JP2010261647A - Boiler - Google Patents

Boiler Download PDF

Info

Publication number
JP2010261647A
JP2010261647A JP2009112488A JP2009112488A JP2010261647A JP 2010261647 A JP2010261647 A JP 2010261647A JP 2009112488 A JP2009112488 A JP 2009112488A JP 2009112488 A JP2009112488 A JP 2009112488A JP 2010261647 A JP2010261647 A JP 2010261647A
Authority
JP
Japan
Prior art keywords
heat transfer
upward flow
flow path
transfer tube
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009112488A
Other languages
Japanese (ja)
Inventor
Tomohiro Okubo
智浩 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2009112488A priority Critical patent/JP2010261647A/en
Publication of JP2010261647A publication Critical patent/JP2010261647A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent leakage of unburned fuel 30 to outside of a furnace through a combustion gas flow passage 22 due to furnace interior pressure even if the unburned fuel 30 accumulates in a lower part within the furnace along with turbulence of an air fuel ratio. <P>SOLUTION: A clearance between inner water pipes 5, 5 constituting an inner water pipe row 7 is closed by an inner vertical fin 9 leaving a lower end, and a clearance between outer water pipes 6, 6 constituting an outer water pipe row 8 is closed by an outer vertical fin 11 leaving an upper end. Between the lower end of the inner vertical fin 9 and the upper end of the outer vertical fin 11, an upward flow passage 29 is formed between the inner water pipe row 7 and the outer water pipe row 8. When density of fuel is represented as &gamma;, gravitational acceleration as g, the height of the upward flow passage 29 as h and maximum discharge pressure of an air blower 26 as P1, to satisfy a relationship of &gamma;&times;g&times;h&gt;P1, selection of the air blower 26, setting of a frequency during inverter control of the air blower 26 or the setting of the height h of the upward flow passage 29 is performed. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、蒸気ボイラ、温水ボイラおよび熱媒ボイラを含む各種ボイラに関するものである。特に、液体燃料を燃焼させるボイラに関するものである。   The present invention relates to various boilers including a steam boiler, a hot water boiler, and a heat medium boiler. In particular, the present invention relates to a boiler that burns liquid fuel.

従来、下記特許文献1に開示されるように、内側水管列(7)と外側水管列(8)とを同心円筒状に備え、内側水管列(7)には、下端部の設定領域を残して、隣接する内側水管(5,5)間の隙間を閉塞するように、内側縦ヒレ(9)が設けられる一方、外側水管列(8)には、上端部の設定領域を残して、隣接する外側水管(6,6)間の隙間を閉塞するように、外側縦ヒレ(11)が設けられたボイラ(1)が知られている。   Conventionally, as disclosed in Patent Document 1 below, the inner water tube row (7) and the outer water tube row (8) are provided in a concentric cylindrical shape, and the inner water tube row (7) is left with a setting region at the lower end. The inner vertical fins (9) are provided so as to close the gaps between the adjacent inner water pipes (5, 5), while the outer water pipe row (8) is adjacent to the set area of the upper end portion. There is known a boiler (1) provided with an outer vertical fin (11) so as to close a gap between outer water pipes (6, 6).

この種のボイラ(1)では、バーナ(17)による燃焼ガスは、内側水管列(7)の下端部における隙間(10)を介して、内側水管列(7)と外側水管列(8)との隙間を上方へ進み、外側水管列(8)の上端部における隙間(12)を介して外方へ導出される。その後、排ガスとして、缶体カバー(13)に接続された煙道(14)を介して、外部へ排出される。   In this type of boiler (1), the combustion gas produced by the burner (17) passes through the gap (10) at the lower end of the inner water tube row (7), and the inner water tube row (7) and the outer water tube row (8). Is led upward through the gap (12) at the upper end of the outer water pipe row (8). Thereafter, the exhaust gas is discharged to the outside through the flue (14) connected to the can cover (13).

特開2008−267713号公報JP 2008-267713 A

灯油、軽油または重油などの液体燃料を燃焼させるバーナの場合、空燃比の乱れなどに伴い、炉内下部に未燃燃料が溜まるおそれがある。その未燃燃料は、炉内圧力により、燃焼ガスの流路に沿って押し出され、缶体カバーと煙道(またはエコノマイザ)との接続部などから、炉外に漏れ出るおそれもある。   In the case of a burner that burns liquid fuel such as kerosene, light oil, or heavy oil, unburned fuel may accumulate in the lower part of the furnace due to disturbance of the air-fuel ratio. The unburned fuel is pushed out along the flow path of the combustion gas due to the pressure in the furnace, and may leak out of the furnace from the connection between the can cover and the flue (or economizer).

本発明が解決しようとする課題は、炉内に未燃燃料が溜まっても、炉外への漏れを防止することにある。また、炉内に未燃燃料が所定以上溜まった場合には、送風機による炉内への燃焼用空気の押し込みを防止することで、不着火として安全性を一層高めることを課題とする。   The problem to be solved by the present invention is to prevent leakage outside the furnace even if unburned fuel is accumulated in the furnace. Moreover, when unburned fuel accumulates more than predetermined in a furnace, it makes it the subject to raise safety | security further as non-ignition by preventing pushing of the combustion air into the furnace by a blower.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、液体燃料を燃焼させるボイラにおいて、上部管寄せと下部管寄せとの間に円筒状に配列されて伝熱管列を構成する複数の伝熱管と、前記伝熱管列を取り囲むように、前記上部管寄せと前記下部管寄せとの間に設けられる円筒状の缶体カバーとを備え、燃焼ガスは、内外の伝熱管列間の上向き流路、または前記伝熱管列と前記缶体カバーとの間の上向き流路を介して、缶体カバー外へ排出され、バーナからの未燃燃料が炉内底部に溜まった場合でも、前記上向き流路を超えて未燃燃料を押し出せない炉内圧力で運転することを特徴とするボイラである。   The present invention has been made to solve the above problems, and the invention according to claim 1 is a boiler for burning liquid fuel, and is arranged in a cylindrical shape between an upper header and a lower header. A plurality of heat transfer tubes constituting a heat transfer tube row, and a cylindrical can cover provided between the upper header and the lower header so as to surround the heat transfer tube row, combustion gas, Unburnt fuel from the burner is discharged from the burner cover through the upward flow path between the inner and outer heat transfer tube rows, or the upward flow channel between the heat transfer tube row and the can body cover, and the unburned fuel from the burner In the boiler, the boiler is operated at a pressure in the furnace where the unburned fuel cannot be pushed out beyond the upward flow path.

請求項1に記載の発明によれば、万一、空燃比の乱れなどにより、炉内に未燃燃料が溜まっても、上向き流路の高さと、炉内圧力との関係で、上向き流路の上端まで送風機で液体燃料を押し上げられない構成である。これにより、炉外への燃料漏れを防止することができる。また、炉内に未燃燃料が所定以上溜まった場合には、送風機による炉内への燃焼用空気の押し込みが不能となるので、不着火により安全性を一層高めることができる。   According to the first aspect of the present invention, even if unburned fuel accumulates in the furnace due to air-fuel ratio disturbance or the like, the upward flow path is related to the height of the upward flow path and the pressure in the furnace. The liquid fuel cannot be pushed up by the blower up to the upper end. Thereby, fuel leakage to the outside of the furnace can be prevented. Further, when unburned fuel is accumulated in the furnace for a predetermined amount or more, it becomes impossible to push the combustion air into the furnace by the blower, so that safety can be further improved by non-ignition.

請求項2に記載の発明は、前記上部管寄せと前記下部管寄せとの間に、内側伝熱管列と外側伝熱管列とが同心円筒状に配列されて設けられ、前記内側伝熱管列は、複数の内側伝熱管が円筒状に配列されると共に、隣接する前記内側伝熱管間の隙間が下端部を残して内側縦ヒレで閉塞されて構成され、前記外側伝熱管列は、複数の外側伝熱管が円筒状に配列されると共に、隣接する前記外側伝熱管間の隙間が上端部を残して外側縦ヒレで閉塞されて構成され、前記上向き流路は、前記内側縦ヒレの下端部と前記外側縦ヒレの上端部との間において、前記内側伝熱管列と前記外側伝熱管列との間で構成されることを特徴とする請求項1に記載のボイラである。   According to a second aspect of the present invention, an inner heat transfer tube row and an outer heat transfer tube row are arranged concentrically between the upper header and the lower header, and the inner heat transfer tube row A plurality of inner heat transfer tubes are arranged in a cylindrical shape, and a gap between adjacent inner heat transfer tubes is closed by an inner vertical fin leaving a lower end portion, and the outer heat transfer tube row is formed by a plurality of outer heat transfer tube rows. The heat transfer tubes are arranged in a cylindrical shape, and a gap between the adjacent outer heat transfer tubes is configured to be closed with an outer vertical fin leaving an upper end portion, and the upward flow path is formed with a lower end portion of the inner vertical fin 2. The boiler according to claim 1, wherein the boiler is configured between the inner heat transfer tube row and the outer heat transfer tube row between an upper end portion of the outer vertical fins.

請求項2に記載の発明によれば、上向き流路は、内側縦ヒレの下端部と外側縦ヒレの上端部との間において、内側伝熱管列と外側伝熱管列との間で構成される。これにより、簡易な構成で、上向き流路の形成と、その高さ設定を行うことができる。   According to invention of Claim 2, an upward flow path is comprised between an inner side heat exchanger tube row | line | column and an outer side heat exchanger tube row | line | column between the lower end part of an inner side vertical fin, and the upper end part of an outer side vertical fin. . Thereby, formation of an upward flow path and its height setting can be performed with a simple configuration.

請求項3に記載の発明は、燃料の密度をγ、重力加速度をg、前記上向き流路の高さをh、送風機の最大吐出圧をP1とするとき、γ×g×h>P1の関係式を満たすことを特徴とする請求項1または請求項2に記載のボイラである。   The invention according to claim 3 is a relationship of γ × g × h> P1, where γ is the fuel density, g is the acceleration of gravity, h is the height of the upward flow path, and P1 is the maximum discharge pressure of the blower. The boiler according to claim 1 or 2, wherein the formula is satisfied.

請求項3に記載の発明によれば、送風機を最大吐出圧で運転しても、上向き流路の上端まで未燃燃料を押し上げられないことになる。これにより、炉外への燃料漏れを確実に防止することができる。   According to the third aspect of the present invention, even when the blower is operated at the maximum discharge pressure, the unburned fuel cannot be pushed up to the upper end of the upward flow path. As a result, fuel leakage to the outside of the furnace can be reliably prevented.

請求項4に記載の発明は、燃料の密度をγ、重力加速度をg、前記上向き流路の高さをh、送風機の運転中の最大吐出圧をP2とするとき、γ×g×h>P2の関係式を満たすことを特徴とする請求項1または請求項2に記載のボイラである。   In the invention according to claim 4, when the fuel density is γ, the gravitational acceleration is g, the height of the upward flow path is h, and the maximum discharge pressure during operation of the blower is P2, γ × g × h> The boiler according to claim 1 or 2, wherein the relational expression of P2 is satisfied.

