JP2010263530A - Electronic component and piezoelectric vibrator - Google Patents

Electronic component and piezoelectric vibrator Download PDF

Info

Publication number
JP2010263530A
JP2010263530A JP2009114274A JP2009114274A JP2010263530A JP 2010263530 A JP2010263530 A JP 2010263530A JP 2009114274 A JP2009114274 A JP 2009114274A JP 2009114274 A JP2009114274 A JP 2009114274A JP 2010263530 A JP2010263530 A JP 2010263530A
Authority
JP
Japan
Prior art keywords
hole
electrode
base substrate
piezoelectric vibrating
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009114274A
Other languages
Japanese (ja)
Other versions
JP5365851B2 (en
JP2010263530A5 (en
Inventor
Kenji Tsuchido
健次 土戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009114274A priority Critical patent/JP5365851B2/en
Publication of JP2010263530A publication Critical patent/JP2010263530A/en
Publication of JP2010263530A5 publication Critical patent/JP2010263530A5/en
Application granted granted Critical
Publication of JP5365851B2 publication Critical patent/JP5365851B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic component and a piezoelectric vibrator which reliably connects a lead-out electrode and a through electrode. <P>SOLUTION: The piezoelectric vibrator 10 is formed by mounting a piezoelectric vibration chip 14 having excitation electrodes (first and second excitation electrodes 26, 28) on a base substrate 42. The base substrate 42 includes through holes (first and second through holes 44, 46) formed on positions facing the piezoelectric vibration chip 14 and through electrodes (first and second through electrodes 52, 54) for sealing the through holes 44, 46. The piezoelectric vibration chip 14 includes projections (first and second projections 36, 38) and conductive films (first and second metal films 48a, 50a, etc.) formed on the surfaces of the projections 36, 38 and electrically connected to the excitation electrodes 26, 28 on the main surface of the piezoelectric vibration chip 14, which faces the through holes 44, 46, and is configured so that the conductive films formed on the surfaces of the projections 36, 38 penetrate through the aperture surfaces of the through holes 44, 46, which face the piezoelectric vibration chip 14. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、直接接合を用いて接合される積層構造の圧電振動子や力検出素子等の電子部品に関し、特に中間層の端子電極とベース基板を貫通する貫通電極との電気的接続において接続信頼性を向上させる技術に関する。   The present invention relates to an electronic component such as a piezoelectric vibrator or a force detection element having a laminated structure that is bonded by direct bonding, and particularly in connection of an electrical connection between a terminal electrode of an intermediate layer and a through electrode that penetrates a base substrate. It is related with the technology which improves the nature.

近年に代表される移動体通信機器や携帯電話は個人向け携帯電話の小型軽量化及び高周波化に伴い、それらに用いられる圧電振動子やフィルタ等も、より一層の小型化及び高周波化が求められている。この要求に応えるため、従来の圧電部品は小型化、薄型化のパッケージへの適用が急速に求められてきている。
一方、水晶振動子、水晶フィルタやSAWフィルタなどの圧電素子は、周囲の温度や湿度の変化、あるいは微細な異物に影響されて特性が微妙に変化することや、機械的振動や衝撃によって破損しやすい。このため上述の素子は、パッケージに封止して使用に供されている。
As mobile communication devices and mobile phones represented in recent years have become smaller, lighter and higher in frequency for personal mobile phones, piezoelectric vibrators and filters used in them have been required to be further reduced in size and frequency. ing. In order to meet this demand, conventional piezoelectric parts have been rapidly demanded to be applied to smaller and thinner packages.
On the other hand, piezoelectric elements such as crystal resonators, crystal filters, and SAW filters may be damaged by changes in ambient temperature and humidity, or by fine foreign substances, and may be damaged by mechanical vibration or impact. Cheap. For this reason, the above-mentioned element is sealed for use in a package.

従来のパッケージは、素子個別にパッケージを形成しているが、これに対し、複数の素子が同時に切り出されているウェハレベルで、封止された状態としたのち、個々の素子(チップ)に切り出してパッケージされたチップの状態とする技術も提案されている。この場合ウェハの積層構造によってパッケージを製造することになるが、異なるウェハに存在する電極同士の電気的接続を高い信頼性で行う必要がある。   In the conventional package, a package is formed for each element. On the other hand, after a plurality of elements are cut out at the same time, the package is sealed and then cut into individual elements (chips). There is also proposed a technology for making a packaged chip. In this case, the package is manufactured by the laminated structure of the wafers, but it is necessary to perform electrical connection between electrodes existing in different wafers with high reliability.

図12に第1の従来技術に係る圧電振動子を示す。図12に示すように、特許文献1には、励振電極205(ab)及び励振電極205(ab)に接続される引き出し電極207(ab)を有する水晶片203と、水晶片203に対向する面に形成された凹部204(ab)及び凹部204(ab)を貫通する貫通孔206(ab)を有する蓋体202(ab)とを有し、水晶片203がシロキサン結合による直接接合により蓋体202(ab)に挟まれる態様で積層された3層All Quartz Packageにおいて、貫通孔206(ab)を封止し、例えば蒸着により、導電性接合材208に接続する実装電極209(ab)を両端側の側面及び両主面に形成することが開示されている。   FIG. 12 shows a piezoelectric vibrator according to the first prior art. As shown in FIG. 12, Patent Document 1 discloses a crystal piece 203 having an excitation electrode 205 (ab) and an extraction electrode 207 (ab) connected to the excitation electrode 205 (ab), and a surface facing the crystal piece 203. And a lid body 202 (ab) having a through hole 206 (ab) penetrating through the recess 204 (ab), and the crystal piece 203 is directly bonded by a siloxane bond to the lid body 202. In the three-layer All Quartz Package stacked in a manner sandwiched between (ab), the through-hole 206 (ab) is sealed, and the mounting electrodes 209 (ab) connected to the conductive bonding material 208 by, for example, vapor deposition are disposed on both ends. It is disclosed to form on the side surface and both main surfaces.

図13に第2の従来技術に係る圧電振動子を示す。図13(a)は全体図、図13(b)は図13(a)の外部端子を形成する工程を示す図である。図13に示すように、特許文献2には、下からベース用シート状ウェハ303、水晶ウェハ305、蓋体シート状ウェハ301の順に直接接合により積層された3層All Quartz Packageにおいて、ウェハ状に形成された水晶振動子306のベース用シート状ウェハ303に予め形成された貫通孔302に金属粉308を吹き付けて、その内部に金属粉308を堆積させながら、水晶振動素子304の表面と貫通孔302との隙間を埋めるとともに、金属粉308を貫通孔302の内部に堆積させて、水晶振動子306の内部の水晶振動素子304から貫通孔302内部を経てベース用シート状ウェハ303の表面に至るまで詰め込み密着させて電気的導通路307を形成することが開示されている。金属粉308は貫通孔302に吹き付けられる際に、貫通孔302の内壁との摩擦で発生する摩擦熱により金属粉308が溶け、水晶振動素子304の表面と、貫通孔302との隙間を埋めて、金属粉308を貫通孔302の内部に密着、堆積させて水晶振動子306の内部の水晶振動素子304から貫通孔302内部を経てベース用シート状ウェハ303の表面に至るまで詰め込まれ密着される。   FIG. 13 shows a piezoelectric vibrator according to the second prior art. FIG. 13A is a general view, and FIG. 13B is a diagram showing a process of forming the external terminal of FIG. 13A. As shown in FIG. 13, Patent Document 2 discloses a three-layer All Quartz Package in which a base sheet-like wafer 303, a crystal wafer 305, and a lid sheet-like wafer 301 are laminated in this order from the bottom. The metal powder 308 is sprayed on the through-holes 302 formed in advance on the base sheet-like wafer 303 of the formed crystal resonator 306, and the metal powder 308 is deposited therein, while the surface of the crystal resonator element 304 and the through-holes are deposited. In addition to filling the gap with 302, metal powder 308 is deposited inside the through hole 302, and reaches the surface of the base sheet-like wafer 303 through the inside of the through hole 302 from the crystal resonator element 304 inside the crystal resonator 306. It is disclosed that the electrical conduction path 307 is formed by packing up and down. When the metal powder 308 is sprayed on the through hole 302, the metal powder 308 is melted by frictional heat generated by friction with the inner wall of the through hole 302, filling the gap between the surface of the crystal resonator element 304 and the through hole 302. Then, the metal powder 308 is closely attached and deposited inside the through-hole 302, and is packed and adhered from the crystal resonator element 304 inside the crystal resonator 306 to the surface of the base sheet-like wafer 303 through the inside of the through-hole 302. .

金属粉308は粒径がおおよそ10μm程度の粉状のアルミニウム(Al)、銅(Cu)、銀(Ag)、金(Au)などを使用することができ、貫通孔302の大きさは、直径がおおよそ20〜200μm程度の微細なものであり、外部端子形状も略矩形でなく図13に示されるような貫通孔302をベースシート用ウェハ303からみた円形状でも全く構わないことが開示されている。   As the metal powder 308, powdery aluminum (Al), copper (Cu), silver (Ag), gold (Au), etc. having a particle size of about 10 μm can be used, and the size of the through hole 302 is the diameter. However, it is disclosed that the external terminal shape is not substantially rectangular, and the through hole 302 as shown in FIG. Yes.

図14に第3の従来技術に係る圧電振動子を示す。図14(a)は全体図、図14(b)は図14(a)の外部端子を形成する工程を示す図である。図14に示すように、特許文献3にも、下からベース用シート状ウェハ403、水晶ウェハ405、蓋体シート状ウェハ401の順に直接接合により積層された3層All Quartz Packageにおいて、金属箔微粒子411をウェハ状に形成した水晶振動子406のベース用シート状ウェハ403の貫通孔402の間に配置された金属箔409にレーザー照射装置408から射出されたレーザー光410を照射して溶解し、先の貫通孔402に飛散させて、貫通孔402内部に金属箔微粒子411を堆積させ水晶振動素子404の表面と、貫通孔402との隙間を金属微粒子411で埋めて、更に金属箔微粒子411を貫通孔402の内部に堆積させて、水晶振動子406の内部の水晶振動素子404から貫通孔402内部を経てベース用シート状ウェハ403の表面に至るまで金属微粒子411を堆積させて電気的導通路407を形成する電気的導通路の形成方法が開示されている。   FIG. 14 shows a piezoelectric vibrator according to the third prior art. FIG. 14A is an overall view, and FIG. 14B is a diagram showing a process of forming the external terminal of FIG. As shown in FIG. 14, Patent Document 3 also discloses a metal foil fine particle in a three-layer All Quartz Package in which base sheet-like wafer 403, crystal wafer 405, and lid sheet-like wafer 401 are laminated in this order from below. The metal foil 409 disposed between the through holes 402 of the base sheet-like wafer 403 of the crystal resonator 406 in which the 411 is formed in a wafer shape is irradiated with the laser light 410 emitted from the laser irradiation device 408 and melted. The metal foil fine particles 411 are deposited in the previous through-holes 402 to deposit the metal foil fine particles 411 inside the through-holes 402, and the gap between the surface of the quartz crystal vibrating element 404 and the through-holes 402 is filled with the metal fine particles 411. It is deposited inside the through hole 402, and passes through the inside of the through hole 402 from the crystal vibrating element 404 inside the crystal resonator 406. An electrical conduction path forming method is disclosed in which metal fine particles 411 are deposited up to the surface of the base sheet-like wafer 403 to form an electrical conduction path 407.

