JP2010262798A - Method of manufacturing positive electrode for nonaqueous electrolyte battery, the nonaqueous electrolyte battery, and the positive electrode for nonaqueous electrolyte battery - Google Patents

Method of manufacturing positive electrode for nonaqueous electrolyte battery, the nonaqueous electrolyte battery, and the positive electrode for nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2010262798A
JP2010262798A JP2009111761A JP2009111761A JP2010262798A JP 2010262798 A JP2010262798 A JP 2010262798A JP 2009111761 A JP2009111761 A JP 2009111761A JP 2009111761 A JP2009111761 A JP 2009111761A JP 2010262798 A JP2010262798 A JP 2010262798A
Authority
JP
Japan
Prior art keywords
positive electrode
electrolyte battery
solid electrolyte
sol solution
precursor sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009111761A
Other languages
Japanese (ja)
Inventor
Taku Kamimura
卓 上村
Ryoko Kanda
良子 神田
Mitsuyasu Ogawa
光靖 小川
Yukihiro Ota
進啓 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009111761A priority Critical patent/JP2010262798A/en
Publication of JP2010262798A publication Critical patent/JP2010262798A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode for a nonaqueous electrolyte battery that can fully suppress unevenness of the surface of the positive electrode, able to inhibit the positive electrode from contacting the negative electrode, even if a solid electrolyte is fully made thin, and uses the solid electrolyte that can prevent deficiency of the solid electrolyte, and to provide a method of manufacturing the electrode. <P>SOLUTION: The method of manufacturing the positive electrode for nonaqueous electrolyte battery by using the solid electrolyte includes a precursor sol solution filling process to fill a precursor sol solution of a positive electrode material with a positive electrode active material powder as a main substance in the concave part on the surface of a molding having unevenness on its surface; and a heat treatment process to heat-treat the molding filled with the precursor sol solution. The positive electrode manufactured by this manufacturing method uses the nonaqueous electrolyte battery, where the surface filled with the precursor sol solution of the positive electrode material is arranged to face the solid electrolyte and also uses a sintered body as the molding. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は固体電解質を用いた非水電解質電池用の正極に関し、特に表面粗さを抑制した正極の製造方法、前記製造方法により製造された正極を用いた非水電解質電池および非水電解質電池用の正極に関する。   TECHNICAL FIELD The present invention relates to a positive electrode for a non-aqueous electrolyte battery using a solid electrolyte, and in particular, a positive electrode manufacturing method with suppressed surface roughness, a non-aqueous electrolyte battery using the positive electrode manufactured by the manufacturing method, and a non-aqueous electrolyte battery. This relates to the positive electrode.

負極にリチウム(Li)やリチウム合金等を用い、電解質に固体電解質を用いた非水電解質電池は、異常高温時における有機溶媒の揮発や、液漏れの恐れが無い等の特長を有しているため、携帯電話やノート型パソコン等の小型の電気機器類の電源として広く用いられている。   Non-aqueous electrolyte batteries using lithium (Li) or lithium alloy as the negative electrode and solid electrolyte as the electrolyte have features such as no volatilization of organic solvents at abnormally high temperatures and no risk of liquid leakage. Therefore, it is widely used as a power source for small electric devices such as mobile phones and notebook computers.

固体電解質を用いた非水電解質電池は、正極、固体電解質および負極が、順に積層された積層体として形成され、正極には正極活物質である例えばコバルト酸リチウム(LiCoO)等のリチウム複合酸化物を主体とする粉末を焼結した焼結体等が用いられる。(特許文献1) A non-aqueous electrolyte battery using a solid electrolyte is formed as a laminate in which a positive electrode, a solid electrolyte, and a negative electrode are sequentially laminated, and the positive electrode is a lithium composite oxide such as lithium cobalt oxide (LiCoO 2 ) that is a positive electrode active material. A sintered body obtained by sintering powder mainly composed of an object is used. (Patent Document 1)

そして、体積容量密度を大きくするため、正極および負極の厚みは大きく、一方電池容量の大きさに寄与しない固体電解質の厚みは出来るだけ小さく設計される。   In order to increase the volume capacity density, the thickness of the positive electrode and the negative electrode is large, while the thickness of the solid electrolyte that does not contribute to the battery capacity is designed to be as small as possible.

しかし、通常焼結体等の表面には凹凸(段差)があり、固体電解質の厚みが小さ過ぎる場合、前記凹凸が固体電解質で充分に被覆されず露出するため、前記積層体を形成する際に正極の露出部が負極と接触して短絡が発生する。例えば、前記焼結体の場合には、通常表面粗さRa値が0.5〜5μmであり、短絡を抑制するためには固体電解質の厚みを充分大きくしなければならず、体積容量密度の低下を招く。また、前記凹凸が起点となって固体電解質に欠陥を生じさせることが多く、充放電サイクルを行った際、即ち電池駆動時に負極であるリチウムのデンドライト成長を引き起し易くなり、その場合には、負極から発生して成長したリチウムのデンドライトが固体電解質を貫通して正極と負極とを短絡させることがありサイクル特性が劣るという問題がある。   However, the surface of the sintered body or the like usually has unevenness (steps), and when the thickness of the solid electrolyte is too small, the unevenness is not sufficiently covered with the solid electrolyte and exposed, so when forming the laminate The exposed part of the positive electrode comes into contact with the negative electrode, causing a short circuit. For example, in the case of the sintered body, the surface roughness Ra value is usually 0.5 to 5 μm, and in order to suppress a short circuit, the thickness of the solid electrolyte must be sufficiently large, Incurs a decline. In addition, the unevenness often causes defects in the solid electrolyte, and when performing a charge / discharge cycle, that is, when the battery is driven, it tends to cause dendrite growth of lithium as a negative electrode. The lithium dendrite generated from the negative electrode grows through the solid electrolyte and may cause a short circuit between the positive electrode and the negative electrode, resulting in poor cycle characteristics.

上記の問題を解決するために、例えば焼結体の表面を研磨して表面粗さを低減する方法が採用されている。   In order to solve the above problem, for example, a method of reducing the surface roughness by polishing the surface of the sintered body is employed.

特許3427570号公報Japanese Patent No. 3427570

しかしながら、焼結体の内部には空隙があるため、焼結体等の表面を研磨する方法では、研磨後の焼結体の表面に前記空隙が露出し凹部となって残留する。このため、固体電解質の厚みを充分に小さくすることに限界があった。また、前記凹部が基点となって固体電解質に欠陥が生じる恐れが未だあった。   However, since there are voids inside the sintered body, in the method of polishing the surface of the sintered body or the like, the voids are exposed and remain as recesses on the surface of the sintered body after polishing. For this reason, there was a limit to making the thickness of the solid electrolyte sufficiently small. In addition, there is still a possibility that a defect may occur in the solid electrolyte with the recess as a base point.

そこで本発明は、正極表面の凹凸を充分に抑え、固体電解質の厚みを充分に小さくしても正極と負極の接触を抑制することができ、また固体電解質の欠陥の発生を抑制することができる固体電解質を用いた非水電解質電池用の正極およびその製造方法等を提供することを課題とする。   Therefore, the present invention can sufficiently suppress unevenness on the surface of the positive electrode, suppress contact between the positive electrode and the negative electrode even if the thickness of the solid electrolyte is sufficiently small, and can suppress generation of defects in the solid electrolyte. It is an object of the present invention to provide a positive electrode for a non-aqueous electrolyte battery using a solid electrolyte, a manufacturing method thereof, and the like.

本発明は前記の課題を解決することを目的としてなされてものであり、正極の焼結体等の固体電解質との対向面の凹部に正極材料の前駆体ゾル溶液を充填し、熱処理を行なうことにより、前記対向面の表面粗さを低減させるものである。以下、各請求項の発明を説明する。   The present invention has been made for the purpose of solving the above-mentioned problems, and is filled with a precursor sol solution of a positive electrode material in a concave portion facing a solid electrolyte such as a positive electrode sintered body and subjected to heat treatment. Thus, the surface roughness of the facing surface is reduced. The invention of each claim will be described below.

本発明に係る非水電解質電池用の正極の製造方法は、
固体電解質を用いた非水電解質電池用の正極の製造方法であって、
正極活物質粉末を主体とし、表面に凹凸を有する成形体の表面の凹部に、正極材料の前駆体ゾル溶液を充填する前駆体ゾル溶液充填工程と、
前記前駆体ゾル溶液が充填された成形体を熱処理する熱処理工程とを有することを特徴とする。
A method for producing a positive electrode for a non-aqueous electrolyte battery according to the present invention is as follows.
A method for producing a positive electrode for a non-aqueous electrolyte battery using a solid electrolyte, comprising:
A precursor sol solution filling step of filling a precursor sol solution of a positive electrode material into a concave portion of a surface of a molded body mainly having a positive electrode active material powder and having irregularities on the surface;
A heat treatment step of heat-treating the molded body filled with the precursor sol solution.

本発明においては、凹凸を有する成形体の表面の凹部に、流動性のある正極材料の前駆体ゾル溶液を充填して熱処理するため、前記凹部を効率的に充分に正極材料で埋めることができる。その結果、従来のように成形体の表面に凹部が残留することがなく、表面粗さが従来に比べてより効果的に低減させることができる。このため、固体電解質の厚みが充分に小さい場合にも、正極と負極の接触による短絡を抑制することができる。また、固体電解質の欠陥の発生を抑制することができる。   In the present invention, the recesses on the surface of the molded body having irregularities are filled with a fluidized positive electrode material precursor sol solution and heat-treated, so that the recesses can be efficiently and sufficiently filled with the positive electrode material. . As a result, the concave portion does not remain on the surface of the molded body as in the prior art, and the surface roughness can be reduced more effectively than in the prior art. For this reason, even when the thickness of the solid electrolyte is sufficiently small, a short circuit due to contact between the positive electrode and the negative electrode can be suppressed. Moreover, generation | occurrence | production of the defect of a solid electrolyte can be suppressed.

また、前駆体ゾル溶液の熱処理生成物は正極活物質等、正極としての機能を発揮するため、体積容量密度を向上させることができる。   Moreover, since the heat treatment product of the precursor sol solution exhibits a function as a positive electrode such as a positive electrode active material, the volume capacity density can be improved.

本発明でいう「成形体」には、焼結体に限らず加圧成形によって成形された成形体、基材上に塗布し、乾燥してシート状にするグリーンシート法により成形された成形体が含まれる。また、蒸着法やスパッタ法等の気相成長法により成形された薄膜についても、基材の表面の凹凸が反映された凹凸のある薄膜については含まれる。   The “molded body” referred to in the present invention is not limited to a sintered body, a molded body molded by pressure molding, and a molded body molded by a green sheet method that is applied onto a substrate and dried to form a sheet. Is included. In addition, a thin film formed by a vapor deposition method such as a vapor deposition method or a sputtering method is also included in a thin film having unevenness reflecting the unevenness of the surface of the substrate.

前駆体ゾル溶液は成形体の少なくとも一方の表面の凹部に充填されていればよい。本発明は、成形体の表面のRa値が0.5μm以上の場合に特に効果が大きい。   The precursor sol solution only needs to be filled in the recesses on at least one surface of the molded body. The present invention is particularly effective when the Ra value of the surface of the molded body is 0.5 μm or more.

「正極材料の前駆体」とは、熱処理により正極の作用、効果を発揮する正極活物質などを生成する物質を指す。一例としてコバルト酸リチウムの前駆体を挙げれば、リチウム源として、リチウムのアルコキシドや塩、具体的には、リチウムエトキシド、リチウムメトキシド、リチウムブトキシド等のリチウムアルコキシド類、硝酸リチウムや炭酸リチウム等の無機塩、蓚酸リチウム、酢酸リチウム等の有機酸塩を挙げることができる。また、コバルト源として、コバルトのアルコキシドや塩、具体的には、コバルトエトキシド、コバルトジイソプロポキシド、コバルトジブトキシド等のコバルトアルコキシド類、硝酸コバルト、炭酸コバルト等の無機塩、蓚酸コバルト、酢酸コバルト等の有機酸塩を挙げることができる。   The “precursor of positive electrode material” refers to a substance that generates a positive electrode active material that exhibits the action and effect of a positive electrode by heat treatment. An example of a precursor of lithium cobaltate is lithium alkoxide or salt as a lithium source, specifically, lithium alkoxides such as lithium ethoxide, lithium methoxide, lithium butoxide, lithium nitrate, lithium carbonate, etc. Mention may be made of organic acid salts such as inorganic salts, lithium oxalate and lithium acetate. Further, as a cobalt source, cobalt alkoxides and salts, specifically, cobalt alkoxides such as cobalt ethoxide, cobalt diisopropoxide and cobalt dibutoxide, inorganic salts such as cobalt nitrate and cobalt carbonate, cobalt oxalate, acetic acid Mention may be made of organic acid salts such as cobalt.

前駆体ゾル溶液には、前記した正極材料の前駆体の微粒子をエタノール、メタノール等、アルコール類や水あるいは水とアルコール類との混合溶媒に分散させたゾル溶液が好ましく用いられる。   As the precursor sol solution, a sol solution in which the fine particles of the positive electrode material precursor are dispersed in alcohol, water, or a mixed solvent of water and alcohol, such as ethanol and methanol, is preferably used.

成形体の表面の凹部に、正極材料の前駆体ゾル溶液を充填する方法としては、例えば焼結体の表面に、前駆体ゾル溶液をスピンコート、ディップコート、ブレード法などにより塗布する塗布法を挙げることができる。なお、前駆体ゾル溶液の粘度は前記の充填方法等に応じて適宜最適な値に調節される。   As a method for filling the concave portion of the surface of the molded body with the precursor sol solution of the positive electrode material, for example, a coating method in which the precursor sol solution is applied to the surface of the sintered body by spin coating, dip coating, blade method, or the like. Can be mentioned. The viscosity of the precursor sol solution is appropriately adjusted to an optimal value according to the above filling method and the like.

熱処理は、加熱により前駆体ゾル溶液中の溶媒等が蒸発、分解等し、さらに正極材料の前駆体が電池の正極の作用、効果を発揮する様になるまで行うことが好ましい。   The heat treatment is preferably performed until the solvent or the like in the precursor sol solution is evaporated or decomposed by heating, and the precursor of the positive electrode material exhibits the function and effect of the positive electrode of the battery.

本発明に用いる正極活物質粉末としては、一般式LiMOやLiM(但し、Mは、Mn、Fe、Co、Ni、Alの1種または2以上を含み、Mに占めるMn、Fe、Co、Ni、Alの比率が50at%以上)で表されるリチウム複合酸化物の粉末を好ましく用いることができる。具体的には、LiCoO、LiNiO、LiNi0.8Co0.15Al0.05、LiNi1/3Mn1/3Co1/3、LiMn、LiMn1.9Co0.1およびLiFePOなどの粉末を挙げることができる。 The positive electrode active material powder used in the present invention has a general formula LiMO 2 or LiM 2 O 4 (where M is one or more of Mn, Fe, Co, Ni, Al, and Mn, Fe in M , Co, Ni, and Al ratios of 50 at% or more) can be preferably used. Specifically, LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiMn 2 O 4 , LiMn 1.9 Mention may be made of powders such as Co 0.1 O 4 and LiFePO 4 .

なお、本発明は表面粗さRa値が大きい焼結体からなる成形体を用いて固体電解質を用いた非水解質電池用の正極を製造する場合に特に有効である。   In addition, this invention is especially effective when manufacturing the positive electrode for non-hydrolyzed batteries using a solid electrolyte using the molded object which consists of a sintered compact with large surface roughness Ra value.

本発明に係る非水電解質電池は、
前記の非水電解質電池用の正極の製造方法により製造された正極が用いられている固体電解質を用いた非水電解質電池であって、
前記前駆体ゾル溶液が充填された表面が、前記固体電解質と対向するように正極が配置されていることを特徴とする。
The nonaqueous electrolyte battery according to the present invention is
A non-aqueous electrolyte battery using a solid electrolyte in which a positive electrode manufactured by the positive electrode manufacturing method for a non-aqueous electrolyte battery is used,
The positive electrode is disposed so that the surface filled with the precursor sol solution faces the solid electrolyte.

本発明においては、表面粗さRa値が充分に小さくされた正極が用いられているため、固体電解質の厚みを小さくしつつ短絡の発生が充分に抑制された非水電解質電池を提供することができる。   In the present invention, since a positive electrode having a sufficiently small surface roughness Ra is used, it is possible to provide a nonaqueous electrolyte battery in which occurrence of a short circuit is sufficiently suppressed while reducing the thickness of the solid electrolyte. it can.

そして、短絡の発生が充分に抑制されているため、従来に比べて製品の歩留まりを向上させることができる。また、固体電解質の厚みを小さくすることにより、体積容量密度が高く電池抵抗が小さい、優れた特性を有する非水電解質電池を提供することができる。   And since generation | occurrence | production of a short circuit is fully suppressed, the yield of a product can be improved compared with the past. In addition, by reducing the thickness of the solid electrolyte, it is possible to provide a nonaqueous electrolyte battery having excellent characteristics with high volume capacity density and low battery resistance.

本発明に係る非水電解質電池の固体電解質としては、硫化物、例えばLi、P、S、OからなるLi−P−S−OやLiSとPとからなるLi−P−Sのアモルファス膜あるいは多結晶膜等で構成される。また、固体電解質の形成には、薄膜の形成に適していることから、真空蒸着法、スパッタリング法、イオンプレーティング法、レーザアブレーション法等のPVD法や、熱CVD法やプラズマCVD法等のCVD法を用いることが好ましい。 Examples of the solid electrolyte of the nonaqueous electrolyte battery according to the present invention include sulfides such as Li—P—S—O composed of Li, P, S, and O, and Li—P— composed of Li 2 S and P 2 S 5. It is composed of an S amorphous film or a polycrystalline film. Also, since it is suitable for the formation of thin films for the formation of solid electrolytes, PVD methods such as vacuum deposition, sputtering, ion plating, and laser ablation, and CVD such as thermal CVD and plasma CVD The method is preferably used.

なお、正極と固体電解質の間にLiNbO等からなる緩衝層が設けられていてもよい。 A buffer layer made of LiNbO 3 or the like may be provided between the positive electrode and the solid electrolyte.

本発明に係る非水電解質電池用の正極は、
前記成形体として焼結体を用いて前記の非水電解質電池用の正極の製造方法により製造されていることを特徴とする。
The positive electrode for a non-aqueous electrolyte battery according to the present invention is
It is manufactured by the method for manufacturing a positive electrode for a non-aqueous electrolyte battery using a sintered body as the molded body.

焼結体は導電助剤やバインダ等を用いることなく正極として機能するため、加圧成形等、焼結体以外の成形体に比べて正極活物質の充填密度を高めることができる。本発明においては、このように正極活物質の充填密度を高くすることができ、さらに表面粗さRa値が充分に小さくされた焼結体を用いることにより、固体電解質の厚みを充分に小さくすることができるため、体積容量密度が特に高い電池の製造に好適な非水電解質電池用の正極を提供することができる。   Since the sintered body functions as a positive electrode without using a conductive additive or a binder, the packing density of the positive electrode active material can be increased as compared with a molded body other than the sintered body, such as pressure molding. In the present invention, the packing density of the positive electrode active material can be increased as described above, and the thickness of the solid electrolyte can be sufficiently reduced by using a sintered body having a sufficiently small surface roughness Ra value. Therefore, it is possible to provide a positive electrode for a non-aqueous electrolyte battery suitable for manufacturing a battery having a particularly high volume capacity density.

本発明によれば、正極表面の凹凸を充分に抑え、固体電解質の厚みを充分に小さくしても正極と負極の接触を抑制することができ、また固体電解質の欠陥の発生を抑制することができる非水電解質電池用の正極およびその製造方法等を提供することができる。   According to the present invention, unevenness on the surface of the positive electrode is sufficiently suppressed, and even when the thickness of the solid electrolyte is sufficiently reduced, contact between the positive electrode and the negative electrode can be suppressed, and the occurrence of defects in the solid electrolyte can be suppressed. It is possible to provide a positive electrode for a non-aqueous electrolyte battery that can be produced and a method for producing the same.

本発明の1実施例における成形体表面の凹部への正極材料の前駆体ゾル溶液の充填方法を概念的に示す図である。It is a figure which shows notionally the filling method of the precursor sol solution of the positive electrode material to the recessed part of the molded object surface in one Example of this invention. 固体電解質を用いた非水電解質電池の積層体の構成を模式的に示す図である。It is a figure which shows typically the structure of the laminated body of the nonaqueous electrolyte battery using a solid electrolyte.

以下、本発明を実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, the present invention will be described based on embodiments. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

本実施例は、LiCoO粉末の焼結体からなる成形体を作製した後、前記成形体の表面の凹部にLiとCoを含む正極材料の前駆体ゾル溶液を充填して熱処理を行うことにより固体電解質を用いた非水電解質電池用の正極を作製する例である。 In this example, a molded body made of a sintered body of LiCoO 2 powder was prepared, and then a heat treatment was performed by filling a concave portion on the surface of the molded body with a precursor sol solution of a positive electrode material containing Li and Co. This is an example of producing a positive electrode for a non-aqueous electrolyte battery using a solid electrolyte.

1.成形体の作製と表面粗さの測定
はじめに、成形体の作製と表面粗さの測定について説明する。
(1)LiCoO粉末の作製
LiOH(水酸化リチウム)とCo(CHCOO)(酢酸コバルト)を等モル量秤量して蒸留水中に投入し、撹拌して充分に混合した後乾燥させて正極活物質の前駆体粉末を得た。この前躯体粉末を20mmφ×1mmtのペレット状にした後、900℃×5hの仮焼きをし、その後粉砕してLiCoO粉末を得た。得られたLiCoO粉末の粒度を、レーザー散乱法で測定したところ、体積分布中心粒径D50=4μmであった。得られた粉末をジェットミル(日清エンジニアリング社製)を用いて粉砕し、体積分布中心粒径D50=1μmのLiCoO粉末とした。
1. Fabrication of molded body and measurement of surface roughness First, fabrication of a molded body and measurement of surface roughness will be described.
(1) Preparation of LiCoO 2 powder LiOH (lithium hydroxide) and Co (CH 3 COO) 2 (cobalt acetate) are weighed in equimolar amounts, put into distilled water, stirred and mixed thoroughly, and then dried. A precursor powder of a positive electrode active material was obtained. The precursor powder was formed into a 20 mmφ × 1 mmt pellet, calcined at 900 ° C. × 5 h, and then pulverized to obtain LiCoO 2 powder. When the particle size of the obtained LiCoO 2 powder was measured by a laser scattering method, the volume distribution center particle size D50 = 4 μm. The obtained powder was pulverized using a jet mill (manufactured by Nisshin Engineering Co., Ltd.) to obtain a LiCoO 2 powder having a volume distribution center particle size D50 = 1 μm.

(2)成形体の作製
前記LiCoO粉末を所定量、成形用金型に入れ50MPaでプレスして焼結前成形体を得た。得られた焼結前成形体を大気中970℃×3hで焼結し、得られた焼結体を所定の厚みに加工した後、#1200の研磨紙で表面研磨し16mmφ×0.1mmtの円盤状のLiCoO粉末の成形体を作製した。作製した成形体の表面粗さ(Ra値)を触針段差計にて測定したところ、Ra=0.5μmであった。
(2) Production of molded body A predetermined amount of the LiCoO 2 powder was put into a molding die and pressed at 50 MPa to obtain a molded body before sintering. The obtained pre-sintered molded body was sintered in the atmosphere at 970 ° C. × 3 h, and after the obtained sintered body was processed to a predetermined thickness, the surface was polished with # 1200 abrasive paper to obtain a 16 mmφ × 0.1 mmt A disk-shaped compact of LiCoO 2 powder was produced. When the surface roughness (Ra value) of the produced molded body was measured with a stylus profilometer, Ra was 0.5 μm.

2.正極材料の前駆体ゾル溶液の作製と成形体表面の凹部への充填
次に、焼結した成形体表面の凹部への正極材料の前駆体ゾル溶液の充填について図1を用いて説明する。図1は、スピンコート法を用いた成形体表面の凹部への正極材料の前駆体ゾル溶液の充填方法を概念的に示す図である。図1において、31は成形体であり、80は正極材料の前駆体ゾル溶液が内部に貯えられたスポイトであり、32はスポイト80から滴下しつつある正極材料の前駆体ゾル溶液であり、33は滴下後に成形体31の表面に薄く広がった前駆体ゾル溶液である。また、30は正極であり、90はヒータである。
2. Preparation of Precursor Sol Solution of Positive Electrode Material and Filling of Recesses on Surface of Molded Body Next, filling of the precursor sol solution of positive electrode material into the recesses on the surface of the sintered compact will be described with reference to FIG. FIG. 1 is a diagram conceptually illustrating a method of filling a precursor sol solution of a positive electrode material into a concave portion on the surface of a molded body using a spin coating method. In FIG. 1, 31 is a molded body, 80 is a dropper in which a precursor sol solution of a positive electrode material is stored, 32 is a precursor sol solution of a positive electrode material being dropped from the dropper 80, 33 Is a precursor sol solution that spreads thinly on the surface of the molded body 31 after dropping. 30 is a positive electrode, and 90 is a heater.

(1)正極材料の前駆体ゾル溶液の作製
エタノール中にLiOC(エトキシリチウム)及びCo(O−i−C(ジ−イソプロポキシコバルト)を等モル量投入した後攪拌し、これらが各々10モル%含まれるエタノール溶液を作製した。次に、エタノールを蒸発させ、適切な塗布がなされる様に粘度を100mPa・sに調整した正極材料の前駆体ゾル溶液を作製した。
(1) Preparation of precursor sol solution of positive electrode material After introducing equimolar amounts of LiOC 2 H 5 (ethoxylithium) and Co (Oi-C 3 H 7 ) 2 (di-isopropoxycobalt) into ethanol The mixture was stirred to prepare ethanol solutions containing 10 mol% of each. Next, ethanol was evaporated to prepare a positive electrode material precursor sol solution in which the viscosity was adjusted to 100 mPa · s so that appropriate application was performed.

(2)成形体表面の凹部への正極材料の前駆体ゾル溶液の充填
作製した前駆体ゾル溶液をスピンコート法により前記LiCoO粉末の成形体31の表面に塗布し、凹部に充填した。具体的には、前記LiCoO粉末の成形体31を水平な状態で200rpmで回転させ、図1の(1)に示す様に、前駆体ゾル溶液32を回転する成形体の表面に滴下させ、遠心力により成形体31の表面全体に薄く塗布した。
(2) Filling the concave portion on the surface of the compact with the precursor sol solution of the positive electrode material The prepared precursor sol solution was applied to the surface of the compact 31 of the LiCoO 2 powder by a spin coating method and filled in the concave. Specifically, the LiCoO 2 powder compact 31 is rotated at 200 rpm in a horizontal state, and as shown in FIG. 1 (1), the precursor sol solution 32 is dropped on the surface of the rotating compact, A thin coating was applied to the entire surface of the molded body 31 by centrifugal force.

(3)熱処理および正極の表面粗さの測定
次いで、図1の(2)に示す様に大気中25℃×10時間で乾燥させた。その後、図1の(3)に示す様に大気中で700℃×3時間の熱処理を行なって熱処理による生成物(LiCoO)と成形体を一体化させた正極30を作製した。作製した正極の表面粗度を触針段差計にて測定したところ、Ra=0.1μmであった。
(3) Heat treatment and measurement of surface roughness of positive electrode Next, as shown in (2) of FIG. 1, it was dried in air at 25 ° C. for 10 hours. Thereafter, as shown in FIG. 1 (3), heat treatment was performed at 700 ° C. for 3 hours in the atmosphere to produce a positive electrode 30 in which the product (LiCoO 2 ) and the molded body obtained by heat treatment were integrated. When the surface roughness of the produced positive electrode was measured with a stylus profilometer, Ra = 0.1 μm.

(比較例)
成形体表面の凹部への正極材料の前駆体ゾル溶液の充填を行わなかったこと以外は、実施例と同じ方法で作製された成形体をそのまま正極とした。
(Comparative example)
The molded body produced by the same method as in the example was used as it was as the positive electrode except that the concave portion on the surface of the molded body was not filled with the precursor sol solution of the positive electrode material.

3.性能評価
次に、実施例および比較例の正極を用いて製造される固体電解質を用いた非水電解質電池(以下「固体電解質を用いた非水電解質電池」を単に「電池」ともいう)の作製と性能評価について説明する。
(1)電池の作製
前記実施例の正極と比較例の正極を用い、以下の方法で電池各100個を作製し、短絡の発生状況を調べた。なお、実施例、比較例何れの電池も、正極の他は材料、寸法、製造方法共に同じである。
3. Performance Evaluation Next, production of a non-aqueous electrolyte battery using a solid electrolyte produced using the positive electrodes of Examples and Comparative Examples (hereinafter, “non-aqueous electrolyte battery using a solid electrolyte” is also simply referred to as “battery”) The performance evaluation will be described.
(1) Production of Battery Using the positive electrode of the above example and the positive electrode of the comparative example, 100 batteries were produced by the following method, and the occurrence of short circuit was examined. Note that the batteries of the examples and comparative examples have the same materials, dimensions, and manufacturing methods other than the positive electrode.

図2は、電池の積層体の構成を模式的に示す図である。図2において、10は固体電解質層であり、15は緩衝層であり、20は負極であり、25は負極集電体層であり、30は正極であり、35は正極集電体層である。以下、前記各層について、その製作を中心に簡単に説明する。   FIG. 2 is a diagram schematically showing the configuration of the battery stack. In FIG. 2, 10 is a solid electrolyte layer, 15 is a buffer layer, 20 is a negative electrode, 25 is a negative electrode current collector layer, 30 is a positive electrode, and 35 is a positive electrode current collector layer. . Hereinafter, the respective layers will be briefly described focusing on the production thereof.

イ.正極集電体層
正極集電体層35は、厚さ0.5μmのSUS304製薄板からなり、正極20を外部と電気的に接続する際の集電を行い、併せて前記各層を支持する基板の役を兼ねている。
I. Positive electrode current collector layer The positive electrode current collector layer 35 is made of a thin plate made of SUS304 having a thickness of 0.5 μm, performs current collection when the positive electrode 20 is electrically connected to the outside, and also supports the layers. Also serves as a

ロ.緩衝層
緩衝層15は、LiNbOをエキシマレーザアブレーション法により、正極30の表面上(実施例の場合はRa値が0.1μmの表面、比較例の場合はRa値が0.5μmの表面)に厚さ20nm蒸着させて形成した。なお、この際温度条件を調節して堆積したLiNbOがアモルファス状となる様にし、さらに成膜後大気炉中で400℃×0.5hr保持して酸素アニールを行なって緩衝層を構成する物質を正極30へ拡散させた。
B. Buffer layer The buffer layer 15 is made of LiNbO 3 on the surface of the positive electrode 30 by excimer laser ablation (surface with Ra value of 0.1 μm in the example, surface with Ra value of 0.5 μm in the comparative example). Was formed by vapor deposition to a thickness of 20 nm. At this time, the temperature condition is adjusted so that the deposited LiNbO 3 becomes amorphous, and after the film formation, the oxygen is annealed by holding at 400 ° C. × 0.5 hr in an atmospheric furnace to constitute the buffer layer. Was diffused into the positive electrode 30.

ハ.固体電解質層
固体電解質層10は、緩衝層15の上にLi−P−S組成の層をエキシマレーザアブレーション法により形成した。この際、Li/P(モル比)が2対1となる様に原料の硫化リチウム(LiS)と5硫化リン(P)を調整した。なお、厚みは5μmである。
C. Solid Electrolyte Layer The solid electrolyte layer 10 was formed by forming an Li—PS—S layer on the buffer layer 15 by excimer laser ablation. At this time, the raw materials lithium sulfide (Li 2 S) and phosphorus pentasulfide (P 2 S 5 ) were adjusted so that the Li / P (molar ratio) was 2: 1. The thickness is 5 μm.

ニ.負極
負極20は、Liを固体電解質層10の上に抵抗加熱蒸着法により厚さ1μmに堆積させて形成した。
ホ.負極集電体層
負極集電体層25は、負極20を外部と電気的に接続する際の集電を行い、併せて正極集電体層35と共に各層を支持する基板の役を兼ねるものであり、負極20上に厚さ0.5μmのSUS304箔を被せて形成した。
D. Negative electrode The negative electrode 20 was formed by depositing Li on the solid electrolyte layer 10 to a thickness of 1 μm by resistance heating vapor deposition.
E. Negative electrode current collector layer The negative electrode current collector layer 25 collects current when the negative electrode 20 is electrically connected to the outside, and also serves as a substrate that supports each layer together with the positive electrode current collector layer 35. Yes, the negative electrode 20 was covered with a SUS304 foil having a thickness of 0.5 μm.

以上の電池本体に外装を施して、厚さ1mm、直径16mmのボタン型の電池とした。   The battery main body described above was packaged to obtain a button-type battery having a thickness of 1 mm and a diameter of 16 mm.

(2)短絡の発生状況
比較例の正極を用いた場合には、正極と負極が短絡した電池の数は10個であった。これに対して、実施例の正極を用いた場合には、短絡の発生が認められなかった。この結果より、本発明の有効性が確認された。
(2) Situation of occurrence of short circuit When the positive electrode of the comparative example was used, the number of batteries in which the positive electrode and the negative electrode were short-circuited was ten. On the other hand, when the positive electrode of the example was used, occurrence of a short circuit was not recognized. From this result, the effectiveness of the present invention was confirmed.

(その他の実施の形態)
前駆体ゾル溶液として、リチウム源としてリチウムメトキシド、リチウムブトキシド、硝酸リチウム、炭酸リチウム、蓚酸リチウム、酢酸リチウム等を用い、コバルト源としてコバルトエトキシド、コバルトブトキシド、硝酸コバルト、炭酸コバルト、蓚酸コバルト、酢酸コバルトを用い、溶媒としてメタノールを用いても、表面が平滑な正極が得られた。
(Other embodiments)
As the precursor sol solution, lithium methoxide, lithium butoxide, lithium nitrate, lithium carbonate, lithium oxalate, lithium acetate, etc. are used as the lithium source, cobalt ethoxide, cobalt butoxide, cobalt nitrate, cobalt carbonate, cobalt oxalate, Even when cobalt acetate was used and methanol was used as a solvent, a positive electrode having a smooth surface was obtained.

10 固体電解質層
15 緩衝層
20 負極
25 負極集電体層
30 正極
31 成形体
32、33 前駆体ゾル溶液
35 正極集電体層
80 スポイト
90 ヒータ
DESCRIPTION OF SYMBOLS 10 Solid electrolyte layer 15 Buffer layer 20 Negative electrode 25 Negative electrode collector layer 30 Positive electrode 31 Molded body 32, 33 Precursor sol solution 35 Positive electrode collector layer 80 Dropper 90 Heater

Claims (3)

固体電解質を用いた非水電解質電池用の正極の製造方法であって、
正極活物質粉末を主体とし、表面に凹凸を有する成形体の表面の凹部に、正極材料の前駆体ゾル溶液を充填する前駆体ゾル溶液充填工程と、
前記前駆体ゾル溶液が充填された成形体を熱処理する熱処理工程とを有することを特徴とする非水電解質電池用の正極の製造方法。
A method for producing a positive electrode for a non-aqueous electrolyte battery using a solid electrolyte, comprising:
A precursor sol solution filling step of filling a precursor sol solution of a positive electrode material into a concave portion of a surface of a molded body mainly having a positive electrode active material powder and having irregularities on the surface;
A method for producing a positive electrode for a non-aqueous electrolyte battery, comprising: a heat treatment step of heat-treating a molded body filled with the precursor sol solution.
請求項1に記載の非水電解質電池用の正極の製造方法により製造された正極が用いられている固体電解質を用いた非水電解質電池であって、
前記前駆体ゾル溶液が充填された表面が、前記固体電解質と対向するように正極が配置されていることを特徴とする非水電解質電池。
A nonaqueous electrolyte battery using a solid electrolyte in which a positive electrode manufactured by the method for manufacturing a positive electrode for a nonaqueous electrolyte battery according to claim 1 is used,
A non-aqueous electrolyte battery, wherein a positive electrode is disposed such that a surface filled with the precursor sol solution faces the solid electrolyte.
前記成形体として焼結体を用いて請求項1に記載の非水電解質電池用の正極の製造方法により製造されていることを特徴とする非水電解質電池用の正極。   A positive electrode for a non-aqueous electrolyte battery, which is manufactured by the method for manufacturing a positive electrode for a non-aqueous electrolyte battery according to claim 1 using a sintered body as the molded body.
JP2009111761A 2009-05-01 2009-05-01 Method of manufacturing positive electrode for nonaqueous electrolyte battery, the nonaqueous electrolyte battery, and the positive electrode for nonaqueous electrolyte battery Pending JP2010262798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009111761A JP2010262798A (en) 2009-05-01 2009-05-01 Method of manufacturing positive electrode for nonaqueous electrolyte battery, the nonaqueous electrolyte battery, and the positive electrode for nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111761A JP2010262798A (en) 2009-05-01 2009-05-01 Method of manufacturing positive electrode for nonaqueous electrolyte battery, the nonaqueous electrolyte battery, and the positive electrode for nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2010262798A true JP2010262798A (en) 2010-11-18

Family

ID=43360718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009111761A Pending JP2010262798A (en) 2009-05-01 2009-05-01 Method of manufacturing positive electrode for nonaqueous electrolyte battery, the nonaqueous electrolyte battery, and the positive electrode for nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2010262798A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090601A1 (en) * 2010-12-28 2012-07-05 住友電気工業株式会社 Method for producing non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP2015097150A (en) * 2013-11-15 2015-05-21 セイコーエプソン株式会社 Electrode body for batteries, electrode complex and lithium battery
JP2016540718A (en) * 2013-10-31 2016-12-28 プラヨン ソシエテ アノニムPrayon S.A. Thin film wet manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090601A1 (en) * 2010-12-28 2012-07-05 住友電気工業株式会社 Method for producing non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP5495196B2 (en) * 2010-12-28 2014-05-21 住友電気工業株式会社 Non-aqueous electrolyte battery manufacturing method and non-aqueous electrolyte battery
US9083057B2 (en) 2010-12-28 2015-07-14 Sumitomo Electric Industries, Ltd. Method for producing nonaqueous-electrolyte battery and nonaqueous-electrolyte battery
JP2016540718A (en) * 2013-10-31 2016-12-28 プラヨン ソシエテ アノニムPrayon S.A. Thin film wet manufacturing method
JP2017500691A (en) * 2013-10-31 2017-01-05 プラヨン ソシエテ アノニムPrayon S.A. Thin film wet manufacturing method
JP2015097150A (en) * 2013-11-15 2015-05-21 セイコーエプソン株式会社 Electrode body for batteries, electrode complex and lithium battery

Similar Documents

Publication Publication Date Title
CN111864207B (en) All-solid battery
KR102306545B1 (en) Positive electrode material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
JP2010080426A (en) Method of manufacturing cathode body and cathode body
JP2013037950A (en) Composite positive electrode active material, all solid-state battery, and method for producing composite positive electrode active material
JP6575109B2 (en) Lithium ion conductor, electrode, battery, manufacturing method thereof, and electronic device
JP2019512450A (en) Method of manufacturing lithium secondary battery positive electrode active material and lithium secondary battery positive electrode active material manufactured thereby
KR102244955B1 (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
JP6660766B2 (en) Manufacturing method of all solid state battery
JP2014238925A (en) All-solid battery
TWI663128B (en) Electrode material for secondary battery and secondary battery
US20160293958A1 (en) Battery and positive electrode material
KR20170034606A (en) Cathode of three dimensional lithium secondary battery and method of fabricating the same
JP2010212161A (en) Nonaqueous electrolyte battery and its manufacturing method
JP2017152348A (en) Method for manufacturing composite active material
JP2015122218A (en) Secondary battery anode and manufacturing method thereof
JP2013026038A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
CN112701276A (en) Quaternary polycrystalline positive electrode material and preparation method and application thereof
JP2008159560A (en) Method of manufacturing positive electrode active material
JP5644951B2 (en) Non-sintered laminate for all solid state battery, all solid state battery and method for producing the same
KR20200090643A (en) Anode Active Material for Lithium Secondary Battery, Anode Comprising the same, and Lithium Secondary Battery Comprising the Same
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP2015118901A (en) Positive electrode active material for lithium ion secondary batteries and method for manufacturing the same, and lithium ion secondary battery
JP2010262798A (en) Method of manufacturing positive electrode for nonaqueous electrolyte battery, the nonaqueous electrolyte battery, and the positive electrode for nonaqueous electrolyte battery
JP2010177042A (en) Positive electrode for nonaqueous electrolyte battery, method of manufacturing the same, and nonaqueous electrolyte battery
JP2010248044A (en) LiNbO3 GLASS, METHOD FOR PRODUCING THE SAME AND NONAQUEOUS ELECTROLYTE CELL USING LiNbO3 GLASS