JP2014173577A - Fuel injection control device of internal combustion engine - Google Patents

Fuel injection control device of internal combustion engine Download PDF

Info

Publication number
JP2014173577A
JP2014173577A JP2013049846A JP2013049846A JP2014173577A JP 2014173577 A JP2014173577 A JP 2014173577A JP 2013049846 A JP2013049846 A JP 2013049846A JP 2013049846 A JP2013049846 A JP 2013049846A JP 2014173577 A JP2014173577 A JP 2014173577A
Authority
JP
Japan
Prior art keywords
fuel injection
valve
internal combustion
fuel
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013049846A
Other languages
Japanese (ja)
Inventor
Kei Yoshimura
佳 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2013049846A priority Critical patent/JP2014173577A/en
Publication of JP2014173577A publication Critical patent/JP2014173577A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection control device of an internal combustion engine capable of preventing reduction in output of an engine and deterioration of an exhaust gas purifying performance due to blow-back of an air-fuel mixture blown to an intake pipe from a combustion chamber, to the intake pipe, in the internal combustion engine including a fuel injection valve injecting a fuel into the intake pipe.SOLUTION: A fuel injection control device of an internal combustion engine including a fuel injection valve injecting a fuel into an intake pipe, includes control means executing avoidance fuel injection by injecting fuel while avoiding a blow-back generation timing when a blow-back of a gas in a combustion chamber to the intake pipe side occurs, immediately after start of valve opening of an intake valve.

Description

この発明は内燃機関の燃料噴射制御装置に係り、特に内燃機関の燃費を改善可能な内燃機関の燃料噴射制御装置に関するものである。   The present invention relates to a fuel injection control device for an internal combustion engine, and more particularly to a fuel injection control device for an internal combustion engine capable of improving the fuel consumption of the internal combustion engine.

従来の内燃機関の燃料噴射制御装置においては、内燃機関の燃費及び出力向上を図ることを目的として、吸気バルブもしくは排気バルブの開弁時期及び期間を任意に変更できる可変バルブタイミング機構を有する装置が用いられている。
また、近年の燃費向上の更なる危急化から、低ペネトレーション式の燃料噴射弁が用いられてきている。
この低ペネトレーション式の燃料噴射弁とは、従来の燃料噴射弁に対して燃料噴射時の噴射強さを弱め、噴霧燃料をより微細化した特徴を持つ燃料噴射弁である。
これより、吸気管や燃焼室の内壁への燃料付着量低減と、空気との混合効率を高めて空気との均質化向上を図ることが可能である。
In a conventional fuel injection control device for an internal combustion engine, there is an apparatus having a variable valve timing mechanism that can arbitrarily change the opening timing and period of an intake valve or an exhaust valve for the purpose of improving fuel consumption and output of the internal combustion engine. It is used.
In addition, low penetration type fuel injection valves have been used due to the recent urgency in improving fuel efficiency.
This low-penetration type fuel injection valve is a fuel injection valve having a feature that atomized fuel is made finer by reducing the injection strength at the time of fuel injection compared to the conventional fuel injection valve.
As a result, it is possible to reduce the amount of fuel adhering to the intake pipe and the inner wall of the combustion chamber and to improve the mixing efficiency with air to improve the homogenization with air.

特許第4916544号公報Japanese Patent No. 4916544

ところが、前記可変バルブタイミング機構と低ペネトレーション式の燃料噴射弁とを共に有する内燃機関においては、吸気バルブと排気バルブとが同時に開弁するオーバラップ期間が長期化し、燃料噴射がオーバラップ期間中に行われた場合、及び、エンジン回転数が低速であり、前記オーバラップ期間中に燃料噴射が行われた場合に、噴射された燃料液滴の運動量が小さく、かつ、低ペネトレーションの状態であるため、吸気管上流に吹き戻される(「吹き返される」とも換言できる。)場合がある。
この際には、必要な燃料が内燃機関の燃焼室内に導入されず、十分な出力及び燃費性能が得られないという問題がある。
また、前記吸気管上流に吹き戻された燃料は、吸気管壁に付着してしまい、排気ガス浄化性能悪化の要因となるという不都合がある。
However, in an internal combustion engine having both the variable valve timing mechanism and the low-penetration type fuel injection valve, the overlap period in which the intake valve and the exhaust valve are opened simultaneously is prolonged, and the fuel injection is performed during the overlap period. If it is performed, and if the engine speed is low and fuel injection is performed during the overlap period, the momentum of the injected fuel droplets is small and the state of low penetration In some cases, the air is blown back to the upstream side of the intake pipe (also referred to as “blow back”).
In this case, there is a problem that necessary fuel is not introduced into the combustion chamber of the internal combustion engine, and sufficient output and fuel consumption performance cannot be obtained.
In addition, the fuel blown back to the upstream side of the intake pipe adheres to the intake pipe wall, which causes a disadvantage of deteriorating exhaust gas purification performance.

上記の内燃機関の燃料噴射制御装置に関する従来技術としては、特許文献1として開示されるものがある。
この特許文献1に開示されるものは、各気筒に対して1サイクル中に複数回の燃料噴射を行うものであり、そのうちの1回の噴射を吸気バルブが開弁中で吸気流路内への気筒内ガスの吹き返しが発生する期間に合わせて行うものである。
これより、燃料の蒸発促進と空気との混合促進が可能であり、燃費および排気ガスの清浄性を向上させることができる。
しかし、上記の低ペネトレーション式の燃料噴射弁では、噴射強さを従来よりも弱めているため、気筒内ガスの吹き返しによって噴射した燃料が燃焼室に導入されず、エンジン出力の低下を招き、またエンジン出力低下による燃料増量噴射による燃費の悪化を招くという不都合がある。
また、所定の空燃比から外れた排気ガスとなってしまい、触媒による排気ガス浄化が行われず、排気ガス浄化性能が悪化するという不都合がある。
As a prior art regarding the fuel injection control device of the internal combustion engine, there is one disclosed in Patent Document 1.
The one disclosed in Patent Document 1 performs fuel injection a plurality of times for each cylinder in one cycle, and one of these injections is made into the intake passage while the intake valve is open. This is performed in accordance with a period in which the gas in the cylinder is blown back.
Thus, fuel evaporation and air mixing can be promoted, and fuel consumption and exhaust gas cleanliness can be improved.
However, in the above low penetration type fuel injection valve, since the injection strength is weaker than before, the fuel injected by blowing back the gas in the cylinder is not introduced into the combustion chamber, leading to a decrease in engine output, There is an inconvenience that the fuel consumption is deteriorated due to the fuel increase injection due to the engine output reduction.
Further, exhaust gas deviates from a predetermined air-fuel ratio, exhaust gas purification by the catalyst is not performed, and exhaust gas purification performance deteriorates.

この発明は、吸気管内に燃料噴射を行う燃料噴射弁を備える内燃機関において、吸気管への燃焼室からの混合気が吸気管に吹き戻しによる内燃機関の出力低下や排気ガス浄化性能の悪化を防止可能な内燃機関の燃料噴射制御装置を提供することを目的とする。   The present invention relates to an internal combustion engine having a fuel injection valve that injects fuel into an intake pipe, in which an air-fuel mixture from a combustion chamber to the intake pipe blows back into the intake pipe, thereby reducing output of the internal combustion engine and deterioration of exhaust gas purification performance. An object of the present invention is to provide a fuel injection control device for an internal combustion engine that can be prevented.

そこで、この発明は、上述不都合を除去するために、吸気管内への燃料噴射を行う燃料噴射弁を備える内燃機関の燃料噴射制御装置において、吸気バルブの開弁開始直後の前記吸気管側への燃焼室内の気体の吹き戻しが発生する吹き戻し発生期間を避けて燃料噴射を行う回避燃料噴射を行う制御手段を備えることを特徴とする。   Accordingly, in order to eliminate the above-described disadvantages, the present invention provides a fuel injection control device for an internal combustion engine that includes a fuel injection valve that injects fuel into the intake pipe, to the intake pipe side immediately after the start of opening of the intake valve. Control means for performing avoidance fuel injection for performing fuel injection while avoiding a blowback generation period in which gas blowback in the combustion chamber occurs is provided.

この発明によれば、吸気管内に噴射した燃料が気体の吹き戻しによって噴射した必要量の燃料が燃焼室内に導入されず、内燃機関の出力低下や燃費性能の低下、排気ガス浄化性能の悪化を招くことを防止できる。   According to the present invention, a required amount of fuel injected by blowing back the gas injected into the intake pipe is not introduced into the combustion chamber, reducing the output of the internal combustion engine, the fuel consumption performance, and the exhaust gas purification performance. Invitation can be prevented.

図1は内燃機関の燃料噴射制御装置の制御用フローチャートである。(実施例)FIG. 1 is a control flowchart of a fuel injection control device for an internal combustion engine. (Example) 図2は内燃機関の燃料噴射制御装置の概略システム図である。(実施例)FIG. 2 is a schematic system diagram of a fuel injection control device for an internal combustion engine. (Example) 図3は排気バルブ・吸気バルブの動きを示す図である。(実施例)FIG. 3 is a view showing the movement of the exhaust valve / intake valve. (Example)

以下図面に基づいてこの発明の実施例を詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1〜図3はこの発明の実施例を示すものである。
図2において、1は燃料噴射制御装置である。
この燃料噴射制御装置1は、内燃機関2と、この内燃機関2の燃焼室3に下流側端部が連絡する吸気管4と、この吸気管4内に形成される吸気通路5と、この吸気通路5内に燃料を噴射する燃料噴射弁6と、前記吸気通路5の下流側端部を開閉する吸気バルブ7と、前記燃焼室3に上流側端部が連絡する排気管8と、この排気管8内に形成される排気通路9と、この排気通路9の上流側端部を開閉する排気バルブ10とを備えている。
また、前記吸気通路5において、前記燃料噴射弁6よりも上流側にスロットルバルブ11を有するスロットルボディ12を配設する。
更に、前記吸気通路5においては、前記スロットルボディ12と前記燃料噴射弁6との間に、エンジン負荷を検出する負荷センサ(「エアフローセンサ」ともいう。)13を設ける。
前記内燃機関2には、エンジン回転数を検出する回転数センサ14を設ける。
1 to 3 show an embodiment of the present invention.
In FIG. 2, reference numeral 1 denotes a fuel injection control device.
The fuel injection control apparatus 1 includes an internal combustion engine 2, an intake pipe 4 whose downstream end communicates with a combustion chamber 3 of the internal combustion engine 2, an intake passage 5 formed in the intake pipe 4, and the intake air A fuel injection valve 6 that injects fuel into the passage 5, an intake valve 7 that opens and closes a downstream end of the intake passage 5, an exhaust pipe 8 whose upstream end communicates with the combustion chamber 3, and this exhaust An exhaust passage 9 formed in the pipe 8 and an exhaust valve 10 for opening and closing the upstream end portion of the exhaust passage 9 are provided.
A throttle body 12 having a throttle valve 11 is disposed in the intake passage 5 upstream of the fuel injection valve 6.
Further, in the intake passage 5, a load sensor (also referred to as “air flow sensor”) 13 for detecting an engine load is provided between the throttle body 12 and the fuel injection valve 6.
The internal combustion engine 2 is provided with a rotation speed sensor 14 for detecting the engine rotation speed.

また、前記内燃機関2の燃料噴射制御装置1において、前記吸気バルブ7の開弁開始直後の前記吸気管4側への前記燃焼室3内の気体の吹き戻しが発生する吹き戻し発生期間を避けて燃料噴射を行う回避燃料噴射を行う制御手段15を備えている。
詳述すれば、この制御手段15は、図2に示す如く、バルブオーバラップ算出部16と、エンジン回転数判定部17と、噴射形態決定部18と、分割噴射指示部19と、単独噴射指示部20とを備える一方、可変バルブタイミング機構21に開弁時期を変更するための制御信号を出力している。
つまり、前記バルブオーバラップ算出部16は、前記吸気バルブ7と前記排気バルブ10とのオーバラップ状態を算出する。
また、前記エンジン回転数判定部17は、前記回転数センサ14からの検出信号を入力し、予め設定される所定回転数との比較判定を行っている。
更に、前記噴射形態決定部18は、前記燃料噴射制御装置1の前記制御手段15による制御内容、つまり前記燃料噴射弁6からの噴射形態を設定している。
前記分割噴射指示部19は、前記噴射形態決定部18による噴射形態が分割噴射である場合に、前記燃料噴射弁6へ制御信号を出力して分割噴射制御を指示する。
また、前記単段噴射指示部(「単独噴射指示部」とも換言できる。)20は、前記噴射形態決定部18による噴射形態が単独噴射である場合に、前記燃料噴射弁6へ制御信号を出力して単独噴射制御を指示する。
前記可変バルブタイミング機構21は、前記制御手段15からの制御信号を入力した際に、制御信号を応じた開弁時期となるように、前記吸気バルブ7や前記排気バルブ10の開弁時期を変更する。
これにより、前記吸気管4内に噴射した燃料が気体の吹き戻しによって噴射した必要量の燃料が前記燃焼室3内に導入されず、前記内燃機関2の出力低下や燃費性能の低下、排気ガス浄化性能の悪化を招くことを防止できる。
Further, in the fuel injection control device 1 of the internal combustion engine 2, avoid the blow-back generation period in which the gas in the combustion chamber 3 is blown back to the intake pipe 4 side immediately after the intake valve 7 starts to open. The control means 15 which performs the avoidance fuel injection which performs fuel injection is provided.
More specifically, as shown in FIG. 2, the control means 15 includes a valve overlap calculation unit 16, an engine speed determination unit 17, an injection mode determination unit 18, a split injection instruction unit 19, and a single injection instruction. On the other hand, a control signal for changing the valve opening timing is output to the variable valve timing mechanism 21.
That is, the valve overlap calculator 16 calculates the overlap state between the intake valve 7 and the exhaust valve 10.
The engine speed determination unit 17 receives a detection signal from the speed sensor 14 and performs a comparison determination with a predetermined speed set in advance.
Further, the injection mode determination unit 18 sets the control content by the control means 15 of the fuel injection control device 1, that is, the injection mode from the fuel injection valve 6.
The divided injection instruction unit 19 outputs a control signal to the fuel injection valve 6 to instruct divided injection control when the injection form by the injection form determination unit 18 is divided injection.
The single-stage injection instruction unit (also referred to as “single injection instruction unit”) 20 outputs a control signal to the fuel injection valve 6 when the injection mode determined by the injection mode determination unit 18 is single injection. The single injection control is instructed.
The variable valve timing mechanism 21 changes the valve opening timing of the intake valve 7 and the exhaust valve 10 so that when the control signal from the control means 15 is input, the valve opening timing according to the control signal is reached. To do.
As a result, the required amount of fuel injected by blowing back the gas injected into the intake pipe 4 is not introduced into the combustion chamber 3, and the output of the internal combustion engine 2 and the fuel consumption performance are reduced. It can prevent the purification performance from deteriorating.

また、前記燃料噴射制御装置1は、前記排気バルブ10もしくは吸気バルブ7の少なくともどちらか一方の開弁時期を変更する前記可変バルブタイミング機構21と、エンジン回転数を検出する前記回転数センサ14とを備えている。
そして、前記燃料噴射制御装置1は、前記排気バルブ10と前記吸気バルブ7とが共に開弁するオーバラップ量が所定値以上となり、且つ、エンジン回転数が所定回転数より小さい場合に回避燃料噴射を行う構成を備えている。
つまり、前記燃料噴射制御装置1の前記制御手段15は、前記バルブオーバラップ算出部16の算出したオーバラップ量が所定値以上であるか否かを判断するとともに、前記エンジン回転数判定部17による前記回転数センサ14からの実際のエンジン回転数と予め設定される所定回転数との比較判定結果を入力する。
そして、前記制御手段15は、オーバラップ量が所定値以上であり、且つ、エンジン回転数が所定回転数より小さい場合に、回避燃料噴射を行うように制御するものである。
これにより、オーバラップ量およびエンジン回転数より回避燃料噴射の実施要否を判断することができる。
The fuel injection control device 1 includes the variable valve timing mechanism 21 that changes the valve opening timing of at least one of the exhaust valve 10 and the intake valve 7, and the rotation speed sensor 14 that detects the engine speed. It has.
The fuel injection control device 1 avoids fuel injection when the overlap amount that both the exhaust valve 10 and the intake valve 7 are opened is equal to or greater than a predetermined value and the engine speed is smaller than the predetermined speed. The structure which performs is provided.
That is, the control means 15 of the fuel injection control device 1 determines whether or not the overlap amount calculated by the valve overlap calculation unit 16 is greater than or equal to a predetermined value, and the engine speed determination unit 17 A comparison determination result between the actual engine speed from the speed sensor 14 and a predetermined speed set in advance is input.
The control means 15 controls to perform avoidance fuel injection when the overlap amount is not less than a predetermined value and the engine speed is smaller than the predetermined speed.
Thereby, it is possible to determine whether or not the avoidance fuel injection is necessary from the overlap amount and the engine speed.

更に、前記燃料噴射制御装置1は、前記排気バルブ10が開放する排気行程時および前記吸気バルブ7が開放する吸気行程時にそれぞれ燃料噴射を行う前記分割噴射指示部19を備える一方、エンジン負荷を検出する前記負荷センサ13を備えている。
そして、前記燃料噴射制御装置1は、エンジン負荷の増大に伴って吸気行程時の燃料噴射量を、排気行程時の燃料噴射量に対して増加させる構成を備えている。
つまり、前記燃料噴射制御装置1の前記制御手段15は、前記負荷センサ13からの検出信号を入力し、エンジン負荷が増大した際には、このエンジン負荷の増大に伴って、吸気行程時の燃料噴射量を排気行程時の燃料噴射量に対して増加させている。
これにより、回避燃料噴射を実施しつつ、エンジン負荷に応じて、吸気行程時の燃料噴射量を排気行程時の燃料噴射量に対して増大して前記燃焼室3内の温度低減を図り、早期着火等の発生を防止することができる。
Further, the fuel injection control device 1 includes the split injection instructing unit 19 that performs fuel injection during an exhaust stroke when the exhaust valve 10 is opened and during an intake stroke when the intake valve 7 is opened, and detects an engine load. The load sensor 13 is provided.
The fuel injection control device 1 is configured to increase the fuel injection amount during the intake stroke with respect to the fuel injection amount during the exhaust stroke as the engine load increases.
In other words, the control means 15 of the fuel injection control device 1 inputs a detection signal from the load sensor 13, and when the engine load increases, the fuel during the intake stroke increases with the engine load. The injection amount is increased with respect to the fuel injection amount during the exhaust stroke.
Thus, while performing the avoidance fuel injection, the fuel injection amount during the intake stroke is increased with respect to the fuel injection amount during the exhaust stroke in accordance with the engine load, thereby reducing the temperature in the combustion chamber 3 in an early stage. Generation of ignition and the like can be prevented.

追記すれば、図3に示す如く、前記排気バルブ10がEVO位置から開き始めると、前記内燃機関2のピストン(図示せず)が下死点BDC位置となる。
そして、前記排気バルブ10が更に開くと、最高開度から閉鎖方向に動作する。
この排気バルブ10の閉鎖動作の際に、前記吸気バルブ7がIVO位置から開き始め、前記ピストンが上死点TDC位置となる。
その後、前記排気バルブ10がEVC位置で全閉状態となる。
また、前記吸気バルブ7は、更に開くと最高開度から閉鎖方向に動作し、前記ピストンの下死点BDC位置を経た後に、IVC位置で全閉状態となる。
このとき、前記吸気バルブ7と前記排気バルブ10とのオーバラップは、前記吸気バルブ7の開き始めるIVO位置と前記排気バルブ10が全閉状態となるEVC位置との間で生じている。
In addition, as shown in FIG. 3, when the exhaust valve 10 starts to open from the EVO position, the piston (not shown) of the internal combustion engine 2 becomes the bottom dead center BDC position.
When the exhaust valve 10 is further opened, it operates in the closing direction from the maximum opening.
During the closing operation of the exhaust valve 10, the intake valve 7 starts to open from the IVO position, and the piston reaches the top dead center TDC position.
Thereafter, the exhaust valve 10 is fully closed at the EVC position.
Further, when the intake valve 7 is further opened, the intake valve 7 operates in the closing direction from the maximum opening degree, and after passing through the bottom dead center BDC position of the piston, is fully closed at the IVC position.
At this time, the overlap between the intake valve 7 and the exhaust valve 10 occurs between the IVO position where the intake valve 7 starts to open and the EVC position where the exhaust valve 10 is fully closed.

次に、図1に記載される前記内燃機関2の燃料噴射制御装置1の制御用フローチャートに沿って作用を説明する。   Next, the operation will be described along the control flowchart of the fuel injection control device 1 of the internal combustion engine 2 shown in FIG.

この内燃機関2の燃料噴射制御装置1の制御用プログラムがスタート(101)すると、バルブオーバラップ量算出及びエンジン回転数検出、エンジン負荷検出の処理(102)に移行する。
つまり、この処理(102)においては、前記制御手段15の前記バルブオーバラップ算出部16によって、前記吸気バルブ7と前記排気バルブ10とのオーバラップ量を算出するとともに、前記制御手段15が前記回転数センサ14からのエンジン回転数の検出信号と前記負荷センサ13からのエンジン負荷の検出信号とを入力している。
そして、この処理(102)の後には、オーバラップ量が所定値以上、つまり、
オーバラップ量≧所定値
であり、且つ、エンジン回転数が所定回転数より小さい、つまり、
エンジン回転数<所定回転数
であるか否かの判断(103)に移行する。
この判断(103)においては、所定値と所定回転数とを予め設定してマップデータなどに記憶させておき、前記制御手段15によって、前記バルブオーバラップ算出部16の算出したオーバラップ量が所定値以上であるか否かを判断するとともに、前記エンジン回転数判定部17による前記回転数センサ14からの実際のエンジン回転数が所定回転数より小さいか否かを判断している。
上述の判断(103)において、判断(103)がYESの場合には、回避燃料噴射実施・分割噴射の処理(104)に移行する。
つまり、この処理(104)は、吹き返しによる影響が大きいと判断し、回避燃料噴射を実施するとともに分割噴射を実施するものであり、エンジン負荷が大きいほど吸気行程時の燃料噴射量を大としている。
追記すれば、この処理(104)においては、前記制御手段15によって、回避燃料噴射を実施するように制御する。
また、前記制御手段15により、エンジン負荷の増大に伴って、吸気行程時の燃料噴射量を排気行程時の燃料噴射量に対して増加させている。
上述のオーバラップ量が所定値以上、つまり、
オーバラップ量≧所定値
であり、且つ、エンジン回転数が所定回転数より小さい、つまり、
エンジン回転数<所定回転数
であるか否かの判断(103)において、この判断(103)がNOの場合には、回避燃料噴射禁止・単段噴射の処理(105)に移行する。
つまり、この処理(105)は、吹き返しによる影響が小さいと判断し、回避燃料噴射を禁止するとともに、分割噴射を行わずに単段噴射を実施するものである。
そして、上述の回避燃料噴射実施・分割噴射の処理(104)、及び、回避燃料噴射禁止・単段噴射の処理(105)の後には、前記内燃機関2の燃料噴射制御装置1の制御用プログラムのエンド(106)に移行する。
When the control program of the fuel injection control device 1 of the internal combustion engine 2 is started (101), the process proceeds to valve overlap amount calculation, engine speed detection, and engine load detection processing (102).
That is, in this process (102), the valve overlap calculation unit 16 of the control means 15 calculates the overlap amount between the intake valve 7 and the exhaust valve 10, and the control means 15 rotates the rotation. The engine speed detection signal from the number sensor 14 and the engine load detection signal from the load sensor 13 are input.
After this process (102), the overlap amount is a predetermined value or more, that is,
The overlap amount ≧ predetermined value and the engine speed is smaller than the predetermined speed, that is,
The process proceeds to a determination (103) as to whether or not the engine rotational speed <the predetermined rotational speed.
In this determination (103), a predetermined value and a predetermined number of revolutions are set in advance and stored in map data or the like, and the overlap amount calculated by the valve overlap calculating unit 16 by the control means 15 is set to a predetermined value. It is determined whether or not the engine speed is greater than or equal to a value, and it is determined whether or not the actual engine speed from the engine speed sensor 14 by the engine speed determination unit 17 is smaller than a predetermined engine speed.
If the determination (103) is YES in the determination (103), the process proceeds to the avoidance fuel injection execution / divided injection processing (104).
That is, in this process (104), it is determined that the influence of the blow-back is large, and the avoidance fuel injection and the split injection are performed. The larger the engine load, the larger the fuel injection amount during the intake stroke. .
If it adds, in this process (104), it will control by the said control means 15 to implement avoidance fuel injection.
Further, the control means 15 increases the fuel injection amount during the intake stroke with respect to the fuel injection amount during the exhaust stroke as the engine load increases.
The above overlap amount is a predetermined value or more, that is,
The overlap amount ≧ predetermined value and the engine speed is smaller than the predetermined speed, that is,
If the determination (103) is NO in the determination (103) as to whether or not the engine speed is less than the predetermined speed, the process proceeds to the avoidance fuel injection prohibition / single-stage injection process (105).
That is, in this process (105), it is determined that the influence of the blowback is small, the avoidance fuel injection is prohibited, and the single-stage injection is performed without performing the split injection.
After the avoidance fuel injection execution / divided injection processing (104) and the avoidance fuel injection prohibition / single stage injection processing (105), the control program for the fuel injection control device 1 of the internal combustion engine 2 is executed. To the end (106).

なお、この発明は上述実施例に限定されるものではなく、種々の応用改変が可能である。   The present invention is not limited to the above-described embodiments, and various application modifications can be made.

例えば、この発明の実施例においては、分割噴射を行う燃料噴射弁の個数を限定せず、1個の燃料噴射弁による動作として説明したが、1個の燃焼室に2個以上の燃料噴射弁を有する内燃機関とする特別構成とすることも可能である。
すなわち、例えば内燃機関の1個の燃焼室に2個の燃料噴射弁を設けた場合、分割噴射の際に、第1回目の燃料噴射と第2回目の燃料噴射とを異なる2個の燃料噴射弁で交互に行う構成とするものである。
さすれば、各燃料噴射弁より燃料噴射を行うので、1個の燃料噴射弁によって分割噴射を行う場合よりも、的確な燃料噴射を行うことができる。
具体的には、第1回目と第2回目との燃料噴射間隔が短く、第1回目の燃料噴射後に第2回目の燃料噴射を十分に行うことができない場合であっても、2個の燃料噴射弁を備えて交互に動作させるため、確実に燃料噴射を行うことができる。
For example, in the embodiment of the present invention, the number of fuel injection valves that perform split injection is not limited, and the operation is described as one fuel injection valve. However, two or more fuel injection valves are provided in one combustion chamber. It is also possible to have a special configuration of an internal combustion engine having
That is, for example, when two fuel injection valves are provided in one combustion chamber of an internal combustion engine, two fuel injections differing between the first fuel injection and the second fuel injection in divided injection. It is set as the structure performed by a valve alternately.
Then, since fuel injection is performed from each fuel injection valve, more accurate fuel injection can be performed than when split injection is performed by one fuel injection valve.
Specifically, even if the fuel injection interval between the first time and the second time is short and the second fuel injection cannot be sufficiently performed after the first fuel injection, two fuels Since the injection valves are provided and operated alternately, fuel injection can be reliably performed.

1 燃料噴射制御装置
2 内燃機関
3 燃焼室
4 吸気管
5 吸気通路
6 燃料噴射弁
7 吸気バルブ
8 排気管
9 排気通路
10 排気バルブ
11 スロットルバルブ
12 スロットルボディ
13 負荷センサ(「エアフローセンサ」ともいう。)
14 回転数センサ
15 制御手段
16 バルブオーバラップ算出部
17 エンジン回転数判定部
18 噴射形態決定部
19 分割噴射指示部
20 単段噴射指示部
21 可変バルブタイミング機構
DESCRIPTION OF SYMBOLS 1 Fuel-injection control apparatus 2 Internal combustion engine 3 Combustion chamber 4 Intake pipe 5 Intake passage 6 Fuel injection valve 7 Intake valve 8 Exhaust pipe 9 Exhaust passage 10 Exhaust valve 11 Throttle valve 12 Throttle body 13 Load sensor (It is also called an "air flow sensor." )
DESCRIPTION OF SYMBOLS 14 Rotational speed sensor 15 Control means 16 Valve overlap calculation part 17 Engine rotational speed determination part 18 Injection form determination part 19 Split injection instruction | indication part 20 Single stage injection instruction | indication part 21 Variable valve timing mechanism

Claims (3)

吸気管内への燃料噴射を行う燃料噴射弁を備える内燃機関の燃料噴射制御装置において、吸気バルブの開弁開始直後の前記吸気管側への燃焼室内の気体の吹き戻しが発生する吹き戻し発生期間を避けて燃料噴射を行う回避燃料噴射を行う制御手段を備えることを特徴とする内燃機関の燃料噴射制御装置。   In a fuel injection control device for an internal combustion engine having a fuel injection valve for injecting fuel into an intake pipe, a blow-back occurrence period in which gas in the combustion chamber is blown back to the intake pipe immediately after the intake valve is opened A fuel injection control device for an internal combustion engine, comprising control means for performing fuel injection while avoiding fuel injection. 排気バルブもしくは吸気バルブの少なくともどちらか一方の開弁時期を変更する可変バルブタイミング機構と、エンジン回転数を検出する回転数センサとを備え、前記排気バルブと前記吸気バルブとが共に開弁するオーバラップ量が所定値以上となり、且つ、エンジン回転数が所定回転数より小さい場合に回避燃料噴射を行うことを特徴とする請求項1に記載の内燃機関の燃料噴射制御装置。   A variable valve timing mechanism that changes the valve opening timing of at least one of the exhaust valve and the intake valve, and a rotation speed sensor that detects the engine rotation speed, and the exhaust valve and the intake valve are both opened. 2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the avoidance fuel injection is performed when the lap amount is a predetermined value or more and the engine speed is smaller than the predetermined speed. 前記排気バルブが開放する排気行程時および前記吸気バルブが開放する吸気行程時にそれぞれ燃料噴射を行う分割噴射指示部を備える一方、エンジン負荷を検出する負荷センサを備え、エンジン負荷の増大に伴って吸気行程時の燃料噴射量を、排気行程時の燃料噴射量に対して増加させることを特徴とする請求項2に記載の内燃機関の燃料噴射制御装置。   In addition to a split injection instruction unit that performs fuel injection during an exhaust stroke when the exhaust valve is opened and during an intake stroke when the intake valve is opened, a load sensor that detects an engine load is provided, and intake air is increased as the engine load increases. The fuel injection control device for an internal combustion engine according to claim 2, wherein the fuel injection amount during the stroke is increased with respect to the fuel injection amount during the exhaust stroke.
JP2013049846A 2013-03-13 2013-03-13 Fuel injection control device of internal combustion engine Pending JP2014173577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013049846A JP2014173577A (en) 2013-03-13 2013-03-13 Fuel injection control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013049846A JP2014173577A (en) 2013-03-13 2013-03-13 Fuel injection control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2014173577A true JP2014173577A (en) 2014-09-22

Family

ID=51695059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013049846A Pending JP2014173577A (en) 2013-03-13 2013-03-13 Fuel injection control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2014173577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107881A (en) * 2014-05-23 2017-06-15 アルプス電気株式会社 Insulation displacement connector
DE202015009612U1 (en) 2014-05-23 2018-11-21 Alps Electric Co., Ltd. Pressure contact connector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107881A (en) * 2014-05-23 2017-06-15 アルプス電気株式会社 Insulation displacement connector
DE202015009612U1 (en) 2014-05-23 2018-11-21 Alps Electric Co., Ltd. Pressure contact connector
DE202015009642U1 (en) 2014-05-23 2018-11-21 Alps Electric Co., Ltd. Pressure contact connector

Similar Documents

Publication Publication Date Title
US9014949B2 (en) Apparatus for and method of controlling internal combustion engine
JP2006307736A (en) Fuel injection control device of cylinder injection internal combustion engine
KR101035439B1 (en) Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
US9494101B2 (en) Control system for internal combustion engine and controlling method for internal combustion engine
JP6732035B2 (en) Internal combustion engine controller
US10669953B2 (en) Engine control system
JP2006291939A (en) Controller of engine
JP5999150B2 (en) Control method for internal combustion engine
JP2014173577A (en) Fuel injection control device of internal combustion engine
JP2010270651A (en) Controller for internal combustion engine
US10113490B2 (en) Control apparatus for internal combustion engine
JP2013060863A (en) Internal combustion engine control device
JP2006299992A (en) Control system of internal combustion engine
JP2006291940A (en) Controller of engine
JP2016217286A (en) Control device of engine system
JP4816151B2 (en) Combustion control device for internal combustion engine
JP6264302B2 (en) Control device for internal combustion engine
EP3002440A1 (en) Internal combustion engine
JP2011157859A (en) Internal combustion engine
JP2007077842A (en) Control device for internal combustion engine
JP2008232095A (en) Control device for internal combustion engine
JP2014134144A (en) Internal combustion engine fuel injection system
JP2013087675A (en) Control device of internal combustion engine
JP2013011248A (en) Controller of internal combustion engine
JP2011236756A (en) Fuel injection control device of cylinder injection type internal combustion engine