特開2000−269775号公報JP 2000-269775 A 特開2008−113378号公報JP 2008-113378 A 特開2008−167302号公報JP 2008-167302 A

しかしながら、先行文献1〜3には、もともと貫通孔の開口面と引き回し電極との間に隙間(空隙)が存在しており、先行文献1においては表面張力によって蝋材(または溶解した金属微粒子)が接触面積の大きい貫通孔内壁面の方へ引っ張られるので、蝋材が引き回し電極まで至らず結果的に貫通孔内の蝋材と引き回し電極との電気的接続が確保できなくなる虞があるという問題があった。
また、先行文献2、先行文献3においては、金属粉または金属箔微粒子を貫通孔に溶解させながら堆積させているが、先に堆積された金属粉または金属箔微粒子の熱容量と照射されている金属粉または金属箔微粒子の熱容量の差が徐々に拡大し、照射されている金属粉または金属箔微粒子の溶解品質(ヌレ性)が徐々に低下して抵抗分が上昇し、接続信頼性が低下する虞があるという問題があった。
However, in the prior art documents 1 to 3, there is originally a gap (gap) between the opening surface of the through hole and the routing electrode. In the prior art document 1, the wax material (or dissolved metal fine particles) due to the surface tension. Is pulled toward the inner wall surface of the through-hole with a large contact area, so that the wax material does not reach the electrode, and as a result, there is a risk that the electrical connection between the wax material in the through-hole and the routing electrode may not be secured. was there.
Further, in the prior art document 2 and the prior art document 3, the metal powder or metal foil fine particles are deposited while being dissolved in the through-holes, but the heat capacity of the metal powder or metal foil fine particles previously deposited and the irradiated metal The difference in heat capacity between the powder or metal foil fine particles gradually increases, the dissolution quality (swelling property) of the irradiated metal powder or metal foil fine particles gradually decreases, the resistance increases, and the connection reliability decreases. There was a problem of fear.

そこで本発明は、上記問題に着目し、中間層の引き出し電極とベース基板に形成された外部電極との貫通電極を介しての電気的接続において接続信頼性を向上させた構造を有する電子部品、及び圧電振動子を提供することを目的とする。   Therefore, the present invention pays attention to the above problem, and an electronic component having a structure in which connection reliability is improved in electrical connection via a through electrode between an extraction electrode of the intermediate layer and an external electrode formed on the base substrate, And a piezoelectric vibrator.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の適用例として実現することが可能である。
[適用例1]電子素子片をベース基板上に搭載して形成される電子部品であって、前記ベース基板は、前記電子素子片に対向する位置に形成された貫通孔と、前記貫通孔を封止する封止部材とを有し、前記電子素子片は、前記電子素子片の前記貫通孔に対向する主面に凸部を有するとともに、前記凸部の表面上に形成された導電膜が前記貫通孔の前記電子素子片に対向する側の開口面を貫通していることを特徴とする電子部品。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following application examples.
Application Example 1 An electronic component formed by mounting an electronic element piece on a base substrate, the base substrate including a through hole formed at a position facing the electronic element piece, and the through hole A sealing member for sealing, and the electronic element piece has a convex portion on a main surface facing the through hole of the electronic element piece, and a conductive film formed on a surface of the convex portion. An electronic component characterized by passing through an opening surface of the through hole facing the electronic element piece.

上記構成により、凸部に形成された導電膜を貫通孔内に入り込ませることができる。よって貫通孔内に形成する貫通電極と導電膜との電気的接続を容易に行うことができる電子部品となる。   With the above configuration, the conductive film formed on the convex portion can enter the through hole. Therefore, the electronic component can be easily connected between the through electrode formed in the through hole and the conductive film.

[適用例2]前記凸部が、前記開口面を貫通していることを特徴とする請求項1に記載の電子部品。
これにより、凸部は貫通孔に嵌め込まれることになるので、電子素子片とベース基板との積層時のアライメントが容易になり作業効率を向上させることができる。
Application Example 2 The electronic component according to claim 1, wherein the convex portion penetrates the opening surface.
Thereby, since a convex part will be engage | inserted by a through-hole, alignment at the time of lamination | stacking with an electronic element piece and a base substrate becomes easy, and it can improve working efficiency.

[適用例3]励振電極を有する圧電振動片をベース基板上に搭載して形成された圧電振動子であって、前記ベース基板は、前記圧電振動片に対向する位置に形成された貫通孔と、前記貫通孔を封止する貫通電極とを有し、前記圧電振動片は、前記圧電振動片の前記貫通孔に対向する主面に凸部と、前記凸部の表面上に形成されると共に前記励振電極と電気的に接続された導電膜と、を有し、前記凸部の表面上に形成された導電膜が前記貫通孔の前記圧電振動片に対向する側の開口面を貫通していることを特徴とする圧電振動子。 Application Example 3 A piezoelectric vibrator formed by mounting a piezoelectric vibrating piece having an excitation electrode on a base substrate, the base substrate having a through hole formed at a position facing the piezoelectric vibrating piece The piezoelectric vibrating piece is formed on the main surface of the piezoelectric vibrating piece facing the through hole and on the surface of the protruding portion. A conductive film electrically connected to the excitation electrode, and the conductive film formed on the surface of the convex portion passes through the opening surface of the through hole facing the piezoelectric vibrating piece. A piezoelectric vibrator characterized by comprising:

上記構成により、凸部に形成された導電膜を貫通孔内に入り込ませることができる。よって貫通孔内に形成する貫通電極と導電膜との電気的接続を容易に行うことができる圧電振動子となる。   With the above configuration, the conductive film formed on the convex portion can enter the through hole. Accordingly, the piezoelectric vibrator can be easily connected between the through electrode formed in the through hole and the conductive film.

[適用例4]ベース基板上に圧電振動片層を積層して形成される圧電振動子であって、前記ベース基板は、前記凸部に対向する位置に形成された貫通孔と、前記貫通孔を封止する貫通電極と、を有し、前記圧電振動片層は、励振電極を有する圧電振動片と、前記圧電振動片を支持し、前記ベース基板に接合される支持枠と、前記圧電振動片に接続された引き出し部と、前記引き出し部の前記ベース基板に対向する面に形成された凸部と、前記凸部の表面上に形成されると共に前記励振電極と電気的に接続された導電膜と、を有し、前記凸部の表面上に形成された導電膜が前記貫通孔の前記圧電振動片に対向する側の開口面を貫通していることを特徴とする圧電振動子。 Application Example 4 A piezoelectric vibrator formed by laminating a piezoelectric vibrating piece layer on a base substrate, wherein the base substrate includes a through hole formed at a position facing the convex portion, and the through hole The piezoelectric vibrating piece layer includes a piezoelectric vibrating piece having an excitation electrode, a support frame that supports the piezoelectric vibrating piece and is bonded to the base substrate, and the piezoelectric vibration. A lead portion connected to the strip; a convex portion formed on a surface of the lead portion facing the base substrate; and a conductive member formed on the surface of the convex portion and electrically connected to the excitation electrode. And a conductive film formed on the surface of the convex portion passes through the opening surface of the through hole facing the piezoelectric vibrating piece.

積層構造の圧電振動子においても、圧電振動片を包含する圧電振動片層に凸部と、励振電極に接続され凸部の表面を覆うように形成された導電膜を設けることにより、圧電振動片のベース基板への接続が容易になるとともに、凸部に形成され貫通孔内に入り込ませた導電膜と貫通電極との電気的接続を容易に行うことができるため、歩留まりを向上させることができる。   Even in a piezoelectric vibrator having a laminated structure, a piezoelectric vibrating piece can be obtained by providing a protruding portion and a conductive film connected to the excitation electrode and covering the surface of the protruding portion on the piezoelectric vibrating piece layer including the piezoelectric vibrating piece. Can be easily connected to the base substrate, and the electrical connection between the conductive film formed in the convex portion and entering the through-hole and the through-electrode can be easily performed, so that the yield can be improved. .

[適用例5]前記支持枠は、前記ベース基板に固相接合により接合されることを特徴とする適用例4に記載の圧電振動子。これにより、支持枠とベース基板とが接着層を形成せずに強固に接合され、凸部と貫通孔との相対位置のばらつきが抑制されるため、導電膜と貫通電極との電気的接続のばらつきを抑制して圧電振動子の特性のばらつきを抑制することができる。 Application Example 5 The piezoelectric vibrator according to Application Example 4, wherein the support frame is bonded to the base substrate by solid phase bonding. As a result, the support frame and the base substrate are firmly bonded without forming an adhesive layer, and variation in the relative position between the convex portion and the through hole is suppressed, so that the electrical connection between the conductive film and the through electrode can be prevented. It is possible to suppress variations in characteristics of the piezoelectric vibrator by suppressing variations.

[適用例6]前記凸部は、前記支持枠の前記ベース基板に対向する面より前記基板側に突出して形成され、前記凸部は前記開口面を貫通することを特徴とする適用例4または5に記載の圧電振動子。
これにより、凸部は貫通孔に嵌め込まれることになるので、圧電振動片層と基板との積層時のアライメントが容易になり作業効率を向上させることができる。
Application Example 6 In the application example 4 or 4, the convex portion is formed to protrude toward the substrate side from the surface of the support frame facing the base substrate, and the convex portion penetrates the opening surface. 5. The piezoelectric vibrator according to 5.
Thereby, since a convex part will be engage | inserted by a through-hole, the alignment at the time of lamination | stacking with a piezoelectric vibrating reed layer and a board | substrate becomes easy, and it can improve working efficiency.

第1実施形態に係る圧電振動子の模式図である。It is a schematic diagram of the piezoelectric vibrator according to the first embodiment. 第1実施形態に係る圧電振動子の分解斜視図である。1 is an exploded perspective view of a piezoelectric vibrator according to a first embodiment. 第1実施形態に係る圧電振動子の製造工程を示す図である。It is a figure which shows the manufacturing process of the piezoelectric vibrator which concerns on 1st Embodiment. 第1実施形態に係る圧電振動子の製造工程を示す図である。It is a figure which shows the manufacturing process of the piezoelectric vibrator which concerns on 1st Embodiment. 第1実施形態に係る圧電振動子の製造工程を示す図である。It is a figure which shows the manufacturing process of the piezoelectric vibrator which concerns on 1st Embodiment. 第2実施形態に係る圧電振動子の模式図である。It is a schematic diagram of a piezoelectric vibrator according to a second embodiment. 第2実施形態に係る圧電振動片層の製造工程を示す図である。It is a figure which shows the manufacturing process of the piezoelectric vibrating reed layer which concerns on 2nd Embodiment. 第3実施形態に係る力検出素子の模式図である。It is a schematic diagram of the force detection element which concerns on 3rd Embodiment. 第3実施形態に係る力検出素子の分解斜視図である。It is a disassembled perspective view of the force detection element which concerns on 3rd Embodiment. 第3実施形態に係る力検出素子の分解斜視図である。It is a disassembled perspective view of the force detection element which concerns on 3rd Embodiment. 第3実施形態に係る力検出素子の変形例の模式図である。It is a schematic diagram of the modification of the force detection element which concerns on 3rd Embodiment. 第1の従来技術に係る圧電振動子の模式図である。It is a schematic diagram of the piezoelectric vibrator according to the first prior art. 第2の従来技術に係る圧電振動子の模式図である。It is a schematic diagram of the piezoelectric vibrator which concerns on a 2nd prior art. 第3の従来技術に係る圧電振動子の模式図である。It is a schematic diagram of the piezoelectric vibrator according to the third prior art.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .

図1は本発明に係る電子部品の第1実施形態である圧電振動子であって、図1(a)に第1実施形態に係る圧電振動子の側面方向から見た側面断面図(部分拡大図付き)、図1(b)に圧電振動子を構成する圧電振動片層の平面図、図1(c)に圧電振動片層の底面図、図2(a)にリッド側からみた分解斜視図、図2(b)にベース基板側からみた分解斜視図を示す。なお、図及び以下の説明においては、直交座標系(X軸、Y軸、Z軸)を用いる。   FIG. 1 shows a piezoelectric vibrator which is a first embodiment of an electronic component according to the present invention, and FIG. 1 (b), FIG. 1 (b) is a plan view of the piezoelectric vibrating reed layer constituting the piezoelectric vibrator, FIG. 1 (c) is a bottom view of the piezoelectric vibrating reed layer, and FIG. 2 (a) is an exploded perspective view seen from the lid side. FIG. 2 and FIG. 2B are exploded perspective views seen from the base substrate side. In the drawings and the following description, an orthogonal coordinate system (X axis, Y axis, Z axis) is used.

第1実施形態に係る圧電振動子は、励振電極を有する圧電振動片をベース基板の主面上に搭載して形成された圧電振動子であって、前記ベース基板は、前記圧電振動片に対向する位置に形成された貫通孔と、前記貫通孔を封止する貫通電極とを有し、前記圧電振動片は、前記圧電振動片の前記貫通孔に対向する主面に凸部と、前記凸部の表面上に形成されると共に前記励振電極と電気的に接続された引き出し電極と、を有し、前記凸部の表面上に形成された引き出し電極が前記貫通孔の前記圧電振動片に対向する側の開口面を貫通している構成を有するものである。   The piezoelectric vibrator according to the first embodiment is a piezoelectric vibrator formed by mounting a piezoelectric vibrating piece having an excitation electrode on a main surface of a base substrate, and the base substrate faces the piezoelectric vibrating piece. A through hole formed at a position where the through hole is formed, and a through electrode that seals the through hole. The piezoelectric vibrating piece includes a convex portion on a main surface of the piezoelectric vibrating piece facing the through hole, and the convex And a lead electrode formed on the surface of the convex portion and electrically connected to the excitation electrode, and the lead electrode formed on the surface of the convex portion faces the piezoelectric vibrating piece of the through hole It has the structure which has penetrated the opening surface of the side to do.

より詳細には、ベース基板の主面上に圧電振動片層を積層して形成される圧電振動片であって、前記ベース基板は、前記凸部に対向する位置に形成された貫通孔と、前記貫通孔を封止する貫通電極と、を有し、前記圧電振動片層は、励振電極を有する圧電振動片と、前記圧電振動片を支持し、前記ベース基板に接合される支持枠と、前記圧電振動片に接続された引き出し部と、前記引き出し部の前記ベース基板に対向する面に形成された凸部と、前記凸部の表面上に形成されると共に前記励振電極と電気的に接続された導電膜と、を有し、前記凸部の表面上に形成された導電膜が前記貫通孔の前記圧電振動片に対向する側の開口面を貫通している構成を有するものである。そして圧電振動子10はベース基板、圧電振動片層、リッドの各ウェハによる積層構造体を個片化して得られたものである。   More specifically, the piezoelectric vibrating piece is formed by laminating a piezoelectric vibrating piece layer on the main surface of the base substrate, the base substrate having a through hole formed at a position facing the convex portion, A through-electrode that seals the through-hole, and the piezoelectric vibrating piece layer includes a piezoelectric vibrating piece having an excitation electrode, a support frame that supports the piezoelectric vibrating piece and is bonded to the base substrate, A lead portion connected to the piezoelectric vibrating piece, a convex portion formed on a surface of the lead portion facing the base substrate, and formed on the surface of the convex portion and electrically connected to the excitation electrode And the conductive film formed on the surface of the convex part passes through the opening surface of the through hole facing the piezoelectric vibrating piece. The piezoelectric vibrator 10 is obtained by dividing the laminated structure of the base substrate, the piezoelectric vibrating piece layer, and the lid wafer into individual pieces.

圧電振動片層12は、水晶等の圧電基板により形成され、圧電振動片14、連結部(第1連結部16、第2連結部18)、引き出し部(第1引き出し部20、第2引き出し部22)、凸部(第1凸部36、第2凸部38)、支持枠24により形成されており、圧電振動片層12の外形は、後述の製造工程で示すように、フォトリソ技法とエッチング技法を併用して形成することができる。   The piezoelectric vibrating reed layer 12 is formed of a piezoelectric substrate such as quartz, and includes the piezoelectric vibrating reed 14, a connecting portion (first connecting portion 16, second connecting portion 18), and a leading portion (first leading portion 20, second leading portion). 22), convex portions (first convex portion 36, second convex portion 38) and the support frame 24, and the outer shape of the piezoelectric vibrating reed layer 12 is a photolithographic technique and etching as shown in the manufacturing process described later. It can be formed using a combination of techniques.

圧電振動片14は、音叉型振動片、厚みすべり振動片等として形成されたものであるが、本実施形態においては支持枠24より薄く形成された逆メサ型の厚みすべり振動片を用いている。圧電振動片14は、長手方向(±X方向)の一端の辺の両端において、支持枠24内の−X方向側の2つのコーナーのそれぞれに設けた引き出し部20a、20bに連結された第1連結部16、及び第2連結部18と接続され、圧電振動片14は長手方向の一端(−X方向の一端)を片持ち支持状態で支持枠24に支持されている。   The piezoelectric vibrating piece 14 is formed as a tuning fork type vibrating piece, a thickness sliding vibrating piece, or the like, but in this embodiment, an inverted mesa type thickness sliding vibrating piece formed thinner than the support frame 24 is used. . The piezoelectric vibrating reed 14 is connected to the lead-out portions 20a and 20b provided at the two corners on the −X direction side in the support frame 24 at both ends of one end in the longitudinal direction (± X direction). Connected to the connecting portion 16 and the second connecting portion 18, the piezoelectric vibrating piece 14 is supported by the support frame 24 with one end in the longitudinal direction (one end in the −X direction) being cantilevered.

また圧電振動片14の両面にはスパッタ等により励振電極(第1励振電極26、第2励振電極28)が形成され、リッド40の主面に対向する第1励振電極26には同様にスパッタ等により形成された第1引き出し電極30が接続され、ベース基板42の主面に対向する第2励振電極28にもスパッタ等により第2引き出し電極32が接続されている。   Excitation electrodes (first excitation electrode 26 and second excitation electrode 28) are formed on both surfaces of the piezoelectric vibrating piece 14 by sputtering, and the first excitation electrode 26 facing the main surface of the lid 40 is similarly sputtered. The first extraction electrode 30 formed by the above is connected, and the second extraction electrode 32 is also connected to the second excitation electrode 28 facing the main surface of the base substrate 42 by sputtering or the like.

圧電振動片層12には支持枠24内の−X方向側の2つのコーナーに前述のように引き出し部20a、20bが形成され、更に+X方向側の2つのコーナーのうち、前記引き出し部20aの対角線上に第2引き出し部22が形成されている。また引き出し部22と引き出し部20aとは支持枠24に接続した延伸部34により接続されている。よって引き出し部22は、延伸部34、引き出し部20b及び第2連結部18を介して圧電振動片14に接続されている。以下、引き出し部20aを第1引き出し部20とし、引き出し部20bを第2引き出し部2と称する。   In the piezoelectric vibrating reed layer 12, the lead portions 20 a and 20 b are formed at the two corners on the −X direction side in the support frame 24 as described above, and of the two corners on the + X direction side, A second lead portion 22 is formed on the diagonal line. The drawer portion 22 and the drawer portion 20 a are connected by an extending portion 34 connected to the support frame 24. Therefore, the lead portion 22 is connected to the piezoelectric vibrating piece 14 via the extending portion 34, the lead portion 20 b, and the second connecting portion 18. Hereinafter, the drawer portion 20a is referred to as a first drawer portion 20, and the drawer portion 20b is referred to as a second drawer portion 2.

またベース基板42側に面した第1引き出し部20の面には第1凸部36が形成され、同様に第2引き出し部22のベース基板42の主面側には第2凸部38が形成されている。   A first convex portion 36 is formed on the surface of the first lead portion 20 facing the base substrate 42 side, and similarly, a second convex portion 38 is formed on the main surface side of the base substrate 42 of the second lead portion 22. Has been.

第1励振電極26に接続された第1引き出し電極30は、第1連結部16においてベース基板42の主面側に延出されて、第1引き出し部20のベース基板42の主面に対向する側にまで引き出され、更に第1引き出し部20に形成された第1凸部36の表面上を覆うように形成されている。一方、第2励振電極28に接続された第2引き出し電極32は、第2連結部18及び延伸部34のベース基板42の主面に対向する側に延出されて、第2引き出し部22のベース基板42の主面に対向する側に引き出され、更に第2引き出し部22に形成された第2凸部38の表面を覆うように形成されている。   The first lead electrode 30 connected to the first excitation electrode 26 extends to the main surface side of the base substrate 42 in the first connecting portion 16 and faces the main surface of the base substrate 42 of the first lead portion 20. It is drawn out to the side and is formed so as to cover the surface of the first convex portion 36 formed in the first lead portion 20. On the other hand, the second lead electrode 32 connected to the second excitation electrode 28 extends to the side of the second connecting portion 18 and the extending portion 34 facing the main surface of the base substrate 42, and It is drawn out to the side facing the main surface of the base substrate 42 and is formed so as to cover the surface of the second convex portion 38 formed in the second lead portion 22.

ベース基板42は水晶等の圧電材料によって形成された矩形の部材であり、その周縁部と圧電振動片層12の支持枠24とが接合される。またベース基板42の一方の主面である第1面42aの反対側の他方の主面である第2面42bから前記第1面42aに向かって漸次内径を小さくするテーパー状に貫通孔(第1貫通孔44、第2貫通孔46)が形成されており、各貫通孔は、ベース基板42に圧電振動片層12を積層する際に第1凸部36、第2凸部38に対向する位置に形成される。貫通孔は、積層前において、エッチングまたはサンドブラストにより形成することができるが、上述のように貫通孔をテーパー状に形成する場合はサンドブラストを行うことが好適である。サンドブラストは、研削面において研削箇所を残してマスクをし、直径20μm程度のSiC等の研削粒子を高速のエアーとともに研削箇所に吹き付けることにより行う。また貫通孔をサンドブラストにより形成されたのち、貫通孔の内壁にエッチング処理(ライトエッチング)を行うことが好適である。これにより、貫通孔の内壁の残留応力を低減して圧電振動子10への悪影響を防止するとともに、貫通孔の内壁を平滑化することにより後述の金属膜(第1金属膜48、第2金属膜50)の形成を容易に行うことができる。   The base substrate 42 is a rectangular member made of a piezoelectric material such as quartz, and the peripheral portion thereof is joined to the support frame 24 of the piezoelectric vibrating reed layer 12. The base substrate 42 has a tapered through hole (first hole) in which the inner diameter gradually decreases from the second surface 42b, which is the other main surface opposite to the first surface 42a, toward the first surface 42a. 1 through hole 44 and second through hole 46) are formed, and each through hole faces the first convex portion 36 and the second convex portion 38 when the piezoelectric vibrating reed layer 12 is laminated on the base substrate 42. Formed in position. The through hole can be formed by etching or sand blasting before lamination, but when the through hole is formed in a tapered shape as described above, it is preferable to perform sand blasting. Sand blasting is performed by masking the ground surface while leaving a ground portion, and spraying grinding particles such as SiC having a diameter of about 20 μm onto the ground portion together with high-speed air. Moreover, it is preferable to perform etching treatment (light etching) on the inner wall of the through hole after the through hole is formed by sandblasting. Thereby, residual stress on the inner wall of the through hole is reduced to prevent adverse effects on the piezoelectric vibrator 10, and the inner wall of the through hole is smoothed to thereby described later metal films (first metal film 48, second metal). The film 50) can be easily formed.

第1貫通孔44の内壁及び第1凸部36に形成された第1引き出し電極30には夫々金属膜(第1金属膜48、48a)が形成され、第2貫通孔46の内壁及び第2凸部38に形成された第2引き出し電極32には夫々金属膜(第2金属膜50、50a)がスパッタ等により形成される。この金属膜は圧電振動片層12をベース基板42上に積層したのち、スパッタ等によりベース基板42の第2面42bから金属膜を構成する金属粒子を導入し、貫通孔の内壁及び凸部に形成された引き出し電極上に堆積させることにより形成される。この第1金属膜48、48a、第2金属膜50、50aを形成すると同時にベース基板42の第2面42bには第1金属膜48と接続する第1外部電極56、第2金属膜50と接続する第2外部電極58を形成することができる。これら金属膜を形成することにより後述の貫通電極(第1貫通電極52、第2貫通電極54)を容易に形成することができる。これにより、第1凸部36の表面を覆うように形成された第1金属膜48a(及び第1引き出し電極30)は、第1貫通孔44に入り込む導電膜を形成し、第2凸部38の表面を覆うように形成された第2金属膜50a(及び第2引き出し電極32)は第2貫通孔46に入り込む導電膜を形成し、それぞれ貫通孔の圧電振動片14に対向する側の開口面を貫通することになる。   A metal film (first metal films 48 and 48a) is formed on the inner wall of the first through hole 44 and the first extraction electrode 30 formed on the first protrusion 36, respectively. Metal films (second metal films 50 and 50a) are formed on the second extraction electrodes 32 formed on the protrusions 38 by sputtering or the like. This metal film is formed by laminating the piezoelectric vibrating reed layer 12 on the base substrate 42, and then introducing metal particles constituting the metal film from the second surface 42b of the base substrate 42 by sputtering or the like to the inner wall and the convex portion of the through hole. It is formed by depositing on the formed extraction electrode. The first metal films 48 and 48a and the second metal films 50 and 50a are formed, and at the same time, the first external electrode 56 and the second metal film 50 connected to the first metal film 48 are formed on the second surface 42b of the base substrate 42. A second external electrode 58 to be connected can be formed. By forming these metal films, through-electrodes (first through-electrode 52 and second through-electrode 54) described later can be easily formed. Thus, the first metal film 48a (and the first extraction electrode 30) formed so as to cover the surface of the first convex portion 36 forms a conductive film that enters the first through hole 44, and the second convex portion 38 is formed. The second metal film 50a (and the second lead electrode 32) formed so as to cover the surface of the metal film forms a conductive film that enters the second through hole 46, and each of the through holes has openings on the side facing the piezoelectric vibrating piece 14. Will penetrate the surface.

そして貫通孔内部には貫通孔を真空封止する貫通電極(第1貫通電極52、第2貫通電極54)が形成される。各貫通電極は後述の製造工程で示すように、例えば半田ボール51(図2、図5参照)を貫通孔内で溶解・凝固させることにより形成される。第1貫通電極52は第1貫通孔44の内壁に形成された第1金属膜48及び第1引き出し電極30上に形成された第1金属膜48aに接続される。よって第1引き出し電極30は、第1金属膜48a、第1貫通電極52、第1金属膜48を介して第1外部電極56に電気的に接続される。第2貫通電極54は、第2貫通孔46の内壁に形成された第2金属膜50及び第2引き出し電極32上に形成された第2金属膜50aに接続される。よって、第2引き出し電極32は、第2金属膜50a、第2貫通電極54、第2金属膜50を介して第2外部電極58に電気的に接続される。   Then, through electrodes (first through electrode 52 and second through electrode 54) for vacuum-sealing the through hole are formed inside the through hole. Each through electrode is formed, for example, by dissolving and solidifying a solder ball 51 (see FIGS. 2 and 5) in the through hole, as shown in the manufacturing process described later. The first through electrode 52 is connected to the first metal film 48 formed on the inner wall of the first through hole 44 and the first metal film 48 a formed on the first extraction electrode 30. Therefore, the first lead electrode 30 is electrically connected to the first external electrode 56 through the first metal film 48 a, the first through electrode 52, and the first metal film 48. The second through electrode 54 is connected to the second metal film 50 formed on the inner wall of the second through hole 46 and the second metal film 50 a formed on the second lead electrode 32. Therefore, the second lead electrode 32 is electrically connected to the second external electrode 58 through the second metal film 50 a, the second through electrode 54, and the second metal film 50.

したがって圧電振動片14を励振する励振電極(第1励振電極26、第2励振電極28)を、外部電極(第1外部電極56、第2外部電極58)を介して圧電振動片14を駆動する駆動回路(不図示)に接続することにより、圧電振動片14を固有の共振周波数で振動させることができる。   Therefore, the excitation electrode (first excitation electrode 26, second excitation electrode 28) for exciting the piezoelectric vibrating piece 14 is driven via the external electrode (first external electrode 56, second external electrode 58). By connecting to a drive circuit (not shown), the piezoelectric vibrating piece 14 can be vibrated at a specific resonance frequency.

ところで、本実施形態においては、図1(a)の部分拡大図に示すように第1凸部36の主面、第2凸部38の主面、支持枠24の主面が同一の平面を有するように形成しているが、少なくとも第1凸部36の主面上に形成された第1金属膜48aは前記同一平面を貫通して、即ち第1貫通孔44の開口面を貫通して第1貫通孔44の内部に入り込み、同様に第2凸部38の主面上に形成された第2金属膜50aは前記同一平面を貫通して、即ち第2貫通孔46の開口面を貫通して第2貫通孔46の内部に入り込む形となっている。一方、第1貫通孔44の内壁の全面に第1金属膜48が形成され、第2貫通孔46の内壁の全面に第2金属膜50が形成されている。そして第1金属膜48、48a、第2金属膜50、50aはそれぞれ半田ボール51(図2(b)及び図5参照)が溶解して形成される溶融金属に対して濡れ性を有するため、第1貫通電極52は第1金属膜48、48aに接合し、第2貫通電極54は第2金属膜50、50aに接合しつつ、第1貫通孔44全体、第2貫通孔46全体を封止するように形成することができる。したがって貫通電極と引き出し電極(金属膜)との間に隙間が形成されることを防止して引き出し電極と貫通電極との間で安定した電気的接続を図ることができ、これにより励振電極と外部電極との間で安定した電気的接続を図ることができる。   By the way, in this embodiment, as shown in the partial enlarged view of FIG. 1A, the main surface of the first convex portion 36, the main surface of the second convex portion 38, and the main surface of the support frame 24 are the same plane. The first metal film 48a formed on at least the main surface of the first convex portion 36 penetrates the same plane, that is, penetrates the opening surface of the first through hole 44. The second metal film 50a that enters the inside of the first through hole 44 and is similarly formed on the main surface of the second convex portion 38 penetrates the same plane, that is, penetrates the opening surface of the second through hole 46. Thus, it enters the inside of the second through hole 46. On the other hand, a first metal film 48 is formed on the entire inner wall of the first through hole 44, and a second metal film 50 is formed on the entire inner wall of the second through hole 46. Since the first metal films 48 and 48a and the second metal films 50 and 50a have wettability with respect to the molten metal formed by melting the solder balls 51 (see FIG. 2B and FIG. 5), The first through electrode 52 is bonded to the first metal films 48 and 48a, and the second through electrode 54 is bonded to the second metal films 50 and 50a, and the entire first through hole 44 and the entire second through hole 46 are sealed. It can be formed to stop. Accordingly, it is possible to prevent a gap from being formed between the through electrode and the lead electrode (metal film), and to achieve a stable electrical connection between the lead electrode and the through electrode. A stable electrical connection can be achieved between the electrodes.

リッド40は水晶等の圧電ベース基板により形成され、その周縁が圧電振動片層の支持枠の主面と接合される。   The lid 40 is formed of a piezoelectric base substrate such as quartz, and its periphery is joined to the main surface of the support frame of the piezoelectric vibrating piece layer.

ベース基板42と圧電振動片層12との接合、及び圧電振動片層12とリッド40との接合は固相接合を行うことが好適である。ここで固相接合とは接着剤を用いずに固相同士を接合する方法をいい、直接接合、メタル接合、陽極接合等が挙げられるが、本実施形形態においては直接接合を行うことが好適である。水晶基板に対する直接接合は、平坦性が確保された水晶基板の接合面にプラズマを照射し、接合部を活性化させた後に接合面を当接させて接合させるもの等があり、接合面において直接接合による新たな接合膜は形成されない。直接接合は共晶金属等の蝋材に比べて遥かに少ない接合面積で充分な接合強度が得られ、本実施形態においては接合幅が50μm〜200μm程度でウェハ同士を充分な接合強度で接合できる。   The bonding between the base substrate 42 and the piezoelectric vibrating piece layer 12 and the bonding between the piezoelectric vibrating piece layer 12 and the lid 40 are preferably performed by solid phase bonding. Here, solid phase bonding refers to a method of bonding solid phases to each other without using an adhesive, and examples include direct bonding, metal bonding, and anodic bonding. In this embodiment, it is preferable to perform direct bonding. It is. Direct bonding to a quartz substrate includes a method of irradiating plasma to a bonding surface of a quartz substrate that is ensured to be flat, activating the bonding portion, and bringing the bonding surface into contact with each other. A new bonding film is not formed by bonding. In direct bonding, sufficient bonding strength is obtained with a bonding area far smaller than that of a wax material such as eutectic metal, and in this embodiment, the bonding width is about 50 μm to 200 μm and wafers can be bonded with sufficient bonding strength. .

また直接接合を行うことにより、ウェハ同士の相対位置にばらつきが抑制される。より具体的にはベース基板42と支持枠24との相対位置にばらつきが抑制されるので、第1凸部36と第1貫通孔44、及び第2凸部38と第2貫通孔46の±Z方向の相対位置にばらつきが抑制される。よって金属膜の形成にばらつきが生じることはなく、さらにその後形成される第1貫通電極52、及び第2貫通電極54の接続状態にばらつきが生じないので圧電振動子10の特性のばらつきを抑制することができる。   Further, by performing direct bonding, variations in relative position between wafers are suppressed. More specifically, since the variation in the relative position between the base substrate 42 and the support frame 24 is suppressed, the first protrusion 36 and the first through hole 44, and the second protrusion 38 and the second through hole 46 ± Variation in the relative position in the Z direction is suppressed. Therefore, there is no variation in the formation of the metal film, and further, there is no variation in the connection state of the first through electrode 52 and the second through electrode 54 that are formed thereafter, so that variation in the characteristics of the piezoelectric vibrator 10 is suppressed. be able to.

なおベース基板42、圧電振動片層12、リッド40を同一材料(水晶等の圧電材料)として積層することにより、線膨張係数が各層で互いに一致するため、温度変化に伴う圧電振動片14への応力の発生を抑制して圧電振動片14の発振周波数の誤差を抑制することができる。   By laminating the base substrate 42, the piezoelectric vibrating reed layer 12, and the lid 40 as the same material (piezoelectric material such as quartz crystal), the linear expansion coefficients of the layers coincide with each other. Generation of stress can be suppressed, and an error in the oscillation frequency of the piezoelectric vibrating piece 14 can be suppressed.

図3、図4、図5に第1実施形態に係る圧電振動子10の製造工程を示す。まず図3(a)に示すように、矩形のベース基板42を用意し、第1凸部36及び第2凸部38に対向する位置にそれぞれ第1貫通孔44、第2貫通孔46をエッチングまたはサンドブラストにより形成する(図3(b))。   3, 4 and 5 show the manufacturing process of the piezoelectric vibrator 10 according to the first embodiment. First, as shown in FIG. 3A, a rectangular base substrate 42 is prepared, and the first through hole 44 and the second through hole 46 are etched at positions facing the first convex portion 36 and the second convex portion 38, respectively. Alternatively, it is formed by sand blasting (FIG. 3B).

次に図4(a)に示すように、圧電振動片層12用の水晶素板60を用意し、水晶素板60に支持枠24、第1連結部16(不図示)、第2連結部18(不図示)、第1引き出し部20、第2引き出し部22、延伸部34(図4では不図示)、第1凸部36、第2凸部38の外形を残して圧電振動片14の厚みになるまで両面からエッチングを行い(図4(b))、支持枠24の外形及び圧電振動片14の厚みまでエッチングされた領域を残し、さらに第1凸部36及び第2凸部38の外形を残して、水晶基板60のベース基板42に対向する面において、第1引き出し部20、第2引き出し部22、延伸部34を所定の厚みになるまでエッチングを行い(図4(c))、支持枠24、第1連結部16、第2連結部18、第1引き出し部20、第2引き出し部22、延伸部34(図4では不図示)、第1凸部36、第2凸部38、圧電振動片14の外形を残して水晶基板60を貫通するまでエッチングすることにより、圧電振動片層12の外形を形成する(図4(d))。そして第1励振電極26、第2励振電極28、第1引き出し電極30、第2引き出し電極32を所定の位置に形成する(図4(e))。   Next, as shown in FIG. 4A, a crystal element plate 60 for the piezoelectric vibrating piece layer 12 is prepared, and the support frame 24, the first connecting portion 16 (not shown), and the second connecting portion are provided on the crystal element plate 60. 18 (not shown), the first lead portion 20, the second lead portion 22, the extending portion 34 (not shown in FIG. 4), the first convex portion 36, and the second convex portion 38, leaving the outer shape of the piezoelectric vibrating piece 14. Etching is performed from both sides until the thickness is reached (FIG. 4B), leaving the region etched to the outer shape of the support frame 24 and the thickness of the piezoelectric vibrating piece 14, and further, the first convex portion 36 and the second convex portion 38. Etching is performed until the first lead portion 20, the second lead portion 22, and the extending portion 34 have a predetermined thickness on the surface of the quartz substrate 60 facing the base substrate 42, leaving the outer shape (FIG. 4C). , Support frame 24, first connecting portion 16, second connecting portion 18, first drawer portion 20. By etching until the second lead portion 22, the extending portion 34 (not shown in FIG. 4), the first convex portion 36, the second convex portion 38, and the piezoelectric vibrating piece 14 pass through the quartz crystal substrate 60, The outer shape of the piezoelectric vibrating reed layer 12 is formed (FIG. 4D). Then, the first excitation electrode 26, the second excitation electrode 28, the first extraction electrode 30, and the second extraction electrode 32 are formed at predetermined positions (FIG. 4E).

この状態で圧電振動片14は固有の発振周波数により発振可能となるので、第1引き出し電極30及び第2引き出し電極32に駆動回路(不図示)を接続して圧電振動片14を駆動させ、図4(f)に示すように第1励振電極26の一部を蒸着法により厚膜化またはアルゴンプラズマ照射によるドライエッチング法を用いて薄膜化することにより周波数調整を行う。   In this state, since the piezoelectric vibrating piece 14 can oscillate at a specific oscillation frequency, a driving circuit (not shown) is connected to the first extraction electrode 30 and the second extraction electrode 32 to drive the piezoelectric vibrating piece 14. As shown in FIG. 4 (f), the frequency is adjusted by thickening a part of the first excitation electrode 26 by vapor deposition or thinning it by dry etching using argon plasma irradiation.

次に、以下の工程においては真空チャンバー(不図示)内において行う。図5(a)に示すように、ベース基板42、圧電振動片層12、リッド40を積層する。
すなわち、ベース基板42の周縁と圧電振動片層12の支持枠24とを固相接合(直接接合)により接合し、同様に支持枠24とリッド40とを固相接合(直接接合)により接合する。
Next, the following steps are performed in a vacuum chamber (not shown). As shown in FIG. 5A, the base substrate 42, the piezoelectric vibrating reed layer 12, and the lid 40 are laminated.
That is, the peripheral edge of the base substrate 42 and the support frame 24 of the piezoelectric vibrating piece layer 12 are bonded by solid phase bonding (direct bonding), and similarly, the support frame 24 and the lid 40 are bonded by solid phase bonding (direct bonding). .

次に図5(b)に示すように、スパッタ等により第1貫通孔44に第1金属膜48、48aを形成し、第2貫通孔46に第2金属膜50、50aを形成し(部分拡大図参照)、さらにベース基板42の第2面42bの第1貫通孔44の周りに第1外部電極56を形成し、同様に第2貫通孔46の周りに第2外部電極58を形成する。   Next, as shown in FIG. 5B, first metal films 48 and 48a are formed in the first through hole 44 by sputtering or the like, and second metal films 50 and 50a are formed in the second through hole 46 (partial). Further, a first external electrode 56 is formed around the first through hole 44 of the second surface 42b of the base substrate 42, and a second external electrode 58 is similarly formed around the second through hole 46. .

そして図5(c)に示すように、第1貫通孔44および第2貫通孔46に半田ボール51を挿入し、圧電振動片14の内部空間10a内に発生し滞留するガスを第1貫通孔44及び第2貫通孔46から排出した後、半田ボール51にレーザー光(不図示)を照射して半田ボール51を溶解・凝固させることにより、図5(d)に示すように第1貫通孔44を封止する第1貫通電極52が形成され、第2貫通孔46を封止する第2貫通電極54が形成されることにより圧電振動子10が形成される。これにより圧電振動子10内部に内部空間10aが形成され、圧電振動片14は内部空間10aにおいて真空封止される。   Then, as shown in FIG. 5C, the solder ball 51 is inserted into the first through hole 44 and the second through hole 46, and the gas generated and staying in the internal space 10a of the piezoelectric vibrating piece 14 is transferred to the first through hole. 44 and the second through hole 46, the solder ball 51 is irradiated with a laser beam (not shown) to melt and solidify the solder ball 51, whereby the first through hole is formed as shown in FIG. The piezoelectric element 10 is formed by forming the first through electrode 52 for sealing 44 and the second through electrode 54 for sealing the second through hole 46. Thereby, an internal space 10a is formed inside the piezoelectric vibrator 10, and the piezoelectric vibrating piece 14 is vacuum-sealed in the internal space 10a.

第2実施形態に係る圧電振動子を図6に示す。図6(a)は側面方向から見た側面断面図(部分拡大図付き)、図6(b)は圧電振動子を構成する圧電振動片の平面図、図6(c)は圧電振動片層の底面図である。第2実施形態に係る圧電振動子70は基本的には第1実施形態の圧電振動子10と構成が類似するが、圧電振動片層72において、凸部(第1凸部及び第2凸部)が支持枠のベース基板に対向する面よりベース基板側に突出して形成されることにより、積層時に凸部が貫通孔の開口面を貫通する構成となっている。   A piezoelectric vibrator according to the second embodiment is shown in FIG. 6A is a side sectional view (with a partially enlarged view) viewed from the side direction, FIG. 6B is a plan view of a piezoelectric vibrating piece constituting the piezoelectric vibrator, and FIG. 6C is a piezoelectric vibrating piece layer. FIG. The piezoelectric vibrator 70 according to the second embodiment is basically similar in configuration to the piezoelectric vibrator 10 of the first embodiment. However, in the piezoelectric vibrating piece layer 72, the convex portions (the first convex portion and the second convex portion). ) Protrudes toward the base substrate from the surface of the support frame facing the base substrate, so that the convex portion penetrates the opening surface of the through-hole when stacked.

このように、第1凸部、第2凸部を形成することにより、各凸部が貫通孔(第1貫通孔、第2貫通孔)に入り込み、各凸部と貫通孔が平面的に干渉するため、ベース基板上に圧電振動片層を積層する際のアライメント性が向上し、積層の際のズレを防止することができる。また凸部における貫通電極の接触面積と貫通孔の内壁の面積とが均衡し、半田ボールが溶解して形成された溶融金属の表面張力が均一化されるので、各凸部に対する貫通電極の機械的な接続信頼性が向上する。さらに第1凸部に形成される第1引き出し電極(及び第1金属膜)と第1貫通電極との接合面積、第2凸部に形成された第2引き出し電極(及び第2金属膜)と第2貫通電極との接合面積が増大するので、引き出し電極と貫通電極との電気的接続の信頼性が第1実施形態の場合よりさらに向上する。   Thus, by forming the 1st convex part and the 2nd convex part, each convex part enters a penetration hole (the 1st penetration hole, the 2nd penetration hole), and each convex part and a penetration hole interfere in plane. Therefore, the alignment property at the time of laminating the piezoelectric vibrating reed layer on the base substrate is improved, and displacement at the time of lamination can be prevented. In addition, the contact area of the through electrode in the convex portion and the area of the inner wall of the through hole are balanced, and the surface tension of the molten metal formed by melting the solder balls is made uniform. Connection reliability is improved. Further, the junction area between the first lead electrode (and the first metal film) formed on the first convex portion and the first through electrode, the second lead electrode (and the second metal film) formed on the second convex portion, and Since the junction area with the second through electrode increases, the reliability of the electrical connection between the extraction electrode and the through electrode is further improved as compared with the case of the first embodiment.

図7に第2実施形態の圧電振動子を構成する圧電振動片層の製造工程を示す。
まず、図7(a)に示すように、圧電振動片層12用の水晶素板100を用意し、水晶素板100に第1連結部76(図6参照)、第2連結部78(図6参照)、第1引き出し部80、第2引き出し部82、支持枠84、延伸部86の外形を残して圧電振動片74の厚みになるまで両面からエッチングを行い(図7(b))、第1凸部88の外形、第2凸部90の外形、圧電振動片74の厚みまでエッチングされた領域を残して第1引き出し部80、第2引き出し部82、延伸部84のベース基板42に対向する面から支持枠84の厚みになるまで水晶基板100にエッチングを行い(図7(c))、支持枠84の外形、第1凸部88の外形、第2凸部90の外形、圧電振動片14の厚みまでエッチングされた領域の外形を残してベース基板42に対向する面から第1連結部76、第2連結部78、第1引き出し部80、第2引き出し部82、延伸部86(図7では不図示の厚みになるまで水晶基板100にエッチングを行い(図7(d))、支持枠84、第1凸部88、第2凸部90、第1連結部76、第2連結部78、第1引き出し部88、第2引き出し部90、圧電振動片74の外形を残して水晶基板100を貫通するまでエッチングすることにより、圧電振動片層74の外形を形成する(図7(e))。そして第1励振電極92、第2励振電極94、第1引き出し電96、第2引き出し電極98を所定の位置に形成する(図7(f))。
FIG. 7 shows a manufacturing process of the piezoelectric vibrating piece layer constituting the piezoelectric vibrator of the second embodiment.
First, as shown in FIG. 7A, a crystal element plate 100 for the piezoelectric vibrating reed layer 12 is prepared, and a first connecting portion 76 (see FIG. 6) and a second connecting portion 78 (see FIG. 6) are provided on the crystal element plate 100. 6), etching is performed from both sides until the thickness of the piezoelectric vibrating piece 74 is reached, leaving the outer shapes of the first lead portion 80, the second lead portion 82, the support frame 84, and the extending portion 86 (FIG. 7B), On the base substrate 42 of the first lead portion 80, the second lead portion 82, and the extending portion 84, leaving the regions etched up to the outer shape of the first convex portion 88, the outer shape of the second convex portion 90, and the thickness of the piezoelectric vibrating piece 74. The quartz substrate 100 is etched from the facing surface to the thickness of the support frame 84 (FIG. 7C), the outer shape of the support frame 84, the outer shape of the first convex portion 88, the outer shape of the second convex portion 90, and the piezoelectricity. The base substrate leaving the outer shape of the region etched to the thickness of the vibrating piece 14 2, the first connecting portion 76, the second connecting portion 78, the first drawing portion 80, the second drawing portion 82, and the extending portion 86 (etching is performed on the crystal substrate 100 until the thickness is not shown in FIG. 7. (FIG. 7D), the support frame 84, the first convex portion 88, the second convex portion 90, the first connecting portion 76, the second connecting portion 78, the first leading portion 88, the second leading portion 90, and the piezoelectric. The outer shape of the piezoelectric vibrating piece layer 74 is formed by etching until the quartz crystal substrate 100 is penetrated while leaving the outer shape of the vibrating piece 74 (FIG. 7E), and the first excitation electrode 92 and the second excitation electrode 94. Then, the first lead-out electricity 96 and the second lead-out electrode 98 are formed at predetermined positions (FIG. 7F).

この状態で圧電振動片は固有の発振周波数により発振可能となるので、第1引き出し電極96及び第2引き出し電極98に駆動回路(不図示)を接続して圧電振動片74を駆動させ、図4(g)に示すように第1励振電極92の一部を蒸着法により厚膜化またはアルゴンプラズマ照射によるドライエッチング法を用いて薄膜化することにより周波数調整を行う。ベース基板42、圧電振動片層72、リッド40の積層は第1実施形態と同様なので(図5参照)説明を省略する。   In this state, the piezoelectric vibrating piece can oscillate at a specific oscillation frequency. Therefore, a driving circuit (not shown) is connected to the first extraction electrode 96 and the second extraction electrode 98 to drive the piezoelectric vibrating piece 74, and FIG. As shown in (g), the frequency is adjusted by thickening part of the first excitation electrode 92 by vapor deposition or thinning by dry etching using argon plasma irradiation. Since the lamination of the base substrate 42, the piezoelectric vibrating reed layer 72, and the lid 40 is the same as that in the first embodiment (see FIG. 5), the description is omitted.

なお、第1金属膜48、48a及び第2金属膜50、50aは、ベース基板に圧電振動片層を積層したのちに形成する旨説明したが、積層前に第1貫通孔44、第2貫通孔46の内壁のみにそれぞれ第1金属膜48、第2金属膜50を形成してもよい。   The first metal films 48 and 48a and the second metal films 50 and 50a have been described as being formed after the piezoelectric vibrating reed layer is laminated on the base substrate. However, before the lamination, the first through holes 44 and the second through holes are formed. The first metal film 48 and the second metal film 50 may be formed only on the inner wall of the hole 46, respectively.

図8、図9、図10は、本発明に係る電子部品の第3実施形態である力検出素子であって、図8(a)に力検出素子の側面方向からみた側面断面図、図8(b)は図8(a)の部分詳細図、図8(c)に力検出素子を構成する感圧素子片の底面図、図9はベース基板側からみた分解斜視図、図10はダイアフラム側からみた分解斜視図を示す。
力を直接受けて撓む、例えば被測定圧力を受圧して撓む可撓部を有するダイアフラムに支持部を介して搭載された圧電振動子は、例えば、板状の圧電基板上に電極パターンが形成され、力の検出方向に検出軸を設定しており、前記検出軸の方向に直交する方向から被測定圧力がダイアフラムの受圧部で受圧すると前記可撓部が撓み、前記支持部を介して前記圧電振動子に力が加わると、前記圧電振動子は検出軸の方向に引張り応力が生じるため前記圧電振動子の共振周波数が変化し、前記共振周波数の変化から前記被測定圧力の圧力値を検出する。圧力センサー、受圧手段としてのダイアフラムと、前記ダイアフラムに形成した支持部に搭載された感圧素子(双音叉振動子)とを有し、これらを容器に収容しつつダイアフラムの受圧面を外面に臨ませるようにして真空封止した構成となっている。
8, 9, and 10 are force detection elements that are the third embodiment of the electronic component according to the present invention, and FIG. 8A is a side cross-sectional view of the force detection element as viewed from the side. FIG. 8B is a partial detail view of FIG. 8A, FIG. 8C is a bottom view of the pressure-sensitive element piece constituting the force detection element, FIG. 9 is an exploded perspective view seen from the base substrate side, and FIG. The exploded perspective view seen from the side is shown.
For example, a piezoelectric vibrator mounted on a diaphragm having a flexible portion that bends by receiving a force directly, for example, by receiving a pressure to be measured via a support portion, has an electrode pattern on a plate-like piezoelectric substrate, for example. Formed, the detection axis is set in the direction of detecting the force, and when the pressure to be measured is received by the pressure receiving portion of the diaphragm from the direction orthogonal to the direction of the detection axis, the flexible portion bends, and via the support portion When a force is applied to the piezoelectric vibrator, a tensile stress is generated in the direction of the detection axis, so that the resonance frequency of the piezoelectric vibrator changes, and the pressure value of the pressure to be measured is determined from the change in the resonance frequency. To detect. It has a pressure sensor, a diaphragm as a pressure receiving means, and a pressure sensitive element (double tuning fork vibrator) mounted on a support portion formed on the diaphragm, and the pressure receiving surface of the diaphragm faces the outer surface while accommodating these in a container. Thus, the structure is vacuum-sealed.

第3実施形態に係る力検出素子700は、感圧素子としての双音叉振動子705の2本の柱状ビームに形成した励振電極701と、前記励振電極701に接続された引き出し電極(第1引き出し電極702、第2引き出し電極703)とを有する感圧素子片772を、ダイアフラム704の受圧面704aとは反対側の内側の主面704b上に形成した支持部706に搭載された双音叉振動子705であって、前記双音叉振動子705は、前記ベース基板742に対向する主面に形成された凸部(第1凸部736、第2凸部738)と、前記凸部の表面上に形成された引き出し電極(第1引き出し電極702、第2引き出し電極703)と、を有し、前記ベース基板742は、前記凸部に対向する位置に形成された貫通孔(第1貫通孔744、第2貫通孔746)と、前記貫通孔を封止する貫通電極(第1貫通電極752、第2貫通電極754)と、を有するものでありベース基板742、感圧素子片層772、ダイアフラム704により内部空間700aを有する3層構造となっている。   A force detection element 700 according to the third embodiment includes an excitation electrode 701 formed on two columnar beams of a double tuning fork vibrator 705 as a pressure sensitive element, and an extraction electrode (first extraction) connected to the excitation electrode 701. A double tuning fork vibrator having a pressure sensitive element 772 having an electrode 702 and a second lead electrode 703) mounted on a support portion 706 formed on an inner main surface 704 b opposite to the pressure receiving surface 704 a of the diaphragm 704. 705, and the double tuning fork vibrator 705 is formed on a convex portion (first convex portion 736, second convex portion 738) formed on a main surface facing the base substrate 742, and on the surface of the convex portion. The base substrate 742 has through holes (first through holes 744) formed at positions facing the protrusions. The base electrode 742 has a lead electrode (first lead electrode 702, second lead electrode 703) formed. 2nd through-hole 746) and through-electrodes (first through-electrode 752 and second through-electrode 754) that seal the through-hole, and includes a base substrate 742, a pressure-sensitive element piece layer 772, and a diaphragm 704. Thus, a three-layer structure having an internal space 700a is formed.

ダイアフラム704は、可撓部704cと前記可撓部704cの外縁を囲む厚肉部704dとを有する。
感圧素子片772は、2本の柱状ビームからなる振動部705aと前記振動部705aの両端に位置する基部705bとから構成される双音叉振動子705と、前記双音叉振動子705を囲む矩形の支持枠部773と、前記支持枠部773と前記基部705bとを連結する梁707とを有する。また支持枠部773のベース基板742に対向する主面は、外枠773aと前記外枠の内側に形成され、前記外枠より薄肉に形成された内枠773bを有し、内枠773bに梁707が接続されている。さらに内枠773bの後述の第1貫通孔744に対向する位置に第1凸部736が形成され、後述の第2貫通孔746に対向する位置に第2凸部738が形成されている。また内枠773bには励振電極701に接続された第1引き出し電極702及び第2引き出し電極703が形成されている。なお図12において励振電極701はベース基板742側にのみ形成されたように描かれているが、実際には両面に形成されているものとする。
The diaphragm 704 has a flexible portion 704c and a thick portion 704d surrounding the outer edge of the flexible portion 704c.
The pressure-sensitive element piece 772 includes a double tuning fork vibrator 705 composed of a vibrating portion 705a composed of two columnar beams and base portions 705b located at both ends of the vibrating portion 705a, and a rectangle surrounding the double tuning fork vibrator 705. Support frame portion 773, and a beam 707 connecting the support frame portion 773 and the base portion 705b. The main surface of the support frame portion 773 that faces the base substrate 742 includes an outer frame 773a and an inner frame 773b that is formed on the inner side of the outer frame and is thinner than the outer frame. 707 is connected. Further, a first convex portion 736 is formed at a position of the inner frame 773b facing a first through hole 744 described later, and a second convex portion 738 is formed at a position facing the second through hole 746 described later. A first extraction electrode 702 and a second extraction electrode 703 connected to the excitation electrode 701 are formed on the inner frame 773b. In FIG. 12, the excitation electrode 701 is depicted as being formed only on the base substrate 742 side, but it is assumed that it is actually formed on both sides.

第1実施形態と同様に、感圧素子層712の支持枠773の外枠773aの両面にはそれぞれ、前記ダイアフラム704の厚肉部704dとベース基板742の外縁部742cとが、直接接合を用いて接合されている。同様に一対の基部705bは一対の支持部706と直接接合を用いて接合されている(図8(a)参照)。
一方、第1実施形態と同様に、ベース基板742の第1面742aの反対側の第2面742bから第1面742aに向かって漸次内径を小さくするテーパー状に貫通孔(第1貫通孔744、第2貫通孔746)が形成されている。
As in the first embodiment, the thick portion 704d of the diaphragm 704 and the outer edge portion 742c of the base substrate 742 are directly bonded to both surfaces of the outer frame 773a of the support frame 773 of the pressure-sensitive element layer 712, respectively. Are joined. Similarly, the pair of base portions 705b are joined to the pair of support portions 706 using direct joining (see FIG. 8A).
On the other hand, as in the first embodiment, the through-hole (first through-hole 744) has a tapered shape that gradually decreases the inner diameter from the second surface 742b opposite to the first surface 742a of the base substrate 742 toward the first surface 742a. , A second through hole 746) is formed.

そして、第1貫通孔744の内壁及び第1凸部736に形成された第1引き出し電極730には夫々金属膜(第1金属膜748、748a)が形成され、第2貫通孔746の内壁及び第2凸部738に形成された第2引き出し電極732には夫々金属膜(第2金属膜750、750a)がスパッタ等により形成される。この第1金属膜748、748a、第2金属膜750、750aを形成すると同時にベース基板742の第2面742bには第1金属膜748と接続する第1外部電極756、第2金属膜750と接続する第2外部電極758を形成することができる。そして第1実施形態と同様に、貫通孔内部には貫通孔を封止する貫通電極(第1貫通電極752、第2貫通電極754)が形成される。第1貫通電極752は第1貫通孔744の内壁に形成された第1金属膜748及び第1引き出し電極730上に形成された第1金属膜748aに接続される(図8(b)参照)。よって第1引き出し電極730は、第1金属膜748a、第1貫通電極752、第1金属膜748を介して第1外部電極756に電気的に接続される。第2貫通電極754は、第2貫通孔746の内壁に形成された第2金属膜750及び第2引き出し電極732上に形成された第2金属膜750aに接続される(図8(b)参照)。よって、第2引き出し電極732は、第2金属膜750a、第2貫通電極754、第2金属膜750を介して第2外部電極758に電気的に接続される。   Metal films (first metal films 748 and 748a) are respectively formed on the inner wall of the first through hole 744 and the first extraction electrode 730 formed on the first protrusion 736, and the inner wall of the second through hole 746 and Metal films (second metal films 750 and 750a) are formed on the second extraction electrodes 732 formed on the second protrusions 738 by sputtering or the like. The first metal films 748 and 748a and the second metal films 750 and 750a are formed, and at the same time, the first external electrode 756 and the second metal film 750 connected to the first metal film 748 are formed on the second surface 742b of the base substrate 742. A second external electrode 758 to be connected can be formed. As in the first embodiment, through electrodes (first through electrode 752 and second through electrode 754) that seal the through hole are formed inside the through hole. The first through electrode 752 is connected to the first metal film 748 formed on the inner wall of the first through hole 744 and the first metal film 748a formed on the first extraction electrode 730 (see FIG. 8B). . Therefore, the first lead electrode 730 is electrically connected to the first external electrode 756 via the first metal film 748 a, the first through electrode 752, and the first metal film 748. The second through electrode 754 is connected to the second metal film 750 formed on the inner wall of the second through hole 746 and the second metal film 750a formed on the second lead electrode 732 (see FIG. 8B). ). Therefore, the second lead electrode 732 is electrically connected to the second external electrode 758 via the second metal film 750a, the second through electrode 754, and the second metal film 750.

したがって双音叉振動子705を励振する励振電極701を、外部電極(第1外部電極756、第2外部電極758)を介して双音叉振動子705を駆動する駆動回路(不図示)に接続することにより、双音叉振動子705を固有の共振周波数で振動させることができる。ところで、ダイアフラム704が圧力により撓むことにより一対の支持部706は互いに離間するため、これらに接続した一対の基部705bも互いに離間するため、双音叉振動子705の共振周波数が変動することになる。よってこの共振周波数の変動を利用してダイアフラム704が受圧する被圧力測定領域の圧力値を得ることができる。なお、感圧素子層772の製造方法は第1実施形態における圧電振動片層12と同様なので説明を省略する。また第2実施形態のように、第1凸部736及び第2凸部738を支持枠773の外枠773aよりもベース基板742側に突出して形成することも可能である。   Therefore, the excitation electrode 701 for exciting the double tuning fork vibrator 705 is connected to a drive circuit (not shown) for driving the double tuning fork vibrator 705 via the external electrodes (first external electrode 756 and second external electrode 758). Thus, the double tuning fork vibrator 705 can be vibrated at a specific resonance frequency. By the way, when the diaphragm 704 is bent by pressure, the pair of support portions 706 are separated from each other, and the pair of base portions 705b connected thereto are also separated from each other, so that the resonance frequency of the double tuning fork vibrator 705 varies. . Therefore, the pressure value in the pressure measurement region received by the diaphragm 704 can be obtained by using the fluctuation of the resonance frequency. Note that the manufacturing method of the pressure-sensitive element layer 772 is the same as that of the piezoelectric vibrating reed layer 12 in the first embodiment, and a description thereof will be omitted. Further, as in the second embodiment, the first convex portion 736 and the second convex portion 738 can be formed to protrude from the outer frame 773a of the support frame 773 toward the base substrate 742.

以上、実施形態として、圧電振動子、力検出素子を前提として述べてきたがこれに限定されることはない。すなわち、積層構造の電子部品において、電子部品を構成し電極を有する電子素子片をベース基板上に搭載して形成される電子部品であって、前記ベース基板は、前記電子素子片に対向する位置に形成された貫通孔と、前記貫通孔を封止する封止部材とを有し、前記電子素子片は、前記電子素子片の前記貫通孔に対向する主面に凸部を有するとともに、前記凸部の表面上に形成された導電膜が前記貫通孔の前記電子素子片に対向する側の開口面を貫通している構成とすることにより、電子素子片の電極と基板側の電極との電気的接続を高い信頼性で実現することができる。   As described above, the embodiment has been described on the assumption of the piezoelectric vibrator and the force detection element, but is not limited thereto. That is, in an electronic component having a laminated structure, the electronic component is formed by mounting an electronic element piece constituting an electronic component and having an electrode on a base substrate, and the base substrate is located at a position facing the electronic element piece. And the electronic element piece has a convex portion on a main surface thereof opposed to the through hole of the electronic element piece, and the electronic element piece By forming the conductive film formed on the surface of the convex portion through the opening surface of the through hole facing the electronic element piece, the electrode of the electronic element piece and the electrode on the substrate side Electrical connection can be realized with high reliability.

さらに、図1(a)、図6(a)、図8(b)に示すように、いずれの実施形態においても、振動片コーナーの引き出し電極表面と貫通孔の開口面との間に隙間10b、70b、700bを確保し、半田ボールで貫通電極を形成する際、内部空間のガスを前記隙間10b、70b、700bを介して外部へ排出して内部空間を真空にしてから、貫通電極を形成するものである。貫通電極は凸部表面の電極膜(引き出し電極、金属膜)と外部電極とを電気的に接続する機能を有する。また、隙間10b、70b、700bは内部空間を真空引きするための機能を有するため、引き出し電極と外部電極とを電気的に接続するために貫通孔を半田ボール等の蝋材で気密に封止する際、従来構造では貫通孔の開口面と引き出し電極とにギャップが存在しているため、気密封止の信頼性並びに電気的な導通を確保する上での信頼性に問題があったが、いずれの実施形態においても、圧電振動片の貫通孔に対向する部位に凸部を設け、前記凸部の表面に引き出し電極を形成したので、前記引き出し電極の凸面が貫通孔の開口面を貫通し、前記貫通孔の内部に入り込んでいるため、半田ボールを溶解させて形成される貫通電極が確実に引き出し電極と外部電極とを電気的に接続させると共に貫通孔を気密封止できるので内部空間を確実に真空にすることができる。   Further, as shown in FIGS. 1 (a), 6 (a), and 8 (b), in any of the embodiments, a gap 10b is formed between the surface of the extraction electrode at the vibrating piece corner and the opening surface of the through hole. , 70b, 700b, and when forming a through electrode with solder balls, the gas in the internal space is discharged to the outside through the gaps 10b, 70b, 700b, and the internal space is evacuated before forming the through electrode. To do. The through electrode has a function of electrically connecting the electrode film (extraction electrode, metal film) on the surface of the convex portion and the external electrode. Since the gaps 10b, 70b, and 700b have a function of evacuating the internal space, the through hole is hermetically sealed with a solder material such as a solder ball in order to electrically connect the extraction electrode and the external electrode. In the conventional structure, since there is a gap between the opening surface of the through hole and the extraction electrode, there was a problem in the reliability of hermetic sealing and reliability in ensuring electrical conduction. In any of the embodiments, since the convex portion is provided at the portion facing the through hole of the piezoelectric vibrating piece and the extraction electrode is formed on the surface of the convex portion, the convex surface of the extraction electrode penetrates the opening surface of the through hole. Since the penetration electrode penetrates into the through hole, the penetration electrode formed by melting the solder ball can securely connect the extraction electrode and the external electrode and hermetically seal the penetration hole. certainly It can be emptied.

図11に第3実施形態の力検出素子の変形例を示す。図11において、破線で囲まれた領域の詳細図は図8(b)の右側のものと同様である。本実施形態において、真空封止する部位は一箇所で良いので、図11に示す変形例のように、貫通孔のうちいずれか一方は、振動片の表面と貫通孔の開口面とが同一平面を形成するように位置してもよく、他方の貫通孔が前述の構造となっていれば良い。このような構造は第1実施形態及び第2実施形態においても同様に適用できる。即ち本発明に係る電子部品は、複数存在する貫通電極のうち、少なくとも一箇所が、振動片コーナーの引き出し部表面と貫通孔の開口面との間に隙間10b、70b、700bを有し、半田ボールで貫通電極を形成する際、内部空間のガスを前記隙間10b、70b、700bを介して外部へ排出して内部空間を真空にしてから、貫通電極を形成する構造を有するものであり、真空引きは前記一箇所のみで行うことができる。   FIG. 11 shows a modification of the force detection element of the third embodiment. In FIG. 11, the detailed view of the area surrounded by the broken line is the same as that on the right side of FIG. In the present embodiment, since only one part may be vacuum-sealed, as in the modification shown in FIG. 11, any one of the through holes has the same surface of the vibrating piece and the opening surface of the through hole. It is sufficient that the other through-hole has the above-described structure. Such a structure can be similarly applied to the first and second embodiments. That is, in the electronic component according to the present invention, at least one of the plurality of through electrodes has gaps 10b, 70b, and 700b between the surface of the lead portion of the vibrating piece corner and the opening surface of the through hole, When the through electrode is formed with a ball, the internal space gas is discharged to the outside through the gaps 10b, 70b, and 700b to evacuate the internal space, and then the through electrode is formed. Pulling can be performed only at the one location.

10………圧電振動子、12………圧電振動片層、14………圧電振動片、16………第1連結部、18………第2連結部、20………第1引き出し部、22………第2引き出し部、24………支持枠、26………第1励振電極、28………第2励振電極、30………第1引き出し電極、32………第2引き出し電極、34………延伸部、36………第1凸部、38………第2凸部、40………リッド、42………基板、44………第1貫通孔、46………第2貫通孔、48………第1金属膜、48a………第1金属膜、50………第2金属膜、50a………第2金属膜、51………半田ボール、52………第1貫通電極、54………第2貫通電極、56………第1外部電極、58………第2外部電極、60………水晶基板、70………圧電振動子、72………圧電振動片層、74………圧電振動片、76………第1連結部、78………第2連結部、80………第1引き出し部、82………第2引き出し部、84………支持枠、86………延伸部、88………第1凸部、90………第2凸部、92………第1励振電極、94………第2励振電極、96………第1引き出し電極、98………第2引き出し電極、100………水晶基板、202(ab)………蓋体、203………水晶片、204(ab)………凹部、205(ab)………励振電極、206(ab)………貫通孔、207(ab)………引き出し電極、208………導電性接合材、209(ab)………実装電極、301………蓋体用シート状ウェハ、302………貫通孔、303………ベース用シート状ウェハ、304………水晶振動素子、305………水晶ウェハ、306………水晶振動子、307………電気導通路、308………金属粉、401………蓋体用シート状ウェハ、402………貫通孔、403………ベース用シート状ウェハ、404………水晶振動素子、405………水晶ウェハ、406………水晶振動子、407………電気導通路、408………レーザー照射装置、409………金属箔、410………レーザー光、411………金属箔微粒子、700………力検出素子、701………励振電極、702………第1引き出し電極、703………第2引き出し電極、704………ダイアフラム、705………双音叉振動子、706………支持部、707………梁、736………第1凸部、738………第2凸部、742………ベース基板、744………第1貫通孔、746………第2貫通孔、748………第1金属膜、750………第2金属膜、752………第1貫通電極、754………第2貫通電極、756………第1外部電極、758………第2外部電極、772………感圧素子層、773………支持枠。 DESCRIPTION OF SYMBOLS 10 ......... Piezoelectric vibrator, 12 ......... Piezoelectric vibrating piece layer, 14 ......... Piezoelectric vibrating piece, 16 ......... First connecting portion, 18 ......... Second connecting portion, 20 ......... First drawer , 22... Second extraction part, 24... Support frame, 26... First excitation electrode, 28... Second excitation electrode, 30. 2 lead electrode 34... Extension portion 36... First protrusion 38... Second protrusion 40... Lid 42... Substrate 44. 46 ......... Second through hole, 48 ......... First metal film, 48a ......... First metal film, 50 ......... Second metal film, 50a ......... Second metal film, 51 ......... Solder Ball 52... First through electrode 54 54 Second through electrode 56 First external electrode 58 Second external electrode 60 Quartz substrate 70 Piezoelectric Rotating element 72... Piezoelectric vibrating piece layer 74... Piezoelectric vibrating piece 76... First connecting portion 78... Second connecting portion 80. ... second lead part, 84 ......... support frame, 86 ......... extension part, 88 ......... first convex part, 90 ...... second convex part, 92 ......... first excitation electrode, 94 ... ... Second excitation electrode, 96 ......... First extraction electrode, 98 ......... Second extraction electrode, 100 ......... Quartz substrate, 202 (ab) ......... Cover body, 203 ......... Crystal piece, 204 ( ab) ......... concave, 205 (ab) ... excitation electrode, 206 (ab) ... through-hole, 207 (ab) ... extraction electrode, 208 ... conductive adhesive, 209 (ab) ……… Mounting electrode, 301 ……… Sheet wafer for lid, 302 ……… Through hole, 303 ……… Sheet wafer for base, 30 ............ Quartz vibrating element, 305... Quartz wafer, 306... Quartz crystal oscillator, 307... Electrical conduction path, 308. …… Through hole, 403... Base sheet wafer, 404... Quartz vibrating element, 405... Quartz wafer, 406... Quartz vibrator, 407. Laser irradiation device, 409... Metal foil, 410... Laser light, 411... Metal foil fine particle, 700... Force detection element, 701... Excitation electrode, 702. 703 ......... Second extraction electrode, 704 ......... Diaphragm, 705 ......... Double tuning fork vibrator, 706 ......... Supporting part, 707 ......... Beam, 736 ......... First convex part, 738 ......... Second convex part, 742... Base substrate, 74 4 ......... first through hole, 746 ......... second through hole, 748 ......... first metal film, 750 ......... second metal film, 752 ......... first through electrode, 754 ......... first Two through electrodes, 756... First external electrode, 758... Second external electrode, 772... Pressure-sensitive element layer, 773.

Claims (6)

電子素子片をベース基板上に搭載して形成される電子部品であって、
前記ベース基板は、前記電子素子片に対向する位置に形成された貫通孔と、前記貫通孔を封止する封止部材とを有し、
前記電子素子片は、前記電子素子片の前記貫通孔に対向する主面に凸部を有するとともに、前記凸部の表面上に形成された導電膜が前記貫通孔の前記電子素子片に対向する側の開口面を貫通している
ことを特徴とする電子部品。
An electronic component formed by mounting an electronic element piece on a base substrate,
The base substrate has a through hole formed at a position facing the electronic element piece, and a sealing member for sealing the through hole,
The electronic element piece has a convex portion on a main surface facing the through hole of the electronic element piece, and a conductive film formed on a surface of the convex portion faces the electronic element piece of the through hole. An electronic component characterized by penetrating through the opening on the side.
前記凸部が、前記開口面を貫通していることを特徴とする請求項1に記載の電子部品。   The electronic component according to claim 1, wherein the convex portion penetrates the opening surface. 励振電極を有する圧電振動片をベース基板上に搭載して形成された圧電振動子であって、
前記ベース基板は、前記圧電振動片に対向する位置に形成された貫通孔と、前記貫通孔を封止する貫通電極とを有し、
前記圧電振動片は、前記圧電振動片の前記貫通孔に対向する主面に凸部と、前記凸部の表面上に形成されると共に前記励振電極と電気的に接続された導電膜と、を有し、
前記凸部の表面上に形成された導電膜が前記貫通孔の前記圧電振動片に対向する側の開口面を貫通している
ことを特徴とする圧電振動子。
A piezoelectric vibrator formed by mounting a piezoelectric vibrating piece having an excitation electrode on a base substrate,
The base substrate has a through hole formed at a position facing the piezoelectric vibrating piece, and a through electrode that seals the through hole,
The piezoelectric vibrating piece includes a convex portion on a main surface of the piezoelectric vibrating piece facing the through hole, and a conductive film formed on the surface of the convex portion and electrically connected to the excitation electrode. Have
The piezoelectric vibrator, wherein the conductive film formed on the surface of the convex part passes through the opening surface of the through hole facing the piezoelectric vibrating piece.
ベース基板上に圧電振動片層を積層して形成される圧電振動片であって、
前記ベース基板は、
前記凸部に対向する位置に形成された貫通孔と、
前記貫通孔を封止する貫通電極と、を有し、
前記圧電振動片層は、
励振電極を有する圧電振動片と、
前記圧電振動片を支持し、前記ベース基板に接合される支持枠と、
前記圧電振動片に接続された引き出し部と、
前記引き出し部の前記ベース基板に対向する面に形成された凸部と、
前記凸部の表面上に形成されると共に前記励振電極と電気的に接続された導電膜と、を有し、
前記凸部の表面上に形成された導電膜が前記貫通孔の前記圧電振動片に対向する側の開口面を貫通している
ことを特徴とする圧電振動子。
A piezoelectric vibrating piece formed by laminating a piezoelectric vibrating piece layer on a base substrate,
The base substrate is
A through-hole formed at a position facing the convex portion;
A through electrode for sealing the through hole,
The piezoelectric vibrating reed layer is
A piezoelectric vibrating piece having an excitation electrode;
A support frame that supports the piezoelectric vibrating piece and is bonded to the base substrate;
A drawer connected to the piezoelectric vibrating piece;
A convex portion formed on a surface of the drawer portion facing the base substrate;
A conductive film formed on the surface of the convex portion and electrically connected to the excitation electrode;
The piezoelectric vibrator, wherein the conductive film formed on the surface of the convex part passes through the opening surface of the through hole facing the piezoelectric vibrating piece.
前記支持枠は、前記ベース基板に固相接合により接合されることを特徴とする請求項4に記載の圧電振動子   The piezoelectric vibrator according to claim 4, wherein the support frame is bonded to the base substrate by solid phase bonding. 前記凸部は、前記支持枠の前記ベース基板に対向する面より前記基板側に突出して形成され、前記凸部は前記開口面を貫通することを特徴とする請求項4または5に記載の圧電振動子。   6. The piezoelectric device according to claim 4, wherein the convex portion is formed to project from the surface of the support frame facing the base substrate toward the substrate, and the convex portion penetrates the opening surface. Vibrator.
JP2009114274A 2009-05-11 2009-05-11 Electronic components Expired - Fee Related JP5365851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009114274A JP5365851B2 (en) 2009-05-11 2009-05-11 Electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009114274A JP5365851B2 (en) 2009-05-11 2009-05-11 Electronic components

Publications (3)

Publication Number Publication Date
JP2010263530A true JP2010263530A (en) 2010-11-18
JP2010263530A5 JP2010263530A5 (en) 2012-06-21
JP5365851B2 JP5365851B2 (en) 2013-12-11

Family

ID=43361223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009114274A Expired - Fee Related JP5365851B2 (en) 2009-05-11 2009-05-11 Electronic components

Country Status (1)

Country Link
JP (1) JP5365851B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080238A1 (en) * 2011-11-28 2013-06-06 日立オートモティブシステムズ株式会社 Composite sensor and method of manufacture therefor
JP2014120499A (en) * 2012-12-13 2014-06-30 Seiko Epson Corp Sealing structure, sealing method, electronic device, electronic apparatus, and mobile object
JP2015061092A (en) * 2013-09-17 2015-03-30 日本電波工業株式会社 Piezoelectric device and process of manufacturing the same
JP2015080007A (en) * 2013-10-15 2015-04-23 日本電波工業株式会社 Quartz device
JPWO2013080238A1 (en) * 2011-11-28 2015-04-27 日立オートモティブシステムズ株式会社 Composite sensor and manufacturing method thereof
US10879868B2 (en) 2018-12-28 2020-12-29 Seiko Epson Corporation Vibration device, electronic apparatus and vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316764A (en) * 1995-05-23 1996-11-29 Matsushita Electric Ind Co Ltd Vibrator
JP2009094806A (en) * 2007-10-09 2009-04-30 Epson Toyocom Corp Piezoelectric device and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316764A (en) * 1995-05-23 1996-11-29 Matsushita Electric Ind Co Ltd Vibrator
JP2009094806A (en) * 2007-10-09 2009-04-30 Epson Toyocom Corp Piezoelectric device and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080238A1 (en) * 2011-11-28 2013-06-06 日立オートモティブシステムズ株式会社 Composite sensor and method of manufacture therefor
JPWO2013080238A1 (en) * 2011-11-28 2015-04-27 日立オートモティブシステムズ株式会社 Composite sensor and manufacturing method thereof
JP2014120499A (en) * 2012-12-13 2014-06-30 Seiko Epson Corp Sealing structure, sealing method, electronic device, electronic apparatus, and mobile object
JP2015061092A (en) * 2013-09-17 2015-03-30 日本電波工業株式会社 Piezoelectric device and process of manufacturing the same
JP2015080007A (en) * 2013-10-15 2015-04-23 日本電波工業株式会社 Quartz device
US10879868B2 (en) 2018-12-28 2020-12-29 Seiko Epson Corporation Vibration device, electronic apparatus and vehicle

Also Published As

Publication number Publication date
JP5365851B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5262946B2 (en) Electronic devices
JP4707725B2 (en) Package type piezoelectric vibrator and manufacturing method of package type piezoelectric vibrator
JP5365851B2 (en) Electronic components
WO2010079803A1 (en) Method of manufacturing a piezoelectric vibratory device
US11342899B2 (en) Crystal resonator device
JP4864152B2 (en) Surface mount crystal unit
JP2013217667A (en) Physical quantity detection device, physical quantity detector, electronic apparatus, and method for manufacturing the physical quantity detection device
JP5708079B2 (en) Crystal oscillator
JP2010103950A (en) Vibrator and method of manufacturing the same
JP2011091586A (en) Piezoelectric vibrator, and electronic component
JP2004229255A (en) Crystal oscillator ceramic package
JP2011193436A (en) Tuning fork crystal resonator chip, tuning fork crystal resonator, and method of manufacturing the tuning fork crystal resonator chip
JP2001102891A (en) Piezoelectric device
JP2006054602A (en) Package for electronic part and piezo-electric oscillation device using the same
JP2006303761A (en) Surface mount piezoelectric oscillator
JP2010258667A (en) Electronic component and manufacturing method thereof, and piezoelectric vibrator and manufacturing method thereof
JP5369889B2 (en) Vibration device
JP2010103600A (en) Vibrator and method of manufacturing the same
JP2002084160A (en) Piezoelectric device
JP2011129735A (en) Method of manufacturing piezoelectric device
JP2009239475A (en) Surface mounting piezoelectric oscillator
JP2011091173A (en) Electronic component, and method of manufacturing the same
JP2014003239A (en) Package for electronic component, electronic component, and manufacturing method of package for electronic component
JP2011182306A (en) Piezoelectric device and method of manufacturing the same
JP2010062973A (en) Piezoelectric device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Ref document number: 5365851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees