JP2010261328A - Method for detecting abnormality in reducing agent - Google Patents

Method for detecting abnormality in reducing agent Download PDF

Info

Publication number
JP2010261328A
JP2010261328A JP2009110845A JP2009110845A JP2010261328A JP 2010261328 A JP2010261328 A JP 2010261328A JP 2009110845 A JP2009110845 A JP 2009110845A JP 2009110845 A JP2009110845 A JP 2009110845A JP 2010261328 A JP2010261328 A JP 2010261328A
Authority
JP
Japan
Prior art keywords
reducing agent
oxygen concentration
reduction catalyst
nox
selective catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009110845A
Other languages
Japanese (ja)
Inventor
Hironori Narita
洋紀 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2009110845A priority Critical patent/JP2010261328A/en
Publication of JP2010261328A publication Critical patent/JP2010261328A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abnormality detecting method for a reducing agent for detecting a case of incorrectly supplying fuel to a reducing agent tank. <P>SOLUTION: There is disclosed the method for detecting abnormality in the reducing agent 17 supplied to a reducing agent tank 14, in an exhaust purification device wherein the reducing agent 17 is added from the reducing agent tank 14 to a selective reduction type catalyst 10 on the way of an exhaust pipe 9 to thereby reduce and purify NOx, and the method detects an oxygen concentration by a NOx sensor 23 positioned on the downstream side of the selective reduction type catalyst 10, and determines that the fuel is supplied into the reducing agent tank 14 when the oxygen concentration decreases. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排気浄化装置に用いる還元剤の異常検出方法に関するものである。   The present invention relates to a method for detecting abnormality of a reducing agent used in an exhaust purification device.

従来より、ディーゼルエンジンにおいては、排出ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を還元剤タンクから添加して該還元剤を選択還元型触媒上で排出ガス中のNOx(窒素酸化物)と還元反応させ、これによりNOxの排出濃度を低減し得るようにしたものがある。   Conventionally, a diesel engine is equipped with a selective reduction catalyst having a property of selectively reacting NOx with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas flows, and the selective reduction catalyst The required amount of reducing agent is added from the reducing agent tank to the upstream side of the catalyst, and the reducing agent is subjected to a reduction reaction with NOx (nitrogen oxide) in the exhaust gas on the selective reduction catalyst, thereby reducing the NOx emission concentration. There is something that can be done.

他方、プラント等における工業的な排煙脱硝処理の分野では、還元剤にアンモニア(NH3)を用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の場合には、アンモニアそのものを搭載して走行することに関し安全確保が困難であるため、近年においては、毒性のない尿素水を還元剤として使用している。 On the other hand, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a technique for reducing and purifying NOx using ammonia (NH 3 ) as a reducing agent is already widely known. Since it is difficult to ensure safety with respect to traveling with ammonia itself, in recent years, non-toxic urea water is used as a reducing agent.

尚、本発明に関連する先行技術文献情報としては、例えば、下記の特許文献1等が既に存在している。   In addition, as prior art document information relevant to the present invention, for example, the following Patent Document 1 already exists.

特開2003−314258号公報JP 2003-314258 A

しかしながら、斯かる排気浄化装置においては、還元剤を貯留する還元剤タンクに、軽油、重油、灯油等の燃料が誤って補給された場合には、燃料が誤って補給された旨を運転者等に容易に知らせることができないという問題があった。   However, in such an exhaust purification device, when a fuel such as light oil, heavy oil, or kerosene is accidentally supplied to a reducing agent tank that stores the reducing agent, a driver or the like indicates that the fuel has been supplied accidentally. There was a problem that could not be easily informed.

具体的には選択還元型触媒に劣化がある場合にはNOx浄化率が低下するため、燃料が誤って補給された場合と、選択還元型触媒に劣化がある場合とを区別することができないという問題があった。   Specifically, when the selective catalytic reduction catalyst is deteriorated, the NOx purification rate is lowered, so that it is not possible to distinguish between when the fuel is accidentally replenished and when the selective catalytic reduction catalyst is deteriorated. There was a problem.

本発明は上述の実情に鑑みてなしたもので、還元剤タンクに燃料が誤って補給された場合を容易且つ好適に検出する還元剤の異常検出方法を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a reducing agent abnormality detection method that easily and suitably detects a case where fuel is accidentally replenished to a reducing agent tank.

本発明は、排気管途中の選択還元型触媒に還元剤タンクから還元剤を添加してNOxを還元浄化する排気浄化装置に対し、前記還元剤タンク内に補給された還元剤の異常を検出するための還元剤の異常検出方法であって、前記選択還元型触媒の下流側に位置するNOxセンサで酸素濃度を検出し、該酸素濃度の低下を検出した際には還元剤タンク内に燃料が補給されたと判定することを特徴とするものである。   The present invention detects an abnormality of the reducing agent replenished in the reducing agent tank with respect to the exhaust purification device that reduces and purifies NOx by adding the reducing agent from the reducing agent tank to the selective reduction catalyst in the middle of the exhaust pipe. An abnormality detection method for a reducing agent for detecting an oxygen concentration with a NOx sensor located downstream of the selective catalytic reduction catalyst, and when a decrease in the oxygen concentration is detected, fuel is contained in the reducing agent tank. It is characterized by determining that it has been replenished.

本発明において、NOx浄化率の低下を検出し且つ酸素濃度の低下を検出しない場合には選択還元型触媒が劣化したと判定することが好ましい。   In the present invention, it is preferable to determine that the selective catalytic reduction catalyst has deteriorated when a decrease in the NOx purification rate is detected and a decrease in the oxygen concentration is not detected.

本発明において、選択還元型触媒の上流側に位置するNOxセンサで比較用の酸素濃度を検出し、該比較用の酸素濃度と、選択還元型触媒の下流側に位置するNOxセンサで検出した酸素濃度とを比較して酸素濃度の低下を判断することが好ましい。   In the present invention, the comparison oxygen concentration is detected by the NOx sensor located upstream of the selective catalytic reduction catalyst, and the comparative oxygen concentration and the oxygen detected by the NOx sensor located downstream of the selective catalytic reduction catalyst. It is preferable to determine a decrease in oxygen concentration by comparing the concentration.

本発明において、選択還元型触媒が炭化水素で被毒され該選択還元型触媒の回復制御を実施している場合には、NOxセンサによる酸素濃度の検出を停止することが好ましい。   In the present invention, when the selective catalytic reduction catalyst is poisoned with hydrocarbon and recovery control of the selective catalytic reduction catalyst is being carried out, it is preferable to stop detecting the oxygen concentration by the NOx sensor.

本発明において、選択還元型触媒の上流側にパティキュレートフィルタを備え、パティキュレートフィルタの再生中の場合には、NOxセンサによる酸素濃度の検出を停止することが好ましい。   In the present invention, it is preferable that a particulate filter is provided on the upstream side of the selective catalytic reduction catalyst, and detection of the oxygen concentration by the NOx sensor is stopped when the particulate filter is being regenerated.

本発明の還元剤の異常検出方法によれば、還元剤タンクに燃料が誤って補給された場合には、NOx浄化率の低下を生じると共に、燃料の酸化に伴って排出ガス中の酸素濃度が低下するので、下流側のNOxセンサで酸素濃度の低下を検出することにより、還元剤タンクに燃料が誤って補給されたと判断し、運転者等に知らせることができる。また選択還元型触媒に劣化がある場合には、NOx浄化率の低下を生じる一方で、酸素の濃度低下を生じないので、下流側のNOxセンサで酸素濃度の低下を検出せず、よって選択還元型触媒に劣化の可能性があると判断し、運転者等に知らせることができる。更に酸素濃度の低下を判断要件とするので、燃料が誤って補給された場合と、選択還元型触媒に劣化がある場合とを明確に区別し、還元剤タンクに燃料が誤って補給された場合を容易且つ好適に検出することができるという種々の優れた効果を奏し得る。   According to the reducing agent abnormality detection method of the present invention, when fuel is accidentally replenished to the reducing agent tank, the NOx purification rate is reduced, and the oxygen concentration in the exhaust gas is reduced as the fuel is oxidized. Therefore, by detecting the decrease in the oxygen concentration with the downstream NOx sensor, it can be determined that the reductant tank has been replenished with fuel, and the driver or the like can be notified. Further, when the selective catalytic reduction catalyst is deteriorated, the NOx purification rate is lowered, but the oxygen concentration is not lowered. Therefore, the downstream NOx sensor does not detect the oxygen concentration drop, and therefore the selective reduction catalyst is selectively reduced. It is possible to determine that there is a possibility that the type catalyst has deteriorated and inform the driver or the like. In addition, since the reduction of oxygen concentration is a judgment requirement, there is a clear distinction between when fuel is accidentally replenished and when the selective catalytic reduction catalyst is deteriorated, and when fuel is accidentally replenished to the reductant tank It is possible to achieve various excellent effects that can be detected easily and suitably.

本発明を実施する形態例を示す概略図である。It is the schematic which shows the embodiment which implements this invention. 本発明の実施の形態の一例で下流側のNOxセンサの位置を示す概念図である。It is a conceptual diagram which shows the position of a downstream NOx sensor in an example of embodiment of this invention. 本発明の実施の形態の他例で下流側のNOxセンサの位置を示す概念図である。It is a conceptual diagram which shows the position of the downstream NOx sensor in the other example of embodiment of this invention. パティキュレートフィルタを備えた場合を示す概念図である。It is a conceptual diagram which shows the case where a particulate filter is provided. 燃料を混入した際の酸素濃度の低下を示すグラフである。It is a graph which shows the fall of the oxygen concentration at the time of mixing fuel.

以下本発明の実施の形態例を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図5は本発明を実施する形態の一例を示すものであって排気浄化装置及び還元剤の異常検出方法を示すものである。図1中における符号1はディーゼル機関であるエンジンを示し、ここに図示しているエンジン1では、ターボチャージャ2が備えられており、エアクリーナ3から導いた空気4が吸気管5を介し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された空気4が更にインタークーラ6へと送られて冷却され、該インタークーラ6から図示しないインテークマニホールドへと空気4が導かれてエンジン1の各シリンダに導入されるようにしてある。   1 to 5 show an example of an embodiment for carrying out the present invention, and show an exhaust purification device and a reducing agent abnormality detection method. Reference numeral 1 in FIG. 1 denotes an engine that is a diesel engine. In the engine 1 shown here, a turbocharger 2 is provided, and air 4 guided from an air cleaner 3 is passed through an intake pipe 5 to the turbocharger. 2 is sent to the compressor 2a, and the air 4 pressurized by the compressor 2a is further sent to the intercooler 6 to be cooled, and the air 4 is guided from the intercooler 6 to an intake manifold (not shown). 1 is introduced into each cylinder.

また、このエンジン1の各シリンダから排出された排出ガス7がエキゾーストマニホールド8を介し前記ターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排出ガス7が排気管9を介し車外へ排出されるようにしてある。   The exhaust gas 7 discharged from each cylinder of the engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 8, and the exhaust gas 7 that has driven the turbine 2b goes out of the vehicle through the exhaust pipe 9. It is supposed to be discharged.

そして、排出ガス7が流通する排気管9の途中には、選択還元型触媒10がケーシング11により抱持されて装備されており、この選択還元型触媒10は、フロースルー方式のハニカム構造物として形成され、酸素共存下でも選択的にNOxをアンモニア(NH)と反応させ得るような性質を有している。ここで前記ケーシング11内で選択還元型触媒10の直後には、図2、図3に示す如く選択還元型触媒10からスリップしたアンモニアを酸化するアンモニア低減触媒10aが装備されても良い。 In the middle of the exhaust pipe 9 through which the exhaust gas 7 circulates, a selective catalytic reduction catalyst 10 is mounted by being held by a casing 11, and the selective catalytic reduction catalyst 10 is a flow-through type honeycomb structure. It is formed and has the property that NOx can be selectively reacted with ammonia (NH 3 ) even in the presence of oxygen. Here, immediately after the selective catalytic reduction catalyst 10 in the casing 11, an ammonia reduction catalyst 10 a that oxidizes ammonia slipped from the selective catalytic reduction catalyst 10 as shown in FIGS. 2 and 3 may be provided.

また、ケーシング11の上流側に噴射ノズル12付き尿素水噴射弁13が設置され、該尿素水噴射弁13と所要場所に設けた尿素水タンク(還元剤タンク)14との間が尿素水供給ライン15により接続されており、該尿素水供給ライン15の途中に装備した供給ポンプ16の駆動により尿素水タンク14内の尿素水(還元剤)17を尿素水噴射弁13を介し選択還元型触媒10の上流側に添加し得るようになっている。また尿素水タンク14には、内部の尿素水17の液面レベルを検出する液面センサ等の液面検出手段18が備えられている。ここで液面検出手段18は、フロート、超音波等を用いても良く、内部の尿素水17の液面レベルを検出し得るならば他の構成でも良い。また尿素水タンク14の構成は、噴射ノズル12、尿素水噴射弁13、尿素水供給ライン15、供給ポンプ16の構成に限定されるものではなく、尿素水17を選択還元型触媒10の上流側に添加し得るならば他の構成でも良い。   A urea water injection valve 13 with an injection nozzle 12 is installed on the upstream side of the casing 11, and a urea water supply line is provided between the urea water injection valve 13 and a urea water tank (reducing agent tank) 14 provided at a required place. 15, the urea water (reducing agent) 17 in the urea water tank 14 is driven through the urea water injection valve 13 by the drive of the supply pump 16 provided in the middle of the urea water supply line 15. Can be added to the upstream side. The urea water tank 14 is provided with a liquid level detecting means 18 such as a liquid level sensor for detecting the liquid level of the urea water 17 inside. Here, the liquid level detection means 18 may use a float, an ultrasonic wave, or the like, and may have another configuration as long as it can detect the liquid level of the urea aqueous solution 17 inside. The configuration of the urea water tank 14 is not limited to the configuration of the injection nozzle 12, the urea water injection valve 13, the urea water supply line 15, and the supply pump 16, and the urea water 17 is disposed upstream of the selective reduction catalyst 10. Other configurations may be used as long as they can be added.

また、前記エンジン1には、その機関回転数を検出する回転センサ19が装備されており、該回転センサ19からの回転数信号19aと、アクセルセンサ20(アクセルペダルの踏み込み角度を検出するセンサ)からの負荷信号20aとがエンジン制御コンピュータを成す(ECU:Electronic Control Unit)制御装置21に入力されるようになっている。   Further, the engine 1 is equipped with a rotation sensor 19 for detecting the engine rotation speed, and a rotation speed signal 19a from the rotation sensor 19 and an accelerator sensor 20 (a sensor for detecting an accelerator pedal depression angle). The load signal 20a is input to an ECU (Electronic Control Unit) control device 21 constituting an engine control computer.

他方、この制御装置21においては、回転センサ19からの回転数信号19aと、アクセルセンサ20からの負荷信号20aとから判断される現在の運転状態に基づきNOxの発生量が推定され、その推定されたNOxの発生量に見合う尿素水17の添加量が算出されて必要量の尿素水17の添加が実行されるようになっており、より具体的には、前記尿素水噴射弁13に対し開弁指令信号13aが出力され、また、供給ポンプ16に対しては駆動指令信号(図示せず)が出力されるようになっていて、前記尿素水噴射弁13の開弁作動により尿素水17の添加量が適切に制御され、その添加時に必要な噴射圧力が前記供給ポンプ16の駆動により適宜に得られるようになっている。更に制御装置21においては、液面検出手段18からの液面信号18aにより尿素水タンク14内の尿素水17の量を推定し、尿素水17の残量や尿素水17の補給時期を判定するようにしている。   On the other hand, in this control device 21, the amount of NOx generated is estimated based on the current operating state determined from the rotation speed signal 19 a from the rotation sensor 19 and the load signal 20 a from the accelerator sensor 20, and is estimated. Further, the amount of urea water 17 added corresponding to the amount of NOx generated is calculated and the required amount of urea water 17 is added. More specifically, the urea water injection valve 13 is opened. A valve command signal 13 a is output, and a drive command signal (not shown) is output to the supply pump 16. The urea water injection valve 13 opens the urea water 17. The addition amount is appropriately controlled, and the injection pressure required at the time of addition is appropriately obtained by driving the supply pump 16. Further, in the control device 21, the amount of the urea water 17 in the urea water tank 14 is estimated from the liquid level signal 18 a from the liquid level detecting means 18, and the remaining amount of the urea water 17 and the replenishment timing of the urea water 17 are determined. I am doing so.

更にまた、選択還元型触媒10を抱持しているケーシング11の入口側と出口側には、NOx濃度を検出する上流側のNOxセンサ22及び下流側のNOxセンサ23と、排気温度を検出する温度センサ24,25とが夫々配設されており、これらの検出信号22a,23a及び検出信号24a,25aも前記制御装置21に入力されるようになっており、これらの検出信号22a,23a及び検出信号24a,25aに基づいてNOx浄化率を検出するようにしている。ここでNOx浄化率は、検出信号22a,23a及び検出信号24a,25aのいずれかに基づいて検出しても良いし、他の信号を用いても良く、実測の測定NOx浄化率を検出し得るならば手段、方法は特に制限されるものではない。また図2、図3に示すごとく選択還元型触媒10の下流側にアンモニア低減触媒10aを備えている場合には、アンモニア低減触媒10aの下流側に下流側のNOxセンサ23を配設しても良いし、選択還元型触媒10とアンモニア低減触媒10aとの間に下流側のNOxセンサ23(図3参照)を配設しても良い。更に選択還元型触媒10の上流側には図4に示すごとくケーシング28によりパティキュレートフィルタ29が装備されても良い。   Furthermore, on the inlet side and the outlet side of the casing 11 that holds the selective catalytic reduction catalyst 10, an upstream NOx sensor 22 that detects the NOx concentration and a downstream NOx sensor 23, and an exhaust temperature are detected. Temperature sensors 24 and 25 are respectively provided, and these detection signals 22a and 23a and detection signals 24a and 25a are also input to the control device 21, and these detection signals 22a and 23a and The NOx purification rate is detected based on the detection signals 24a and 25a. Here, the NOx purification rate may be detected based on one of the detection signals 22a and 23a and the detection signals 24a and 25a, or other signals may be used, and the actually measured NOx purification rate can be detected. Then, means and methods are not particularly limited. 2 and 3, when the ammonia reduction catalyst 10a is provided downstream of the selective reduction catalyst 10, a downstream NOx sensor 23 may be provided downstream of the ammonia reduction catalyst 10a. Alternatively, a downstream NOx sensor 23 (see FIG. 3) may be disposed between the selective catalytic reduction catalyst 10 and the ammonia reduction catalyst 10a. Further, a particulate filter 29 may be provided on the upstream side of the selective catalytic reduction catalyst 10 by a casing 28 as shown in FIG.

また制御装置21には、所定の条件で表示信号26aにより異常を示す表示モニタや表示ランプ等の表示手段26と、他の条件で表示信号27aにより異常を示す表示モニタや表示ランプ等の表示手段27とが接続されている。更に制御装置21には所定の関数が予め内蔵されている。   Further, the control device 21 includes a display means 26 such as a display monitor or a display lamp which shows an abnormality by a display signal 26a under a predetermined condition, and a display means such as a display monitor or a display lamp which shows an abnormality by a display signal 27a under other conditions. 27 is connected. Furthermore, a predetermined function is built in the control device 21 in advance.

以下本発明を実施する形態の一例の作用を説明する。   Hereinafter, the operation of an example of an embodiment of the present invention will be described.

排気浄化装置により排ガス中のNOxの排出濃度を低減する際には、選択還元型触媒10の上流側に尿素水17を尿素水タンク14から添加し、尿素水17を選択還元型触媒10上で排出ガス7中のNOxと還元反応させ、NOxの排出濃度を低減する。その後、尿素水17の添加により尿素水タンク14内の尿素水17が減少した際には、尿素水タンク14に尿素水17が適宜補給される。   When reducing the exhaust concentration of NOx in the exhaust gas by the exhaust purification device, urea water 17 is added from the urea water tank 14 to the upstream side of the selective reduction catalyst 10, and the urea water 17 is added to the selective reduction catalyst 10. A reduction reaction with NOx in the exhaust gas 7 is performed to reduce the NOx emission concentration. Thereafter, when the urea water 17 in the urea water tank 14 decreases due to the addition of the urea water 17, the urea water 17 is appropriately replenished to the urea water tank 14.

また尿素水タンク14に、軽油、重油、灯油等の燃料が誤って補給された場合には、酸化機能を持つアンモニア低減触媒10aで燃料が酸化されて排出ガス7中の酸素を消費することにより、下流側のNOxセンサ23で図5に示す如く酸素濃度の低下を検出する。また酸素濃度の低下を検出する際には、上流側のNOxセンサ22で比較用の酸素濃度を検出し、当該比較用の酸素濃度と、下流側のNOxセンサ23で検出した酸素濃度とを比較して酸素濃度の低下を適切に判断するようにしても良い。   Further, when fuel such as light oil, heavy oil, kerosene, etc. is accidentally replenished to the urea water tank 14, the fuel is oxidized by the ammonia reduction catalyst 10a having an oxidation function, and oxygen in the exhaust gas 7 is consumed. The downstream NOx sensor 23 detects a decrease in oxygen concentration as shown in FIG. When detecting a decrease in oxygen concentration, the upstream NOx sensor 22 detects the oxygen concentration for comparison, and compares the oxygen concentration for comparison with the oxygen concentration detected by the downstream NOx sensor 23. Thus, the decrease in oxygen concentration may be appropriately determined.

同時にNOxセンサ22,23や温度センサ24,35でNOx浄化率低下を検出する。この時NOx浄化率の低下は、予め記録した基準NOx浄化率(閾値)とを比較し、NOx浄化率が基準NOx浄化率よりも低いか否かでNOx浄化率の低下を検出し、NOx浄化率が基準NOx浄化率よりも低い場合にはNOx浄化率の低下があると判定し、NOx浄化率が基準NOx浄化率よりも低くない場合にはNOx浄化率の低下がないと判定する。   At the same time, NOx purification rate reduction is detected by the NOx sensors 22 and 23 and the temperature sensors 24 and 35. At this time, the decrease in the NOx purification rate is compared with a reference NOx purification rate (threshold) recorded in advance, and a decrease in the NOx purification rate is detected based on whether or not the NOx purification rate is lower than the reference NOx purification rate. When the rate is lower than the reference NOx purification rate, it is determined that there is a decrease in the NOx purification rate, and when the NOx purification rate is not lower than the reference NOx purification rate, it is determined that there is no decrease in the NOx purification rate.

その後、制御装置21は表示手段26に表示信号26aを送り、表示手段26で尿素水タンク14に燃料が誤って補給された旨の警告を発して運転者に知らせる。   Thereafter, the control device 21 sends a display signal 26a to the display means 26, which gives a warning to the driver that the urea water tank 14 has been replenished by mistake with the display means 26.

ここで選択還元型触媒10は炭化水素(HC)で被毒される場合があり、選択還元型触媒10が炭化水素(HC)で被毒された際には選択還元型触媒10の温度を上げ還元性能の回復を図る必要があり、回復時には、吸着された炭化水素(HC)が放出され、後流のアンモニア低減触媒10aで酸化されるため、その回復制御中は下流側のNOxセンサ23による酸素濃度の検出を停止する。ここで炭化水素(HC)の被毒は種々の条件で積算して判断しても良いし、他の条件を基準に判断しても良い。   Here, the selective catalytic reduction catalyst 10 may be poisoned with hydrocarbon (HC). When the selective catalytic reduction catalyst 10 is poisoned with hydrocarbon (HC), the temperature of the selective catalytic reduction catalyst 10 is increased. It is necessary to recover the reduction performance. At the time of recovery, the adsorbed hydrocarbon (HC) is released and oxidized by the downstream ammonia reduction catalyst 10a. Therefore, during the recovery control, the NOx sensor 23 on the downstream side is used. Stop detection of oxygen concentration. Here, the poisoning of hydrocarbon (HC) may be determined by integrating under various conditions, or may be determined based on other conditions.

また選択還元型触媒10の上流側にパティキュレートフィルタ29を備えた場合には、パティキュレートフィルタ29に煤が堆積することに伴ってパティキュレートフィルタ29を再生する必要があることから、パティキュレートフィルタ29の再生中には、下流側のNOxセンサ23による酸素濃度の検出を停止する。ここではパティキュレートフィルタ29の再生中は加熱手段の作動等により判断しても良いし、他の条件で判断しても良い。   Further, when the particulate filter 29 is provided on the upstream side of the selective catalytic reduction catalyst 10, it is necessary to regenerate the particulate filter 29 as soot accumulates on the particulate filter 29. During the regeneration of 29, the detection of the oxygen concentration by the downstream NOx sensor 23 is stopped. Here, during regeneration of the particulate filter 29, it may be determined by the operation of the heating means or the like, or may be determined under other conditions.

一方、選択還元型触媒10に劣化がある場合には、酸素濃度の低下を検出することなく、NOx浄化率の低下を検出し、制御装置21は表示手段27に表示信号27aを送り、表示手段27で選択還元型触媒10に劣化がある警告を発して運転者等に知らせる。   On the other hand, when the selective catalytic reduction catalyst 10 is deteriorated, the controller 21 detects a decrease in the NOx purification rate without detecting a decrease in oxygen concentration, and the control device 21 sends a display signal 27a to the display means 27 to display the display means. At 27, a warning that the selective catalytic reduction catalyst 10 is deteriorated is issued to notify the driver or the like.

而して、このように実施の形態の一例によれば、尿素水タンク14に燃料が誤って補給された場合には、NOx浄化率の低下を生じると共に、燃料の酸化に伴って排出ガス中の酸素濃度が低下するので、下流側のNOxセンサ23で酸素濃度の低下を検出することにより、尿素水タンク14に燃料が誤って補給されたと判断し、運転者等に知らせることができる。また選択還元型触媒10に劣化がある場合には、NOx浄化率の低下を生じる一方で、酸素の濃度低下を生じないので、下流側のNOxセンサ23で酸素濃度の低下を検出せず、よって選択還元型触媒10に劣化の可能性があると判断し、運転者等に知らせることができる。   Thus, according to an example of the embodiment, when fuel is accidentally replenished to the urea water tank 14, the NOx purification rate is lowered and the exhaust gas is discharged along with the oxidation of the fuel. Therefore, by detecting the decrease in the oxygen concentration with the downstream NOx sensor 23, it can be determined that the fuel has been replenished in the urea water tank 14, and the driver or the like can be notified. Further, when the selective catalytic reduction catalyst 10 is deteriorated, the NOx purification rate is lowered, but the oxygen concentration is not lowered. Therefore, the downstream NOx sensor 23 does not detect the oxygen concentration drop. It is possible to determine that the selective catalytic reduction catalyst 10 is likely to be deteriorated and notify the driver or the like.

また酸素濃度の低下を判断要件とするので、燃料が誤って補給された場合と、選択還元型触媒10に劣化がある場合とを明確に区別し、尿素水タンク14に燃料が誤って補給された場合を容易且つ好適に検出することができる。   In addition, since a reduction in oxygen concentration is used as a determination requirement, a distinction is made between when fuel is accidentally replenished and when the selective catalytic reduction catalyst 10 is deteriorated, and fuel is erroneously replenished to the urea water tank 14. Can be detected easily and suitably.

また本形態の一例においては、選択還元型触媒10の上流側に位置するNOxセンサ22で比較用の酸素濃度を検出し、該比較用の酸素濃度と、選択還元型触媒10の下流側に位置するNOxセンサ23で検出した酸素濃度とを比較して酸素濃度の低下を判断すると、尿素水タンク14に燃料が誤って補給された場合を容易且つ好適に検出することができる。   In one example of the present embodiment, the comparison oxygen concentration is detected by the NOx sensor 22 located upstream of the selective catalytic reduction catalyst 10, and the comparative oxygen concentration is located downstream of the selective catalytic reduction catalyst 10. When a decrease in oxygen concentration is determined by comparing with the oxygen concentration detected by the NOx sensor 23, the case where the urea water tank 14 is erroneously replenished with fuel can be easily and suitably detected.

また本形態の一例においては、選択還元型触媒10が炭化水素(HC)で被毒され該選択還元型触媒10の回復制御を実施している場合には、下流側のNOxセンサ23による酸素濃度の検出を停止すると、酸素濃度の低下を適切な条件下で判断するので、尿素水タンク14に燃料が誤って補給された場合を容易且つ好適に検出することができる。   In an example of the present embodiment, when the selective catalytic reduction catalyst 10 is poisoned with hydrocarbon (HC) and recovery control of the selective catalytic reduction catalyst 10 is performed, the oxygen concentration by the downstream NOx sensor 23 is used. When the detection is stopped, the decrease in the oxygen concentration is determined under appropriate conditions, so that it is possible to easily and suitably detect the case where the urea water tank 14 is replenished with fuel by mistake.

また本形態の一例においては、選択還元型触媒10の上流側にパティキュレートフィルタ29を備え、パティキュレートフィルタ29再生中の場合には、下流側のNOxセンサ23による酸素濃度の検出を停止すると、酸素濃度の低下を適切な条件下で判断するので、尿素水タンク14に燃料が誤って補給された場合を容易且つ好適に検出することができる。   In one example of this embodiment, the particulate filter 29 is provided on the upstream side of the selective catalytic reduction catalyst 10, and when the particulate filter 29 is being regenerated, the detection of the oxygen concentration by the downstream NOx sensor 23 is stopped. Since the decrease in the oxygen concentration is determined under appropriate conditions, it is possible to easily and suitably detect the case where the urea water tank 14 is erroneously replenished with fuel.

尚、本発明の還元剤の異常検出方法は、上述の形態例にのみ限定されるものではなく、誤って補給される燃料は軽油、重油、灯油以外のものでも良いこと、還元剤には尿素水以外のものを採用しても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The method for detecting an abnormality of the reducing agent of the present invention is not limited to the above-described embodiment. The fuel that is replenished by mistake may be other than light oil, heavy oil, and kerosene, and the reducing agent may be urea. Of course, other than water may be adopted, and various modifications can be made without departing from the scope of the present invention.

9 排気管
10 選択還元型触媒
14 尿素水タンク(還元剤タンク)
17 尿素水(還元剤)
22 上流側のNOxセンサ
23 下流側のNOxセンサ
29 パティキュレートフィルタ
9 Exhaust pipe 10 Selective reduction catalyst 14 Urea water tank (reducing agent tank)
17 Urea water (reducing agent)
22 NOx sensor on the upstream side 23 NOx sensor on the downstream side 29 Particulate filter

Claims (5)

排気管途中の選択還元型触媒に還元剤タンクから還元剤を添加してNOxを還元浄化する排気浄化装置に対し、前記還元剤タンク内に補給された還元剤の異常を検出するための還元剤の異常検出方法であって、前記選択還元型触媒の下流側に位置するNOxセンサで酸素濃度を検出し、該酸素濃度の低下を検出した際には還元剤タンク内に燃料が補給されたと判定することを特徴とする還元剤の異常検出方法。   A reducing agent for detecting an abnormality of the reducing agent replenished in the reducing agent tank for an exhaust gas purification device that reduces and purifies NOx by adding the reducing agent from the reducing agent tank to the selective reduction catalyst in the middle of the exhaust pipe. In this abnormality detection method, an oxygen concentration is detected by a NOx sensor located downstream of the selective catalytic reduction catalyst, and when a decrease in the oxygen concentration is detected, it is determined that fuel is supplied into the reducing agent tank. A method for detecting an abnormality of a reducing agent, comprising: NOx浄化率の低下を検出し且つ酸素濃度の低下を検出しない場合には選択還元型触媒が劣化したと判定することを特徴とする請求項1に記載の還元剤の異常検出方法。   2. The reducing agent abnormality detection method according to claim 1, wherein when the decrease in the NOx purification rate is detected and the decrease in the oxygen concentration is not detected, it is determined that the selective catalytic reduction catalyst has deteriorated. 選択還元型触媒の上流側に位置するNOxセンサで比較用の酸素濃度を検出し、該比較用の酸素濃度と、選択還元型触媒の下流側に位置するNOxセンサで検出した酸素濃度とを比較して酸素濃度の低下を判断することを特徴とする請求項1に記載の還元剤の異常検出方法。   The comparison oxygen concentration is detected by the NOx sensor located upstream of the selective reduction catalyst, and the comparison oxygen concentration is compared with the oxygen concentration detected by the NOx sensor located downstream of the selective reduction catalyst. The method for detecting an abnormality of the reducing agent according to claim 1, wherein a decrease in the oxygen concentration is determined. 選択還元型触媒が炭化水素で被毒され該選択還元型触媒の回復制御を実施している場合には、NOxセンサによる酸素濃度の検出を停止することを特徴とする請求項1に記載の還元剤の異常検出方法。   2. The reduction according to claim 1, wherein when the selective catalytic reduction catalyst is poisoned with hydrocarbon and recovery control of the selective catalytic reduction catalyst is performed, detection of the oxygen concentration by the NOx sensor is stopped. Abnormal detection method of the agent. 選択還元型触媒の上流側にパティキュレートフィルタを備え、パティキュレートフィルタの再生中の場合には、NOxセンサによる酸素濃度の検出を停止することを特徴とする請求項1に記載の還元剤の異常検出方法。   The abnormality of the reducing agent according to claim 1, further comprising a particulate filter upstream of the selective catalytic reduction catalyst, and stopping the detection of the oxygen concentration by the NOx sensor when the particulate filter is being regenerated. Detection method.
JP2009110845A 2009-04-30 2009-04-30 Method for detecting abnormality in reducing agent Withdrawn JP2010261328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110845A JP2010261328A (en) 2009-04-30 2009-04-30 Method for detecting abnormality in reducing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110845A JP2010261328A (en) 2009-04-30 2009-04-30 Method for detecting abnormality in reducing agent

Publications (1)

Publication Number Publication Date
JP2010261328A true JP2010261328A (en) 2010-11-18

Family

ID=43359628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110845A Withdrawn JP2010261328A (en) 2009-04-30 2009-04-30 Method for detecting abnormality in reducing agent

Country Status (1)

Country Link
JP (1) JP2010261328A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512375A (en) * 2009-11-26 2013-04-11 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for identifying the state of a reducing agent in a reducing agent container
JP2014118945A (en) * 2012-12-19 2014-06-30 Mitsubishi Motors Corp Exhaust purification device for internal combustion engine
DE102013215891B4 (en) * 2012-08-15 2020-12-17 Ford Global Technologies, Llc Method and device for monitoring a reducing agent solution composition in the exhaust system of an internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512375A (en) * 2009-11-26 2013-04-11 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for identifying the state of a reducing agent in a reducing agent container
DE102013215891B4 (en) * 2012-08-15 2020-12-17 Ford Global Technologies, Llc Method and device for monitoring a reducing agent solution composition in the exhaust system of an internal combustion engine
JP2014118945A (en) * 2012-12-19 2014-06-30 Mitsubishi Motors Corp Exhaust purification device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP5478110B2 (en) Reducing agent abnormality detection method
JP4840703B2 (en) Abnormality diagnosis device for exhaust purification system
JP4874364B2 (en) Exhaust gas purification device for internal combustion engine
JP5461057B2 (en) Reducing agent abnormality detection method
JP4799289B2 (en) Engine exhaust purification system
JP4789242B2 (en) Exhaust purification device
US8800265B2 (en) Exhaust gas treatment system for an internal combustion engine
JP4308094B2 (en) Reducing agent supply device
WO2005124116A1 (en) Exhaust gas purification apparatus
EP2216520A1 (en) Exhaust gas purifying apparatus and method for regenerating particulate filter thereof
US20160108791A1 (en) Aftertreatment Control for Detection of Fuel Contaminant Concentration
JP2011089434A (en) Exhaust emission control device in internal combustion engine
JP2003314258A (en) Exhaust emission control device for internal combustion engine
EP3106641B1 (en) Catalytic device detection system
JP2009156159A (en) Device for determining abnormal section of exhaust emission control system
JP2012036858A (en) Device for diagnosing catalyst degradation
JP2010261328A (en) Method for detecting abnormality in reducing agent
JP2012036835A (en) Exhaust emission control device
JP5500867B2 (en) Exhaust purification device
JP2009138705A (en) Exhaust emission control device
JP2011106313A (en) Exhaust emission control device for engine
JP2012036837A (en) Diagnostic device for exhaust emission control device
JP2005214169A (en) Engine exhaust emission control device
US8800267B2 (en) Control system for modulating an air mass
JP2016006311A (en) Diesel engine exhaust emission control system and diesel engine exhaust emission control method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120703