請求項4に記載の発明によれば、ボイラの運転中、送風機の吐出圧が最大となる際にも、上向き流路の上端まで未燃燃料を押し上げられないことになる。これにより、炉外への燃料漏れを確実に防止することができる。   According to the fourth aspect of the present invention, the unburned fuel cannot be pushed up to the upper end of the upward flow path even when the discharge pressure of the blower becomes maximum during operation of the boiler. As a result, fuel leakage to the outside of the furnace can be reliably prevented.

さらに、請求項5に記載の発明は、前記関係式を満たすように、送風機の選定、送風機をインバータ制御する場合の周波数の設定、送風機の運転中の最大吐出圧の設定、または前記上向き流路の高さhの設定がなされることを特徴とする請求項3または請求項4に記載のボイラである。   Furthermore, in the invention according to claim 5, selection of a blower, setting of a frequency when the blower is inverter-controlled, setting of a maximum discharge pressure during operation of the blower, or the upward flow path so as to satisfy the relational expression The boiler according to claim 3 or 4, wherein the height h is set.

請求項5に記載の発明によれば、送風機の選定、送風機をインバータ制御する場合の周波数の設定、送風機の運転中の最大吐出圧の設定、および上向き流路の高さhの設定の内、いずれか一以上を調整することで、上向き流路の上端までの未燃燃料の押し上げを簡易かつ確実に防止する。   According to the invention described in claim 5, among the selection of the blower, the setting of the frequency when the blower is inverter-controlled, the setting of the maximum discharge pressure during the operation of the blower, and the setting of the height h of the upward flow path, By adjusting any one or more, the unburned fuel can be prevented from being pushed up to the upper end of the upward flow path easily and reliably.

本発明によれば、炉内に未燃燃料が溜まっても、炉外への漏れを防止することができる。また、炉内に未燃燃料が所定以上溜まった場合には、送風機による炉内への燃焼用空気の押し込みを防止することで、不着火となるので安全性を一層高めることができる。   According to the present invention, even if unburned fuel accumulates in the furnace, leakage to the outside of the furnace can be prevented. Further, when unburned fuel is accumulated in the furnace more than a predetermined amount, the combustion air is prevented from being pushed into the furnace by the blower, so that non-ignition occurs and safety can be further improved.

本発明のボイラの一実施例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows one Example of the boiler of this invention. 図1のボイラに未燃燃料が溜まった状態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the state which the unburned fuel collected in the boiler of FIG. 図1のボイラの送風機の性能曲線の一例を示す図である。It is a figure which shows an example of the performance curve of the air blower of the boiler of FIG.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明のボイラの一実施例を示す概略縦断面図である。本実施例のボイラ1は、円筒状の缶体2を備えた多管式の貫流ボイラである。缶体2は、上部管寄せ3と下部管寄せ4との間を、円筒状に配列された多数の水管(伝熱管)5,6で接続して構成される。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic longitudinal sectional view showing an embodiment of the boiler of the present invention. The boiler 1 of the present embodiment is a multi-tube type once-through boiler provided with a cylindrical can body 2. The can body 2 is configured by connecting the upper header 3 and the lower header 4 with a plurality of water tubes (heat transfer tubes) 5 and 6 arranged in a cylindrical shape.

上部管寄せ3と下部管寄せ4とは、上下に離隔して平行に配置され、それぞれ中空の円環状とされている。また、上部管寄せ3と下部管寄せ4とは、それぞれ水平に配置されると共に、同一軸線上に配置される。   The upper header 3 and the lower header 4 are vertically spaced apart from each other in parallel, and each has a hollow annular shape. Further, the upper header 3 and the lower header 4 are respectively arranged horizontally and on the same axis.

各水管5,6は、垂直に配置され、上端部が上部管寄せ3に接続される一方、下端部が下部管寄せ4に接続される。各水管5,6は、上部管寄せ3と下部管寄せ4との周方向へ順次に配列されることで、円筒状の水管列7,8を構成する。本実施例では、内側水管列7と外側水管列8とが同心円筒状に設けられる。内側水管列7は、円筒状に配列された内側水管5,5,…にて構成される。一方、外側水管列8は、内側水管列7を取り囲むように、円筒状に配列された外側水管6,6,…にて構成される。   Each of the water pipes 5 and 6 is arranged vertically and has an upper end connected to the upper header 3 and a lower end connected to the lower header 4. The water pipes 5 and 6 are sequentially arranged in the circumferential direction of the upper header 3 and the lower header 4 to form cylindrical water pipe rows 7 and 8. In the present embodiment, the inner water tube row 7 and the outer water tube row 8 are provided in a concentric cylindrical shape. The inner water tube row 7 is composed of inner water tubes 5, 5,... Arranged in a cylindrical shape. On the other hand, the outer water tube row 8 is configured by outer water tubes 6, 6,... Arranged in a cylindrical shape so as to surround the inner water tube row 7.

内側水管列7には、下端部の設定領域を残して、隣接する内側水管5,5間の隙間を閉塞するように、内側縦ヒレ9が設けられる。つまり、内側水管5,5間の隙間は、下端部の設定領域を残して、内側縦ヒレ9にて閉塞される。内側水管列7は、内側縦ヒレ9が設けられない下端部において、隣接する内側水管5,5間に隙間が空けられる。この隙間は、内側水管列7の内側と外側とを連通するための連通部(内列連通部という)10とされる。   Inner vertical fins 9 are provided in the inner water tube row 7 so as to close the gap between the adjacent inner water tubes 5 and 5, leaving a setting region at the lower end. That is, the gap between the inner water pipes 5 and 5 is closed by the inner vertical fin 9 leaving the setting region at the lower end. The inner water tube row 7 is provided with a gap between the adjacent inner water tubes 5 and 5 at the lower end where the inner vertical fin 9 is not provided. The gap is a communication portion (referred to as an inner row communication portion) 10 for communicating the inner side and the outer side of the inner water tube row 7.

外側水管列8には、上端部の設定領域を残して、隣接する外側水管6,6間の隙間を閉塞するように、外側縦ヒレ11が設けられる。つまり、外側水管6,6間の隙間は、上端部の設定領域を残して、外側縦ヒレ11にて閉塞される。外側水管列8は、外側縦ヒレ11が設けられない上端部において、隣接する外側水管6,6間に隙間が空けられる。この隙間は、外側水管列8の内側と外側とを連通するための連通部(外列連通部という)12とされる。   The outer vertical fin 11 is provided in the outer water pipe row 8 so as to close a gap between the adjacent outer water pipes 6 and 6 while leaving a setting region at the upper end. That is, the gap between the outer water pipes 6 and 6 is closed by the outer vertical fin 11 while leaving the set area at the upper end. The outer water pipe row 8 has a gap between the adjacent outer water pipes 6 and 6 at the upper end where the outer vertical fin 11 is not provided. The gap is a communication portion (referred to as an outer row communication portion) 12 for communicating the inner side and the outer side of the outer water tube row 8.

各内側水管5や各外側水管6には、その周側面に所望により突部を設けて、伝熱面積の拡大を図ってもよい。たとえば、各内側水管5には、円筒状の内側水管列7の外周面を構成する面に、横ヒレやスタッドを設けたり、各外側水管6には、円筒状の外側水管列8の内周面を構成する面に、横ヒレやスタッドを設けたりしてもよい。なお、各内側水管5および/または各外側水管6に横ヒレを設ける場合、横ヒレは、水平状態に設置してもよいし、缶体2の周方向一方へ行くに従って上方へ傾斜して設けてもよい。   Each inner water pipe 5 and each outer water pipe 6 may be provided with protrusions on the peripheral side as desired to increase the heat transfer area. For example, each inner water pipe 5 is provided with horizontal fins or studs on the surface constituting the outer peripheral surface of the cylindrical inner water pipe row 7, or each outer water pipe 6 is provided with the inner circumference of the cylindrical outer water pipe row 8. You may provide a horizontal fin and a stud in the surface which comprises a surface. In addition, when providing a horizontal fin in each inner water pipe 5 and / or each outer water pipe 6, the horizontal fin may be installed in a horizontal state or inclined upward as it goes to one circumferential direction of the can body 2. May be.

上部管寄せ3と下部管寄せ4との間にはさらに、外側水管列8を取り囲むように、円筒状の缶体カバー13が設けられる。図示例では、缶体カバー13は、内筒14と、それより大径の外筒15とから構成される。内筒14は、下端部が下部管寄せ4に固定され、上端部が外列連通部12の下端部と対応する高さに配置される。一方、外筒15は、上端部が上部管寄せ3に固定され、下端部が内筒14の上下方向中途部と対応する高さに配置される。このようにして、缶体カバー13は、内筒14の下端部が下部管寄せ4との隙間を封止され、外筒15の上端部が上部管寄せ3との隙間を封止される。また、外筒15の下端部において、内筒14と外筒15との隙間が封止される。さらに、缶体カバー13の内筒14と、外側水管列8との間の円筒状隙間には、断熱材16が充填される。   A cylindrical can cover 13 is further provided between the upper header 3 and the lower header 4 so as to surround the outer water tube row 8. In the illustrated example, the can cover 13 includes an inner cylinder 14 and an outer cylinder 15 having a larger diameter. The inner cylinder 14 has a lower end portion fixed to the lower header 4 and an upper end portion disposed at a height corresponding to the lower end portion of the outer row communication portion 12. On the other hand, the outer cylinder 15 has an upper end fixed to the upper header 3 and a lower end disposed at a height corresponding to the midway in the vertical direction of the inner cylinder 14. In this way, in the can body cover 13, the lower end portion of the inner cylinder 14 is sealed with the gap between the lower header 4 and the upper end portion of the outer cylinder 15 is sealed with the gap with the upper header 3. Further, a gap between the inner cylinder 14 and the outer cylinder 15 is sealed at the lower end portion of the outer cylinder 15. Further, the cylindrical gap between the inner cylinder 14 of the can body cover 13 and the outer water tube row 8 is filled with a heat insulating material 16.

缶体カバー13の外筒15には、周方向一部において、煙道17が接続される。さらに、ボイラ1には、缶体カバー13を取り囲むように、円筒状のケーシング18が設けられる。このケーシング18を貫通して、煙道17が缶体2の外方へ導出される。   A flue 17 is connected to the outer cylinder 15 of the can cover 13 in a part in the circumferential direction. Further, the boiler 1 is provided with a cylindrical casing 18 so as to surround the can body cover 13. The flue 17 is led out of the can body 2 through the casing 18.

上部管寄せ3の下面および下部管寄せ4の上面には、各管寄せ3,4と各水管5,6との接続部を覆うように、耐火材19,19が設けられる。この際、下部管寄せ4側の耐火材19は、下部管寄せ4の中央部をも閉塞するように設けられる。下部管寄せ4側の耐火材19の中央部には、逆円錐台状の凹部20が形成されている。   Refractory materials 19 and 19 are provided on the lower surface of the upper header 3 and the upper surface of the lower header 4 so as to cover the connecting portions between the headers 3 and 4 and the water tubes 5 and 6. At this time, the refractory material 19 on the lower header 4 side is provided so as to block the central portion of the lower header 4. In the center of the refractory material 19 on the lower header 4 side, an inverted frustoconical recess 20 is formed.

ところで、図示例では、各内側水管5は、内列連通部10と対応した位置に、小径部21を有する。これは、燃焼ガスが内列連通部10を介して内外の水管列7,8間の燃焼ガス流路22へ入る際の圧力損失を減少させるためである。一方、図示例では、各外側水管6は、外列連通部12と対応した位置に小径部を有しないが、各内側水管5と同様に小径部を有してもよい。   By the way, in the example of illustration, each inner side water pipe 5 has the small diameter part 21 in the position corresponding to the inner row communication part 10. FIG. This is to reduce the pressure loss when the combustion gas enters the combustion gas flow path 22 between the inner and outer water pipe rows 7 and 8 via the inner row communication portion 10. On the other hand, in the illustrated example, each outer water pipe 6 does not have a small diameter part at a position corresponding to the outer row communication part 12, but may have a small diameter part like each inner water pipe 5.

上部管寄せ3の中央部には、下方へ向けてバーナ23が設けられる。このバーナ23には、液体燃料(たとえばA重油)が供給されると共に、燃焼用空気が供給される。具体的には、缶体2内へは、液体燃料が燃料ポンプ24および燃料弁25を介してバーナ23から噴霧されると共に、燃焼用空気が送風機26からウィンドボックス27を介して吐出される。従って、噴霧される燃料に点火装置(図示省略)で着火すれば、缶体2内において燃料の燃焼が図られる。この際、内側水管列7の内側は、燃焼室28として機能する。なお、燃料および燃焼用空気の流量を変えることで、燃焼量の調整が可能とされる。その際、燃焼用空気の流量は、送風機26のモータ(図示省略)をインバータ制御してもよいし、それに代えてまたはそれに加えて、送風機26からウィンドボックス27への送風路に設けたダンパ(図示省略)の開度を調整してもよい。   A burner 23 is provided at the center of the upper header 3 downward. The burner 23 is supplied with liquid fuel (for example, A heavy oil) and combustion air. Specifically, liquid fuel is sprayed from the burner 23 through the fuel pump 24 and the fuel valve 25 into the can body 2, and combustion air is discharged from the blower 26 through the wind box 27. Therefore, if the fuel to be sprayed is ignited by an ignition device (not shown), the fuel can be burned in the can body 2. At this time, the inside of the inner water tube row 7 functions as a combustion chamber 28. The amount of combustion can be adjusted by changing the flow rates of fuel and combustion air. At that time, the flow rate of the combustion air may be controlled by an inverter of a motor (not shown) of the blower 26, or alternatively or in addition to a damper (in a blower path from the blower 26 to the wind box 27) The degree of opening may be adjusted.

燃焼室で28の燃料の燃焼による燃焼ガスは、内列連通部10を介して、内側水管列7と外側水管列8との間の燃焼ガス流路22へ導出される。そして、その燃焼ガスは、外列連通部12を介して缶体カバー13へ導出される。その後、缶体カバー13に接続された煙道17を介して、排ガスとして外部へ排出される。この間、燃焼ガスは各水管5,6内の水と熱交換し、各水管5,6内の水は加熱が図られる。これにより、上部管寄せ3から蒸気を取り出すことができ、その蒸気は気水分離器(図示省略)などを介して、蒸気使用設備(図示省略)へ送られる。ところで、煙道17には、エコノマイザを設置してもよい。   Combustion gas resulting from combustion of fuel 28 in the combustion chamber is led to the combustion gas flow path 22 between the inner water tube row 7 and the outer water tube row 8 via the inner row communication portion 10. Then, the combustion gas is led out to the can body cover 13 via the outer row communication portion 12. Then, it is discharged to the outside as exhaust gas through the flue 17 connected to the can cover 13. During this time, the combustion gas exchanges heat with the water in the water pipes 5 and 6, and the water in the water pipes 5 and 6 is heated. Thereby, steam can be taken out from the upper header 3, and the steam is sent to a steam use facility (not shown) via a steam separator (not shown). By the way, an economizer may be installed in the flue 17.

なお、内側水管列7と外側水管列8との間の燃焼ガス流路22の内、内側縦ヒレ9の下端部から外側縦ヒレ11の上端部までの領域を、上向き流路29ということにする。つまり、上向き流路29とは、燃焼ガス流路22の内、図1において、高さhで示された領域をいう。   Of the combustion gas flow path 22 between the inner water pipe row 7 and the outer water pipe row 8, the region from the lower end portion of the inner vertical fin 9 to the upper end portion of the outer vertical fin 11 is referred to as an upward flow passage 29. To do. That is, the upward flow path 29 refers to a region indicated by the height h in FIG.

図2は、本実施例のボイラ1を運転中、万一、空燃比の乱れなどに伴い、炉内に未燃燃料30が溜まった状態を示している。未燃燃料30は、燃焼室28内の底部に溜まるが、量が増すと、炉内圧力により上向き流路29を上方へ進むように溜まっていくことになる。但し、本実施例のボイラ1は、万一このような事態になっても、その未燃燃料30が上向き流路29を超えて缶体2外へ押し出されないように構成される。   FIG. 2 shows a state in which the unburned fuel 30 is accumulated in the furnace due to the disturbance of the air-fuel ratio during operation of the boiler 1 of the present embodiment. The unburned fuel 30 accumulates at the bottom of the combustion chamber 28. However, as the amount increases, the unburned fuel 30 accumulates so as to advance upward in the upward flow path 29 due to the furnace pressure. However, the boiler 1 of the present embodiment is configured so that the unburned fuel 30 is not pushed out of the can body 2 beyond the upward flow path 29 even if such a situation occurs.

すなわち、バーナ23からの未燃燃料30が炉内底部に溜まった場合でも、上向き流路29を超えて未燃燃料30を押し出せない炉内圧力で運転する。たとえば、本実施例のボイラ1は、燃料の密度をγ、重力加速度をg、上向き流路29の高さをh、送風機26の性能上の最大吐出圧をP1とするとき、γ×g×h>P1の関係式を満たすよう構成される。あるいは、本実施例のボイラ1は、燃料の密度をγ、重力加速度をg、上向き流路29の高さをh、送風機26の運転中の最大吐出圧をP2とするとき、γ×g×h>P2の関係式を満たすよう構成される。いずれの場合も、前記関係式を満たすように、送風機26を選定したり、もしくは送風機26をインバータ制御する場合の周波数を設定したり、または上向き流路29の高さhを定めたりすればよい。   That is, even when the unburned fuel 30 from the burner 23 accumulates at the bottom of the furnace, the operation is performed at the furnace pressure at which the unburned fuel 30 cannot be pushed out beyond the upward flow path 29. For example, in the boiler 1 of this embodiment, when the fuel density is γ, the gravitational acceleration is g, the height of the upward flow path 29 is h, and the maximum discharge pressure on the performance of the blower 26 is P1, γ × g × It is configured to satisfy the relational expression h> P1. Alternatively, in the boiler 1 of this embodiment, when the fuel density is γ, the acceleration of gravity is g, the height of the upward flow path 29 is h, and the maximum discharge pressure during operation of the blower 26 is P2, γ × g × It is configured to satisfy the relational expression h> P2. In any case, the blower 26 may be selected, the frequency when the blower 26 is inverter-controlled, or the height h of the upward flow path 29 may be determined so as to satisfy the relational expression. .

たとえば、燃料としてA重油(密度0.86g/cm)を用い、上向き流路29の高さhを935mmとする場合、0.86×9.8×935=7880Paとなるので、送風機26の吐出圧を7880Pa未満で運転させればよいことになる。 For example, when A heavy oil (density 0.86 g / cm 3 ) is used as the fuel and the height h of the upward flow path 29 is 935 mm, 0.86 × 9.8 × 935 = 7808 Pa. It is sufficient to operate at a discharge pressure of less than 7880 Pa.

このような構成の場合、炉内に未燃燃料が溜まっても、炉内圧力との関係で、高さhの上向き流路29の上端まで燃料を押し上げることができない。これにより、炉外への燃料の流出を防止することができる。また、送風機26による炉内への燃焼用空気の押し込みが阻止されるので、不着火にさせてボイラ1の運転を停止させることで、安全性を高めることができる。   In such a configuration, even if unburned fuel accumulates in the furnace, the fuel cannot be pushed up to the upper end of the upward flow path 29 at the height h due to the pressure in the furnace. Thereby, the outflow of fuel to the outside of the furnace can be prevented. Moreover, since the pushing of the combustion air into the furnace by the blower 26 is prevented, safety can be improved by stopping the operation of the boiler 1 by causing non-ignition.

図3は、送風機26の性能曲線の一例を示す図であり、横軸は風量、縦軸は静圧を示している。このような性能曲線から送風機26の最大吐出圧P1が分かるので、上述した関係式γ×g×h>P1を満たすように、送風機26を選定するか、上向き流路29の高さhを決めればよい。   FIG. 3 is a diagram illustrating an example of a performance curve of the blower 26, in which the horizontal axis indicates the air volume and the vertical axis indicates the static pressure. Since the maximum discharge pressure P1 of the blower 26 can be found from such a performance curve, the blower 26 is selected or the height h of the upward flow path 29 can be determined so as to satisfy the above-described relational expression γ × g × h> P1. That's fine.

また、最大吐出圧P1未満で送風機26を運転する場合、運転中の最大吐出圧P2により、上述した関係式γ×g×h>P2を満たすように、送風機26を選定するか、運転中の最大吐出圧P2を決定するか、上向き流路29の高さhを決めればよい。   When the blower 26 is operated at a pressure lower than the maximum discharge pressure P1, the blower 26 is selected so as to satisfy the above-described relational expression γ × g × h> P2 with the maximum discharge pressure P2 during operation, The maximum discharge pressure P2 may be determined or the height h of the upward flow path 29 may be determined.

また、送風機26をインバータ制御する場合も同様に、たとえば図3において破線で示す性能曲線で運転する場合、その最大吐出圧P1´を用いて、関係式γ×g×h>P1´を満たすように設計すればよいし、最大吐出圧P1´未満で運転する場合、運転中の最大吐出圧P2´を用いて、関係式γ×g×h>P2´を満たすように設計すればよい。その際、上向き流路29の高さhを先に決めて、送風機26をインバータ制御する場合の周波数(図3における破線)を設定したり、性能曲線中のどの範囲で運転するかを設計したりすればよい。   Similarly, when the blower 26 is controlled by an inverter, for example, when operating with a performance curve indicated by a broken line in FIG. 3, the maximum discharge pressure P1 ′ is used to satisfy the relational expression γ × g × h> P1 ′. In the case of operating at a pressure lower than the maximum discharge pressure P1 ′, the maximum discharge pressure P2 ′ during operation may be used so as to satisfy the relational expression γ × g × h> P2 ′. At that time, the height h of the upward flow path 29 is determined first, and the frequency (broken line in FIG. 3) for inverter control of the blower 26 is set, and the range in the performance curve to be operated is designed. Just do it.

本発明のボイラ1は、前記実施例の構成に限らず、適宜変更可能である。特に、上向き流路29をいずれかの箇所に有し、その上向き流路29の高さと、炉内圧力との関係で、上向き流路29の上端まで送風機26で液体燃料を押し上げられない構成であれば、ボイラ1の構成は適宜に変更可能である。たとえば、外側水管列8を省略して、内側水管列7と缶体カバー13との間に上向き流路29を形成してもよい。その場合、上向き流路29は、内側縦ヒレ9の下端から、内筒14の上端(または缶体カバー13が単なる円筒状の場合、缶体カバー13から煙道17への開口部の下端)までの高さとなる。   The boiler 1 of this invention is not restricted to the structure of the said Example, It can change suitably. In particular, there is an upward flow path 29 at any location, and the blower 26 cannot push up the liquid fuel to the upper end of the upward flow path 29 due to the relationship between the height of the upward flow path 29 and the pressure in the furnace. If it exists, the structure of the boiler 1 can be changed suitably. For example, the outer water pipe row 8 may be omitted, and the upward flow path 29 may be formed between the inner water pipe row 7 and the can body cover 13. In that case, the upward flow path 29 extends from the lower end of the inner vertical fin 9 to the upper end of the inner cylinder 14 (or the lower end of the opening from the can body cover 13 to the flue 17 when the can body cover 13 is simply cylindrical). Up to.

また、蒸気ボイラや温水ボイラ以外でも、たとえば熱媒ボイラにも適用することができる。この場合、前記実施例において、水管を伝熱管、水管列を伝熱管列と言い換えることができる。   Moreover, it can apply also to a heat-medium boiler other than a steam boiler and a hot water boiler, for example. In this case, in the said Example, a water tube can be paraphrased as a heat exchanger tube, and a water tube row | line can be paraphrased as a heat exchanger tube row | line | column.

1 ボイラ
2 缶体
3 上部管寄せ
4 下部管寄せ
5 内側水管(内側伝熱管)
6 外側水管(外側伝熱管)
7 内側水管列(内側伝熱管列)
8 外側水管列(外側伝熱管列)
9 内側縦ヒレ
11 外側縦ヒレ
13 缶体カバー
22 燃焼ガス流路
23 バーナ
26 送風機
29 上向き流路
30 未燃燃料
1 boiler 2 can body 3 upper header 4 lower header 5 inner water tube (inner heat transfer tube)
6 Outside water pipe (outside heat transfer pipe)
7 Inner water tube row (inner heat transfer tube row)
8 Outside water tube row (outside heat transfer tube row)
9 Inner vertical fin 11 Outer vertical fin 13 Can body cover 22 Combustion gas flow path 23 Burner 26 Blower 29 Upward flow path 30 Unburned fuel

Claims (5)

液体燃料を燃焼させるボイラにおいて、
上部管寄せと下部管寄せとの間に円筒状に配列されて伝熱管列を構成する複数の伝熱管と、
前記伝熱管列を取り囲むように、前記上部管寄せと前記下部管寄せとの間に設けられる円筒状の缶体カバーとを備え、
燃焼ガスは、内外の伝熱管列間の上向き流路、または前記伝熱管列と前記缶体カバーとの間の上向き流路を介して、缶体カバー外へ排出され、
バーナからの未燃燃料が炉内底部に溜まった場合でも、前記上向き流路を超えて未燃燃料を押し出せない炉内圧力で運転する
ことを特徴とするボイラ。
In boilers that burn liquid fuel,
A plurality of heat transfer tubes arranged in a cylindrical shape between the upper header and the lower header to form a heat transfer tube array;
A cylindrical can cover provided between the upper header and the lower header so as to surround the heat transfer tube row,
Combustion gas is discharged out of the can body cover through an upward flow path between the inner and outer heat transfer tube rows, or an upward flow channel between the heat transfer tube rows and the can body cover,
A boiler that is operated at an in-furnace pressure at which unburned fuel cannot be pushed out beyond the upward flow path even when unburned fuel from the burner accumulates at the bottom of the furnace.
前記上部管寄せと前記下部管寄せとの間に、内側伝熱管列と外側伝熱管列とが同心円筒状に配列されて設けられ、
前記内側伝熱管列は、複数の内側伝熱管が円筒状に配列されると共に、隣接する前記内側伝熱管間の隙間が下端部を残して内側縦ヒレで閉塞されて構成され、
前記外側伝熱管列は、複数の外側伝熱管が円筒状に配列されると共に、隣接する前記外側伝熱管間の隙間が上端部を残して外側縦ヒレで閉塞されて構成され、
前記上向き流路は、前記内側縦ヒレの下端部と前記外側縦ヒレの上端部との間において、前記内側伝熱管列と前記外側伝熱管列との間で構成される
ことを特徴とする請求項1に記載のボイラ。
Between the upper header and the lower header, an inner heat transfer tube row and an outer heat transfer tube row are arranged in a concentric cylindrical shape,
The inner heat transfer tube row is configured such that a plurality of inner heat transfer tubes are arranged in a cylindrical shape, and a gap between the adjacent inner heat transfer tubes is closed with an inner vertical fin leaving a lower end portion,
The outer heat transfer tube array is configured such that a plurality of outer heat transfer tubes are arranged in a cylindrical shape, and a gap between adjacent outer heat transfer tubes is closed with an outer vertical fin leaving an upper end portion,
The upward flow path is configured between the inner heat transfer tube row and the outer heat transfer tube row between a lower end portion of the inner vertical fin and an upper end portion of the outer vertical fin. Item 4. The boiler according to item 1.
燃料の密度をγ、重力加速度をg、前記上向き流路の高さをh、送風機の最大吐出圧をP1とするとき、
γ×g×h>P1
の関係式を満たす
ことを特徴とする請求項1または請求項2に記載のボイラ。
When the fuel density is γ, the gravitational acceleration is g, the height of the upward flow path is h, and the maximum discharge pressure of the blower is P1,
γ × g × h> P1
The boiler according to claim 1 or 2, wherein the following relational expression is satisfied.
燃料の密度をγ、重力加速度をg、前記上向き流路の高さをh、送風機の運転中の最大吐出圧をP2とするとき、
γ×g×h>P2
の関係式を満たす
ことを特徴とする請求項1または請求項2に記載のボイラ。
When the fuel density is γ, the gravitational acceleration is g, the height of the upward flow path is h, and the maximum discharge pressure during operation of the blower is P2,
γ × g × h> P2
The boiler according to claim 1 or 2, wherein the following relational expression is satisfied.
前記関係式を満たすように、送風機の選定、送風機をインバータ制御する場合の周波数の設定、送風機の運転中の最大吐出圧の設定、または前記上向き流路の高さhの設定がなされる
ことを特徴とする請求項3または請求項4に記載のボイラ。
In order to satisfy the relational expression, selection of the blower, setting of the frequency when the blower is inverter-controlled, setting of the maximum discharge pressure during operation of the blower, or setting of the height h of the upward flow path is made. The boiler according to claim 3 or 4, wherein the boiler is characterized.
JP2009112488A 2009-05-07 2009-05-07 Boiler Pending JP2010261647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009112488A JP2010261647A (en) 2009-05-07 2009-05-07 Boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009112488A JP2010261647A (en) 2009-05-07 2009-05-07 Boiler

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013206017A Division JP5660185B2 (en) 2013-10-01 2013-10-01 Boiler design method

Publications (1)

Publication Number Publication Date
JP2010261647A true JP2010261647A (en) 2010-11-18

Family

ID=43359876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009112488A Pending JP2010261647A (en) 2009-05-07 2009-05-07 Boiler

Country Status (1)

Country Link
JP (1) JP2010261647A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144241A1 (en) * 2011-04-18 2012-10-26 三浦工業株式会社 Heat medium boiler
JP2012233674A (en) * 2011-04-18 2012-11-29 Miura Co Ltd Heat medium boiler
JP2013050231A (en) * 2011-08-30 2013-03-14 Miura Co Ltd Combustion apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267713A (en) * 2007-04-20 2008-11-06 Miura Co Ltd Boiler
JP2009052796A (en) * 2007-08-27 2009-03-12 Miura Co Ltd Boiler
JP2009085555A (en) * 2007-10-02 2009-04-23 Miura Co Ltd Boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267713A (en) * 2007-04-20 2008-11-06 Miura Co Ltd Boiler
JP2009052796A (en) * 2007-08-27 2009-03-12 Miura Co Ltd Boiler
JP2009085555A (en) * 2007-10-02 2009-04-23 Miura Co Ltd Boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144241A1 (en) * 2011-04-18 2012-10-26 三浦工業株式会社 Heat medium boiler
JP2012233674A (en) * 2011-04-18 2012-11-29 Miura Co Ltd Heat medium boiler
JP2013050231A (en) * 2011-08-30 2013-03-14 Miura Co Ltd Combustion apparatus

Similar Documents

Publication Publication Date Title
KR20090063438A (en) Condensing type boiler
JP2010261647A (en) Boiler
CN1272605A (en) Watertube boiler
JP5141142B2 (en) boiler
JP4952373B2 (en) boiler
KR101287693B1 (en) Hybrid Boiler
JP4946594B2 (en) boiler
JP5660185B2 (en) Boiler design method
JP5119720B2 (en) boiler
CN1272606A (en) Watertube boiler
RU2613539C1 (en) Fire chamber for combustion of gas-black oil fuel
CN107559792A (en) A kind of tubular boiler
JP4961925B2 (en) Water heater
JP5287856B2 (en) boiler
RU2546683C1 (en) Heating oven
CN202546710U (en) Miniature sleeve type oil-gas fired steam boiler
CN201434501Y (en) Hanging furnace baffle type coal burning semi-gasification environment-protective and energy-saving boiler
JP5050631B2 (en) boiler
KR200421142Y1 (en) Boiler
CN102588957A (en) Concurrent boiler utilizing double-tangential circle combustion hearth
JPS609527Y2 (en) boiler
KR100526423B1 (en) A hot-water boiler using heat transfer fluid
CN201028764Y (en) Primary and secondary type boiler
CN207247172U (en) A kind of horizontal internal combustion boiler
IE48624B1 (en) Improvements in and relating to boilers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

A02 Decision of refusal

Effective date: 20130724

Free format text: JAPANESE INTERMEDIATE CODE: A02