JP2011106313A - Exhaust emission control device for engine - Google Patents

Exhaust emission control device for engine Download PDF

Info

Publication number
JP2011106313A
JP2011106313A JP2009260876A JP2009260876A JP2011106313A JP 2011106313 A JP2011106313 A JP 2011106313A JP 2009260876 A JP2009260876 A JP 2009260876A JP 2009260876 A JP2009260876 A JP 2009260876A JP 2011106313 A JP2011106313 A JP 2011106313A
Authority
JP
Japan
Prior art keywords
reducing agent
engine
flow rate
temperature
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009260876A
Other languages
Japanese (ja)
Other versions
JP5570188B2 (en
Inventor
Shinji Nozaki
真仁 野▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2009260876A priority Critical patent/JP5570188B2/en
Publication of JP2011106313A publication Critical patent/JP2011106313A/en
Application granted granted Critical
Publication of JP5570188B2 publication Critical patent/JP5570188B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inhibit deposition of a reducing agent component in an engine exhaust pipe. <P>SOLUTION: Temperature of exhaust gas flowing into an SCR catalyst, engine speed and load are acquired respectively (S1, S2), and addition flow rate of liquid reducing agent or precursor thereof injected and supplied from an injection nozzle to an exhaust gas upstream side of the SCR catalyst according to an engine operation state is calculated (S3). Temperature of a wall surface of an exhaust pipe positioned between the injection nozzle and the SCR catalyst is acquired (S4), and addition flow rate of the liquid reducing agent and the precursor thereof is reduced and compensated if the temperature of the wall surface is less than prescribed temperature (S5, S6). Flow rate of the liquid reducing agent or the precursor thereof injected and supplied from the injection nozzle is controlled base on the calculated or compensated flow rate of the liquid reducing agent or the precursor thereof (S7). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、エンジンの排気に含まれるNOx(窒素酸化物)を選択的に還元浄化する排気浄化装置に関する。   The present invention relates to an exhaust purification device that selectively reduces and purifies NOx (nitrogen oxides) contained in engine exhaust.

エンジンの排気に含まれるNOxを浄化する触媒浄化システムとして、特開2009−127472号公報(特許文献1)に記載されるような排気浄化装置が提案されている。この排気浄化装置は、エンジン排気管に配設されたSCR(Selective Catalytic Reduction)触媒の排気上流に、エンジン運転状態に応じた流量の液体還元剤又はその前駆体を噴射供給し、SCR触媒でNOxを選択還元反応させることで、NOxを無害成分に浄化処理する。   As a catalyst purification system for purifying NOx contained in engine exhaust, an exhaust purification device as described in JP 2009-127472 A (Patent Document 1) has been proposed. This exhaust purification device injects and supplies a liquid reducing agent or a precursor thereof at a flow rate according to the engine operating state upstream of the exhaust of an SCR (Selective Catalytic Reduction) catalyst disposed in an engine exhaust pipe, and NOx is supplied by the SCR catalyst. By performing a selective reduction reaction, NOx is purified to harmless components.

ところで、このような排気浄化装置においては、SCR触媒の排気上流に噴射供給された液体還元剤又はその前駆体がエンジン排気管の内壁に付着すると、エンジン運転状態によっては、溶媒のみが蒸発して還元剤成分たる溶質が析出してしまうおそれがある。このため、排気温度が所定温度未満であるときには、液体還元剤又はその前駆体の噴射供給を停止し、エンジン排気管への還元剤成分の析出を抑制するようにしていた。   By the way, in such an exhaust purification device, when the liquid reducing agent or its precursor injected and supplied upstream of the exhaust of the SCR catalyst adheres to the inner wall of the engine exhaust pipe, only the solvent evaporates depending on the engine operating state. There is a possibility that the solute as the reducing agent component is deposited. For this reason, when the exhaust temperature is lower than the predetermined temperature, the injection supply of the liquid reducing agent or its precursor is stopped to suppress the deposition of the reducing agent component in the engine exhaust pipe.

特開2009−127472号公報JP 2009-127472 A

しかしながら、エンジン排気管の壁面温度は、外気温度や液体還元剤又はその前駆体の付着などにより低下するため、排気温度が所定温度以上であっても、エンジン排気管への還元剤成分の析出が起こるおそれがあった。   However, since the wall surface temperature of the engine exhaust pipe decreases due to the outside air temperature, the attachment of a liquid reducing agent or its precursor, etc., even if the exhaust temperature is higher than a predetermined temperature, the reducing agent component is deposited on the engine exhaust pipe. There was a risk of it happening.

そこで、本発明は従来技術の問題点に鑑み、エンジン排気管の壁面温度が所定温度未満であるときには、排気温度の高低にかかわらず、液体還元剤又はその前駆体の噴射供給を減量又は中止することで、エンジン排気管への還元剤成分の析出を抑制したエンジンの排気浄化装置を提供することを目的とする。   Therefore, in view of the problems of the prior art, the present invention reduces or stops the injection supply of the liquid reducing agent or its precursor when the wall surface temperature of the engine exhaust pipe is lower than a predetermined temperature, regardless of the level of the exhaust temperature. Thus, it is an object of the present invention to provide an engine exhaust purification device that suppresses precipitation of a reducing agent component on an engine exhaust pipe.

このため、本発明に係るエンジンの排気浄化装置は、還元剤を使用してNOxを選択還元浄化するSCR触媒と、その排気上流に液体還元剤又はその前駆体を噴射供給する噴射装置と、エンジン運転状態に応じた液体還元剤又はその前駆体の流量を算出する算出手段と、噴射装置とSCR触媒との間に位置するエンジン排気管の壁面温度を検出する温度検出手段と、温度検出手段により検出された壁面温度が所定温度未満のときに、算出手段により算出された流量を補正する補正手段と、算出手段により算出された流量、又は、補正手段により補正された流量に基づいて、噴射装置から噴射供給される液体還元剤又はその前駆体の流量を制御する制御手段と、を含んで構成される。   For this reason, an exhaust emission control device for an engine according to the present invention includes an SCR catalyst that selectively reduces and purifies NOx using a reducing agent, an injection device that injects and supplies a liquid reducing agent or a precursor thereof upstream of the exhaust, and an engine A calculating means for calculating the flow rate of the liquid reducing agent or its precursor according to the operating state, a temperature detecting means for detecting the wall surface temperature of the engine exhaust pipe located between the injector and the SCR catalyst, and a temperature detecting means. Based on the correction means for correcting the flow rate calculated by the calculation means and the flow rate calculated by the calculation means or the flow rate corrected by the correction means when the detected wall surface temperature is lower than the predetermined temperature And a control means for controlling the flow rate of the liquid reducing agent or the precursor thereof injected and supplied from the control unit.

本発明によれば、エンジン運転状態に応じた液体還元剤又はその前駆体の流量が算出されると共に、噴射装置とSCR触媒との間に位置するエンジン排気管の壁面温度が所定温度未満であるときには、エンジン運転状態に応じた液体還元剤又はその前駆体の流量が補正される。そして、エンジン運転状態に応じた流量、又は、壁面温度が所定温度未満であるために補正された流量に基づいて、噴射装置から噴射供給される液体還元剤又はその前駆体の流量が制御される。このため、壁面温度が所定温度未満であるときには、液体還元剤又はその前駆体の流量補正を適切に行うことで、エンジン排気管の内壁に付着する液体還元剤又はその前駆体の絶対量が減り、エンジン排気管への還元剤成分の析出を抑制することができる。   According to the present invention, the flow rate of the liquid reducing agent or the precursor thereof according to the engine operating state is calculated, and the wall surface temperature of the engine exhaust pipe positioned between the injector and the SCR catalyst is less than a predetermined temperature. Sometimes, the flow rate of the liquid reducing agent or its precursor according to the engine operating state is corrected. Then, based on the flow rate according to the engine operating state or the flow rate corrected because the wall surface temperature is lower than the predetermined temperature, the flow rate of the liquid reducing agent or its precursor supplied from the injection device is controlled. . For this reason, when the wall surface temperature is lower than the predetermined temperature, the absolute amount of the liquid reducing agent or its precursor adhering to the inner wall of the engine exhaust pipe is reduced by appropriately correcting the flow rate of the liquid reducing agent or its precursor. The precipitation of the reducing agent component in the engine exhaust pipe can be suppressed.

本発明を具現化した排気浄化装置の一例を示す概略図Schematic showing an example of an exhaust emission control device embodying the present invention 制御プログラムの一例を示すフローチャートFlow chart showing an example of a control program 好ましい壁面温度センサの説明図Explanatory diagram of a preferred wall temperature sensor

以下、添付された図面を参照して本発明を詳述する。
図1は、本発明を具現化した排気浄化装置の一実施形態を示す。
ディーゼルエンジン10の吸気マニフォールド12に接続される吸気管14には、吸気流通方向に沿って、空気中の埃などを除去するエアクリーナ16,ターボチャージャ18のコンプレッサ18A,ターボチャージャ18により高温となった吸気を冷却するインタークーラ20,吸気脈動を平滑化する吸気コレクタ22がこの順番で配設される。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an embodiment of an exhaust emission control device embodying the present invention.
The intake pipe 14 connected to the intake manifold 12 of the diesel engine 10 is heated by the air cleaner 16 that removes dust in the air, the compressor 18A of the turbocharger 18 and the turbocharger 18 along the intake air circulation direction. An intercooler 20 for cooling the intake air and an intake collector 22 for smoothing the intake pulsation are arranged in this order.

一方、ディーゼルエンジン10の排気マニフォールド24に接続される排気管26には、排気流通方向に沿って、ターボチャージャ18のタービン18B,連続再生式DFP(Diesel Particulate Filter)装置28,還元剤前駆体としての尿素水溶液を噴射供給する噴射ノズル30,尿素水溶液から生成されるアンモニアを使用してNOxを選択還元浄化するSCR触媒32,SCR触媒32を通過したアンモニアを酸化させる酸化触媒34がこの順番で配設される。連続再生式DPF装置28は、少なくともNO(一酸化窒素)をNO2(二酸化窒素)へと酸化させるDOC(Diesel Oxidation Catalyst)28Aと、排気中のPM(Particulate Matter)を捕集除去するDPF28Bと、を含んで構成される。なお、DPF28Bの代わりに、その表面に触媒(活性成分及び添加成分)を担持させたCSF(Catalyzed Soot Filter)を使用することもできる。ここで、噴射ノズル30が、噴射装置の一例として挙げられる。 On the other hand, the exhaust pipe 26 connected to the exhaust manifold 24 of the diesel engine 10 has a turbine 18B of the turbocharger 18, a continuously regenerating DFP (Diesel Particulate Filter) device 28, and a reducing agent precursor along the exhaust circulation direction. An injection nozzle 30 for supplying and supplying the urea aqueous solution, an SCR catalyst 32 for selectively reducing and purifying NOx using ammonia generated from the urea aqueous solution, and an oxidation catalyst 34 for oxidizing the ammonia that has passed through the SCR catalyst 32 are arranged in this order. Established. The continuous regeneration type DPF device 28 includes a DOC (Diesel Oxidation Catalyst) 28A that oxidizes at least NO (nitrogen monoxide) into NO 2 (nitrogen dioxide), and a DPF 28B that collects and removes PM (Particulate Matter) in the exhaust gas. , Including. Instead of DPF 28B, a CSF (Catalyzed Soot Filter) having a catalyst (active component and additive component) supported on the surface thereof may be used. Here, the injection nozzle 30 is mentioned as an example of an injection device.

還元剤タンク36に貯蔵される尿素水溶液は、ポンプ及び流量制御弁が内蔵された還元剤添加ユニット38を経由して、噴射ノズル30に供給される。ここで、還元剤添加ユニット38としては、ポンプが内蔵されたポンプモジュールと、流量制御弁が内蔵されたドージングモジュールと、に2分割された構成であってもよい。また、噴射ノズル30は、還元剤添加ユニット38と一体化された構成であってもよい。   The aqueous urea solution stored in the reducing agent tank 36 is supplied to the injection nozzle 30 via a reducing agent addition unit 38 having a built-in pump and flow control valve. Here, the reducing agent addition unit 38 may have a structure divided into two, that is, a pump module with a built-in pump and a dosing module with a built-in flow control valve. The injection nozzle 30 may be integrated with the reducing agent addition unit 38.

排気浄化装置の制御系として、連続再生式DPF装置28と噴射ノズル30との間に位置する排気管26には、エンジン運転状態の一例としての排気温度を検出する排気温度センサ40が取り付けられる。また、噴射ノズル30とSCR触媒32との間に位置する排気管26には、排気管26の壁面温度を検出する壁面温度センサ42(温度検出手段)が取り付けられる。ここで、尿素水溶液の付着により壁面温度が低下したことを確実に検知すべく、壁面温度センサ42は、噴射ノズル30から噴射供給された尿素水溶液が付着し易い部分の壁面温度を検出することが望ましい。   As a control system of the exhaust purification device, an exhaust temperature sensor 40 that detects an exhaust temperature as an example of an engine operating state is attached to the exhaust pipe 26 positioned between the continuous regeneration type DPF device 28 and the injection nozzle 30. A wall surface temperature sensor 42 (temperature detection means) for detecting the wall surface temperature of the exhaust pipe 26 is attached to the exhaust pipe 26 located between the injection nozzle 30 and the SCR catalyst 32. Here, in order to reliably detect that the wall surface temperature has decreased due to the adhesion of the urea aqueous solution, the wall surface temperature sensor 42 can detect the wall surface temperature of the portion to which the urea aqueous solution supplied from the injection nozzle 30 is likely to adhere. desirable.

排気温度センサ40及び壁面温度センサ42の各出力信号は、コンピュータを内蔵した還元剤添加コントロールユニット(DCU)44に入力される。また、還元剤添加コントロールユニット44は、エンジン運転状態の一例としての回転速度及び負荷を適宜読み込み可能とすべく、CAN(Controller Area Network)などの車載ネットワークを介して、ディーゼルエンジン10を電子制御するエンジンコントロールユニット(ECU)46と接続される。そして、還元剤添加コントロールユニット44は、ROM(Read Only Memory)などに記憶された制御プログラムを実行することで、排気温度,壁面温度,回転速度及び負荷に応じて還元剤添加ユニット38を電子制御する。   The output signals of the exhaust temperature sensor 40 and the wall surface temperature sensor 42 are input to a reducing agent addition control unit (DCU) 44 incorporating a computer. Further, the reducing agent addition control unit 44 electronically controls the diesel engine 10 via an in-vehicle network such as a CAN (Controller Area Network) so that the rotation speed and load as an example of the engine operating state can be appropriately read. An engine control unit (ECU) 46 is connected. The reducing agent addition control unit 44 executes a control program stored in a ROM (Read Only Memory) or the like, thereby electronically controlling the reducing agent addition unit 38 in accordance with the exhaust temperature, the wall surface temperature, the rotation speed, and the load. To do.

ここで、ディーゼルエンジン10の負荷としては、例えば、燃料噴射流量,吸気流量,吸気圧力,過給圧力,アクセル開度,スロットル開度など、トルクと密接に関連する状態量を適用することができる。また、ディーゼルエンジン10の回転速度及び負荷は、エンジンコントロールユニット46から読み込む構成に限らず、公知のセンサによって直接検出するようにしてもよい。   Here, as the load of the diesel engine 10, for example, a state quantity closely related to the torque, such as a fuel injection flow rate, an intake air flow rate, an intake pressure, a supercharging pressure, an accelerator opening degree, and a throttle opening degree, can be applied. . The rotational speed and load of the diesel engine 10 are not limited to the configuration read from the engine control unit 46, and may be directly detected by a known sensor.

なお、還元剤添加コントロールユニット44は、制御プログラムを実行することで、算出手段及び補正手段を夫々具現化する。また、還元剤添加コントロールユニット44と還元剤添加ユニット38とが協働して、制御手段を具現化する。   The reducing agent addition control unit 44 embodies calculation means and correction means by executing a control program. Further, the reducing agent addition control unit 44 and the reducing agent addition unit 38 cooperate to implement a control means.

図2は、ディーゼルエンジン10が始動されたことを契機として、還元剤添加コントロールユニット44が所定時間ごとに繰り返し実行する制御プログラムの内容を示す。
ステップ1(図では「S1」と略記する。以下同様。)では、排気温度センサ40から排気温度を読み込む。
FIG. 2 shows the contents of a control program that the reducing agent addition control unit 44 repeatedly executes every predetermined time when the diesel engine 10 is started.
In step 1 (abbreviated as “S1” in the figure, the same applies hereinafter), the exhaust temperature is read from the exhaust temperature sensor 40.

ステップ2では、エンジンコントロールユニット46からディーゼルエンジン10の回転速度及び負荷を読み込む。
ステップ3では、エンジン運転状態としての排気温度,回転速度及び負荷に応じた還元剤添加流量を算出する。即ち、エンジン運転状態に応じたNOx排出量を推定し、このNOxを選択還元浄化するのに要する尿素水溶液の添加流量を算出する。
In step 2, the rotational speed and load of the diesel engine 10 are read from the engine control unit 46.
In step 3, the reducing agent addition flow rate is calculated according to the exhaust temperature, the rotational speed, and the load as the engine operating state. That is, the NOx emission amount corresponding to the engine operating state is estimated, and the addition flow rate of the urea aqueous solution required to selectively reduce and purify this NOx is calculated.

ステップ4では、壁面温度センサ42から壁面温度を読み込む。
ステップ5では、壁面温度が所定温度未満であるか否かを判定する。ここで、所定温度は、尿素水溶液が排気管26の内壁に付着したとき、溶媒のみが蒸発して還元剤成分が析出するおそれがあるか否かを判定するための閾値であって、例えば、尿素の融点(約135℃)より若干高い温度をとる。そして、壁面温度が所定温度未満であればステップ6へと進み(Yes)、ステップ3で算出した還元剤添加流量を所定流量だけ減量するための補正を行う。一方、壁面温度が所定温度以上であればステップ7へと進む(No)。
In step 4, the wall surface temperature is read from the wall surface temperature sensor 42.
In step 5, it is determined whether the wall surface temperature is lower than a predetermined temperature. Here, the predetermined temperature is a threshold value for determining whether or not there is a possibility that only the solvent evaporates and the reducing agent component is deposited when the urea aqueous solution adheres to the inner wall of the exhaust pipe 26. The temperature is slightly higher than the melting point of urea (about 135 ° C.). If the wall surface temperature is lower than the predetermined temperature, the process proceeds to step 6 (Yes), and correction for reducing the reducing agent addition flow rate calculated in step 3 by a predetermined flow rate is performed. On the other hand, if the wall surface temperature is equal to or higher than the predetermined temperature, the process proceeds to Step 7 (No).

ステップ7では、還元剤添加ユニット44に対して還元剤添加流量に応じた制御信号を出力することで、SCR触媒32の排気上流に尿素水溶液を噴射供給(添加)する。
かかる排気浄化装置において、ディーゼルエンジン10の排気は、排気マニフォールド24,ターボチャージャ18のタービン18Bを経て、連続再生式DPF装置28のDOC28Aに導入される。DOC28Aに導入された排気は、NOがNO2へと酸化されつつDPF28Bへと流れる。DPF28Bでは、排気中のPMが捕集されると共に、DOC28Aにより生成されたNO2を使用してPMが酸化される。
In step 7, a control signal corresponding to the reducing agent addition flow rate is output to the reducing agent addition unit 44, whereby the urea aqueous solution is injected and supplied (added) upstream of the exhaust of the SCR catalyst 32.
In such an exhaust purification device, the exhaust from the diesel engine 10 is introduced into the DOC 28A of the continuous regeneration type DPF device 28 via the exhaust manifold 24 and the turbine 18B of the turbocharger 18. Exhaust introduced into DOC28A flows to DPF28B being oxidized NO is to NO 2. In the DPF 28B, PM in the exhaust gas is collected and the PM is oxidized using NO 2 generated by the DOC 28A.

また、エンジン運転状態に応じて噴射ノズル30から噴射供給された尿素水溶液は、排気熱及び排気中の水蒸気を使用して加水分解され、還元剤として機能するアンモニアへと転化される。このアンモニアは、SCR触媒32において排気中のNOxと選択還元反応し、無害成分であるH2O(水)及びN2(窒素)へと浄化されることは知られたことである。一方、SCR触媒32を通過したアンモニアは、その排気下流に配設された酸化触媒34により酸化されるので、アンモニアがそのまま大気中に放出されることを抑制できる。 Further, the urea aqueous solution injected and supplied from the injection nozzle 30 in accordance with the engine operating state is hydrolyzed using exhaust heat and water vapor in the exhaust, and converted into ammonia that functions as a reducing agent. It has been known that this ammonia is selectively reduced with NOx in the exhaust gas in the SCR catalyst 32 and is purified to H 2 O (water) and N 2 (nitrogen), which are harmless components. On the other hand, the ammonia that has passed through the SCR catalyst 32 is oxidized by the oxidation catalyst 34 disposed downstream of the exhaust gas, so that it is possible to suppress the ammonia from being released into the atmosphere as it is.

このとき、排気管26の壁面温度が所定温度未満であるときには、エンジン運転状態に応じた還元剤添加流量が減量補正されるため、排気管26の内壁に付着する尿素水溶液の絶対量が減ることとなる。このため、排気管26への還元剤成分(尿素)の析出を抑制することができる。   At this time, when the wall surface temperature of the exhaust pipe 26 is lower than a predetermined temperature, the reducing agent addition flow rate corresponding to the engine operating state is corrected to decrease, so that the absolute amount of urea aqueous solution adhering to the inner wall of the exhaust pipe 26 decreases. It becomes. For this reason, precipitation of the reducing agent component (urea) in the exhaust pipe 26 can be suppressed.

ここで、還元剤添加流量を減量補正する代わりに、尿素水溶液の噴射供給が停止されるように、その還元剤添加流量を0にするようにしてもよい。このようにすれば、排気管26の壁面温度が所定温度未満であるときには、噴射ノズル30から尿素水溶液が噴射供給されないため、排気管26への還元剤成分の析出を効果的に抑制することができる。なお、尿素水溶液の噴射供給を一時的に停止しても、SCR触媒32にアンモニアが吸着されているので、NOx浄化には影響が少ない。   Here, instead of correcting the decrease in the reducing agent addition flow rate, the reducing agent addition flow rate may be set to 0 so that the injection supply of the urea aqueous solution is stopped. In this way, when the wall surface temperature of the exhaust pipe 26 is lower than the predetermined temperature, the urea aqueous solution is not injected and supplied from the injection nozzle 30, so that the precipitation of the reducing agent component on the exhaust pipe 26 can be effectively suppressed. it can. Even if the urea aqueous solution injection supply is temporarily stopped, the ammonia is adsorbed on the SCR catalyst 32, and therefore the NOx purification is less affected.

ところで、排気流速の増減などにより、排気管26に対する尿素水溶液の付着位置が変化することが想定される。このため、壁面温度センサ42は、図3に示すように、噴射ノズル30とSCR触媒32との間に位置する排気管26の複数個所のうち、最低温度となった壁面温度を検出するようにしてもよい。このようにすれば、尿素水溶液が付着して部分的に壁面温度が低下しても、その壁面温度に基づく尿素水溶液の噴射供給制御が行われるため、排気管26への還元剤成分の析出抑制の実効を図ることができる。なお、壁面温度センサ42は、4箇所の壁面温度を検出するものに限らない。   By the way, it is assumed that the attachment position of the urea aqueous solution to the exhaust pipe 26 changes due to an increase or decrease in the exhaust flow rate. For this reason, as shown in FIG. 3, the wall surface temperature sensor 42 detects the wall surface temperature that has become the lowest among a plurality of locations of the exhaust pipe 26 located between the injection nozzle 30 and the SCR catalyst 32. May be. In this way, even if the urea aqueous solution adheres and the wall surface temperature partially decreases, injection supply control of the urea aqueous solution is performed based on the wall surface temperature, so that precipitation of the reducing agent component on the exhaust pipe 26 is suppressed. Can be effective. The wall surface temperature sensor 42 is not limited to one that detects wall surface temperatures at four locations.

なお、以上説明した実施形態においては、噴射ノズル30から尿素水溶液が噴射供給されているが、噴射ノズル30を使用せずに、還元剤添加ユニット38が尿素水溶液を直接噴射供給するようにしてもよい。この場合、還元剤添加ユニット38が、噴射装置の一例として挙げられる。   In the embodiment described above, the urea aqueous solution is injected and supplied from the injection nozzle 30. However, the reducing agent addition unit 38 may directly supply the urea aqueous solution without using the injection nozzle 30. Good. In this case, the reducing agent addition unit 38 is an example of an injection device.

本発明は、尿素水溶液を使用する排気浄化装置に限らず、炭化水素を主成分とするアルコール,ガソリン及び軽油などを液体還元剤又はその前駆体として使用する排気浄化装置にも適用することができる。また、本発明は、ディーゼルエンジン10に限らず、ガソリンエンジンなどにも適用することができる。   The present invention can be applied not only to an exhaust gas purification device using an aqueous urea solution, but also to an exhaust gas purification device using alcohol, gasoline, light oil, or the like mainly containing hydrocarbons as a liquid reducing agent or a precursor thereof. . Further, the present invention can be applied not only to the diesel engine 10 but also to a gasoline engine or the like.

10 ディーゼルエンジン
26 排気管
30 噴射ノズル
32 SCR触媒
38 還元剤添加ユニット
40 排気温度センサ
42 壁面温度センサ
44 還元剤添加コントロールユニット
46 エンジンコントロールユニット
DESCRIPTION OF SYMBOLS 10 Diesel engine 26 Exhaust pipe 30 Injection nozzle 32 SCR catalyst 38 Reductant addition unit 40 Exhaust temperature sensor 42 Wall surface temperature sensor 44 Reductant addition control unit 46 Engine control unit

Claims (4)

還元剤を使用して窒素酸化物を選択還元浄化するSCR触媒と、
前記SCR触媒の排気上流に液体還元剤又はその前駆体を噴射供給する噴射装置と、
エンジン運転状態に応じた液体還元剤又はその前駆体の流量を算出する算出手段と、
前記噴射装置と前記SCR触媒との間に位置するエンジン排気管の壁面温度を検出する温度検出手段と、
前記温度検出手段により検出された壁面温度が所定温度未満のときに、前記算出手段により算出された流量を補正する補正手段と、
前記算出手段により算出された流量、又は、前記補正手段により補正された流量に基づいて、前記噴射装置から噴射供給される液体還元剤又はその前駆体の流量を制御する制御手段と、
を含んで構成されたことを特徴とするエンジンの排気浄化装置。
An SCR catalyst that selectively reduces and purifies nitrogen oxides using a reducing agent;
An injection device for injecting and supplying a liquid reducing agent or a precursor thereof upstream of the SCR catalyst exhaust;
Calculating means for calculating the flow rate of the liquid reducing agent or its precursor according to the engine operating state;
Temperature detecting means for detecting a wall surface temperature of an engine exhaust pipe located between the injector and the SCR catalyst;
Correction means for correcting the flow rate calculated by the calculation means when the wall surface temperature detected by the temperature detection means is less than a predetermined temperature;
Control means for controlling the flow rate of the liquid reducing agent or its precursor supplied from the injection device based on the flow rate calculated by the calculation means or the flow rate corrected by the correction means;
An exhaust emission control device for an engine characterized by comprising:
前記補正手段は、前記算出手段により算出された流量を減量、又は、0とすることを特徴とする請求項1記載のエンジンの排気浄化装置。   2. The exhaust emission control device for an engine according to claim 1, wherein the correction means reduces or reduces the flow rate calculated by the calculation means. 前記温度検出手段は、前記噴射装置と前記SCR触媒との間に位置するエンジン排気管のうち、前記噴射装置から噴射供給された液体還元剤又はその前駆体が付着し易い部分の壁面温度を検出することを特徴とする請求項1又は請求項2に記載のエンジンの排気浄化装置。   The temperature detection means detects a wall surface temperature of a portion of the engine exhaust pipe positioned between the injection device and the SCR catalyst, to which the liquid reducing agent injected from the injection device or a precursor thereof easily adheres. The engine exhaust gas purification device according to claim 1 or 2, wherein the engine exhaust gas purification device is provided. 前記温度検出手段は、前記噴射装置と前記SCR触媒との間に位置するエンジン排気管の複数個所のうち、最低温度となった壁面温度を検出することを特徴とする請求項1又は請求項2に記載のエンジンの排気浄化装置。   The said temperature detection means detects the wall surface temperature used as the minimum temperature among the several places of the engine exhaust pipe located between the said injection device and the said SCR catalyst, The Claim 1 or Claim 2 characterized by the above-mentioned. An exhaust emission control device for an engine according to 1.
JP2009260876A 2009-11-16 2009-11-16 Engine exhaust purification system Expired - Fee Related JP5570188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009260876A JP5570188B2 (en) 2009-11-16 2009-11-16 Engine exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009260876A JP5570188B2 (en) 2009-11-16 2009-11-16 Engine exhaust purification system

Publications (2)

Publication Number Publication Date
JP2011106313A true JP2011106313A (en) 2011-06-02
JP5570188B2 JP5570188B2 (en) 2014-08-13

Family

ID=44230064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009260876A Expired - Fee Related JP5570188B2 (en) 2009-11-16 2009-11-16 Engine exhaust purification system

Country Status (1)

Country Link
JP (1) JP5570188B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140331647A1 (en) * 2011-12-14 2014-11-13 Scania Cv Ab Method pertaining to an scr system and an scr system
JP2015028312A (en) * 2013-07-30 2015-02-12 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2018141385A (en) * 2017-02-27 2018-09-13 三菱重工業株式会社 Exhaust gas treatment device
WO2020137739A1 (en) * 2018-12-28 2020-07-02 株式会社デンソー Exhaust purification system for engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030927A (en) * 2000-07-17 2002-01-31 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2002122019A (en) * 2000-10-17 2002-04-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003120279A (en) * 2001-10-05 2003-04-23 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009002248A (en) * 2007-06-21 2009-01-08 Hino Motors Ltd Control device for internal combustion engine provided with exhaust gas treatment device
JP2009127472A (en) * 2007-11-21 2009-06-11 Nippon Soken Inc Exhaust emission control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030927A (en) * 2000-07-17 2002-01-31 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2002122019A (en) * 2000-10-17 2002-04-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003120279A (en) * 2001-10-05 2003-04-23 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009002248A (en) * 2007-06-21 2009-01-08 Hino Motors Ltd Control device for internal combustion engine provided with exhaust gas treatment device
JP2009127472A (en) * 2007-11-21 2009-06-11 Nippon Soken Inc Exhaust emission control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140331647A1 (en) * 2011-12-14 2014-11-13 Scania Cv Ab Method pertaining to an scr system and an scr system
JP2015028312A (en) * 2013-07-30 2015-02-12 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2018141385A (en) * 2017-02-27 2018-09-13 三菱重工業株式会社 Exhaust gas treatment device
WO2020137739A1 (en) * 2018-12-28 2020-07-02 株式会社デンソー Exhaust purification system for engine
JP2020106011A (en) * 2018-12-28 2020-07-09 株式会社デンソー Exhaust emission control system of engine

Also Published As

Publication number Publication date
JP5570188B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
WO2011125258A1 (en) Exhaust purification device for engine
JP5859651B2 (en) Exhaust purification device, method for thawing liquid reducing agent or precursor thereof
JP4592504B2 (en) Exhaust purification device
US8133444B2 (en) Exhaust gas purification system for internal combustion engine
JP2007162487A (en) Exhaust emission control device
JP4986973B2 (en) Exhaust purification device
US8850799B2 (en) Exhaust purification apparatus for engine
JP2006342735A (en) Exhaust emission control device
JP5398372B2 (en) Engine exhaust purification system
JP5159739B2 (en) Engine exhaust purification system
JP2009097438A (en) Exhaust emission control system
JP2010053703A (en) Exhaust emission control device
JP2008157188A (en) Emission purifying device
JP5570188B2 (en) Engine exhaust purification system
JP5720135B2 (en) Exhaust gas purification system
JP2012127307A (en) Exhaust emission control device for engine
JP5118460B2 (en) Exhaust purification device
US8480962B2 (en) Exhaust gas purification apparatus for engine
JP2015086714A (en) Exhaust purification device of internal combustion engine
JP5963267B2 (en) Exhaust gas purification system for construction machinery
JP5249400B2 (en) Exhaust purification device
JP2017044120A (en) Exhaust emission control device
JP2010150979A (en) Exhaust emission control device for engine
WO2007108169A1 (en) Exhaust purification apparatus for engine
JP6090347B2 (en) Exhaust purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140604

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140624

R150 Certificate of patent or registration of utility model

Ref document number: 5570188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees