JP2010266107A - Gas temperature control device - Google Patents

Gas temperature control device Download PDF

Info

Publication number
JP2010266107A
JP2010266107A JP2009117183A JP2009117183A JP2010266107A JP 2010266107 A JP2010266107 A JP 2010266107A JP 2009117183 A JP2009117183 A JP 2009117183A JP 2009117183 A JP2009117183 A JP 2009117183A JP 2010266107 A JP2010266107 A JP 2010266107A
Authority
JP
Japan
Prior art keywords
heat
gas
fins
fin
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009117183A
Other languages
Japanese (ja)
Inventor
Junichi Teraki
潤一 寺木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009117183A priority Critical patent/JP2010266107A/en
Publication of JP2010266107A publication Critical patent/JP2010266107A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas temperature control device in which small and light-weight fins are jointed to Peltier elements to maximize heat exchange by the fins. <P>SOLUTION: The gas temperature control device 1 includes a plurality of thermoelectric units 3 and a support body 5. The thermoelectric unit 3 is formed, by nipping the Peltier element 11, by using the opposite side to a heat-absorbing face 7 as a heat release face 9 between a heat absorbing fin 15 jointed to the heat absorbing face 7 via a fin base 13 and a heat release fin 19 jointed to the heat release face 9 via a fin base 17. The support body 5 is formed, by framing vertical frames 21, 23 and two cross members 25 to form a square shape and inner sides of these members form an opening 27. The plurality of thermoelectric units 3 are arranged in a gap, from the vertical frame 21 to the vertical frame 23 of the support body 5. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、熱電素子のペルチェ効果を利用して気体の温度を調整する気体温調装置に関する。   The present invention relates to a gas temperature control device that adjusts the temperature of a gas using the Peltier effect of a thermoelectric element.

特許文献1に示されたペルチェ素子は、互いに反対側を向いた二面を有する熱電素子であり、電流の流される方向により二面のうちの何れか一方が吸熱面となり他方が放熱面となる。ペルチェ素子の吸熱面、又は放熱面に接合されるヒートシンクとして、複数のフィンと空気等の気体との間で熱交換するものが適用される。   The Peltier element shown in Patent Document 1 is a thermoelectric element having two surfaces facing away from each other, and one of the two surfaces becomes a heat absorbing surface and the other becomes a heat radiating surface depending on the direction of current flow. . As the heat sink bonded to the heat absorbing surface or the heat radiating surface of the Peltier element, one that exchanges heat between a plurality of fins and a gas such as air is applied.

特許文献2は、互いに対面する2つのヒートシンクの間に、複数のペルチェ素子を配置し、2つのヒートシンクをボルトを用いて結束する構造を示している。ヒートシンクは、そのフィンの間を気体が流れるように風路に配置される。上記の熱交換を促進するにはヒートシンクの表面積を増大することが考えられる。   Patent Document 2 shows a structure in which a plurality of Peltier elements are arranged between two heat sinks facing each other, and the two heat sinks are bound using bolts. A heat sink is arrange | positioned in an air path so that gas may flow between the fins. In order to promote the heat exchange, it is conceivable to increase the surface area of the heat sink.

しかしながら、サイズの限られたヒートシンクにフィンを増設するためにフィン同士の間隔を狭くし、又は気体の流れる方向にフィンの奥行きを長くすると、風路内で気体の圧力損失が著しくなる。このため、風路に気体を供給するための送風機等の出力を不要に増大しなければならない。   However, if the distance between the fins is reduced in order to add fins to a heat sink having a limited size, or if the fin depth is increased in the direction of gas flow, the pressure loss of the gas becomes significant in the air passage. For this reason, the output of a blower or the like for supplying gas to the air passage must be increased unnecessarily.

更に、ヒートシンクの大型化はヒートシンクの重量が嵩むことになり、ペルチェ素子にヒートシンクを接合するのに、これらを接着剤で接着するだけでは強度が不足する。両者を接着剤に代わるボルトを用いて接合した場合、ヒートシンクに形成されるボルトの挿通孔にボルトの締付力が集中する。これによりヒートシンクが僅かに撓むと、ペルチェ素子とヒートシンクとの密着性が損なわれ、両者間の熱抵抗が増大する。また、ヒートシンクの剛性を高めるのにヒートシンクを厚肉にすると、ペルチェ素子とヒートシンクとを合わせた全体の重量の増大と、そのコストの上昇は避けられない。   Furthermore, the increase in the size of the heat sink increases the weight of the heat sink, and the strength is insufficient if the heat sink is bonded to the Peltier element by simply bonding them with an adhesive. When both are joined using a bolt instead of an adhesive, the bolt tightening force is concentrated in the bolt insertion hole formed in the heat sink. Accordingly, when the heat sink is slightly bent, the adhesion between the Peltier element and the heat sink is impaired, and the thermal resistance between the two is increased. Further, if the heat sink is made thick to increase the rigidity of the heat sink, an increase in the overall weight of the Peltier element and the heat sink together and an increase in cost are inevitable.

特許文献3は、ヒートシンクにボルトの挿通孔を形成する余地を確保するために、ヒートシンクの幅を、ペルチェ素子よりも広げた例を示している。この場合、ヒートシンクを広げたことによって熱交換の促進される効果は必ずしも大きくはなく、ヒートシンクを風路に納めるために風路の断面積が余計に拡大されることが問題となる。   Patent Document 3 shows an example in which the width of the heat sink is wider than that of the Peltier element in order to secure room for forming bolt insertion holes in the heat sink. In this case, the effect of promoting heat exchange by expanding the heat sink is not necessarily large, and there is a problem that the cross-sectional area of the air path is excessively increased in order to fit the heat sink in the air path.

特開平11−294890号公報JP 11-294890 A 特開2005−344992号公報JP 2005-344992 A 特開2000−188428号公報JP 2000-188428 A

本発明の目的とするところは、ペルチェ素子に小型で軽量なフィンを接合し、しかもフィンによる熱交換を最大限に促進できる気体温調装置を提供することにある。   An object of the present invention is to provide a gas temperature control device capable of joining a Peltier element with a small and light fin and further maximizing heat exchange by the fin.

本発明は上記目的を達成するため、吸熱面の反対側を放熱面としたペルチェ素子を、前記吸熱面に接合される吸熱フィン、及び前記放熱面に接合される放熱フィンの間に挟着した複数の熱電ユニットと、気体が内側を通過できる開口部を有し、前記複数の熱電ユニットのそれぞれの吸熱フィンと放熱フィンとを、互いに前記開口部を気体が通過する方向を横切る方向に並べ、かつ前記複数の熱電ユニットを、それぞれの吸熱フィンと放熱フィンの向きが交互に反対向きになる姿勢で、前記開口部の内側に位置決めする支持体とを備え、前記複数の熱電ユニットのそれぞれのペルチェ素子の間に、前記開口部を通過する気体を前記吸熱フィンと前記放熱フィンとにそれぞれ導く風路を確保したことを特徴とする。   In order to achieve the above object, the present invention sandwiches a Peltier element having a heat radiating surface opposite to a heat absorbing surface between a heat absorbing fin joined to the heat absorbing surface and a heat radiating fin joined to the heat radiating surface. A plurality of thermoelectric units and an opening through which gas can pass inside are arranged, and the heat absorption fins and the heat dissipation fins of the plurality of thermoelectric units are arranged in a direction crossing the direction in which the gas passes through the openings, A plurality of thermoelectric units, and a support body that is positioned inside the opening in a posture in which the directions of the heat absorbing fins and the heat radiating fins are alternately opposite to each other. An air path for guiding the gas passing through the opening to the heat-absorbing fin and the heat-radiating fin is secured between the elements.

また、本発明は、前記風路が、互いに隣り合う前記熱電ユニットがそれぞれの吸熱フィン同士を相対向させる領域と、互いに隣り合う前記熱電ユニットがそれぞれの放熱フィン同士を相対向させる領域とを、前記複数の熱電ユニットの並ぶ順に交互に違えることを特徴とする。   Further, the present invention provides an area in which the thermoelectric units adjacent to each other are opposed to each other, and an area in which the adjacent thermoelectric units are opposed to each other. The plurality of thermoelectric units are alternately changed in the order in which they are arranged.

また、本発明は、前記支持体の開口部が、前記熱電ユニットのペルチェ素子によって、前記熱電ユニットの吸熱フィンに気体を導く吸熱風路と、前記熱電ユニットの放熱フィンに気体を導く放熱風路とに仕切られたことを特徴とする。   Further, the present invention provides an endothermic air passage in which the opening of the support is guided by a Peltier element of the thermoelectric unit to the heat absorbing fin of the thermoelectric unit, and a heat radiating air passage that guides the gas to the heat radiating fin of the thermoelectric unit. It is divided into and.

また、本発明は、前記吸熱風路に気体の導かれる方向と、前記放熱風路に気体の導かれる方向とが、互いに反対向き、又は同じ向きであることを特徴とする。   Further, the present invention is characterized in that the direction in which the gas is guided to the endothermic air path and the direction in which the gas is guided to the heat radiating air path are opposite to each other or the same direction.

本発明に係る気体温調装置によれば、互いに隣り合う熱電ユニットがそれぞれの吸熱フィン同士を風路内で対向させているので、これらの吸熱フィンと風路を通過する気体との間で同時に熱交換を行うことができる。また、互いに隣り合う熱電ユニットがそれぞれの放熱フィン同士を風路内で対向させているので、これらの放熱フィンと風路を通過する気体との間で同時に熱交換を行うことができる。このため、風路内で熱交換される気体の熱量が倍増されることになる。   According to the gas temperature control device according to the present invention, the adjacent thermoelectric units oppose the heat-absorbing fins in the air passage, so that the heat-absorbing fins and the gas passing through the air passage are simultaneously Heat exchange can be performed. Moreover, since the thermoelectric units adjacent to each other make the radiating fins face each other in the air passage, heat exchange can be performed simultaneously between these radiating fins and the gas passing through the air passage. For this reason, the calorie | heat amount of the gas heat-exchanged in an air path is doubled.

従って、当該気体温調装置によれば、吸熱フィン、及び放熱フィンが比較的小型で軽量なものであっても、個々の熱電ユニットの性能を最大限に発揮させることができる。また、吸熱フィン、及び放熱フィンを小型化することにより、これらのフィンに沿って流れる気体の圧力損失を低減することができる。   Therefore, according to the said gas temperature control apparatus, even if a heat absorption fin and a heat radiation fin are comparatively small and lightweight, the performance of each thermoelectric unit can be exhibited to the maximum. Further, by reducing the size of the heat-absorbing fins and the heat-dissipating fins, it is possible to reduce the pressure loss of the gas flowing along these fins.

更に、吸熱フィン、及び放熱フィンを軽量化することにより、これらを接着剤だけでペルチェ素子に十分な強度で接合できる。このため、ボルトを用いた機械的な締付けが不要となり、吸熱フィンとペルチェ素子との間、及び放熱フィンとペルチェ素子との間の熱抵抗を減少させることができる。しかも、これらのフィンの接合にボルト等を用いないので、個々の熱電ユニットを軽量化し、また当該気体温調装置の製造コストを低減することができる。   Furthermore, by reducing the weight of the heat-absorbing fins and the heat-radiating fins, these can be joined to the Peltier element with sufficient strength using only an adhesive. For this reason, mechanical tightening using a bolt becomes unnecessary, and the thermal resistance between the heat absorption fin and the Peltier element and between the heat radiation fin and the Peltier element can be reduced. In addition, since bolts or the like are not used for joining these fins, individual thermoelectric units can be reduced in weight, and the manufacturing cost of the gas temperature control device can be reduced.

また、支持体の開口部に配列される熱電ユニットの個数を増減させることにより、当該気体温調装置が風路内で熱交換できる気体の熱量を調整できる。この場合、複数の熱電ユニットを、気体の流れる方向に直交する向きに並べれば、気体がフィンに沿って流れる距離は増大しないので、気体の圧力損失が増大しないという利点がある。   Further, by increasing or decreasing the number of thermoelectric units arranged in the opening of the support, it is possible to adjust the amount of gas heat that the gas temperature control device can exchange heat in the air passage. In this case, if a plurality of thermoelectric units are arranged in a direction orthogonal to the gas flow direction, the distance that the gas flows along the fins does not increase, so that there is an advantage that the pressure loss of the gas does not increase.

更に、本発明に係る気体温調装置によれば、複数の熱電ユニットのペルチェ素子によって支持体の開口部を吸熱風路と放熱風路とに分割しているので、これらを仕切るための板等が不要である分、支持体を小型化することができる。   Furthermore, according to the gas temperature control device according to the present invention, the opening of the support is divided into the heat absorption air passage and the heat radiation air passage by the Peltier elements of the plurality of thermoelectric units. The support can be miniaturized as much as is unnecessary.

本発明の実施形態に係る気体温調装置の正面図。The front view of the gas temperature control apparatus which concerns on embodiment of this invention. 図2のA−A線断面図。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 本発明の実施形態に係る気体温調装置に適用した熱電ユニットの分解斜視図。The disassembled perspective view of the thermoelectric unit applied to the gas temperature control apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る気体温調装置の一の使用例を示す概略図。Schematic which shows one usage example of the gas temperature control apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る気体温調装置の他の使用例を示す概略図。Schematic which shows the other usage example of the gas temperature control apparatus which concerns on embodiment of this invention.

本発明の実施形態を図1乃至図3を参照しながら説明する。気体温調装置1は、複数の熱電ユニット3と支持体5とを備える。矢印w、h、dは、熱電ユニット3の幅、高さ、及び奥行き方向をそれぞれ指している。   An embodiment of the present invention will be described with reference to FIGS. The gas temperature control device 1 includes a plurality of thermoelectric units 3 and a support 5. Arrows w, h, and d indicate the width, height, and depth direction of the thermoelectric unit 3, respectively.

熱電ユニット3は、吸熱面7の反対側を放熱面9としたペルチェ素子11を、吸熱面7にフィンベース13を介して接合される吸熱フィン15と、放熱面9にフィンベース17を介して接合される放熱フィン19との間に挟着したものである。接合とは溶接、又は接着を意味する。吸熱フィン15は、アルミニウムの薄板を波形に塑性変形させたコルゲートフィンである。吸熱フィン15の表面にシリカゲルを定着させても良い。放熱フィン19は吸熱フィン15と同様のものである。   The thermoelectric unit 3 includes a Peltier element 11 having a heat radiating surface 9 opposite to the heat absorbing surface 7, a heat absorbing fin 15 joined to the heat absorbing surface 7 via a fin base 13, and a heat radiating surface 9 via a fin base 17. It is sandwiched between the radiating fins 19 to be joined. Joining means welding or adhesion. The endothermic fin 15 is a corrugated fin obtained by plastically deforming a thin aluminum plate into a corrugated shape. Silica gel may be fixed to the surface of the endothermic fin 15. The heat radiating fins 19 are the same as the heat absorbing fins 15.

支持体5は、縦枠21,23、及び2本の横材25を方形に枠組みし、これらの内側を気体が奥行き方向に通過できる開口部27としたものである。縦枠21,23、及び横材25はアクリル製の板材である。開口部27の一端と他端は、それぞれ縦枠21,23によって画定されている。支持体5の縦枠21から縦枠23までの間には、複数の熱電ユニット3が配列され、それぞれのペルチェ素子11は、フィンベース13,17によって横材25に位置決めされている。図1は、高さ方向に4個の熱電ユニット3を配列し、これらを幅方向に8段連ねた形態を示しているが、熱電ユニット3の総数は限定されるものではない。符号29は断熱材を指している。   The support body 5 is a frame in which the vertical frames 21 and 23 and the two cross members 25 are squarely formed, and an opening 27 through which gas can pass in the depth direction is provided. The vertical frames 21 and 23 and the horizontal member 25 are acrylic plate materials. One end and the other end of the opening 27 are defined by vertical frames 21 and 23, respectively. A plurality of thermoelectric units 3 are arranged between the vertical frame 21 and the vertical frame 23 of the support 5, and each Peltier element 11 is positioned on the cross member 25 by the fin bases 13 and 17. FIG. 1 shows a form in which four thermoelectric units 3 are arranged in the height direction and these are connected in eight stages in the width direction, but the total number of thermoelectric units 3 is not limited. Reference numeral 29 indicates a heat insulating material.

また、複数のペルチェ素子11は互いに高さ方向に間隔を開け、これらのペルチェ素子11の間に風路31が確保されている。風路31は、次に述べる吸熱風路33と放熱風路35とに区分されている。   The plurality of Peltier elements 11 are spaced from each other in the height direction, and an air passage 31 is secured between these Peltier elements 11. The air passage 31 is divided into an endothermic air passage 33 and a heat radiating air passage 35 described below.

即ち、複数の熱電ユニット3は、開口部27を気体が通過する方向を横切る高さ方向に並び、この並び順に、それぞれの吸熱フィン15を開口部27の一端(縦枠21)へ向ける姿勢と、それぞれの吸熱フィン15を開口部27の他端(縦枠23)へ向ける姿勢とを交互に違えている。吸熱風路33は、互いに高さ方向に隣り合う熱電ユニット3がそれぞれの吸熱フィン15を相対向させる領域である。放熱風路35は、互いに高さ方向に隣り合う熱電ユニット3がそれぞれの放熱フィン19を相対向させる領域である。縦枠21とこれに対面するペルチェ素子11との間、及び縦枠23とこれに対面するペルチェ素子11との間を合わせた領域は、1つの吸熱風路に相当する。   That is, the plurality of thermoelectric units 3 are arranged in a height direction across the direction in which the gas passes through the opening 27, and in this arrangement order, each heat-absorbing fin 15 is directed to one end (vertical frame 21) of the opening 27. The posture in which each heat-absorbing fin 15 is directed to the other end (vertical frame 23) of the opening 27 is alternately changed. The endothermic air passage 33 is a region where the thermoelectric units 3 adjacent to each other in the height direction oppose the endothermic fins 15. The heat radiating air passage 35 is a region where the thermoelectric units 3 adjacent to each other in the height direction oppose the heat radiating fins 19 to each other. The region between the vertical frame 21 and the Peltier element 11 facing this, and between the vertical frame 23 and the Peltier element 11 facing this corresponds to one endothermic air passage.

このように、複数の熱電ユニット3のペルチェ素子11によって支持体5の開口部27が吸熱風路33と放熱風路35とに分割されるので、これらの吸熱風路33と放熱風路35を仕切るための板等が不要である。その分、気体温調装置1は支持体5を小型化することができる。   As described above, the opening 27 of the support 5 is divided into the endothermic air passage 33 and the heat radiating air passage 35 by the Peltier elements 11 of the plurality of thermoelectric units 3. There is no need for a partitioning plate or the like. Accordingly, the gas temperature control device 1 can reduce the size of the support 5.

気体温調装置1の使用例を次に述べる。以下の説明は、1つの吸熱風路33、及び放熱風路35に注目するが、図1に表れた総ての吸熱風路33、及び放熱風路35について同様であるとする。図4は、吸熱風路33に接続した導入路37と導出路39、及び放熱風路35に接続した導入路41と導出路43を示している。導出路39は切換ダンパ45,46を介して送風手段47に接続し、導出路43は切換ダンパ49,50を介して送風手段51に接続している。送風手段47,51は送風機を内装した風路である。   The usage example of the gas temperature control apparatus 1 is described next. In the following description, attention is paid to one endothermic air passage 33 and the heat radiating air passage 35, but the same applies to all the endothermic air passages 33 and the radiating air passage 35 shown in FIG. 1. FIG. 4 shows an introduction path 37 and a lead-out path 39 connected to the endothermic air path 33, and an introduction path 41 and a lead-out path 43 connected to the radiating air path 35. The lead-out path 39 is connected to the blower means 47 via the switching dampers 45 and 46, and the lead-out path 43 is connected to the blower means 51 via the switch dampers 49 and 50. The air blowing means 47 and 51 are air passages equipped with a blower.

先ず、ペルチェ素子11に、その吸熱面7から放熱面9へ熱が移動するように電流を供給する。送風手段47,51を起動させると、導入路37に導入される気体は、吸熱風路33を通過し、送風手段47によって導出路39から外方へ導出される。導入路41に導入される気体は、放熱風路35を通過し、送風手段51によって導出路43から外方へ導出される。   First, a current is supplied to the Peltier element 11 so that heat is transferred from the heat absorbing surface 7 to the heat radiating surface 9. When the air blowing means 47 and 51 are activated, the gas introduced into the introduction path 37 passes through the endothermic air path 33 and is led out from the outlet path 39 by the air blowing means 47. The gas introduced into the introduction path 41 passes through the heat radiating air path 35 and is led out from the lead-out path 43 by the blower 51.

上記のように吸熱風路33を通過する気体と、互いに隣り合う2列(16個)の熱電ユニット3のそれぞれの吸熱フィン15との間で同時に熱交換が行われるので、気体の温度を急速に降下させることができる。上記のように放熱風路35を通過する気体と、互いに隣り合う2列(16個)の熱電ユニット3のそれぞれの放熱フィン19との間で同時に熱交換が行われるので、ペルチェ素子11の放熱面9の熱を効率よく放熱させることができる。   As described above, heat exchange is simultaneously performed between the gas passing through the endothermic air passage 33 and the endothermic fins 15 of the two rows (16 pieces) of the thermoelectric units 3 adjacent to each other. Can be lowered. As described above, heat exchange is performed simultaneously between the gas passing through the heat radiating air passage 35 and the heat radiating fins 19 of the two rows (16 pieces) of the thermoelectric units 3 adjacent to each other. The heat of the surface 9 can be efficiently radiated.

以上に述べた気体温調装置1は、吸熱フィン15の高さが吸熱風路33の半分以下であり、放熱フィン19の高さが放熱風路35の半分以下である。このように、吸熱フィン15、及び放熱フィン19が比較的小型で軽量なものであっても、個々の熱電ユニット3はその性能を最大限に発揮することができる。また、吸熱フィン15、及び放熱フィン19を小型化することにより、これらの厚み方向に沿って流れる気体の圧力損失を低減することができる。特に、吸熱フィン15、及び放熱フィン19を、それぞれの幅に比べ奥行きを短くし、両者の高さを奥行きよりも更に低く設定した場合、以上の効果が顕著になる。   In the gas temperature control apparatus 1 described above, the height of the heat absorption fins 15 is less than or equal to half that of the heat absorption air passage 33, and the height of the heat dissipation fins 19 is less than or equal to half of the heat dissipation air passage 35. Thus, even if the heat absorption fins 15 and the heat radiation fins 19 are relatively small and light, the individual thermoelectric units 3 can maximize their performance. Further, by reducing the size of the heat-absorbing fins 15 and the heat-radiating fins 19, it is possible to reduce the pressure loss of the gas flowing along these thickness directions. In particular, when the heat-absorbing fins 15 and the heat-radiating fins 19 are made shorter than the respective widths and the heights of the heat-absorbing fins 15 and the heat-radiating fins 19 are set to be lower than the depth, the above effects become remarkable.

また、吸熱フィン15、及び放熱フィン19を軽量化することにより、これらを接着剤だけでペルチェ素子11に十分な強度で接合できるので、ボルトを用いた機械的な両者の締付けが不要となり、吸熱フィン15とペルチェ素子11との間、及び放熱フィン19とペルチェ素子11との間の熱抵抗を減少させることができる。しかも、吸熱フィン15と放熱フィン19とを接合するのにボルトを用いないので、個々の熱電ユニット3を軽量化し、また気体温調装置1の製造コストを低減することができる。   Further, by reducing the weight of the heat-absorbing fins 15 and the heat-dissipating fins 19, these can be joined to the Peltier element 11 with sufficient strength by using only an adhesive. The thermal resistance between the fin 15 and the Peltier element 11 and between the radiation fin 19 and the Peltier element 11 can be reduced. Moreover, since no bolts are used to join the heat-absorbing fins 15 and the heat-radiating fins 19, the individual thermoelectric units 3 can be reduced in weight, and the manufacturing cost of the gas temperature control device 1 can be reduced.

また、気体温調装置1は、支持体5の開口部27に幅方向に配列される熱電ユニット3の個数を増加させることにより、風路31で熱交換できる気体の熱量を所望に調整できる。この場合、既存の熱電ユニット3に対して増加する熱電ユニット3を幅方向に縦列させる。例えば、図1に表れた8段の熱電ユニット3を10段に増やしても良い。このように熱電ユニット3の個数が増えても、気体がフィンに沿って厚み方向に流れる距離は増大しないので、吸熱風路33、及び放熱風路35を流れる気体の圧力損失が増大しないという利点がある。   Moreover, the gas temperature control apparatus 1 can adjust the heat quantity of the gas which can be heat-exchanged by the air path 31 by increasing the number of the thermoelectric units 3 arranged in the width direction in the opening part 27 of the support body 5 as desired. In this case, the thermoelectric units 3 that increase with respect to the existing thermoelectric units 3 are cascaded in the width direction. For example, the eight-stage thermoelectric unit 3 shown in FIG. 1 may be increased to ten stages. Even if the number of thermoelectric units 3 increases in this way, the distance that the gas flows in the thickness direction along the fin does not increase, so that the pressure loss of the gas flowing through the endothermic air passage 33 and the radiating air passage 35 does not increase. There is.

また、吸熱フィン15、及び放熱フィン19にシリカゲルが定着されている場合、気体に含まれる水蒸気をシリカゲルに吸湿させることができる。このシリカゲルが飽和状態に達したところで、ペルチェ素子11に供給する電流の向きを反転し、その放熱面9から吸熱面7へ熱を移動させる。   Further, when silica gel is fixed to the heat-absorbing fins 15 and the heat-radiating fins 19, water vapor contained in the gas can be absorbed by the silica gel. When the silica gel reaches a saturated state, the direction of the current supplied to the Peltier element 11 is reversed, and heat is transferred from the heat radiation surface 9 to the heat absorption surface 7.

そして、切換ダンパ45,46,49,50を図5に示すように操作する。これにより、導出路39に導入される気体は、吸熱風路33を通過し、送風手段51によって導入路37から外方へ導出される。このように放熱風路35を通過する気体はその温度が降下する。導出路43に導入される気体は、放熱風路35を通過し、送風手段47によって導入路41から外方へ導出される。このように吸熱風路33を通過する気体に、ペルチェ素子11の吸熱面7の熱が放熱される。また、吸熱フィン15の温度が上昇することにより、吸熱フィン15のシリカゲルに吸湿された水分が蒸発する。   Then, the switching dampers 45, 46, 49, 50 are operated as shown in FIG. As a result, the gas introduced into the lead-out path 39 passes through the endothermic air path 33 and is led out from the introduction path 37 by the blowing means 51. As described above, the temperature of the gas passing through the heat radiating air passage 35 decreases. The gas introduced into the lead-out path 43 passes through the heat radiating air path 35 and is led out from the introduction path 41 by the blowing means 47. In this way, heat of the heat absorbing surface 7 of the Peltier element 11 is radiated to the gas passing through the heat absorbing air passage 33. Further, when the temperature of the endothermic fin 15 rises, the moisture absorbed by the silica gel of the endothermic fin 15 evaporates.

尚、本発明は、その趣旨を逸脱しない範囲で当業者の知識に基づいて種々なる改良、修正、又は変形を加えた態様でも実施することができる。例えば、図4,5は、吸熱風路33が吸熱フィン15に気体を導く方向と、放熱風路35が放熱フィン19に気体を導く方向とを、互いに反対向きにした形態を表しているが、これらの方向を同じ向きにしても良い。   It should be noted that the present invention can be carried out in a mode in which various improvements, modifications, or variations are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention. For example, FIGS. 4 and 5 show a form in which the direction in which the endothermic air passage 33 guides the gas to the endothermic fin 15 and the direction in which the heat radiating air passage 35 leads the gas to the heat radiating fin 19 are opposite to each other. These directions may be the same.

また、フィンベース13,17に代えて、2本の横材25の間に棒体を掛け渡し、この棒体にペルチェ素子11を取付けても良い。この場合、ペルチェ素子11の吸熱面7、及び放熱面9に、それぞれ吸熱フィン15、及び放熱フィン19を直に接合することができる。また、吸熱風路33、又は放熱風路35の何れか一方に、温風、又は冷風を送風し、ペルチェ素子11の吸熱面7と放熱面9との間に温度差を生じさせても良い。これにより、ペルチェ素子11に起電力を発生させることができる。   Further, instead of the fin bases 13 and 17, a rod body may be stretched between the two cross members 25, and the Peltier element 11 may be attached to the rod body. In this case, the heat absorbing fins 15 and the heat radiating fins 19 can be directly joined to the heat absorbing surface 7 and the heat radiating surface 9 of the Peltier element 11, respectively. Further, either one of the endothermic air passage 33 and the heat radiating air passage 35 may be blown with warm air or cold air to cause a temperature difference between the heat absorbing surface 7 and the heat radiating surface 9 of the Peltier element 11. . Thereby, an electromotive force can be generated in the Peltier element 11.

本発明は、電機部品を冷却、又は室内の温度調整をするのに使用できる。   The present invention can be used to cool an electrical component or adjust the temperature in a room.

1…気体温調装置、3…熱電ユニット、5…支持体、7…吸熱面、9…放熱面、11…ペルチェ素子、15…吸熱フィン、19…放熱フィン、21…一端(縦枠)、23…他端(縦枠)、27…開口部、31…風路、33…吸熱風路、35…放熱風路。   DESCRIPTION OF SYMBOLS 1 ... Gas temperature control device, 3 ... Thermoelectric unit, 5 ... Support body, 7 ... Endothermic surface, 9 ... Radiation surface, 11 ... Peltier element, 15 ... Endothermic fin, 19 ... Radiation fin, 21 ... One end (vertical frame), 23 ... The other end (vertical frame), 27 ... Opening, 31 ... Air passage, 33 ... Endothermic air passage, 35 ... Radiation air passage.

Claims (4)

吸熱面の反対側を放熱面としたペルチェ素子を、前記吸熱面に接合される吸熱フィン、及び前記放熱面に接合される放熱フィンの間に挟着した複数の熱電ユニットと、
気体が内側を通過できる開口部を有し、前記複数の熱電ユニットのそれぞれの吸熱フィンと放熱フィンとを、互いに前記開口部を気体が通過する方向を横切る方向に並べ、かつ前記複数の熱電ユニットを、それぞれの吸熱フィンと放熱フィンの向きが交互に反対向きになる姿勢で、前記開口部の内側に位置決めする支持体とを備え、
前記複数の熱電ユニットのそれぞれのペルチェ素子の間に、前記開口部を通過する気体を前記吸熱フィンと前記放熱フィンとにそれぞれ導く風路を確保したことを特徴とする気体温調装置。
A Peltier element having a heat dissipation surface opposite to the heat absorption surface, a heat absorption fin joined to the heat absorption surface, and a plurality of thermoelectric units sandwiched between the heat dissipation fins joined to the heat dissipation surface;
A plurality of thermoelectric units, each having an opening through which gas can pass inside, the heat absorbing fins and the heat radiating fins of each of the plurality of thermoelectric units arranged in a direction crossing the direction in which the gas passes through the openings. A support body that is positioned inside the opening in a posture in which the directions of the heat absorbing fins and the heat radiating fins are alternately opposite to each other,
A gas temperature control device characterized in that an air passage is provided between each Peltier element of the plurality of thermoelectric units to guide the gas passing through the opening to the heat-absorbing fin and the heat-radiating fin, respectively.
前記風路は、互いに隣り合う前記熱電ユニットがそれぞれの吸熱フィン同士を相対向させる領域と、互いに隣り合う前記熱電ユニットがそれぞれの放熱フィン同士を相対向させる領域とを、前記複数の熱電ユニットの並ぶ順に交互に違えることを特徴とする請求項1に記載の気体温調装置。   The air path includes a region in which the adjacent thermoelectric units oppose each heat-absorbing fins, and a region in which the adjacent thermoelectric units oppose each heat-dissipating fins to each other. The gas temperature control device according to claim 1, wherein the gas temperature control device is alternately changed in the order of arrangement. 前記支持体の開口部は、前記熱電ユニットのペルチェ素子によって、前記熱電ユニットの吸熱フィンに気体を導く吸熱風路と、前記熱電ユニットの放熱フィンに気体を導く放熱風路とに仕切られたことを特徴とする請求項1又は2に記載の気体温調装置。   The opening of the support is partitioned by a Peltier element of the thermoelectric unit into an endothermic air passage that guides gas to the endothermic fin of the thermoelectric unit and a radiant air passage that guides gas to the radiating fin of the thermoelectric unit. The gas temperature control apparatus according to claim 1 or 2, wherein 前記吸熱風路に気体の導かれる方向と、前記放熱風路に気体の導かれる方向とが、互いに反対向き、又は同じ向きであることを特徴とする請求項3に記載の気体温調装置。   The gas temperature control device according to claim 3, wherein a direction in which the gas is guided to the endothermic air path and a direction in which the gas is guided to the heat radiating air path are opposite to or in the same direction.
JP2009117183A 2009-05-14 2009-05-14 Gas temperature control device Pending JP2010266107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117183A JP2010266107A (en) 2009-05-14 2009-05-14 Gas temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117183A JP2010266107A (en) 2009-05-14 2009-05-14 Gas temperature control device

Publications (1)

Publication Number Publication Date
JP2010266107A true JP2010266107A (en) 2010-11-25

Family

ID=43363234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117183A Pending JP2010266107A (en) 2009-05-14 2009-05-14 Gas temperature control device

Country Status (1)

Country Link
JP (1) JP2010266107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233690A (en) * 2013-06-04 2014-12-15 独立行政法人 宇宙航空研究開発機構 Carbon dioxide removal device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141233A (en) * 1995-11-22 1997-06-03 Matsushita Electric Ind Co Ltd Crude refuse decomposing and treating device
JPH11294889A (en) * 1998-04-14 1999-10-29 Daikin Ind Ltd Cold source unit
JP2000088394A (en) * 1998-09-16 2000-03-31 Yamaha Corp Heat exchanger
JP2003028454A (en) * 2001-07-16 2003-01-29 Daikin Ind Ltd Fan
JP2006041222A (en) * 2004-07-28 2006-02-09 Gac Corp Thermoelectric converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141233A (en) * 1995-11-22 1997-06-03 Matsushita Electric Ind Co Ltd Crude refuse decomposing and treating device
JPH11294889A (en) * 1998-04-14 1999-10-29 Daikin Ind Ltd Cold source unit
JP2000088394A (en) * 1998-09-16 2000-03-31 Yamaha Corp Heat exchanger
JP2003028454A (en) * 2001-07-16 2003-01-29 Daikin Ind Ltd Fan
JP2006041222A (en) * 2004-07-28 2006-02-09 Gac Corp Thermoelectric converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233690A (en) * 2013-06-04 2014-12-15 独立行政法人 宇宙航空研究開発機構 Carbon dioxide removal device

Similar Documents

Publication Publication Date Title
KR100919525B1 (en) A switchgear with high efficiency using peltier module
JP4303679B2 (en) Heat exchanger
TW201315960A (en) Laminated heat sinks
JP2011165704A (en) Heat sink and light emitting element unit
JP6448732B2 (en) Heat dissipation device using module type cooling device
JP2008078587A (en) Fin for heat exchange
JP2010266107A (en) Gas temperature control device
KR20150075122A (en) Heat exchanger with thermoelectric element
KR101887779B1 (en) Ventilation module of ventilation seat
JPH09196505A (en) Thermoelectric device
JP2008101855A (en) Ceiling radiation system
TWM269697U (en) Overhead-suspension-type heat sink member
JP6454915B2 (en) Cooling heat transfer device
JPWO2020255339A1 (en) Radiant panel
JP2009300051A (en) Ceiling radiation system
JP2012169529A (en) Radiator
JP2002257378A (en) Cooling device of exhaust hot air of cooler
JPH05160441A (en) Thermoelectric converter
TWI708034B (en) Refrigeration module with air flow channel and air conditioner with refrigeration module
JP5415080B2 (en) Evaporative cooling device
WO2022052026A1 (en) Heat-conducting member and hot air apparatus having same
JP2008261562A (en) Heating element storage box cooling device
JP2009264719A (en) Heat exchanger
JP2013191624A (en) Thermoelectric conversion unit
JP3048806U (en) Thin laminated heatsink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

A02 Decision of refusal

Effective date: 20131007

Free format text: JAPANESE INTERMEDIATE CODE: A02