JP2010261363A - Internal combustion engine capable of stratificataion combustion - Google Patents

Internal combustion engine capable of stratificataion combustion Download PDF

Info

Publication number
JP2010261363A
JP2010261363A JP2009112746A JP2009112746A JP2010261363A JP 2010261363 A JP2010261363 A JP 2010261363A JP 2009112746 A JP2009112746 A JP 2009112746A JP 2009112746 A JP2009112746 A JP 2009112746A JP 2010261363 A JP2010261363 A JP 2010261363A
Authority
JP
Japan
Prior art keywords
egr
valve
intake
air
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009112746A
Other languages
Japanese (ja)
Other versions
JP5115517B2 (en
Inventor
Toshimi Kashiwakura
利美 柏倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009112746A priority Critical patent/JP5115517B2/en
Publication of JP2010261363A publication Critical patent/JP2010261363A/en
Application granted granted Critical
Publication of JP5115517B2 publication Critical patent/JP5115517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine capable of preventing intrusion of fuel components into an EGR layer. <P>SOLUTION: This internal combustion engine 1 includes: an intake valve 13A for opening/closing an intake port 12A relative to a combustion chamber 8; a fuel injection valve 16 capable of injecting fuel to the intake air; an EGR passage 17 connecting an exhaust passage 6 and the intake port 12A to each other; and an EGR valve 18 for opening/closing the EGR passage 17. Valve opening operation of the EGR valve 18 is controlled to lead EGR gas into the intake port 12A before opening the intake valve 13A, and after the EGR gas is led into the combustion chamber 8 from the intake port 12A with the operation for opening the intake valve 13A, and operation of the fuel injection valve 16 relative to the intake air is controlled so that an air layer L2 is left between an EGR layer L1 and an air-fuel mixture layer L3 inside the combustion chamber 8. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、EGRガスと混合気とを燃焼室内で成層化することが可能な内燃機関に関する。   The present invention relates to an internal combustion engine capable of stratifying an EGR gas and an air-fuel mixture in a combustion chamber.

成層燃焼が可能な内燃機関として、一対の吸気ポートを有し、一方の吸気ポートにスワール制御弁を配置し、そのスワール制御弁及び各吸気ポートの吸気弁が閉じている状態でスワール制御弁の下流にEGRガスを導入し、吸気行程ではまず一方の吸気ポートの吸気弁を開弁して燃焼室内でEGRガスのスワール流を形成し、その後、他方の吸気ポートの吸気弁を開弁して燃焼室内でEGRガスの上方に逆向きのスワール流を形成し、その空気のスワール流に向けて燃料を噴射することにより、EGRガスと混合気とを成層化する内燃機関が知られている(例えば特許文献1参照)。その他に、本発明に関連する先行技術文献として特許文献2〜4が存在する。   As an internal combustion engine capable of stratified combustion, it has a pair of intake ports, a swirl control valve is arranged in one intake port, and the swirl control valve and the intake valve of each intake port are closed. EGR gas is introduced downstream, and in the intake stroke, the intake valve of one intake port is first opened to form a swirl flow of EGR gas in the combustion chamber, and then the intake valve of the other intake port is opened. There is known an internal combustion engine in which a swirl flow in the opposite direction is formed above the EGR gas in the combustion chamber, and fuel is injected toward the swirl flow of the air to stratify the EGR gas and the air-fuel mixture ( For example, see Patent Document 1). In addition, Patent Documents 2 to 4 exist as prior art documents related to the present invention.

特開2004−144052号公報JP 2004-144052 A 特開2001−248465号公報JP 2001-248465 A 特開2001−323828号公報JP 2001-323828 A 特開2004−332591号公報JP 2004-332591 A

EGR層と混合気層とを形成する場合、それらの境界で不活性なEGRガス内に燃料が混入し、その混入した燃料が燃焼せずに未燃成分として排出されるおそれがある。そこで、本発明はEGR層への燃料成分の混入を防止することが可能な内燃機関を提供することを目的とする。   When the EGR layer and the air-fuel mixture layer are formed, the fuel is mixed in the inert EGR gas at the boundary between them, and the mixed fuel may not be burned but discharged as an unburned component. Accordingly, an object of the present invention is to provide an internal combustion engine capable of preventing the fuel component from being mixed into the EGR layer.

本発明は、燃焼室に対して吸気ポートを開閉する吸気弁と、吸入空気に対して燃料を噴射可能な燃料噴射弁と、排気通路と吸気ポートとを接続するEGR通路と、該EGR通路を開閉するEGR弁とを備えた内燃機関に適用される成層燃焼制御装置であって、前記吸気弁の開弁に先行して前記吸気ポートにEGRガスが導入されるようにEGR弁の開弁動作を制御するEGR弁制御手段と、前記吸気弁の開弁に伴って前記吸気ポートから前記燃焼室内にEGRガスが導入された後に空気が導入され、該燃焼室内のEGR層と混合気層との間に空気層が残存するように、吸入空気に対する前記燃料噴射弁の動作を制御する燃料噴射制御手段と、を備えたものである。   The present invention relates to an intake valve that opens and closes an intake port for a combustion chamber, a fuel injection valve that can inject fuel to intake air, an EGR passage that connects an exhaust passage and an intake port, and the EGR passage A stratified charge combustion control device applied to an internal combustion engine having an EGR valve that opens and closes, wherein the EGR valve is opened so that EGR gas is introduced into the intake port prior to the opening of the intake valve. EGR valve control means for controlling the air, and air is introduced after EGR gas is introduced from the intake port into the combustion chamber as the intake valve is opened, and the EGR layer and the mixture layer in the combustion chamber Fuel injection control means for controlling the operation of the fuel injection valve with respect to the intake air so that an air layer remains in between.

本発明の成層燃焼制御装置によれば、吸気弁の開弁に先行してEGR弁を開弁させることにより、吸気ポートの終端部付近にEGRガスが導入される。吸気弁を開弁させると、まず吸気ポートの終端部付近のEGRガスが燃焼室内に導入されてEGR層が形成される。続いて、吸気ポートから燃焼室に空気が導入されて燃焼室内に空気層が形成される。さらに、EGRガスに続いて導入される空気の一部に限定して燃料噴射弁から燃料を噴射することにより、燃焼室内のEGR層と混合気層との間に空気層が残存する。このように、EGR層と混合気層との間に空気層が介在することにより、EGR量を増加させても燃料成分のEGR層への混入を防止することができる。   According to the stratified charge combustion control apparatus of the present invention, the EGR gas is introduced near the end portion of the intake port by opening the EGR valve prior to the opening of the intake valve. When the intake valve is opened, EGR gas near the end of the intake port is first introduced into the combustion chamber to form an EGR layer. Subsequently, air is introduced from the intake port into the combustion chamber, and an air layer is formed in the combustion chamber. Further, by injecting fuel from the fuel injection valve limited to a part of the air introduced following the EGR gas, an air layer remains between the EGR layer and the mixture layer in the combustion chamber. As described above, since the air layer is interposed between the EGR layer and the air-fuel mixture layer, it is possible to prevent the fuel component from being mixed into the EGR layer even if the EGR amount is increased.

本発明の一形態に係る内燃機関の要部をシリンダ軸線方向から見た状態で示す図。The figure which shows the principal part of the internal combustion engine which concerns on one form of this invention in the state seen from the cylinder axial direction. 吸気弁開弁前の様子を示す図。The figure which shows the mode before intake valve opening. 吸気弁を開弁した後の様子を示す図。The figure which shows the mode after opening an intake valve. 吸気弁閉弁時の様子を示す図。The figure which shows the mode at the time of intake valve closing. エンジンコントロールユニットが成層燃焼運転の可否を判別するために実行する運転判別ルーチンを示すフローチャート。The flowchart which shows the driving | operation discrimination | determination routine performed in order for an engine control unit to discriminate | determine the possibility of a stratified combustion operation. エンジンコントロールユニットが成層燃焼又は均質燃焼を選択的に実現するために実行する燃焼制御ルーチンを示すフローチャート。The flowchart which shows the combustion control routine performed in order that an engine control unit may implement | achieve stratified combustion or homogeneous combustion selectively. 図6のルーチンでEGR率を定めるために参照されるマップの一例を示す図。The figure which shows an example of the map referred in order to determine an EGR rate by the routine of FIG. 図6のルーチンでEGR弁の開弁時間を定めるために参照されるマップの一例を示す図。The figure which shows an example of the map referred in order to determine the valve opening time of an EGR valve in the routine of FIG. EGR弁及び吸気弁の開閉時期を内燃機関のクランク角に対応付けて示すタイミングチャート。The timing chart which shows the opening / closing timing of an EGR valve and an intake valve in association with the crank angle of an internal combustion engine. 図6のルーチンで空気率を定めるために参照されるマップの一例を示す図。The figure which shows an example of the map referred in order to determine an air rate by the routine of FIG. 吸気ポートから燃焼室へと通過する吸気の流量を時系列に沿って示す図。The figure which shows the flow volume of the intake air which passes from an intake port to a combustion chamber along a time series. 吸気弁を通過する流体の通過流量をシリンダ内に形成される成層区分に区分して示す図。The figure which divides and shows the passage flow rate of the fluid which passes an intake valve in the stratification division formed in a cylinder. 図9の変形例を示す図。The figure which shows the modification of FIG. 図13の変形例を実現するために参照されるクランク角とバルブ通過流量との関係を記述したマップの一例を示す図。The figure which shows an example of the map which described the relationship between the crank angle referred in order to implement | achieve the modification of FIG. 13, and valve | bulb passage flow volume. 図13の変形例における燃料噴射期間を定める手法を説明するための図。The figure for demonstrating the method of determining the fuel-injection period in the modification of FIG. 図9のさらなる変形例を示す図。The figure which shows the further modification of FIG. 図16の変形例における燃料噴射期間を定める手法を説明するための図。The figure for demonstrating the method of determining the fuel-injection period in the modification of FIG.

図1〜図4に示すように、本発明の一形態に係る内燃機関(以下、エンジンと呼ぶ。)1は、複数(図では一つのみ示す。)のシリンダ2が形成されたシリンダブロック3と、シリンダブロック3の上部に取り付けられたシリンダヘッド4と、シリンダ2のそれぞれに吸気を導くための吸気通路5と、シリンダ2からの排気が導かれる排気通路6とを備えている。シリンダ2にはピストン7が摺動自在に嵌め合わされ、そのピストン7の頂面7aとシリンダヘッド4の下面との間に燃焼室8が形成される。吸気通路5には、吸入空気量を調整するためのスロットル弁9が設けられている。スロットル弁9の下流にはインテークマニホールド10が設けられ、そのインテークマニホールド10からは各シリンダ2に向かって2本のブランチ11A、11Bが延ばされている。シリンダヘッド4には、各シリンダ2に対応して2本の吸気ポート12A、12Bが形成され、ブランチ11A、11Bはそれらの吸気ポート12A、12Bに1対1で接続されている。吸気ポート12A、12Bの終端には、吸気ポート12A、12Bと燃焼室8との間を開閉する吸気弁13A、13Bが設けられている。同様に、排気通路6と燃焼室8との間には、それらの間を開閉するための排気弁14A、14Bが設けられている。燃焼室8の上面側中心部には点火プラグ15が設けられている。なお、吸気弁13A、13Bは不図示の動弁機構により、互いに独立して開閉動作が可能とされている。   As shown in FIGS. 1 to 4, an internal combustion engine (hereinafter referred to as an engine) 1 according to an embodiment of the present invention is a cylinder block 3 in which a plurality of (only one is shown in the figure) cylinders 2 are formed. A cylinder head 4 attached to the upper part of the cylinder block 3, an intake passage 5 for guiding intake air to each of the cylinders 2, and an exhaust passage 6 for guiding exhaust from the cylinder 2. A piston 7 is slidably fitted into the cylinder 2, and a combustion chamber 8 is formed between the top surface 7 a of the piston 7 and the lower surface of the cylinder head 4. The intake passage 5 is provided with a throttle valve 9 for adjusting the intake air amount. An intake manifold 10 is provided downstream of the throttle valve 9, and two branches 11 </ b> A and 11 </ b> B are extended from the intake manifold 10 toward each cylinder 2. The cylinder head 4 is formed with two intake ports 12A and 12B corresponding to each cylinder 2, and the branches 11A and 11B are connected to the intake ports 12A and 12B on a one-to-one basis. At the end of the intake ports 12A and 12B, intake valves 13A and 13B that open and close between the intake ports 12A and 12B and the combustion chamber 8 are provided. Similarly, exhaust valves 14A and 14B for opening and closing between the exhaust passage 6 and the combustion chamber 8 are provided. A spark plug 15 is provided at the center on the upper surface side of the combustion chamber 8. The intake valves 13A and 13B can be opened and closed independently from each other by a valve mechanism (not shown).

吸気ポート12A、12Bには燃料噴射弁16がそれぞれ設けられている。一方の吸気ポート12AにはEGR通路としてのEGR配管17が接続されている。EGR配管17は、吸気ポート12Aの長手方向に沿って吸気ポート12Aの終端部にEGRガスを流入させるようにして吸気ポート12Aと接続されている。EGR配管17には、これを開閉するためのEGR弁18が設けられている。他方の吸気ポート12Bには、これを開閉するためのスワール制御弁19が設けられている。   A fuel injection valve 16 is provided in each of the intake ports 12A and 12B. One intake port 12A is connected to an EGR pipe 17 as an EGR passage. The EGR pipe 17 is connected to the intake port 12A so that EGR gas flows into the end portion of the intake port 12A along the longitudinal direction of the intake port 12A. The EGR pipe 17 is provided with an EGR valve 18 for opening and closing the EGR pipe 17. The other intake port 12B is provided with a swirl control valve 19 for opening and closing it.

図1に示すように、エンジン1には、エンジンコントロールユニット(以下、ECUと呼ぶ。)20が設けられている。ECU20は、マイクロプロセッサ及びその動作に必要なRAM、ROM等の周辺装置を含んだコンピュータユニットとして構成され、所定のエンジン制御プログラムに従ってスロットル弁9、燃料噴射弁16、EGR弁18、スワール制御弁19等を操作することにより、エンジン1を目標とする運転状態に制御する。ECU20には、エンジン1の運転制御に必要な情報の入力手段として、エンジン1の冷却水温に応じた信号を出力する水温センサ21、エンジン1の単位時間当たりの回転数(回転速度)に応じた信号を出力するクランク角センサ22、吸気通路5に取り込まれた空気量に応じた信号を出力するエアフロメータ23等が接続されている。   As shown in FIG. 1, the engine 1 is provided with an engine control unit (hereinafter referred to as ECU) 20. The ECU 20 is configured as a computer unit including a microprocessor and peripheral devices such as a RAM and a ROM necessary for the operation thereof, and a throttle valve 9, a fuel injection valve 16, an EGR valve 18, and a swirl control valve 19 according to a predetermined engine control program. Etc., the engine 1 is controlled to the target operating state. The ECU 20 has a water temperature sensor 21 that outputs a signal corresponding to the cooling water temperature of the engine 1 as input means for information necessary for operation control of the engine 1, and the number of rotations (rotational speed) per unit time of the engine 1. A crank angle sensor 22 that outputs a signal, an air flow meter 23 that outputs a signal corresponding to the amount of air taken into the intake passage 5, and the like are connected.

ECU20は、エンジン1の運転制御のために実行すべき一連の処理の一部として、図5に示す運転判別ルーチン、及び図6に示す燃焼制御ルーチンのそれぞれを所定の周期で繰り返し実行する。以下、これらの処理を説明する。   The ECU 20 repeatedly executes each of the operation determination routine shown in FIG. 5 and the combustion control routine shown in FIG. 6 at a predetermined cycle as part of a series of processes to be executed for operation control of the engine 1. Hereinafter, these processes will be described.

ECU20は、図5の運転判別ルーチンを開始すると、まずステップS1でエンジン1の始動後の経過時間が30秒よりも長いか否か判別する。エンジン始動後の経過時間は、例えば、始動成功後、ECU20のタイマを利用して判別すればよい。30秒以上が経過している場合、ECU20はステップS2に進み、水温センサ21が検出する冷却水温が40°Cよりも高いか否か判別する。40°Cよりも高い場合、ECU20はステップS3へ進み、成層EGR運転の可否を判別するための成層EGRフラグをオン、すなわち、成層EGRフラグの値を成層EGR運転が可能な状態を示す値に設定する。一方、ステップS1又はS2の条件が否定された場合、ECU20はステップS4へ進み、成層EGRフラグをオフ、すなわち成層EGRフラグの値を成層EGR運転が不可能な状態を示す値に設定する。ステップS3又はS4の処理後、ECU20は今回の運転判別ルーチンを終了する。   When the operation determination routine of FIG. 5 is started, the ECU 20 first determines whether or not the elapsed time after the start of the engine 1 is longer than 30 seconds in step S1. The elapsed time after engine startup may be determined using a timer of ECU 20 after successful startup, for example. When 30 seconds or more have elapsed, the ECU 20 proceeds to step S2 and determines whether or not the cooling water temperature detected by the water temperature sensor 21 is higher than 40 ° C. When the temperature is higher than 40 ° C, the ECU 20 proceeds to step S3 and turns on the stratified EGR flag for determining whether or not the stratified EGR operation is possible, that is, the value of the stratified EGR flag is set to a value indicating a state in which the stratified EGR operation is possible. Set. On the other hand, if the condition of step S1 or S2 is negative, the ECU 20 proceeds to step S4, and turns off the stratified EGR flag, that is, sets the value of the stratified EGR flag to a value indicating a state in which the stratified EGR operation is impossible. After the process of step S3 or S4, the ECU 20 ends the current driving determination routine.

一方、ECU20は図6の燃焼制御ルーチンを開始すると、まずステップS11で成層EGRフラグがオンか否か判別する。フラグがオンであれば、ECU20はステップS12へ進み、スワール制御弁19を閉じる。続いてECU20はステップS13へ進み、成層EGR率を図7に示すマップより取得する。図7のマップは、EGR率をエンジン1の回転数とトルクとに対応付けて定めたものである。ECU20は、ステップS13の処理に際して、クランク角センサ22の出力からエンジン1の回転数を取得するとともに、エンジン1の目標トルクを不図示のアクセルペダルの踏込み量等から演算し、得られた回転数とトルクとに対応するEGR率を図7のマップから取得する。   On the other hand, when the combustion control routine of FIG. 6 is started, the ECU 20 first determines in step S11 whether or not the stratified EGR flag is on. If the flag is on, the ECU 20 proceeds to step S12 and closes the swirl control valve 19. Subsequently, the ECU 20 proceeds to step S13, and acquires the stratified EGR rate from the map shown in FIG. The map in FIG. 7 defines the EGR rate in association with the rotational speed and torque of the engine 1. In the process of step S13, the ECU 20 obtains the rotational speed of the engine 1 from the output of the crank angle sensor 22, calculates the target torque of the engine 1 from the depression amount of an accelerator pedal (not shown), etc., and the obtained rotational speed. And the EGR rate corresponding to the torque are acquired from the map of FIG.

EGR率の取得後、ECU20はステップS14へ進み、EGR弁18の開弁時間を図8に示すマップから取得する。図8のマップは、エンジン1の吸入空気量を回転数で除した値(空気量/回転数)とEGR弁18の開弁時間との関係をEGR率に応じて示したものである。ECU20は、ステップS13で取得したEGR率と、エアフロメータ23から取得した吸入空気量及びクランク角センサ22から取得した回転数とを利用して図8のマップからEGR弁18の開弁時間を取得する。   After acquiring the EGR rate, the ECU 20 proceeds to step S14, and acquires the valve opening time of the EGR valve 18 from the map shown in FIG. The map of FIG. 8 shows the relationship between the value obtained by dividing the intake air amount of the engine 1 by the rotational speed (air amount / rotational speed) and the opening time of the EGR valve 18 according to the EGR rate. The ECU 20 acquires the valve opening time of the EGR valve 18 from the map of FIG. 8 using the EGR rate acquired in step S13, the intake air amount acquired from the air flow meter 23, and the rotation speed acquired from the crank angle sensor 22. To do.

EGR弁18の開弁時間を取得した後、ECU20はステップS15へ進み、EGR弁18をステップS14で取得した開弁時間だけ開くようにEGR弁18の動作制御を開始する。この際、EGR弁18が吸気弁13Aの開弁動作に先行して開弁し、かつ、EGR弁18が吸気弁13Aの開弁時には閉鎖するようにEGR弁18の動作を制御する。一例として、図9に示すように、吸気弁13Aが吸気行程後半のクランク角360°で開弁を開始する場合には、そのクランク角360°を終点として開弁時間相当だけ遡ったクランク角にてEGR弁18の開弁を開始させる。   After acquiring the valve opening time of the EGR valve 18, the ECU 20 proceeds to step S15 and starts operation control of the EGR valve 18 so as to open the EGR valve 18 only for the valve opening time acquired in step S14. At this time, the operation of the EGR valve 18 is controlled so that the EGR valve 18 is opened prior to the opening operation of the intake valve 13A, and the EGR valve 18 is closed when the intake valve 13A is opened. As an example, as shown in FIG. 9, when the intake valve 13A starts to open at a crank angle of 360 ° in the latter half of the intake stroke, the crank angle is traced back by the valve opening time from the crank angle of 360 ° as an end point. Thus, the opening of the EGR valve 18 is started.

図6に戻り、続くステップS16において、ECU20は燃焼室8内に設けるべき空気層の率(空気率)を図10に示すマップから取得する。図10のマップは、空気率をエンジン1の回転数及びトルクと対応付けて定めたものである。図示例では、一律10%に設定しているが、成層EGR域(成層EGRフラグがオンとなる運転領域)内で空気率を複数段に変化させてもよい。次のステップS17において、ECU20は、E燃料噴射時期を演算する。例えば、図11に示すように、吸気弁13Aの開弁に先行して吸気ポート12A内に導入されているEGRガスが吸気開始(吸気弁13Aの開弁開始)に伴って燃焼室8内に吸入される時間t1、及びステップS16で取得した空気率に相当する量の空気が燃焼室8内に吸入される時間t2をそれぞれ演算し、それらの和(t1+t2)に相当する時間が吸気開始から経過した時刻を燃料噴射開始時期として定め、その燃料噴射開始時期から吸気弁13Aが閉じる時刻までの時間t3を燃料噴射終了時期として定める。吸気行程(吸気弁が開く期間)にて、EGRガス、空気及び混合気のそれぞれが燃焼室8内に導入される時期を、クランク角と吸気ポート12Aから燃焼室8へと通過する吸気の流量(バルブ通過流量)と対応付けて示せば図12の通りである。すなわち、吸気弁13Aが上死点(TDC)で開き、下死点(BDC)で閉じるとすれば、吸気開始直後はEGRガスが導入され、続いて空気が導入され、その後に燃料噴射が実行されて混合気が導入される。   Returning to FIG. 6, in the subsequent step S <b> 16, the ECU 20 obtains the air layer ratio (air ratio) to be provided in the combustion chamber 8 from the map shown in FIG. 10. The map in FIG. 10 is determined by associating the air rate with the rotational speed and torque of the engine 1. In the illustrated example, it is uniformly set to 10%, but the air ratio may be changed in a plurality of stages within the stratified EGR region (the operation region where the stratified EGR flag is turned on). In the next step S17, the ECU 20 calculates the E fuel injection timing. For example, as shown in FIG. 11, the EGR gas introduced into the intake port 12A prior to the opening of the intake valve 13A enters the combustion chamber 8 with the start of intake (start of opening of the intake valve 13A). The intake time t1 and the time t2 when the amount of air corresponding to the air rate acquired in step S16 is sucked into the combustion chamber 8 are calculated, and the time corresponding to the sum (t1 + t2) is calculated from the start of intake. The elapsed time is determined as the fuel injection start timing, and the time t3 from the fuel injection start timing to the time when the intake valve 13A is closed is determined as the fuel injection end timing. In the intake stroke (period in which the intake valve is opened), the flow rate of the intake air passing through the crank angle and the intake port 12A to the combustion chamber 8 is determined according to the timing when each of the EGR gas, air, and air-fuel mixture is introduced into the combustion chamber 8. FIG. 12 shows the relationship with (valve passing flow rate). That is, if the intake valve 13A opens at the top dead center (TDC) and closes at the bottom dead center (BDC), EGR gas is introduced immediately after the start of intake, air is introduced, and then fuel injection is performed. Then, the air-fuel mixture is introduced.

続いて、ECU20は図6のステップS18に進み、燃料噴射開始時期から燃料噴射終了時期まで燃料噴射弁16から燃料が噴射されるように燃料噴射弁16の動作を制御する。なお、この場合、EGR配管17が接続された側の吸気ポート12Aに対応する燃料噴射弁16のみが燃料噴射制御の対象とされ、反対側の吸気ポート12Bに対応する燃料噴射弁16からの燃料噴射は禁止される。   Subsequently, the ECU 20 proceeds to step S18 in FIG. 6 and controls the operation of the fuel injection valve 16 so that fuel is injected from the fuel injection valve 16 from the fuel injection start timing to the fuel injection end timing. In this case, only the fuel injection valve 16 corresponding to the intake port 12A on the side to which the EGR pipe 17 is connected is the target of fuel injection control, and the fuel from the fuel injection valve 16 corresponding to the opposite intake port 12B is fuel. Injection is prohibited.

一方、ステップS11の条件が否定判断された場合、ECU20はッステップS21に進み、スワール制御弁19を開く。続いて、ECU20はステップS22で成層EGR率を0%に設定する。その後、ECU20はステップS23に進んで燃料噴射時期を演算し、続くステップS24で両吸気ポート12A、12Bの燃料噴射弁16から燃料が噴射されるように燃料噴射弁16の動作を制御する。ステップS18又はステップS24にて燃料噴射が実行されると、ECU20は今回のルーチンを終了する。なお、ステップS21〜S24の実行される場合の燃料噴射弁16の開弁時期、燃料噴射量等の制御手順は、均質燃焼を実行する際の公知の内燃機関のそれと同様でよい。   On the other hand, if a negative determination is made in step S11, the ECU 20 proceeds to step S21 and opens the swirl control valve 19. Subsequently, the ECU 20 sets the stratified EGR rate to 0% in step S22. Thereafter, the ECU 20 proceeds to step S23, calculates the fuel injection timing, and controls the operation of the fuel injection valve 16 so that fuel is injected from the fuel injection valves 16 of both intake ports 12A, 12B in the subsequent step S24. When fuel injection is executed in step S18 or step S24, the ECU 20 ends the current routine. In addition, the control procedures such as the valve opening timing of the fuel injection valve 16 and the fuel injection amount when steps S21 to S24 are executed may be the same as those of a known internal combustion engine when performing homogeneous combustion.

上記のように成層EGR実施時のEGR弁18及び燃料噴射弁16の動作が制御される結果として燃焼室8内に形成される成層化の過程を図2〜図4に示す。まず、図2に示すように、吸気弁13Aの開弁に先行してEGR弁18が開かれて吸気ポート12AにEGRガス30が導入される。そのEGRガス30は、図中に矢印Aで示したように、吸気ポート12Aの終端部にて旋回しつつ滞留する。その旋回方向は、吸気ポート12Aに対するEGR配管17の接続位置が吸気ポート12A、12Bの並び方向外側に設定されているため、EGRガス30が燃焼室8内に導入された場合に形成されるスワール流の旋回方向と一致する。   The stratification process formed in the combustion chamber 8 as a result of controlling the operations of the EGR valve 18 and the fuel injection valve 16 during the stratified EGR as described above is shown in FIGS. First, as shown in FIG. 2, the EGR valve 18 is opened prior to the opening of the intake valve 13A, and the EGR gas 30 is introduced into the intake port 12A. As indicated by an arrow A in the drawing, the EGR gas 30 stays while swirling at the end portion of the intake port 12A. The swirl direction is a swirl formed when the EGR gas 30 is introduced into the combustion chamber 8 because the connection position of the EGR pipe 17 with respect to the intake port 12A is set to the outside of the direction in which the intake ports 12A and 12B are arranged. It coincides with the swirling direction of the flow.

続いて、図3に示すように吸気弁13Aが開かれると、吸気ポート12A内のEGRガス30が燃焼室8内へと導入される。その結果、燃焼室8の下部には、矢印Bで示すようなスワール流を伴ったEGR層L1が形成される。続いて、EGRガス30の導入後、空気率に対応した量の空気が導入されるまでは燃料噴射が開始されないため、燃焼室8内のEGR層L1の上方に空気層L2が形成される。その空気層L2はEGR層L1と同様のスワール流を伴ったものとなる。そして、空気層L2の形成後、燃料噴射弁16からの燃料31の噴射が開始される。図4に示すように吸気弁13Aが閉じた時、燃焼室8内には、ピストン7から上方に向かって、EGR層L1、空気層L2及び混合気層L3が形成される。EGR層L1と混合気層L3との間に空気層L2が残存しているため、混合気層L3の燃料成分のEGR層L1への混入が防止される。従って、未燃成分の排出を防止して、燃焼の安定化、エミッションの改善、燃料消費率の向上といった作用効果が得られる。   Subsequently, as shown in FIG. 3, when the intake valve 13 </ b> A is opened, the EGR gas 30 in the intake port 12 </ b> A is introduced into the combustion chamber 8. As a result, an EGR layer L1 with a swirl flow as shown by an arrow B is formed in the lower part of the combustion chamber 8. Subsequently, since the fuel injection is not started after the introduction of the EGR gas 30 until the amount of air corresponding to the air rate is introduced, an air layer L2 is formed above the EGR layer L1 in the combustion chamber 8. The air layer L2 has a swirl flow similar to that of the EGR layer L1. Then, after the formation of the air layer L2, the injection of the fuel 31 from the fuel injection valve 16 is started. As shown in FIG. 4, when the intake valve 13A is closed, an EGR layer L1, an air layer L2, and an air-fuel mixture layer L3 are formed in the combustion chamber 8 from the piston 7 upward. Since the air layer L2 remains between the EGR layer L1 and the air-fuel mixture layer L3, the fuel component of the air-fuel mixture layer L3 is prevented from being mixed into the EGR layer L1. Accordingly, it is possible to prevent the discharge of unburned components, and to obtain operational effects such as stabilization of combustion, improvement of emission, and improvement of fuel consumption rate.

以上の形態では、ECU20が図6のステップS15を実行することによりEGR弁制御手段として、ステップS18を実行することにより燃料噴射制御手段として機能する。   In the above embodiment, the ECU 20 functions as an EGR valve control means by executing step S15 of FIG. 6 and functions as a fuel injection control means by executing step S18.

次に、燃料噴射時期の制御に関する変形例を説明する。図13は燃料噴射時期t4を、空気の導入完了後から吸気行程終了までの時間t3の一部に限定して実施する例である。その実施手順としては、一例としてECU20により以下の処理を実行すればよい。すなわち、図14に示すように、クランク角とバルブ通過流量との関係をエンジン1の回転数別に記述したマップを予め用意し、クランク角センサ22から取得した回転数に対応するクランク角とバルブ通過流量との対応関係を示す線図を特定する。続いて、図15に示すように、取得したバルブ通過流量の曲線に対して、吸気開始位置(TDC)からEGR量及び空気量(空気率に対応する量)をそれぞれ割り当てて、混合気が導入されている期間Xを特定する。続いて、期間X内でバルブ通過流量が半分となるクランク角、つまり、燃焼室8内に導入されるべき混合気の全量に対して、半分の混合気が導入されるときのクランク角CAxを特定する。そのクランク角CAxを中心として、必要な燃料量が確保されるように燃料噴射時期を演算して燃料噴射開始時刻及び終了時刻を特定することにより、図13のように燃料噴射時期を設定することができる。   Next, a modified example regarding control of the fuel injection timing will be described. FIG. 13 shows an example in which the fuel injection timing t4 is limited to a part of time t3 from the completion of air introduction to the end of the intake stroke. As an implementation procedure, the ECU 20 may perform the following processing as an example. That is, as shown in FIG. 14, a map in which the relationship between the crank angle and the valve passage flow rate is described in advance for each engine speed is prepared in advance, and the crank angle and valve passage corresponding to the engine speed acquired from the crank angle sensor 22 are prepared. A diagram showing the correspondence with the flow rate is specified. Subsequently, as shown in FIG. 15, an EGR amount and an air amount (an amount corresponding to the air ratio) are respectively assigned from the intake start position (TDC) to the obtained valve passage flow rate curve, and the air-fuel mixture is introduced. The period X being used is specified. Subsequently, the crank angle at which the valve passage flow rate is halved within the period X, that is, the crank angle CAx at which half the mixture is introduced with respect to the total amount of the mixture to be introduced into the combustion chamber 8 is set. Identify. The fuel injection timing is set as shown in FIG. 13 by calculating the fuel injection timing and specifying the fuel injection start time and end time with the crank angle CAx as the center so as to ensure the required fuel amount. Can do.

図16は、図13は燃料噴射時期(t5〜t7)を、空気の導入完了後から吸気行程終了までの時間t3内で複数回に分けて実施する例である。その実施手順としては、一例としてECU20により以下の処理を実行すればよい。まず、図14に示すように、クランク角とバルブ通過流量との関係をエンジン1の回転数別に記述したマップを予め用意し、クランク角センサ22から取得した回転数に対応するクランク角とバルブ通過流量との対応関係を示す線図を特定する。続いて、図17に示すように、取得したバルブ通過流量の曲線に対して、吸気開始位置(TDC)からEGR量及び空気量(空気率に対応する量)をそれぞれ割り当てて、混合気が導入されている期間Xを特定する。さらに、期間X内でバルブ通過流量を、噴射回数に1を加算した値に相当する数(噴射回数+1)で等分するクランク角CAx、CAy及びCAzを特定する。また、必要な燃料噴射量を噴射回数で除して一回当たりの噴射量を演算する。そして、クランク角CAx、CAy、CAzをそれぞれ中心として、一回当たりの噴射量が噴射されるように燃料噴射時期を演算して、各回の燃料噴射開始時刻及び終了時刻を特定することにより、図16のように燃料噴射時期を設定することができる。   FIG. 16 shows an example in which the fuel injection timing (t5 to t7) is divided into a plurality of times within the time t3 from the completion of air introduction to the end of the intake stroke. As an implementation procedure, the ECU 20 may perform the following processing as an example. First, as shown in FIG. 14, a map in which the relationship between the crank angle and the valve passage flow rate is described in advance for each engine speed is prepared in advance, and the crank angle and valve passage corresponding to the engine speed acquired from the crank angle sensor 22 are prepared. A diagram showing the correspondence with the flow rate is specified. Subsequently, as shown in FIG. 17, an EGR amount and an air amount (an amount corresponding to the air rate) are respectively assigned from the intake start position (TDC) to the obtained valve passage flow rate curve, and the air-fuel mixture is introduced. The period X being used is specified. Further, the crank angles CAx, CAy, and CAz that equally divide the valve passage flow rate by the number corresponding to the value obtained by adding 1 to the number of injections (number of injections + 1) within the period X are specified. Further, the required fuel injection amount is divided by the number of injections to calculate the injection amount per one time. Then, the fuel injection timing is calculated so that the injection amount per injection is injected around the crank angles CAx, CAy, CAz, respectively, and the fuel injection start time and end time of each time are specified. The fuel injection timing can be set as shown in FIG.

本発明は上述した形態に限らず、適宜の形態にて実施することができる。例えば、上記の形態では、スワール制御弁19を利用して各層L1〜L3に同一方向のスワール流を与えたが、スワールポート等の他のスワール形成手段を利用して各層の気流を制御してもよい。また、本発明はスワール流を形成する例に限らず、タンブル流といった他の気流を利用して成層状態を形成する内燃機関にも適用可能である。燃料噴射弁はポート噴射型に限らず、筒内噴射型でもよい。   The present invention is not limited to the form described above, and can be implemented in an appropriate form. For example, in the above embodiment, the swirl flow in the same direction is given to each of the layers L1 to L3 using the swirl control valve 19, but the airflow in each layer is controlled using other swirl forming means such as a swirl port. Also good. Further, the present invention is not limited to an example in which a swirl flow is formed, but can also be applied to an internal combustion engine that forms a stratified state using another air flow such as a tumble flow. The fuel injection valve is not limited to the port injection type, and may be a cylinder injection type.

1 内燃機関
5 吸気通路
6 排気通路
8 燃焼室
13A、13B 吸気弁
16 燃料噴射弁
17 EGR配管(EGR通路)
18 EGR弁
19 スワール制御弁
20 エンジンコントロールユニット(EGR制御手段、燃料噴射制御手段)
30 EGRガス
31 燃料
L1 EGR層
L2 空気層
L3 混合気層
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 5 Intake passage 6 Exhaust passage 8 Combustion chamber 13A, 13B Intake valve 16 Fuel injection valve 17 EGR piping (EGR passage)
18 EGR valve 19 Swirl control valve 20 Engine control unit (EGR control means, fuel injection control means)
30 EGR gas 31 Fuel L1 EGR layer L2 Air layer L3 Mixture layer

Claims (1)

燃焼室に対して吸気ポートを開閉する吸気弁と、吸入空気に対して燃料を噴射可能な燃料噴射弁と、排気通路と吸気ポートとを接続するEGR通路と、該EGR通路を開閉するEGR弁とを備えた成層燃焼が可能な内燃機関であって、
前記吸気弁の開弁に先行して前記吸気ポートにEGRガスが導入されるようにEGR弁の開弁動作を制御するEGR弁制御手段と、
前記吸気弁の開弁に伴って前記吸気ポートから前記燃焼室内にEGRガスが導入された後に空気が導入され、該燃焼室内のEGR層と混合気層との間に空気層が残存するように吸入空気に対する前記燃料噴射弁の動作を制御する燃料噴射制御手段と、を備えた成層燃焼が可能な内燃機関。
An intake valve that opens and closes an intake port for the combustion chamber, a fuel injection valve that can inject fuel to intake air, an EGR passage that connects the exhaust passage and the intake port, and an EGR valve that opens and closes the EGR passage An internal combustion engine capable of stratified combustion with
EGR valve control means for controlling the opening operation of the EGR valve so that EGR gas is introduced into the intake port prior to the opening of the intake valve;
As the intake valve is opened, air is introduced after EGR gas is introduced from the intake port into the combustion chamber, and an air layer remains between the EGR layer and the air-fuel mixture layer in the combustion chamber. An internal combustion engine capable of stratified combustion, comprising: fuel injection control means for controlling the operation of the fuel injection valve with respect to intake air.
JP2009112746A 2009-05-07 2009-05-07 Internal combustion engine capable of stratified combustion Expired - Fee Related JP5115517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009112746A JP5115517B2 (en) 2009-05-07 2009-05-07 Internal combustion engine capable of stratified combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009112746A JP5115517B2 (en) 2009-05-07 2009-05-07 Internal combustion engine capable of stratified combustion

Publications (2)

Publication Number Publication Date
JP2010261363A true JP2010261363A (en) 2010-11-18
JP5115517B2 JP5115517B2 (en) 2013-01-09

Family

ID=43359660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009112746A Expired - Fee Related JP5115517B2 (en) 2009-05-07 2009-05-07 Internal combustion engine capable of stratified combustion

Country Status (1)

Country Link
JP (1) JP5115517B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074340A (en) * 2012-10-02 2014-04-24 Nippon Soken Inc Intake control device for internal combustion engine
DE102013113700A1 (en) 2012-12-20 2014-06-26 Denso Corporation Inlet control device for internal combustion engine e.g. diesel engine, has switching unit whose switchover depends on change speed of internal combustion engine and target exhaust gas recirculation rate
US20190093604A1 (en) * 2017-09-25 2019-03-28 Woodward, Inc. Passive pumping for recirculating exhaust gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555714A (en) * 2015-09-29 2017-04-05 日立汽车系统(苏州)有限公司 Engine system with gas recirculation system and its control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114462A (en) * 1984-06-29 1986-01-22 Mazda Motor Corp Exhaust recirculation controller for engine
JP2004144052A (en) * 2002-10-28 2004-05-20 Hitachi Ltd Theoretical air fuel ratio stratified charge combustion internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114462A (en) * 1984-06-29 1986-01-22 Mazda Motor Corp Exhaust recirculation controller for engine
JP2004144052A (en) * 2002-10-28 2004-05-20 Hitachi Ltd Theoretical air fuel ratio stratified charge combustion internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074340A (en) * 2012-10-02 2014-04-24 Nippon Soken Inc Intake control device for internal combustion engine
DE102013113700A1 (en) 2012-12-20 2014-06-26 Denso Corporation Inlet control device for internal combustion engine e.g. diesel engine, has switching unit whose switchover depends on change speed of internal combustion engine and target exhaust gas recirculation rate
JP2014122562A (en) * 2012-12-20 2014-07-03 Denso Corp Intake control device of internal combustion engine
DE102013113700B4 (en) 2012-12-20 2022-07-14 Denso Corporation Intake control device of an internal combustion engine
US20190093604A1 (en) * 2017-09-25 2019-03-28 Woodward, Inc. Passive pumping for recirculating exhaust gas
US10316803B2 (en) * 2017-09-25 2019-06-11 Woodward, Inc. Passive pumping for recirculating exhaust gas
CN111344482A (en) * 2017-09-25 2020-06-26 伍德沃德有限公司 Passive pumping for recirculating exhaust gases

Also Published As

Publication number Publication date
JP5115517B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
ATE405737T1 (en) METHOD AND DEVICE FOR CONTROLLING THE AIR FLOW OF INTERNAL COMBUSTION ENGINES
JP5115517B2 (en) Internal combustion engine capable of stratified combustion
JP5995613B2 (en) Control device for internal combustion engine
JP2009041539A (en) Control device for gasoline engine
JP2009041540A (en) Control device of gasoline engine
JP2006291939A (en) Controller of engine
JP2016173058A (en) Fuel property discrimination device
JP5273310B2 (en) Control device for internal combustion engine
JP2005133632A (en) Control device for internal combustion engine and control method for internal combustion engine
JP2007239638A (en) Fuel injection control device for internal combustion engine
JP2016217286A (en) Control device of engine system
JP2006291940A (en) Controller of engine
JP6237734B2 (en) Control device for internal combustion engine
JP2009293526A (en) Cylinder injection type spark ignition internal combustion engine
JP4816151B2 (en) Combustion control device for internal combustion engine
JP6090595B2 (en) Control device for internal combustion engine
JP6848465B2 (en) Internal combustion engine fuel injection control device
JP2007239583A (en) Combustion control device of internal combustion engine
JP2017078343A (en) Internal combustion engine control device
JP6260599B2 (en) Control device for internal combustion engine
JP2007056772A (en) Control device of compression ignition internal combustion engine
JP6394628B2 (en) Control device for internal combustion engine
JP2016000970A (en) Internal combustion engine control device
JP6887723B2 (en) Internal combustion engine control device
JP2014173577A (en) Fuel injection control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R151 Written notification of patent or utility model registration

Ref document number: 5115517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees