JP2010261329A - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP2010261329A
JP2010261329A JP2009110846A JP2009110846A JP2010261329A JP 2010261329 A JP2010261329 A JP 2010261329A JP 2009110846 A JP2009110846 A JP 2009110846A JP 2009110846 A JP2009110846 A JP 2009110846A JP 2010261329 A JP2010261329 A JP 2010261329A
Authority
JP
Japan
Prior art keywords
catalyst
post
nox sensor
nox
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009110846A
Other languages
Japanese (ja)
Other versions
JP5500867B2 (en
Inventor
Hironori Narita
洋紀 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2009110846A priority Critical patent/JP5500867B2/en
Publication of JP2010261329A publication Critical patent/JP2010261329A/en
Application granted granted Critical
Publication of JP5500867B2 publication Critical patent/JP5500867B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust purification device capable of surely detecting abnormality of a post-catalyst NOx sensor arranged on the downstream side of a selective reduction type catalyst, without stopping addition of urea as a reducing agent. <P>SOLUTION: This exhaust purification device has a control device 24 as an abnormality determining means for determining the abnormality of the post-catalyst NOx sensor 31, by mutually comparing a post-catalyst NOx concentration 31a detected by the post-catalyst NOx sensor 31 with a pre-catalyst NOx concentration 30a detected by a pre-catalyst NOx sensor 30 arranged on the upstream side of the selective reduction type catalyst 10, or an engine discharge NOx calculation value determined based on an operation state of a diesel engine 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ディーゼルエンジン等のエンジンに適用される排気浄化装置に関するものである。   The present invention relates to an exhaust purification device applied to an engine such as a diesel engine.

従来より、ディーゼルエンジンにおいては、排出ガスが流通する排気管の途中に、酸素共存下でも選択的にNOx(窒素酸化物)を還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元剤を選択還元型触媒上で排出ガス中のNOxと還元反応させ、これによりNOxの排出濃度を低減し得るようにしたものがある。   Conventionally, a diesel engine is equipped with a selective reduction type catalyst having a property of selectively reacting NOx (nitrogen oxide) with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas flows, A necessary amount of a reducing agent is added upstream of the selective catalytic reduction catalyst so that the reducing agent undergoes a reduction reaction with NOx in the exhaust gas on the selective catalytic reduction catalyst, thereby reducing the NOx emission concentration. There is what I did.

一般に、プラント等における工業的な排煙脱硝処理の分野では、還元剤にアンモニアを用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の場合には、アンモニアそのものを搭載して走行することに関し問題があるため、近年においては、毒性のない尿素水を還元剤として使用することが研究されている。   In general, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a method for reducing and purifying NOx using ammonia as a reducing agent is already widely known. In recent years, the use of non-toxic urea water as a reducing agent has been studied because of the problems associated with running the vehicle itself.

即ち、尿素水を選択還元型触媒の上流側で排出ガス中に添加すれば、該排出ガス中で尿素水がアンモニアと炭酸ガスに熱分解され、選択還元型触媒上で排出ガス中のNOxがアンモニアにより良好に還元浄化されることになる。   That is, if urea water is added to the exhaust gas upstream of the selective catalytic reduction catalyst, the urea water is thermally decomposed into ammonia and carbon dioxide gas in the exhaust gas, and NOx in the exhaust gas is converted to ammonia on the selective catalytic reduction catalyst. It will be reduced and purified well by ammonia.

ところで、前記選択還元型触媒の使用に当たっては、選択還元型触媒に添加する還元剤の量を適切な量に制御する必要があるため、選択還元型触媒の下流側にNOxセンサを設け、該NOxセンサにより検出された排出ガス中のNOx濃度に応じて還元剤の量を制御することが行われている。   By the way, when using the selective catalytic reduction catalyst, it is necessary to control the amount of reducing agent added to the selective catalytic reduction catalyst to an appropriate amount. Therefore, a NOx sensor is provided on the downstream side of the selective catalytic reduction catalyst, and the NOx The amount of reducing agent is controlled in accordance with the NOx concentration in the exhaust gas detected by a sensor.

そして、前記選択還元型触媒の下流側に設けられたNOxセンサの異常検出に関しては、特に排出ガス規制が厳しくなっている現在、単に断線等の故障に止まらず、NOxセンサ自体の劣化等に伴うセンサ出力の信頼性についても正しく検出することが求められているが、前記NOxセンサに到達する排出ガスは選択還元型触媒を通過した後の排出ガスであることから、該排出ガスのNOxセンサで検出されるNOx濃度は、選択還元型触媒によりNOxが良好に浄化された状態でのものか、アンモニアが選択還元型触媒をスリップしている状態でのものか、或いはNOxセンサ自体が劣化等に伴って異常な値を示している状態でのものか判別することが困難となり、このように、前記NOxセンサの出力値にはその上流側に位置する選択還元型触媒の影響が反映されてしまうことが、該NOxセンサの異常診断の精度を低下させる原因となっていた。   Regarding the abnormality detection of the NOx sensor provided on the downstream side of the selective catalytic reduction catalyst, the exhaust gas regulation is particularly strict, and it is not just a failure such as disconnection, but is accompanied by deterioration of the NOx sensor itself. Although it is required to correctly detect the reliability of the sensor output, since the exhaust gas reaching the NOx sensor is exhaust gas after passing through the selective catalytic reduction catalyst, the NOx sensor of the exhaust gas is used. The detected NOx concentration is in a state where NOx is well purified by the selective reduction catalyst, in a state where ammonia is slipping the selective reduction catalyst, or the NOx sensor itself is deteriorated, etc. Accordingly, it is difficult to determine whether the value is in an abnormal value state. Thus, the output value of the NOx sensor is the value of the selective catalytic reduction catalyst located upstream thereof. The sound from being reflected, thereby causing to lower the accuracy of the abnormality diagnosis of the NOx sensor.

こうした不具合を解消すべく、選択還元型触媒の上下流側に触媒前NOxセンサと触媒後NOxセンサとを配設し、異常診断時には還元剤としての尿素の添加を停止し、該停止中に、前記触媒後NOxセンサにより触媒後NOx濃度を検出すると共に、選択還元型触媒上流側における触媒前NOx濃度を前記触媒前NOxセンサにより検出し、前記触媒後NOx濃度と触媒前NOx濃度とを互いに比較して触媒後NOxセンサの異常を判定することが提案されている。   In order to eliminate such problems, a pre-catalyst NOx sensor and a post-catalyst NOx sensor are arranged on the upstream and downstream sides of the selective catalytic reduction catalyst, and when the abnormality is diagnosed, the addition of urea as a reducing agent is stopped. The post-catalyst NOx concentration is detected by the post-catalyst NOx sensor, the pre-catalyst NOx concentration upstream of the selective catalytic reduction catalyst is detected by the pre-catalyst NOx sensor, and the post-catalyst NOx concentration and the pre-catalyst NOx concentration are compared with each other. Thus, it has been proposed to determine the abnormality of the post-catalyst NOx sensor.

因みに、前記還元剤としての尿素の添加を停止すると、前記選択還元型触媒においてNOxの還元が行われなくなり、該選択還元型触媒をNOxが素通りして下流に至り、選択還元型触媒上流のNOx濃度と、選択還元型触媒下流のNOx濃度とが概ね等しくなることから、触媒後NOxセンサによって検出されたNOx濃度が、選択還元型触媒上流側のNOx濃度に対してずれていた場合に、触媒後NOxセンサが異常であると判定することができる。   Incidentally, when the addition of urea as the reducing agent is stopped, NOx is not reduced in the selective catalytic reduction catalyst, NOx passes through the selective catalytic reduction catalyst and reaches downstream, and NOx upstream of the selective catalytic reduction catalyst. Since the concentration and the NOx concentration downstream of the selective catalytic reduction catalyst are substantially equal, the NOx concentration detected by the post-catalyst NOx sensor deviates from the NOx concentration upstream of the selective catalytic reduction catalyst. It can be determined that the post-NOx sensor is abnormal.

尚、前述のようなNOxセンサの異常診断に関する一般的技術水準を示すものとしては、例えば、特許文献1がある。   For example, Patent Document 1 shows a general technical level related to the abnormality diagnosis of the NOx sensor as described above.

特開2008−133780号公報JP 2008-133780 A

しかしながら、前述の如く、異常診断時に還元剤としての尿素の添加を停止するのでは、選択還元型触媒に還元剤としての尿素を添加するための添加弁が、状況によっては本来還元剤を噴射すべきところを強制的にその噴射が停止されることから、高温に晒される可能性があり、あまり好ましい対策とは言えなかった。   However, as described above, when the addition of urea as a reducing agent is stopped at the time of abnormality diagnosis, an addition valve for adding urea as a reducing agent to a selective catalytic reduction catalyst inherently injects the reducing agent depending on the situation. Since the injection is stopped forcibly, it may be exposed to a high temperature, which is not a preferable measure.

本発明は、斯かる実情に鑑み、還元剤としての尿素の添加を停止することなく、選択還元型触媒の下流側に設けられたNOxセンサの異常を確実に検出し得る排気浄化装置を提供しようとするものである。   In view of such circumstances, the present invention provides an exhaust emission control device that can reliably detect an abnormality of a NOx sensor provided downstream of a selective catalytic reduction catalyst without stopping the addition of urea as a reducing agent. It is what.

本発明は、排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化すると共に、前記選択還元型触媒の少なくとも下流側に触媒後NOxセンサを設けるようにした排気浄化装置であって、
前記触媒後NOxセンサが作動し且つ選択還元型触媒の活性が低い温度領域で、前記触媒後NOxセンサで検出される触媒後NOx濃度と、前記選択還元型触媒の上流側に設けられた触媒前NOxセンサで検出される触媒前NOx濃度、若しくはエンジンの運転状態に基づいて求められるエンジン排出NOx計算値とを互いに比較することにより、触媒後NOxセンサの異常を判定する異常判定手段を備えたことを特徴とする排気浄化装置にかかるものである。
The present invention is equipped with a selective reduction catalyst in the middle of an exhaust pipe, and urea water is added as a reducing agent upstream of the selective reduction catalyst to reduce and purify NOx, and at least downstream of the selective reduction catalyst. An exhaust purification device provided with a post-catalyst NOx sensor on the side,
In the temperature range where the post-catalyst NOx sensor operates and the activity of the selective catalytic reduction catalyst is low, the post-catalyst NOx concentration detected by the post-catalytic NOx sensor and the pre-catalyst provided upstream of the selective catalytic reduction catalyst Provided with abnormality determination means for determining abnormality of the post-catalyst NOx sensor by comparing with each other the pre-catalyst NOx concentration detected by the NOx sensor or the calculated value of engine exhaust NOx calculated based on the operating state of the engine The present invention relates to an exhaust emission control device characterized by the following.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

前記異常判定手段において、触媒後NOxセンサが作動し且つ選択還元型触媒の活性が低い温度領域であると認識されると、前記触媒後NOxセンサで検出される触媒後NOx濃度と、前記選択還元型触媒の上流側に設けられた触媒前NOxセンサで検出される触媒前NOx濃度、若しくはエンジンの運転状態に基づいて求められるエンジン排出NOx計算値とが互いに比較され、前記触媒後NOxセンサで検出される触媒後NOx濃度と、前記選択還元型触媒の上流側に設けられた触媒前NOxセンサで検出される触媒前NOx濃度、若しくはエンジンの運転状態に基づいて求められるエンジン排出NOx計算値とが概ね等しくなっていれば、触媒後NOxセンサは正常であると判定される一方、前記触媒後NOxセンサで検出される触媒後NOx濃度が、前記選択還元型触媒の上流側に設けられた触媒前NOxセンサで検出される触媒前NOx濃度、若しくはエンジンの運転状態に基づいて求められるエンジン排出NOx計算値に対してずれている場合には、触媒後NOxセンサが異常であると判定される。   When the abnormality determination means recognizes that the post-catalyst NOx sensor is operating and the selective catalytic reduction catalyst is in a low temperature range, the post-catalyst NOx concentration detected by the post-catalyst NOx sensor and the selective reduction The pre-catalyst NOx concentration detected by the pre-catalyst NOx sensor provided upstream of the type catalyst or the engine exhaust NOx calculated value obtained based on the operating state of the engine is compared with each other and detected by the post-catalyst NOx sensor The post-catalyst NOx concentration, the pre-catalyst NOx concentration detected by the pre-catalyst NOx sensor provided upstream of the selective catalytic reduction catalyst, or the calculated engine exhaust NOx calculated based on the engine operating state If they are approximately equal, it is determined that the post-catalyst NOx sensor is normal, while the post-catalyst NOx concentration detected by the post-catalyst NOx sensor is When there is a deviation from the pre-catalyst NOx concentration detected by the pre-catalyst NOx sensor provided upstream of the selective catalytic reduction catalyst, or the calculated engine exhaust NOx calculated based on the operating state of the engine, the catalyst It is determined that the post-NOx sensor is abnormal.

前記排気浄化装置においては、前記選択還元型触媒の温度を上昇させる暖機制御が行われる場合、前記異常判定手段による触媒後NOxセンサの異常判定時には、前記暖機制御を一時的に停止させるようにすることが、該暖機制御による選択還元型触媒の温度上昇を阻止し、前記触媒後NOxセンサの異常を確実に検出する上で有効となる。   In the exhaust purification device, when warm-up control for increasing the temperature of the selective catalytic reduction catalyst is performed, the warm-up control is temporarily stopped when the abnormality determination unit determines abnormality of the post-catalyst NOx sensor. This is effective in preventing temperature increase of the selective catalytic reduction catalyst due to the warm-up control and reliably detecting abnormality of the post-catalyst NOx sensor.

本発明の排気浄化装置によれば、還元剤としての尿素の添加を停止することなく、選択還元型触媒の下流側に設けられた触媒後NOxセンサの異常を確実に検出し得るという優れた効果を奏し得る。   According to the exhaust emission control device of the present invention, it is possible to reliably detect an abnormality of the post-catalyst NOx sensor provided downstream of the selective catalytic reduction catalyst without stopping the addition of urea as a reducing agent. Can be played.

本発明の実施例を示す概要構成図である。It is a general | schematic block diagram which shows the Example of this invention. 本発明の実施例における温度と選択還元型触媒によるアンモニア吸着量との関係、並びに温度と選択還元型触媒による浄化率との関係を示す線図である。It is a diagram which shows the relationship between the temperature and the ammonia adsorption amount by the selective reduction catalyst in the Example of this invention, and the relationship between the temperature and the purification rate by the selective reduction catalyst. 本発明の実施例における触媒後NOxセンサの作動開始温度と選択還元型触媒の作用開始温度とを示す線図である。It is a diagram which shows the operation start temperature of the post-catalyst NOx sensor and the operation start temperature of the selective catalytic reduction catalyst in the example of the present invention.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図3は本発明の実施例であって、図示しているディーゼルエンジン1では、ターボチャージャ2が備えられており、エアクリーナ3から導いた空気4が吸気管5を介し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された空気4が更にインタークーラ6へと送られて冷却され、該インタークーラ6から図示しないインテークマニホールドへと空気4が導かれてディーゼルエンジン1の各シリンダに導入されるようにしてある。   1 to 3 show an embodiment of the present invention. In the illustrated diesel engine 1, a turbocharger 2 is provided, and air 4 guided from an air cleaner 3 is introduced into the turbocharger 2 via an intake pipe 5. The air 4 pressurized by the compressor 2a is further sent to the intercooler 6 to be cooled, and the air 4 is led from the intercooler 6 to an intake manifold (not shown) to be a diesel engine. 1 is introduced into each cylinder.

前記ディーゼルエンジン1の各シリンダから排出された排出ガス7はエキゾーストマニホールド8を介し前記ターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排出ガス7が排気管9を介し車外へ排出されるようにしてある。   The exhaust gas 7 discharged from each cylinder of the diesel engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 8, and the exhaust gas 7 driving the turbine 2b is discharged outside the vehicle through the exhaust pipe 9. It is supposed to be.

前記排出ガス7が流通する排気管9の途中には、選択還元型触媒10がケーシング11により抱持されて装備されており、該選択還元型触媒10は、例えば、フロースルー方式のハニカム構造物として形成され、酸素共存下でも選択的にNOxをアンモニアと反応させ得るような性質を有している。   In the middle of the exhaust pipe 9 through which the exhaust gas 7 circulates, a selective catalytic reduction catalyst 10 is mounted and mounted by a casing 11. The selective catalytic reduction catalyst 10 is, for example, a flow-through type honeycomb structure. And has the property of allowing NOx to react selectively with ammonia even in the presence of oxygen.

又、尿素水12が貯留される尿素水タンク20から延ばした尿素水供給ライン15の途中には、尿素水タンク20の尿素水12を圧送する供給ポンプ21と、該供給ポンプ21によって圧送される尿素水12の圧力を調整するレギュレータ22と、該レギュレータ22によって圧力が調整された尿素水12を添加ノズル16から選択還元型触媒10の上流側における排気管9内へ噴射させるインジェクタ23とを設けるようにしてある。   Further, in the middle of the urea water supply line 15 extending from the urea water tank 20 in which the urea water 12 is stored, a supply pump 21 that pumps the urea water 12 in the urea water tank 20, and the pressure is pumped by the supply pump 21. A regulator 22 for adjusting the pressure of the urea water 12 and an injector 23 for injecting the urea water 12 whose pressure has been adjusted by the regulator 22 from the addition nozzle 16 into the exhaust pipe 9 upstream of the selective catalytic reduction catalyst 10 are provided. It is like that.

一方、制御装置24からは、前記供給ポンプ21に対し駆動指令信号21aが出力され、前記レギュレータ22に対し調圧指令信号22aが出力され、前記インジェクタ23に対し開弁指令信号23aが出力されるようになっており、該インジェクタ23の開弁作動により尿素水12の添加量が適切に制御され、その添加時に必要な噴射圧力が前記供給ポンプ21の駆動とレギュレータ22の作動により適宜得られるようになっている。   On the other hand, the control device 24 outputs a drive command signal 21 a to the supply pump 21, outputs a pressure adjustment command signal 22 a to the regulator 22, and outputs a valve opening command signal 23 a to the injector 23. The addition amount of the urea water 12 is appropriately controlled by the valve opening operation of the injector 23, and the injection pressure required at the time of the addition can be appropriately obtained by driving the supply pump 21 and the operation of the regulator 22. It has become.

そして、本実施例の場合、選択還元型触媒10の上下流側に触媒前NOxセンサ30と触媒後NOxセンサ31とを配設し、該触媒前NOxセンサ30で検出される触媒前NOx濃度30aと、前記触媒後NOxセンサ31で検出される触媒後NOx濃度31aとを前記制御装置24へ入力し、該制御装置24において、前記触媒前NOx濃度30aと触媒後NOx濃度31aとに基づき尿素水12の添加量を算出して必要量の尿素水12の添加を実行すると共に、前記選択還元型触媒10の温度32aを検出する温度センサ32を設け、該温度センサ32で検出される温度32aを前記制御装置24へ入力するようにしてある。   In this embodiment, a pre-catalyst NOx sensor 30 and a post-catalyst NOx sensor 31 are disposed upstream and downstream of the selective catalytic reduction catalyst 10, and the pre-catalyst NOx concentration 30 a detected by the pre-catalyst NOx sensor 30. And the post-catalyst NOx concentration 31a detected by the post-catalyst NOx sensor 31 are input to the control device 24, and the control device 24 uses urea water based on the pre-catalyst NOx concentration 30a and the post-catalyst NOx concentration 31a. 12 is added to execute the addition of the required amount of urea water 12, and a temperature sensor 32 for detecting the temperature 32a of the selective catalytic reduction catalyst 10 is provided, and the temperature 32a detected by the temperature sensor 32 is set. Input is made to the control device 24.

ここで、前記選択還元型触媒10においては、図2に示す如く、温度が低いほど、アンモニア吸着量は高く、浄化率は低くなり、又、前記触媒後NOxセンサ31を作動させるには、その素子に水滴が付着していないこと、即ちある程度の高温(100[℃]程度)が必要であり(図3参照)、そこから安定作動状態になるのに少し時間がかかるが、前記選択還元型触媒10が作用する温度(図3に示す如く180〜200[℃]程度)になってしまうと、排出ガス7の触媒後NOxセンサ31で検出される触媒後NOx濃度31aは、選択還元型触媒によりNOxが良好に浄化された状態でのものか、アンモニアが選択還元型触媒をスリップしている状態でのものか、或いは触媒後NOxセンサ31自体が劣化等に伴って異常な値を示している状態でのものか判別することが困難となるため、前記制御装置24において、前記触媒後NOxセンサ31が作動し且つ選択還元型触媒10の活性が低い温度領域(例えば、100〜200[℃]の範囲)で、前記触媒後NOxセンサ31で検出される触媒後NOx濃度31aと、前記選択還元型触媒10の上流側に設けられた触媒前NOxセンサ30で検出される触媒前NOx濃度30aとを互いに比較することにより、触媒後NOxセンサ31の異常を判定し、前記制御装置24を異常判定手段として用いるようにしてある。尚、前記選択還元型触媒10の浄化率は、排出ガス7が低流量である場合の方が高流量である場合より高くなり(図2の仮想線参照)、このため、前記選択還元型触媒10の活性が低い温度領域は、排出ガス7の流量に応じて変動する。   Here, in the selective catalytic reduction catalyst 10, as shown in FIG. 2, the lower the temperature, the higher the ammonia adsorption amount and the lower the purification rate. Also, in order to operate the post-catalyst NOx sensor 31, No water droplets are attached to the element, that is, a certain degree of high temperature (about 100 [° C.]) is required (see FIG. 3). When the temperature at which the catalyst 10 acts (about 180 to 200 ° C. as shown in FIG. 3) is reached, the after-catalyst NOx concentration 31a detected by the after-catalyst NOx sensor 31 of the exhaust gas 7 is the selective reduction catalyst. NOx is well purified or is in a state where ammonia is slipping the selective catalytic reduction catalyst, or the post-catalyst NOx sensor 31 itself shows an abnormal value due to deterioration or the like. State In the control device 24, the post-catalyst NOx sensor 31 operates and the selective catalytic reduction catalyst 10 has a low activity range (for example, 100 to 200 [° C.]). Range), the post-catalyst NOx concentration 31a detected by the post-catalyst NOx sensor 31 and the pre-catalyst NOx concentration 30a detected by the pre-catalyst NOx sensor 30 provided upstream of the selective catalytic reduction catalyst 10 By comparing each other, the abnormality of the post-catalyst NOx sensor 31 is determined, and the control device 24 is used as an abnormality determining means. The purification rate of the selective catalytic reduction catalyst 10 is higher when the exhaust gas 7 is at a lower flow rate than when the exhaust gas 7 is at a higher flow rate (see the phantom line in FIG. 2). The temperature range where the activity of 10 is low varies depending on the flow rate of the exhaust gas 7.

更に、図示していないヒータ等を用いて強制的に前記選択還元型触媒10の温度を上昇させる暖機制御が行われる場合、前記異常判定手段としての制御装置24による触媒後NOxセンサ31の異常判定時には、前記暖機制御を一時的に停止させるようにしてある。尚、前記暖機制御と触媒後NOxセンサ31の異常判定とが同時期にかちあって行われるような場合、その都度、暖機制御を一時的に停止させるのではなく、暖機制御を優先し、該暖機制御を数回(例えば、三回〜五回)に一回停止させ、前記触媒後NOxセンサ31の異常判定を行うようにしても良い。   Further, when the warm-up control for forcibly increasing the temperature of the selective catalytic reduction catalyst 10 is performed using a heater or the like (not shown), the abnormality of the post-catalyst NOx sensor 31 by the control device 24 as the abnormality determination means. At the time of determination, the warm-up control is temporarily stopped. When the warm-up control and the abnormality determination of the post-catalyst NOx sensor 31 are performed at the same time, the warm-up control is given priority instead of temporarily stopping the warm-up control each time. Then, the warm-up control may be stopped once every several times (for example, three to five times), and the abnormality determination of the post-catalyst NOx sensor 31 may be performed.

次に、上記実施例の作用を説明する。   Next, the operation of the above embodiment will be described.

前記異常判定手段としての制御装置24において、温度センサ32で検出される温度32aに基づき、触媒後NOxセンサ31が作動し且つ選択還元型触媒10の活性が低い温度領域(例えば、100〜200[℃]の範囲)であると認識されると、前記触媒後NOxセンサ31で検出される触媒後NOx濃度31aと、前記選択還元型触媒10の上流側に設けられた触媒前NOxセンサ30で検出される触媒前NOx濃度30aとが互いに比較される。   In the control device 24 as the abnormality determination means, based on the temperature 32a detected by the temperature sensor 32, the post-catalyst NOx sensor 31 operates and the temperature of the selective catalytic reduction catalyst 10 is low (for example, 100 to 200 [ Is detected by the post-catalyst NOx sensor 31 and the pre-catalyst NOx sensor 30 provided on the upstream side of the selective catalytic reduction catalyst 10. The pre-catalyst NOx concentration 30a is compared with each other.

前記触媒後NOxセンサ31で検出される触媒後NOx濃度31aと、前記選択還元型触媒10の上流側に設けられた触媒前NOxセンサ30で検出される触媒前NOx濃度30aとが概ね等しくなっていれば、触媒後NOxセンサ31は正常であると判定される一方、前記触媒後NOxセンサ31で検出される触媒後NOx濃度31aが、前記選択還元型触媒10の上流側に設けられた触媒前NOxセンサ30で検出される触媒前NOx濃度30aに対してずれている場合には、触媒後NOxセンサ31が異常であると判定される。   The post-catalyst NOx concentration 31a detected by the post-catalyst NOx sensor 31 and the pre-catalyst NOx concentration 30a detected by the pre-catalyst NOx sensor 30 provided upstream of the selective catalytic reduction catalyst 10 are substantially equal. Then, while the post-catalyst NOx sensor 31 is determined to be normal, the post-catalyst NOx concentration 31a detected by the post-catalyst NOx sensor 31 is the pre-catalyst provided upstream of the selective catalytic reduction catalyst 10. When the pre-catalyst NOx concentration 30a detected by the NOx sensor 30 is deviated, it is determined that the post-catalyst NOx sensor 31 is abnormal.

尚、前記制御装置24においては、図示していないエンジン制御コンピュータ(ECU:Electronic Control Unit)との間でディーゼルエンジン1の回転数及び負荷がやり取りされるようになっており、これらから判断される現在のディーゼルエンジン1の運転状態に基づきNOxの発生量がエンジン排出NOx計算値として求められるようになっているため、前記触媒前NOxセンサ30を省略し、前記触媒後NOxセンサ31で検出される触媒後NOx濃度31aと、前記ディーゼルエンジン1の運転状態に基づいて求められるエンジン排出NOx計算値とを互いに比較することにより、触媒後NOxセンサ31の異常を判定することも可能である。   In the control device 24, the rotational speed and load of the diesel engine 1 are exchanged with an engine control computer (ECU: Electronic Control Unit) (not shown). Since the amount of NOx generated is determined as the calculated value of engine exhaust NOx based on the current operating state of the diesel engine 1, the pre-catalyst NOx sensor 30 is omitted and the post-catalyst NOx sensor 31 detects it. By comparing the after-catalyst NOx concentration 31a with the calculated engine exhaust NOx calculated based on the operating state of the diesel engine 1, it is possible to determine whether the after-catalyst NOx sensor 31 is abnormal.

又、図1に示す如く、選択還元型触媒10の上下流側に触媒前NOxセンサ30と触媒後NOxセンサ31とが配設されている場合において、前記エンジン排出NOx計算値を、前記触媒後NOxセンサ31で検出される触媒後NOx濃度31aと、前記選択還元型触媒10の上流側に設けられた触媒前NOxセンサ30で検出される触媒前NOx濃度30aとに対し、それぞれの基準値として用いることも勿論可能となる。   Further, as shown in FIG. 1, in the case where a pre-catalyst NOx sensor 30 and a post-catalyst NOx sensor 31 are disposed on the upstream and downstream sides of the selective catalytic reduction catalyst 10, the calculated engine exhaust NOx value is obtained as the post-catalyst NOx sensor value. As reference values for the after-catalyst NOx concentration 31a detected by the NOx sensor 31 and the before-catalyst NOx concentration 30a detected by the before-catalyst NOx sensor 30 provided upstream of the selective catalytic reduction catalyst 10, respectively. Of course, it can be used.

更に、図示していないヒータ等を用いて強制的に前記選択還元型触媒10の温度を上昇させる暖機制御が行われる場合、前記異常判定手段としての制御装置24による触媒後NOxセンサ31の異常判定時には、前記暖機制御が一時的に停止されるため、該暖機制御による選択還元型触媒10の温度上昇が阻止され、前記触媒後NOxセンサ31の異常を確実に検出することが可能となる。   Further, when the warm-up control for forcibly increasing the temperature of the selective catalytic reduction catalyst 10 is performed using a heater or the like (not shown), the abnormality of the post-catalyst NOx sensor 31 by the control device 24 as the abnormality determination means. At the time of determination, since the warm-up control is temporarily stopped, the temperature increase of the selective catalytic reduction catalyst 10 due to the warm-up control is prevented, and it is possible to reliably detect an abnormality in the post-catalyst NOx sensor 31. Become.

こうして、還元剤としての尿素の添加を停止することなく、選択還元型触媒10の下流側に設けられた触媒後NOxセンサ31の異常を確実に検出し得る。   Thus, the abnormality of the post-catalyst NOx sensor 31 provided on the downstream side of the selective catalytic reduction catalyst 10 can be reliably detected without stopping the addition of urea as a reducing agent.

尚、本発明の排気浄化装置は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The exhaust emission control device of the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.

1 ディーゼルエンジン(エンジン)
7 排出ガス
9 排気管
10 選択還元型触媒
12 尿素水
24 制御装置(異常判定手段)
30 触媒前NOxセンサ
30a 触媒前NOx濃度
31 触媒後NOxセンサ
31a 触媒後NOx濃度
1 Diesel engine (engine)
7 Exhaust gas 9 Exhaust pipe 10 Selective reduction catalyst 12 Urea water 24 Control device (abnormality determination means)
30 NOx sensor before catalyst 30a NOx concentration before catalyst 31 NOx sensor after catalyst 31a NOx concentration after catalyst

Claims (2)

排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化すると共に、前記選択還元型触媒の少なくとも下流側に触媒後NOxセンサを設けるようにした排気浄化装置であって、
前記触媒後NOxセンサが作動し且つ選択還元型触媒の活性が低い温度領域で、前記触媒後NOxセンサで検出される触媒後NOx濃度と、前記選択還元型触媒の上流側に設けられた触媒前NOxセンサで検出される触媒前NOx濃度、若しくはエンジンの運転状態に基づいて求められるエンジン排出NOx計算値とを互いに比較することにより、触媒後NOxセンサの異常を判定する異常判定手段を備えたことを特徴とする排気浄化装置。
A selective reduction catalyst is provided in the middle of the exhaust pipe, and urea water is added as a reducing agent upstream of the selective reduction catalyst to reduce and purify NOx, and at the downstream of the selective reduction catalyst, An exhaust purification device provided with a NOx sensor,
In the temperature range where the post-catalyst NOx sensor operates and the activity of the selective catalytic reduction catalyst is low, the post-catalyst NOx concentration detected by the post-catalytic NOx sensor and the pre-catalyst provided upstream of the selective catalytic reduction catalyst Provided with abnormality determination means for determining abnormality of the post-catalyst NOx sensor by comparing with each other the pre-catalyst NOx concentration detected by the NOx sensor or the calculated value of engine exhaust NOx calculated based on the operating state of the engine An exhaust purification device characterized by the above.
前記選択還元型触媒の温度を上昇させる暖機制御が行われる場合、前記異常判定手段による触媒後NOxセンサの異常判定時には、前記暖機制御を一時的に停止させるようにした請求項1記載の排気浄化装置。   The warm-up control is temporarily stopped when the abnormality determination of the post-catalyst NOx sensor is performed by the abnormality determination unit when the warm-up control for increasing the temperature of the selective catalytic reduction catalyst is performed. Exhaust purification device.
JP2009110846A 2009-04-30 2009-04-30 Exhaust purification device Expired - Fee Related JP5500867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110846A JP5500867B2 (en) 2009-04-30 2009-04-30 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110846A JP5500867B2 (en) 2009-04-30 2009-04-30 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2010261329A true JP2010261329A (en) 2010-11-18
JP5500867B2 JP5500867B2 (en) 2014-05-21

Family

ID=43359629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110846A Expired - Fee Related JP5500867B2 (en) 2009-04-30 2009-04-30 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP5500867B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194639A (en) * 2012-03-21 2013-09-30 Toyota Motor Corp Failure determining device of sensor
WO2015046276A1 (en) * 2013-09-25 2015-04-02 トヨタ自動車株式会社 Sensor-malfunction diagnosis device
JP2017150467A (en) * 2016-02-19 2017-08-31 トヨタ自動車株式会社 Abnormality diagnosis device of exhaust emission control device of internal combustion engine
CN112983613A (en) * 2021-03-29 2021-06-18 潍柴动力股份有限公司 Nitrogen-oxygen sensor fault judgment method and related device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123870A (en) * 1999-10-26 2001-05-08 Toyota Motor Corp Exhaust gas temperature increasing device for internal combustion engine
JP2008133780A (en) * 2006-11-28 2008-06-12 Toyota Motor Corp Device and method for diagnosing abnormality of nox sensor
JP2008215260A (en) * 2007-03-06 2008-09-18 Toyota Motor Corp ABNORMALITY DIAGNOSIS DEVICE FOR NOx SENSOR
JP2010071227A (en) * 2008-09-19 2010-04-02 Mazda Motor Corp Engine exhaust emission control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123870A (en) * 1999-10-26 2001-05-08 Toyota Motor Corp Exhaust gas temperature increasing device for internal combustion engine
JP2008133780A (en) * 2006-11-28 2008-06-12 Toyota Motor Corp Device and method for diagnosing abnormality of nox sensor
JP2008215260A (en) * 2007-03-06 2008-09-18 Toyota Motor Corp ABNORMALITY DIAGNOSIS DEVICE FOR NOx SENSOR
JP2010071227A (en) * 2008-09-19 2010-04-02 Mazda Motor Corp Engine exhaust emission control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194639A (en) * 2012-03-21 2013-09-30 Toyota Motor Corp Failure determining device of sensor
WO2015046276A1 (en) * 2013-09-25 2015-04-02 トヨタ自動車株式会社 Sensor-malfunction diagnosis device
JP6037037B2 (en) * 2013-09-25 2016-11-30 トヨタ自動車株式会社 Sensor abnormality diagnosis device
JP2017150467A (en) * 2016-02-19 2017-08-31 トヨタ自動車株式会社 Abnormality diagnosis device of exhaust emission control device of internal combustion engine
CN112983613A (en) * 2021-03-29 2021-06-18 潍柴动力股份有限公司 Nitrogen-oxygen sensor fault judgment method and related device
CN112983613B (en) * 2021-03-29 2022-07-15 潍柴动力股份有限公司 Nitrogen-oxygen sensor fault judgment method and related device

Also Published As

Publication number Publication date
JP5500867B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP4267534B2 (en) Abnormality detection method for exhaust purification system
JP3979153B2 (en) NOx purification device for internal combustion engine
JP5478110B2 (en) Reducing agent abnormality detection method
JP5258319B2 (en) Failure diagnosis device for oxidation catalyst, failure diagnosis method for oxidation catalyst, and exhaust purification device for internal combustion engine
JP4874364B2 (en) Exhaust gas purification device for internal combustion engine
WO2005124116A1 (en) Exhaust gas purification apparatus
US8201397B2 (en) Exhaust gas purification device of internal combustion engine
JP5461057B2 (en) Reducing agent abnormality detection method
JP3552653B2 (en) Diagnosis processing device for reducing agent supply device of internal combustion engine
US9957872B2 (en) Abnormality diagnosing apparatus
JP2009221939A (en) Exhaust purification system and exhaust purification control device
JP2008303821A (en) Exhaust emission control device for internal combustion engine
JP5880705B2 (en) Exhaust gas purification device deterioration detection system
US20160108791A1 (en) Aftertreatment Control for Detection of Fuel Contaminant Concentration
JP2010031731A (en) Exhaust emission control system of internal-combustion engine
WO2010147107A1 (en) Exhaust purification device and exhaust purification method, for engine
JP5500867B2 (en) Exhaust purification device
JP2009156159A (en) Device for determining abnormal section of exhaust emission control system
JP5913619B2 (en) Diesel engine control device
JP2012082703A (en) DEVICE AND METHOD FOR DETECTING DEGRADATION OF SELECTIVE REDUCTION TYPE NOx CATALYST
JP2013104346A (en) Exhaust gas purification device for internal combustion device
JP4530069B2 (en) Fuel injection control device
JP2010261328A (en) Method for detecting abnormality in reducing agent
JP5543725B2 (en) Exhaust purification device
JP2011106313A (en) Exhaust emission control device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140311

R150 Certificate of patent or registration of utility model

Ref document number: 5500867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees