧Vin×外部電流Iinとなり、外部電流Iinを最小にできる。すなわち、電動機MG1およびMG2などで生じる抵抗性発熱を最小限にできる。   Referring to FIGS. 11 (a) and 12 (a), at the time of normal charging, control unit 34 # allows the phase difference between external current Iin and external voltage Vin to be substantially zero (in phase). A switching command is given to the PCU 46. As described above, when the external current Iin and the external voltage Vin are in phase, the external power Pin = external voltage Vin × external current Iin, and the external current Iin can be minimized. That is, it is possible to minimize the resistive heat generated by the electric motors MG1 and MG2.

図11(b)および図12(b)を参照して、蓄熱充電時には、制御部34#は、外部電流Iinと外部電圧Vinとの間に所定の位相差を生じるように、PCU46へスイッチング指令を与える。このように、外部電流Iinと外部電圧Vinとの間に位相差θが存在する場合には、外部電力Pin=外部電圧Vin×外部電流Iin×cosθとなる。そのため、通常充電時と同一の外部電力Pinを受取るためには、外部電流#Iin=外部電流Iin/cosθとする必要がある。すなわち、外部電流Iinと外部電圧Vinとの間に位相差θを生じさせることで、外部電力を一定としたまま、外部電流Iinを元の(1/cosθ)倍まで増大させることができる。   Referring to FIGS. 11B and 12B, at the time of heat storage charging, control unit 34 # provides a switching command to PCU 46 so as to generate a predetermined phase difference between external current Iin and external voltage Vin. give. Thus, when there is a phase difference θ between the external current Iin and the external voltage Vin, the external power Pin = external voltage Vin × external current Iin × cos θ. Therefore, in order to receive the same external power Pin as that during normal charging, it is necessary to set external current # Iin = external current Iin / cos θ. That is, by generating a phase difference θ between the external current Iin and the external voltage Vin, the external current Iin can be increased to the original (1 / cos θ) times while the external power is kept constant.

このように、制御部34#は、電動機MG1およびMG2の相コイルでより多くの抵抗性損失による熱エネルギーが発生するように、PCU46を制御する。   In this manner, control unit 34 # controls PCU 46 so that thermal energy due to more resistive loss is generated in the phase coils of electric motors MG1 and MG2.

図10(b)を参照して、バッテリ30aの充電が完了し、電動車両1が「EV走行モード」で走行する場合において、第1冷媒に蓄えられた熱エネルギーが車室空間の空調(暖房)に用いられる。   Referring to FIG. 10B, when charging of battery 30a is completed and electric vehicle 1 travels in the “EV travel mode”, the heat energy stored in the first refrigerant is used for air conditioning (heating) ).

具体的には、第1冷媒が暖房熱交換部88に導かれるように、切換弁92aおよび92bが切換えられる。すると、暖房熱交換部88では、第1冷媒と送風ファン90(図9)により送出される空気との間で熱交換が行なわれ、その結果生じる暖風が吹出口86から車室空間へ吹き出される。特に、蓄熱タンク84に貯蔵される第1冷媒は、その熱エネルギーを放散されることなく維持できるので、より多くの熱エネルギーを確保することができる。そのため、蓄熱タンク84の貯蔵能力を適切に設計することで、車室空間に対する暖房能力を最適化できる。   Specifically, the switching valves 92 a and 92 b are switched so that the first refrigerant is guided to the heating heat exchange unit 88. Then, in the heating heat exchanging unit 88, heat exchange is performed between the first refrigerant and the air sent out by the blower fan 90 (FIG. 9), and the resulting warm air blows out from the air outlet 86 into the passenger compartment space. Is done. In particular, since the first refrigerant stored in the heat storage tank 84 can maintain its thermal energy without being dissipated, more thermal energy can be secured. Therefore, the heating capacity with respect to the passenger compartment space can be optimized by appropriately designing the storage capacity of the heat storage tank 84.

(車室空間の冷房動作)
図13は、車室空間の冷房に係る動作を説明するための図である。
(Cooling operation of the passenger compartment space)
FIG. 13 is a diagram for explaining an operation related to cooling of the passenger compartment space.

図13(a)は、充電時における熱エネルギーの蓄積動作を示す。
図13(b)は、「EV走行モード」における車室空間の暖房動作を示す。
FIG. 13A shows a heat energy accumulation operation during charging.
FIG. 13B shows the heating operation of the passenger compartment space in the “EV traveling mode”.

図13(a)を参照して、充電時には、コンプレッサ108が外部電源により作動し、冷凍サイクル機構110による蓄冷剤に対する熱エネルギー(冷熱)の蓄積が行なわれる。   Referring to FIG. 13A, at the time of charging, the compressor 108 is operated by an external power source, and the refrigeration cycle mechanism 110 accumulates thermal energy (cold heat) for the cold storage agent.

図13(b)を参照して、バッテリ30aの充電が完了し、電動車両1が「EV走行モード」で走行する場合において、蓄冷剤に蓄えられた熱エネルギー(冷熱)が車室空間の空調(冷房)に用いられる。   Referring to FIG. 13 (b), when charging of battery 30a is completed and electric vehicle 1 travels in the “EV travel mode”, the heat energy (cold heat) stored in the cool storage agent is used for air conditioning in the passenger compartment space. Used for (cooling).

具体的には、第2冷媒が冷房熱交換部112に導かれるように、循環ポンプ114が作動する。すると、冷房熱交換部112では、第2冷媒と送風ファン90(図9)により送出される空気との間で熱交換が行なわれ、その結果生じる冷風が吹出口86から車室空間へ吹き出される。このとき、蓄冷槽106に格納される蓄冷剤の量を適切に設計することで、車室空間に対する冷房能力を最適化できる。   Specifically, the circulation pump 114 operates so that the second refrigerant is guided to the cooling heat exchange unit 112. Then, in the cooling heat exchange unit 112, heat exchange is performed between the second refrigerant and the air sent out by the blower fan 90 (FIG. 9), and the resulting cool air is blown out from the outlet 86 to the vehicle interior space. The At this time, by appropriately designing the amount of the cool storage agent stored in the cool storage tank 106, the cooling capacity for the passenger compartment space can be optimized.

なお、上述のこの発明の実施の形態2では、車室空間を暖房するための構成および冷房するための構成をいずれも備える態様について例示したが、いずれか一方の構成のみでも本発明の作用を奏することができる。すなわち、暖房のみが要求される寒冷地などでは、第1冷媒循環経路96に係る部位のみを備える構成を採用してもよい。   In the above-described second embodiment of the present invention, an example in which both the configuration for heating the cabin space and the configuration for cooling are illustrated, but the operation of the present invention can be achieved with only one of the configurations. Can play. That is, in a cold district where only heating is required, a configuration including only a portion related to the first refrigerant circulation path 96 may be employed.

この発明の実施の形態2では、PCU46が「電力変換部」に対応し、ラジエタ部80が「ラジエタ部」に対応し、第1冷媒循環経路96および循環ポンプ124が「循環機構」に対応し、蓄熱タンク84が「貯蔵部」に対応する。そして、制御部34#が「電力変換部制御手段」を実現する。また、電動機MG1およびMG2が「回転電機」に対応し、吹出口86および送風ファン90が「吹出機構」に対応する。また、第1冷媒導入路94aが「第1の冷媒導入経路」に対応し、暖房熱交換部88が「第1の熱交換部」に対応し、冷凍サイクル機構110が「冷凍サイクル機構」に対応し、第2冷媒循環経路116が「第2の冷媒導入経路」に対応し、冷房熱交換部112が「第2の熱交換部」に対応する。   In the second embodiment of the present invention, the PCU 46 corresponds to the “power converter”, the radiator 80 corresponds to the “radiator”, and the first refrigerant circulation path 96 and the circulation pump 124 correspond to the “circulation mechanism”. The heat storage tank 84 corresponds to a “storage unit”. The control unit 34 # implements “power conversion unit control means”. Further, the electric motors MG1 and MG2 correspond to the “rotary electric machine”, and the air outlet 86 and the blower fan 90 correspond to the “blowout mechanism”. Also, the first refrigerant introduction path 94a corresponds to the “first refrigerant introduction path”, the heating heat exchange unit 88 corresponds to the “first heat exchange unit”, and the refrigeration cycle mechanism 110 becomes the “refrigeration cycle mechanism”. Correspondingly, the second refrigerant circulation path 116 corresponds to a “second refrigerant introduction path”, and the cooling heat exchange unit 112 corresponds to a “second heat exchange part”.

この発明の実施の形態2によれば、電動車両1は、搭載するバッテリ30aを外部電源により充電するに際して、外部電源を受けて熱エネルギーを蓄積する。そして、充電完了後に乗員などから空調要求を受けると、バッテリ30aに蓄えられる電力ではなく、第1冷媒もしくは蓄冷剤に蓄積した熱エネルギーを用いて車室空間の暖房もしくは冷房を行なう。これにより、車室空間の空調を行なうために、バッテリ30aからの放電電力を使用せずに済む。よって、バッテリ30aからの放電電力の多くを電動機のために確保できるので、乗員に対する快適性を確保しつつ、「EV走行モード」における走行性能を維持できる。   According to Embodiment 2 of the present invention, when electric vehicle 1 charges battery 30a to be mounted with an external power supply, it receives the external power supply and accumulates thermal energy. When an air conditioning request is received from a passenger or the like after completion of charging, the vehicle interior space is heated or cooled not using the electric power stored in the battery 30a but using the thermal energy stored in the first refrigerant or the cold storage agent. Thereby, in order to air-condition the passenger compartment space, it is not necessary to use the discharge power from the battery 30a. Therefore, most of the discharged power from the battery 30a can be secured for the electric motor, so that the traveling performance in the “EV traveling mode” can be maintained while ensuring the comfort for the passenger.

さらに、「EV走行モード」における走行性能を維持できる結果、エンジンを作動させる必要がなく、エンジン排ガス量の削減や低騒音化などを実現できる。   Further, as a result of maintaining the traveling performance in the “EV traveling mode”, it is not necessary to operate the engine, and it is possible to realize a reduction in engine exhaust gas amount and a reduction in noise.

また、この発明の実施の形態2によれば、「通常走行モード」において、PCU46ならびに電動機MG1およびMG2を冷却するために用いられる第1冷媒循環経路96の第1冷媒を、車室空間の暖房に利用する。そのため、熱エネルギーを蓄積するために特別な熱容量要素を搭載する必要がなく、比較的安価に本発明を実施できる。   Further, according to the second embodiment of the present invention, in the “normal traveling mode”, the first refrigerant in the first refrigerant circulation path 96 used for cooling the PCU 46 and the electric motors MG1 and MG2 is heated in the passenger compartment space. To use. Therefore, it is not necessary to mount a special heat capacity element for storing thermal energy, and the present invention can be implemented at a relatively low cost.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 電動車両、2 車両充電装置、3 充電ステーション、4 コネクタ部、5 コネクタ差込部、6 外部熱媒体導管、6a 車外空調空気供給導管、6b 車外空調空気排出導管、8 電力供給線、8a 正側供給線、8b 負側供給線、9a 正側受入線、9b 負側受入線、10 電力系統、12 送風ファン、14 コネクタ制御部、16 車外空調空気温度センサ、30 電源ユニット、30a バッテリ、32a 車外空気吸気ダクト、32b 車外空気排気ダクト、34 車両制御部、34a スケジューラ、34# 制御部、36 リヤシート、38 吸気孔、40a 車室空気吸気ダクト、40b 車室空気排気ダクト、42 ファン、44a,44b 切換ダンパ、48 操作表示部、50 車室空調空気、60 エンジン、62 動力伝達機構、64 動力分割機構、70 建物、72 エアコン、80 ラジエタ部、82 ラジエタ冷却ファン、84 蓄熱タンク、86 吹出口、88 暖房熱交換部、90 送風ファン、92a,92b 切換弁、94a 第1冷媒導入路、94b 第1冷媒戻り路、96 第1冷媒循環経路、100 車両充電システム、102 コンデンサ、104 エバポレータ、106 蓄冷槽、108 コンプレッサ、110 冷凍サイクル機構、112 冷房熱交換部、114 循環ポンプ、116 第2冷媒循環経路、118 熱交換部、120 空調空気、122 空調空気生成ダクト、124 循環ポンプ、C 平滑コンデンサ、CONV DC/DCコンバータ、INR 内部抵抗成分、INV1,INV2 インバータ装置、MG1,MG2 電動機、MNL 負母線、MPL 正母線、N1,N2 中性点、THC 熱容量要素、TR スイッチング素子。   DESCRIPTION OF SYMBOLS 1 Electric vehicle, 2 vehicle charging device, 3 charging station, 4 connector part, 5 connector insertion part, 6 external heat-medium conduit | pipe, 6a exterior air-conditioning air supply conduit, 6b exterior air-conditioning air discharge conduit, 8 power supply line, 8a positive Side supply line, 8b Negative side supply line, 9a Positive side reception line, 9b Negative side reception line, 10 Power system, 12 Blower fan, 14 Connector control unit, 16 Outside air conditioning air temperature sensor, 30 Power supply unit, 30a Battery, 32a Outside air intake duct, 32b Outside air exhaust duct, 34 Vehicle control unit, 34a Scheduler, 34 # control unit, 36 Rear seat, 38 Air intake hole, 40a Car room air intake duct, 40b Car room air exhaust duct, 42 Fan, 44a, 44b switching damper, 48 operation display section, 50 passenger compartment conditioned air, 60 engine, 62 power transmission Structure, 64 power split mechanism, 70 building, 72 air conditioner, 80 radiator section, 82 radiator cooling fan, 84 heat storage tank, 86 outlet, 88 heating heat exchange section, 90 blower fan, 92a, 92b switching valve, 94a first refrigerant Introduction path, 94b First refrigerant return path, 96 First refrigerant circulation path, 100 Vehicle charging system, 102 Condenser, 104 Evaporator, 106 Cold storage tank, 108 Compressor, 110 Refrigeration cycle mechanism, 112 Cooling heat exchange section, 114 Circulation pump, 116 Second refrigerant circulation path, 118 heat exchange section, 120 conditioned air, 122 conditioned air generation duct, 124 circulation pump, C smoothing condenser, CONV DC / DC converter, INR internal resistance component, INV1, INV2 inverter device, MG1, MG2 Electric motor, MNL Negative bus, MPL positive bus, N1, N2 neutral point, THC heat capacity element, TR switching element.

Claims (6)

充放電可能に構成された蓄電装置を搭載し、かつ外部電源により前記蓄電装置を充電可能に構成された電動車両であって、
前記電動車両は、充電時に前記外部電源を供給するためのコネクタ部と連結可能に構成され、
前記電動車両は、
前記外部電源から前記蓄電装置を充電するための充電電流を生成可能な電力変換部と、
前記電力変換部を第1の冷媒を介して冷却するためのラジエタ部と、
前記電力変換部および前記ラジエタ部を含む循環経路で前記第1の冷媒を循環させるための循環機構と、
前記循環経路に介挿され、前記第1の冷媒を貯蔵可能に構成された貯蔵部と、
熱エネルギーを蓄積可能に構成された、前記第1の冷媒を含む熱容量要素と、
充電時に前記コネクタ部を介して車両外部から供給される外部エネルギーを用いて、前記熱容量要素に熱エネルギーを蓄積するための蓄熱機構と、
空調要求に応じて、前記熱容量要素に蓄積された熱エネルギーを用いて、車室空間の空調を行なうための空調機構とを備え、
前記電力変換部は、スイッチング素子を含んで構成され、
前記蓄熱機構は、充電時に、前記ラジエタ部における冷却能力を抑制するとともに、前記電力変換部で発生するスイッチング動作に伴う熱損失により前記第1の冷媒に所定の熱エネルギーが与えられるように、前記電力変換部を制御する電力変換部制御手段を含む、電動車両。
An electric vehicle equipped with a power storage device configured to be chargeable / dischargeable and configured to be able to charge the power storage device with an external power source,
The electric vehicle is configured to be connectable with a connector portion for supplying the external power source during charging,
The electric vehicle is
A power converter capable of generating a charging current for charging the power storage device from the external power source;
A radiator for cooling the power conversion unit via a first refrigerant;
A circulation mechanism for circulating the first refrigerant in a circulation path including the power conversion unit and the radiator unit;
A storage unit interposed in the circulation path and configured to store the first refrigerant;
A heat capacity element including the first refrigerant configured to be capable of storing thermal energy;
A heat storage mechanism for storing thermal energy in the heat capacity element, using external energy supplied from outside the vehicle through the connector portion during charging;
An air-conditioning mechanism for air-conditioning the passenger compartment space using heat energy stored in the heat capacity element according to an air-conditioning request;
The power conversion unit includes a switching element,
The heat storage mechanism suppresses the cooling capacity of the radiator unit during charging, and gives predetermined heat energy to the first refrigerant due to heat loss caused by a switching operation generated in the power conversion unit. An electric vehicle including power conversion unit control means for controlling the power conversion unit.
前記電動車両は、星型結線された相コイルを有する回転電機をさらに備え、
前記電力変換部は、前記回転電機の中性点を介して、前記外部電源を受入れるように構成され、
前記循環経路は、前記回転電機をさらに含むように形成され、
前記電力変換部制御手段は、さらに、前記回転電機の前記相コイルで発生する抵抗性発熱により前記第1の冷媒に所定の熱エネルギーが与えられるように、前記電力変換部を制御する、請求項1に記載の電動車両。
The electric vehicle further includes a rotating electrical machine having a star-connected phase coil,
The power conversion unit is configured to receive the external power supply through a neutral point of the rotating electrical machine,
The circulation path is formed to further include the rotating electric machine,
The power conversion unit control means further controls the power conversion unit so that predetermined heat energy is given to the first refrigerant by resistive heat generated in the phase coil of the rotating electrical machine. The electric vehicle according to 1.
前記空調機構は、
前記車室空間に空調空気を吹き出すための吹出機構と、
前記第1の冷媒を前記吹出機構に導くための第1の冷媒導入経路と、
前記第1の冷媒導入経路を介して導かれる前記第1の冷媒との間で熱交換を生じさせて前記空調空気を生成するための第1の熱交換部とをさらに含む、請求項1または2に記載の電動車両。
The air conditioning mechanism is
A blowing mechanism for blowing conditioned air into the passenger compartment space;
A first refrigerant introduction path for guiding the first refrigerant to the blowing mechanism;
The first heat exchange part for producing heat exchange between the first refrigerant guided through the first refrigerant introduction path and generating the conditioned air is further included. 2. The electric vehicle according to 2.
前記熱容量要素は、蓄冷槽に格納される蓄冷剤を含み、
前記蓄熱機構は、充電時に、前記外部電源を受けて冷凍サイクルを実行することにより、熱エネルギーを前記蓄冷材に蓄積する冷凍サイクル機構をさらに含む、請求項1〜3のいずれか1項に記載の電動車両。
The heat capacity element includes a cold storage agent stored in a cold storage tank,
4. The heat storage mechanism according to claim 1, further comprising a refrigeration cycle mechanism that accumulates thermal energy in the cold storage material by executing the refrigeration cycle by receiving the external power source during charging. 5. Electric vehicle.
前記空調機構は、
前記車室空間に空調空気を吹き出すための吹出機構と、
第2の冷媒と前記蓄冷材との間で熱交換を生じるように形成され、かつ熱交換後の前記第2の冷媒を前記吹出機構に導くための第2の冷媒導入経路と、
前記第2の冷媒導入経路を介して導かれる前記第2の冷媒との間で熱交換を生じさせて前記空調空気を生成するための第2の熱交換部とをさらに含む、請求項4に記載の電動車両。
The air conditioning mechanism is
A blowing mechanism for blowing conditioned air into the passenger compartment space;
A second refrigerant introduction path that is formed so as to cause heat exchange between the second refrigerant and the cold storage material and that guides the second refrigerant after heat exchange to the blowing mechanism;
5. The method according to claim 4, further comprising: a second heat exchange unit for generating heat conditioned air by causing heat exchange with the second refrigerant guided through the second refrigerant introduction path. The electric vehicle described.
充放電可能に構成された蓄電装置を搭載する電動車両と、
前記電動車両に搭載された前記蓄電装置を外部電源により充電するための車両充電装置とを備え、
前記車両充電装置は、充電時に前記電動車両と連結され、前記電動車両に前記外部電源を供給するためのコネクタ部を含み、
前記電動車両は、
前記外部電源から前記蓄電装置を充電するための充電電流を生成可能な電力変換部と、
前記電力変換部を第1の冷媒を介して冷却するためのラジエタ部と、
前記電力変換部および前記ラジエタ部を含む循環経路で前記第1の冷媒を循環させるための循環機構と、
前記循環経路に介挿され、前記第1の冷媒を貯蔵可能に構成された貯蔵部と、
熱エネルギーを蓄積可能に構成された、前記第1の冷媒を含む熱容量要素と、
充電時に前記コネクタ部を介して車両外部から供給される外部エネルギーを用いて、前記熱容量要素に熱エネルギーを蓄積するための蓄熱機構と、
空調要求に応じて、前記熱容量要素に蓄積された熱エネルギーを用いて、車室空間の空調を行なうための空調機構とを備え、
前記電力変換部は、スイッチング素子を含んで構成され、
前記蓄熱機構は、充電時に、前記ラジエタ部における冷却能力を抑制するとともに、前記電力変換部で発生するスイッチング動作に伴う熱損失により前記第1の冷媒に所定の熱エネルギーが与えられるように、前記電力変換部を制御する電力変換部制御手段を含む、車両充電システム。
An electric vehicle equipped with a power storage device configured to be chargeable / dischargeable;
A vehicle charging device for charging the power storage device mounted on the electric vehicle with an external power source;
The vehicle charging device includes a connector unit that is connected to the electric vehicle during charging and supplies the external power to the electric vehicle;
The electric vehicle is
A power converter capable of generating a charging current for charging the power storage device from the external power source;
A radiator for cooling the power conversion unit via a first refrigerant;
A circulation mechanism for circulating the first refrigerant in a circulation path including the power conversion unit and the radiator unit;
A storage unit interposed in the circulation path and configured to store the first refrigerant;
A heat capacity element including the first refrigerant configured to be capable of storing thermal energy;
A heat storage mechanism for storing thermal energy in the heat capacity element, using external energy supplied from outside the vehicle through the connector portion during charging;
An air-conditioning mechanism for air-conditioning the passenger compartment space using heat energy stored in the heat capacity element according to an air-conditioning request;
The power conversion unit includes a switching element,
The heat storage mechanism suppresses the cooling capacity of the radiator unit during charging, and gives predetermined heat energy to the first refrigerant due to heat loss caused by a switching operation generated in the power conversion unit. A vehicle charging system including a power conversion unit control means for controlling the power conversion unit.
JP2010197958A 2010-09-03 2010-09-03 Electric vehicle and vehicle charging system Expired - Fee Related JP5152282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197958A JP5152282B2 (en) 2010-09-03 2010-09-03 Electric vehicle and vehicle charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197958A JP5152282B2 (en) 2010-09-03 2010-09-03 Electric vehicle and vehicle charging system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006271800A Division JP4715708B2 (en) 2006-10-03 2006-10-03 Electric vehicle and vehicle charging system

Publications (2)

Publication Number Publication Date
JP2010268683A true JP2010268683A (en) 2010-11-25
JP5152282B2 JP5152282B2 (en) 2013-02-27

Family

ID=43365142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197958A Expired - Fee Related JP5152282B2 (en) 2010-09-03 2010-09-03 Electric vehicle and vehicle charging system

Country Status (1)

Country Link
JP (1) JP5152282B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230702A (en) * 2012-03-26 2013-11-14 Panasonic Corp On-board air conditioning device, air conditioning unit, and vehicle
JP2013241111A (en) * 2012-05-21 2013-12-05 Univance Corp Heat supply apparatus
WO2015122006A1 (en) * 2014-02-17 2015-08-20 株式会社Fomm Air-conditioning device for small vehicle
JP2015150945A (en) * 2014-02-12 2015-08-24 富士重工業株式会社 Air conditioner for vehicle
US9796241B2 (en) 2011-04-18 2017-10-24 Denso Corporation Vehicle temperature control apparatus and in-vehicle thermal system
CN109866632A (en) * 2017-12-01 2019-06-11 株式会社斯巴鲁 On-board charging system
JP2019184127A (en) * 2018-04-06 2019-10-24 株式会社デンソー Ejector-type refrigeration cycle
JP2019219107A (en) * 2018-06-20 2019-12-26 株式会社デンソー Cooling equipment and cooling equipment system
US20210008972A1 (en) * 2019-07-09 2021-01-14 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle cooling apparatus
JP2021075115A (en) * 2019-11-07 2021-05-20 トヨタ自動車株式会社 Interior unit, vehicle, and control method
JP7359116B2 (en) 2020-09-16 2023-10-11 株式会社豊田自動織機 Feeding systems, industrial vehicles and feeding machines
WO2024064291A1 (en) * 2022-09-21 2024-03-28 Fluke Corporation Large energy dissipation electrical load

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286350A (en) * 1992-04-09 1993-11-02 Toyota Motor Corp Air conditioner for electric car
JPH05330331A (en) * 1992-06-02 1993-12-14 Nippondenso Co Ltd Air conditioner for electric vehicle
JPH05338432A (en) * 1992-06-12 1993-12-21 Nippondenso Co Ltd Air conditioner for electric automobile
JP2000004505A (en) * 1998-06-11 2000-01-07 Toyota Motor Corp Battery charging device
JP2005199986A (en) * 2003-12-16 2005-07-28 Toyota Motor Corp Cooling system and hybrid car

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286350A (en) * 1992-04-09 1993-11-02 Toyota Motor Corp Air conditioner for electric car
JPH05330331A (en) * 1992-06-02 1993-12-14 Nippondenso Co Ltd Air conditioner for electric vehicle
JPH05338432A (en) * 1992-06-12 1993-12-21 Nippondenso Co Ltd Air conditioner for electric automobile
JP2000004505A (en) * 1998-06-11 2000-01-07 Toyota Motor Corp Battery charging device
JP2005199986A (en) * 2003-12-16 2005-07-28 Toyota Motor Corp Cooling system and hybrid car

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012001744B4 (en) * 2011-04-18 2020-02-20 Denso Corporation Vehicle temperature control device and vehicle thermal system
US9796241B2 (en) 2011-04-18 2017-10-24 Denso Corporation Vehicle temperature control apparatus and in-vehicle thermal system
JP2013230702A (en) * 2012-03-26 2013-11-14 Panasonic Corp On-board air conditioning device, air conditioning unit, and vehicle
JP2013241111A (en) * 2012-05-21 2013-12-05 Univance Corp Heat supply apparatus
JP2015150945A (en) * 2014-02-12 2015-08-24 富士重工業株式会社 Air conditioner for vehicle
WO2015122006A1 (en) * 2014-02-17 2015-08-20 株式会社Fomm Air-conditioning device for small vehicle
CN109866632A (en) * 2017-12-01 2019-06-11 株式会社斯巴鲁 On-board charging system
CN109866632B (en) * 2017-12-01 2023-07-07 株式会社斯巴鲁 Vehicle-mounted charging system
JP2019184127A (en) * 2018-04-06 2019-10-24 株式会社デンソー Ejector-type refrigeration cycle
JP7077733B2 (en) 2018-04-06 2022-05-31 株式会社デンソー Ejector type refrigeration cycle
JP2019219107A (en) * 2018-06-20 2019-12-26 株式会社デンソー Cooling equipment and cooling equipment system
US20210008972A1 (en) * 2019-07-09 2021-01-14 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle cooling apparatus
US11577597B2 (en) * 2019-07-09 2023-02-14 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle cooling apparatus
JP2021075115A (en) * 2019-11-07 2021-05-20 トヨタ自動車株式会社 Interior unit, vehicle, and control method
JP7239449B2 (en) 2019-11-07 2023-03-14 トヨタ自動車株式会社 Interior unit, vehicle, and control method
JP7359116B2 (en) 2020-09-16 2023-10-11 株式会社豊田自動織機 Feeding systems, industrial vehicles and feeding machines
WO2024064291A1 (en) * 2022-09-21 2024-03-28 Fluke Corporation Large energy dissipation electrical load

Also Published As

Publication number Publication date
JP5152282B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP4715708B2 (en) Electric vehicle and vehicle charging system
JP5152282B2 (en) Electric vehicle and vehicle charging system
US9533544B2 (en) EV multi-mode thermal management system
US9731578B2 (en) EV multi-mode thermal management system
US9511645B2 (en) EV multi-mode thermal management system
US9758011B2 (en) EV multi-mode thermal management system
US9731577B2 (en) EV multi-mode thermal management system
US9758012B2 (en) EV multi-mode thermal management system
US9758010B2 (en) EV multi mode thermal management system
US9731576B2 (en) EV multi-mode thermal management system
CN103972607B (en) Electric vehicle heat management system
US11052776B2 (en) Charging station for electrified vehicles
EP3012133A2 (en) Ev multi-mode thermal management system
JP5331666B2 (en) Electric vehicle cooling system
CN106252782A (en) The cooling system of traction battery
CN107757392A (en) Operation for electric power electronic module and the combination cooling circuit of battery
CN102029873A (en) Thermodynamic cycle system for a vehicle
US10293654B2 (en) Passenger cabin preconditioning during DC fast charging events
JP5310943B2 (en) Vehicle temperature management system
CN105848938B (en) Motor vehicle driven by mixed power
JP2020039226A (en) Cooling control system for battery
JP2014084060A (en) Air conditioner
JP2022158378A (en) Heat management system for vehicle
US20240066954A1 (en) Heating control method for vehicle
JP2014108682A (en) Vehicular air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5152282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees