JP2010260734A - Reformer and method for manufacturing the same - Google Patents

Reformer and method for manufacturing the same Download PDF

Info

Publication number
JP2010260734A
JP2010260734A JP2009111159A JP2009111159A JP2010260734A JP 2010260734 A JP2010260734 A JP 2010260734A JP 2009111159 A JP2009111159 A JP 2009111159A JP 2009111159 A JP2009111159 A JP 2009111159A JP 2010260734 A JP2010260734 A JP 2010260734A
Authority
JP
Japan
Prior art keywords
inner cylinder
reformer
air pipe
oxidized air
metal plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009111159A
Other languages
Japanese (ja)
Other versions
JP5363182B2 (en
Inventor
Katsunori Sakai
勝則 酒井
Yasushi Yoshino
靖 吉野
Takeshi Kuwabara
武 桑原
Takayuki Suyama
隆行 須山
Takuya Moroishi
拓也 諸石
Yukinobu Taniguchi
行伸 谷口
Masaaki Takase
正明 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Rad Co Ltd
Original Assignee
T Rad Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Rad Co Ltd filed Critical T Rad Co Ltd
Priority to JP2009111159A priority Critical patent/JP5363182B2/en
Publication of JP2010260734A publication Critical patent/JP2010260734A/en
Application granted granted Critical
Publication of JP5363182B2 publication Critical patent/JP5363182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize and simplify a structure of an oxidizing air feed pipe to be disposed in an auto-oxidation internal-heating reformer. <P>SOLUTION: The auto-oxidation internal-heating reformer is equipped with an outer cylinder 2, an inner cylinder 3 disposed therein and the oxidizing air feed pipe 14 disposed at the center of the inner cylinder 3. A preliminary reforming chamber is formed between the outer cylinder 2 and the inner cylinder 3, and a main reforming chamber is formed inside the inner cylinder 3. The inner cylinder 3 and the oxidizing air feed pipe 14 are each composed of two groove-shaped metal plates 3a and 14a facing each other, respectively, provided that the groove-shaped metal plates 3a and 14a each has flanges 3b and 14b, respectively, and that the flanges 3b and 14b of the groove-shaped metal plates 3a and 14a, respectively, composing the inner cylinder 3 and the oxidizing air feed pipe 14 are quadruply attached and fixed to each other by brazing. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は外筒とその内部に配置された内筒と、内筒の軸方向中心部に沿って配置された酸化空気管とを備え、外筒と内筒の間に予備改質室が形成され、内筒の内部に主改質室が形成される自己酸化内部加熱型の改質器及びその製造方法に関する。   The present invention includes an outer cylinder, an inner cylinder disposed therein, and an oxidized air pipe disposed along the axial center of the inner cylinder, and a pre-reforming chamber is formed between the outer cylinder and the inner cylinder. The present invention relates to a self-oxidation internal heating type reformer in which a main reforming chamber is formed inside an inner cylinder and a method for manufacturing the same.

従来から、原料ガスと水蒸気の混合物(以下、原料−水蒸気混合物という)を改質触媒の存在下に水蒸気改質し、水素リッチな改質ガスを生成する改質器が知られている。改質器で得られる水素リッチな改質ガスは、残留するCO(一酸化炭素)をCO低減手段で触媒の存在下に酸素含有ガスと反応させてCOへ変換し、特に低温で作動する固体高分子電解質型燃料電池用には、数ppmレベルまでCOを低減してから燃料として供給される。
原料ガスには、メタン等の炭化水素、メタノール等の脂肪族アルコール類、或いはジメチルエーテル等のエーテル類、都市ガスなどが用いられる。このような改質器において、メタンを原料ガスとして使用した場合の水蒸気改質の反応式は、CH+2HO→CO+4Hで示すことができ、好ましい改質反応温度は、650〜750℃の範囲である。
Conventionally, a reformer is known in which a mixture of a raw material gas and steam (hereinafter referred to as a raw material-steam mixture) is steam reformed in the presence of a reforming catalyst to generate a hydrogen-rich reformed gas. The hydrogen-rich reformed gas obtained in the reformer is converted to CO 2 by reacting residual CO (carbon monoxide) with an oxygen-containing gas in the presence of a catalyst by means of CO reduction, and operates at a particularly low temperature. For solid polymer electrolyte fuel cells, CO is reduced to several ppm level before being supplied as fuel.
As the source gas, hydrocarbons such as methane, aliphatic alcohols such as methanol, ethers such as dimethyl ether, city gas, and the like are used. In such a reformer, the reaction formula of steam reforming when methane is used as a raw material gas can be expressed as CH 4 + 2H 2 O → CO 2 + 4H 2 , and a preferable reforming reaction temperature is 650 to The range is 750 ° C.

改質器の改質反応に必要な熱を供給する方式として外部加熱型と、内部加熱型がある。外部加熱型の改質器は、外部に加熱部を設け、その熱源で原料ガスと水蒸気を反応させて改質ガスを生成するようになっている。内部加熱型の改質器はその供給側(上流側)に部分酸化反応層を設け、該部分酸化反応層で発生した熱を用いて下流側に配備した水蒸気改質反応層を水蒸気改質反応温度まで加熱し、該加熱された水蒸気改質触媒層で水蒸気改質反応をさせて水素リッチな改質ガスを生成するようになっている。   There are an external heating type and an internal heating type as a system for supplying heat necessary for the reforming reaction of the reformer. The external heating type reformer is provided with a heating unit outside, and a reformed gas is generated by reacting a raw material gas and water vapor with a heat source. The internal heating type reformer is provided with a partial oxidation reaction layer on the supply side (upstream side), and the steam reforming reaction layer disposed on the downstream side using the heat generated in the partial oxidation reaction layer is subjected to a steam reforming reaction. Heating to a temperature is performed, and a steam reforming reaction is performed in the heated steam reforming catalyst layer to generate a hydrogen-rich reformed gas.

部分酸化反応は、CH+1/2・O→CO+2Hで示すことができ、好ましい部分酸化反応の温度は250℃以上の範囲である。内部加熱型の改質器を改良したものとして自己酸化内部加熱型の改質器が例えば特許文献1に記載されている。特許文献1の改質器は外側の予備改質室と内側の主改質室を備えた二重筒状に構成され、予備改質室には原料一水蒸気混合物の供給部、改質触媒層および排出部が設けられ、主改質室には前記排出部からの排出物を受け入れる供給部、改質触媒と酸化触媒を混合した混合触媒層、シフト触媒層および改質ガスの排出部が設けられ、さらに主改質室には混合触媒層に酸化用の空気を供給する酸化空気管が配置されている。 The partial oxidation reaction can be represented by CH 4 + 1/2 · O 2 → CO + 2H 2 , and the preferred partial oxidation reaction temperature is in the range of 250 ° C. or higher. As an improvement of the internal heating type reformer, a self-oxidation internal heating type reformer is described in Patent Document 1, for example. The reformer of Patent Document 1 is configured in a double cylinder shape having an outer pre-reforming chamber and an inner main reforming chamber, and the pre-reforming chamber has a feed portion of a raw material-steam mixture, a reforming catalyst layer. The main reforming chamber is provided with a supply unit for receiving the discharge from the discharge unit, a mixed catalyst layer in which the reforming catalyst and the oxidation catalyst are mixed, a shift catalyst layer, and a reformed gas discharge unit. The main reforming chamber is further provided with an oxidizing air pipe for supplying oxidizing air to the mixed catalyst layer.

図5は特許文献1に示されている従来の自己酸化内部加熱型の改質器を模式的に示す断面図であり、図6は図5の外筒と内筒部分の一部破断斜視図である。改質器1は二重筒状に配置した外側の1つの予備改質室22と内側の2つの主改質室33を備えており、全体的に薄型に形成されている。予備改質室22と主改質室33はそれぞれ細長く断面が偏平状(図示の例では偏平な方形)に形成されると共に、それらの断面は互いに相似形とされる。   FIG. 5 is a sectional view schematically showing a conventional self-oxidation internal heating type reformer disclosed in Patent Document 1, and FIG. 6 is a partially broken perspective view of the outer cylinder and the inner cylinder part of FIG. It is. The reformer 1 includes an outer preliminary reforming chamber 22 and two inner main reforming chambers 33 arranged in a double cylinder shape, and is formed thin as a whole. The preliminary reforming chamber 22 and the main reforming chamber 33 are each elongated and have a flat cross section (in the illustrated example, a flat square shape), and the cross sections thereof are similar to each other.

予備改質室22は外筒2と2つの内筒3の間における複数の領域に形成され、2つの主改質室33は2つの内筒3の内側にそれぞれ形成される。予備改質室22には改質触媒層4が設けられ、主改質室33には改質触媒と酸化触媒を混合した混合触媒層5とシフト触媒層6がそれぞれ設けられ、シフト触媒層6は高温シフト触媒層7と低温シフト触媒層8により構成される。なお、これら触媒層に充填される触媒は一般に粒子状またはハニカム状のものが用いられる。   The preliminary reforming chamber 22 is formed in a plurality of regions between the outer cylinder 2 and the two inner cylinders 3, and the two main reforming chambers 33 are respectively formed inside the two inner cylinders 3. The reforming catalyst layer 4 is provided in the preliminary reforming chamber 22, and the mixed catalyst layer 5 and the shift catalyst layer 6 in which the reforming catalyst and the oxidation catalyst are mixed are provided in the main reforming chamber 33. Is constituted by a high temperature shift catalyst layer 7 and a low temperature shift catalyst layer 8. The catalyst filled in the catalyst layer is generally in the form of particles or honeycomb.

改質触媒層4を構成する改質触媒は、原料ガスを水蒸気改質するものであり、例えばNiO−A1OあるいはNiO−SiO・A1などのNi系改質反応触媒やWO−SiO・A1やNiO−WO・SiO・A1などが使用される。混合触媒層5を構成する改質触媒は上記と同様なものが使用され、それに均一に分散される酸化触媒は原料−水蒸気混合物中の原料ガスを酸化発熱させて水蒸気改質反応に必要な温度を得るもので、例えば白金(Pt)やロジウム(Rh)あるいはルテニウム(Ru)あるいはバラジウム(Pd)が使用される。
なお改質触媒に対する酸化触媒の混合割合は、水蒸気改質すべき原料ガスの種類に応じて1〜15%程度の範囲で選択され、例えば原料ガスとしてメタンを使用する場合は5%±2%程度、メタノールの場合は2%±1%程度の混合割合とされる。
The reforming catalyst constituting the reforming catalyst layer 4 is for steam reforming the raw material gas. For example, a Ni-based reforming reaction catalyst such as NiO—A1 2 O or NiO—SiO 2 .A1 2 O 3 or WO such as 2 -SiO 2 · A1 2 O 3 and NiO-WO 2 · SiO 2 · A1 2 O 3 is used. The reforming catalyst constituting the mixed catalyst layer 5 is the same as described above, and the oxidation catalyst uniformly dispersed therein is the temperature required for the steam reforming reaction by causing the source gas in the source-steam mixture to oxidize and generate heat. For example, platinum (Pt), rhodium (Rh), ruthenium (Ru), or palladium (Pd) is used.
The mixing ratio of the oxidation catalyst to the reforming catalyst is selected in the range of about 1 to 15% according to the type of the raw material gas to be steam reformed. For example, when methane is used as the raw material gas, it is about 5% ± 2%. In the case of methanol, the mixing ratio is about 2% ± 1%.

予備改質室22の下部に原料−水蒸気混合物の供給部9が設けられ、予備改質室22の上部に予備改質後の流出物が排出する排出部10が設けられる。主改質室33の上部には前記予備改質室22の排出部10に連通する供給部11が設けられ、2つの主改質室33の中央部にそれぞれ酸化空気を供給する酸化空気管14が延長され、その酸化空気管14が混合触媒層5に延長する部分に複数のノズルからなる空気噴出部15が形成されている。2本の酸化空気管14の下部はケーシング16で互いに連通し、そのケーシング16に空気供給用の配管17が接続される。さらに主改質室33の下部には改質ガスの排出部12が設けられる。なお酸化空気管14の断面は偏平状に形成されると共に、前記予備改質室22と主改質室33の断面と相似形になっている。   A raw material-steam mixture supply unit 9 is provided at the lower part of the preliminary reforming chamber 22, and a discharge unit 10 for discharging the effluent after the preliminary reforming is provided at the upper part of the preliminary reforming chamber 22. A supply unit 11 that communicates with the discharge unit 10 of the preliminary reforming chamber 22 is provided above the main reforming chamber 33, and an oxidized air pipe 14 that supplies oxidized air to the central portions of the two main reforming chambers 33. Is formed, and an air ejection portion 15 including a plurality of nozzles is formed at a portion where the oxidized air pipe 14 extends to the mixed catalyst layer 5. The lower portions of the two oxidized air pipes 14 communicate with each other through a casing 16, and a pipe 17 for supplying air is connected to the casing 16. Further, a reformed gas discharge unit 12 is provided below the main reforming chamber 33. The cross section of the oxidized air pipe 14 is formed in a flat shape and is similar to the cross sections of the preliminary reforming chamber 22 and the main reforming chamber 33.

主改質室33には上部から下部に順に混合触媒層5、高温シフト触媒層7および低温触媒層8が設けられるが、各触媒層の境界部および排出部12を含む低温シフト触媒層8の下側には触媒粒子を支持する支持板18が配置される。(なお予備改質室22にも同様な支持板18が配置される。)これら支持板18は気体流通性を有するが触媒粒子は通過させない孔径を有しており、通常、板状のパンチメタルやメッシュ等の多孔性の部材が使用される。   In the main reforming chamber 33, the mixed catalyst layer 5, the high temperature shift catalyst layer 7 and the low temperature catalyst layer 8 are provided in order from the top to the bottom, but the boundary of each catalyst layer and the low temperature shift catalyst layer 8 including the discharge part 12 are provided. A support plate 18 that supports the catalyst particles is disposed on the lower side. (Similar support plates 18 are also disposed in the pre-reforming chamber 22.) These support plates 18 have a gas flowability but have a hole diameter that does not allow catalyst particles to pass through, and are usually plate-like punch metal. Porous members such as mesh and mesh are used.

特開2007−126331号公報JP 2007-126331 A

図5、図6に示す従来の改質器は、内筒3の軸方向中心部に酸化空気管14が延長され、その下端のみがケーシング16に固定されている。そのため酸化空気管14を傾斜させずに正確に内筒3の軸方向中心に同軸的に配置するには熟練と手間がかかる。また例え正確に同軸的に配置できたとしても、内筒3の内部に混合触媒やシフト触媒を充填する際に、押し込まれた触媒からの不均一な押圧力により酸化空気管14の側面に偏った力が加わると、酸化空気管14の先端に近い部分が内筒3の軸方向中心から傾いた状態で触媒中に固定されてしまうという問題がある。   In the conventional reformer shown in FIGS. 5 and 6, the oxidized air pipe 14 is extended at the axial center of the inner cylinder 3, and only the lower end thereof is fixed to the casing 16. Therefore, it takes a lot of skill and labor to arrange the oxidized air pipe 14 coaxially accurately in the axial center of the inner cylinder 3 without inclining. Even if it can be arranged accurately coaxially, when the mixed catalyst or shift catalyst is filled in the inner cylinder 3, it is biased toward the side surface of the oxidized air pipe 14 due to uneven pressing force from the pushed-in catalyst. When the applied force is applied, there is a problem that a portion near the tip of the oxidized air tube 14 is fixed in the catalyst in a state in which the portion is inclined from the axial center of the inner cylinder 3.

そのように酸化空気管14の先端に近い部分が内筒3の軸方向中心から傾いた状態になっていると、その空気噴出部15から周囲の混合触媒層5に浸透する酸化空気量分布も不均一になる。また、従来の改質器では内筒3と酸化空気管14をそれぞれ別個に製作した上で、耐圧検査などの検圧工程を個別に行う必要がある。   When the portion close to the tip of the oxidized air tube 14 is inclined from the axial center of the inner cylinder 3 as described above, the distribution of the amount of oxidized air that permeates from the air ejection portion 15 into the surrounding mixed catalyst layer 5 is also obtained. It becomes uneven. Further, in the conventional reformer, it is necessary to separately perform the pressure detection process such as the pressure resistance test after separately manufacturing the inner cylinder 3 and the oxidized air pipe 14.

上記問題を解決するため、内筒3の内側と酸化空気管14の外側の間を何らかの連結手段で連結し、その連結状態で触媒充填を行うことも考えられる。しかしその場合は新たな追加部品が必要になる上に全体構造も複雑になる。さらに内筒3と酸化空気管14に対する個別の検圧工程が必要になるという問題は解決されない。
そこで本発明は、このような従来の改質器における問題を解決することを課題とし、そのための新規な内筒と酸化空気管の構造を備えた改質器及びその製造方法を提供することを目的とする。
In order to solve the above problem, it is also conceivable to connect the inner side of the inner cylinder 3 and the outer side of the oxidized air pipe 14 with some connecting means and perform catalyst filling in the connected state. In this case, however, new additional parts are required and the overall structure becomes complicated. Furthermore, the problem that separate pressure detection steps for the inner cylinder 3 and the oxidized air pipe 14 are not solved.
Therefore, the present invention has an object to solve such problems in the conventional reformer, and provides a reformer having a structure of a new inner cylinder and an oxidized air pipe and a manufacturing method thereof. Objective.

前記課題を解決する本発明の改質器は、外筒とその内部に配置された内筒と、内筒の中心部に配置された酸化空気管とを備え、外筒と内筒の間に予備改質室が形成され、内筒の内部に主改質室が形成される自己酸化内部加熱型の改質器である。そして内筒と酸化空気管は、フランジを有するいずれも2枚の溝形金属板を対向配置することにより構成され、且つ内筒の一対のフランジが酸化空気管の一対のフランジを挟持して、それらフランジが4重に密着された状態で互いにろう付け固定されていることを特徴とする(請求項1)。   The reformer of the present invention that solves the above problems includes an outer cylinder, an inner cylinder disposed therein, and an oxidized air tube disposed in the center of the inner cylinder, and is provided between the outer cylinder and the inner cylinder. This is a self-oxidation internal heating type reformer in which a preliminary reforming chamber is formed and a main reforming chamber is formed inside the inner cylinder. The inner cylinder and the oxidized air pipe are both configured by disposing two groove-shaped metal plates facing each other, and the pair of flanges of the inner cylinder sandwich the pair of flanges of the oxidized air pipe, The flanges are fixed to each other by brazing in a state where the flanges are in close contact with each other (claim 1).

上記内筒と酸化空気管がいずれもその軸方向の断面を偏平とした改質器において、酸化空気管を構成する2枚の溝形金属板の内面が外圧により互いに密着することを防止するため、それら溝形金属板の少なくとも一方の内面に複数のディンプルを突出させることができる(請求項2)。   In the reformer in which the inner cylinder and the oxidized air pipe are both flat in the axial cross section, in order to prevent the inner surfaces of the two grooved metal plates constituting the oxidized air pipe from coming into close contact with each other due to external pressure. A plurality of dimples can be protruded from the inner surface of at least one of the grooved metal plates.

前記課題を解決する本発明の改質器の製造方法は、外筒とその内部に配置された内筒と、内筒の軸方向中心部に沿って配置された酸化空気管とを備え、外筒と内筒の間に予備改質室が形成され、内筒の内部に主改質室が形成される自己酸化内部加熱型の改質器の製造方法である。
そして内筒と酸化空気管をいずれも、フランジを有する2枚の溝形金属板を対向配置することにより形成し、その際、内筒の一対のフランジで酸化空気管の一対のフランジを挟持することにより、各フランジを4重に密着した状態で互いにろう付け固定することを特徴とする(請求項3)。
A manufacturing method of a reformer of the present invention that solves the above-described problems includes an outer cylinder, an inner cylinder disposed inside the outer cylinder, and an oxidized air pipe disposed along the axial center of the inner cylinder, In this method, a pre-reforming chamber is formed between a cylinder and an inner cylinder, and a main reforming chamber is formed inside the inner cylinder.
The inner cylinder and the oxidized air pipe are both formed by opposingly arranging two grooved metal plates having flanges. At that time, the pair of flanges of the oxidized cylinder are sandwiched between the pair of flanges of the inner cylinder. Thus, the flanges are fixed to each other by brazing in a state where the flanges are in close contact with each other (claim 3).

上記改質器の製造方法において、前記各溝形金属板のフランジ間に階段状となる段差部を所定間隔で複数形成し、各段差部をろう付けにより固定することができる(請求項4)。   In the above reformer manufacturing method, a plurality of stepped portions having a stepped shape can be formed between the flanges of the respective grooved metal plates at a predetermined interval, and each stepped portion can be fixed by brazing. .

本発明の改質器は請求項1に記載のように、内筒と酸化空気管はいずれも2枚の溝形金属板を対向配置することにより構成され、且つ内筒と酸化空気管を構成する各溝形金属板のフランジどうしが4重に密着された状態で互いにろう付け固定されていることを特徴とする。   In the reformer of the present invention, as described in claim 1, the inner cylinder and the oxidized air pipe are both configured by disposing two groove-shaped metal plates facing each other, and the inner cylinder and the oxidized air pipe are configured. The flanges of the respective groove-shaped metal plates are fixed to each other by brazing in a state where the flanges are in close contact with each other.

このように構成すると、改質器の製造過程で、内筒の軸方向中心部に沿って酸化空気管が同軸的に且つ正確に配置される。そして内筒と酸化空気管の間に触媒を充填する際に、触媒の不均一な押圧力により酸化空気管14の側面に偏った力が加わったとしても、酸化空気管のフランジが内筒のフランジに固定されているので、内筒と酸化空気管の同軸関係が崩れる恐れはない。さらに、改質器の製造過程で内筒と酸化空気管は一体化されて同時に完成されるので、その後の耐圧試験等の検圧工程も1回で済む。   If comprised in this way, an oxidizing air pipe will be coaxially and correctly arrange | positioned along the axial direction center part of an inner cylinder in the manufacture process of a reformer. When the catalyst is filled between the inner cylinder and the oxidized air pipe, even if a biased force is applied to the side surface of the oxidized air pipe 14 due to the uneven pressing force of the catalyst, the flange of the oxidized air pipe is Since it is fixed to the flange, there is no possibility that the coaxial relationship between the inner cylinder and the oxidized air pipe is broken. Furthermore, since the inner cylinder and the oxidized air pipe are integrated and completed at the same time in the manufacturing process of the reformer, the pressure detecting process such as a pressure resistance test thereafter is only required once.

上記内筒と酸化空気管がいずれもその軸方向の断面を偏平とした改質器において、請求項2記載のように、酸化空気管を構成する2枚の溝形金属板の内面が外圧により互いに密着することを防止するため、それら溝形金属板の少なくとも一方の内面に複数のディンプルを突出させることができる。このように構成すると触媒充填時などに断面が偏平な酸化空気管の側面に過大な押圧力が加わったとしても、酸化空気管の変形を防止できる。   In the reformer in which both the inner cylinder and the oxidized air tube have a flat cross section in the axial direction, the inner surfaces of the two groove-shaped metal plates constituting the oxidized air tube are caused by external pressure as described in claim 2. In order to prevent them from sticking to each other, a plurality of dimples can be projected on at least one inner surface of the groove-shaped metal plate. With this configuration, even when an excessive pressing force is applied to the side surface of the oxidized air pipe having a flat cross section when the catalyst is charged, the oxidized air pipe can be prevented from being deformed.

前記課題を解決する本発明の改質器の製造方法は、請求項3に記載のように、内筒と酸化空気管をいずれも、フランジを有する2枚の溝形金属板を対向配置することにより形成し、その際、内筒の一対のフランジで酸化空気管の一対のフランジを挟持して、各フランジを4重に密着した状態で互いにろう付け固定することを特徴とする。   The manufacturing method of the reformer of the present invention that solves the above-described problem is that, as described in claim 3, the inner cylinder and the oxidized air pipe are both arranged so as to face each other with two groove-shaped metal plates having flanges. In this case, the pair of flanges of the oxidized air pipe are sandwiched by the pair of flanges of the inner cylinder, and each flange is brazed and fixed to each other in a state of being in close contact with the four layers.

本発明の製造方法によれば、内筒の軸方向中心部に沿って酸化空気管を同軸的に且つ正確に配置することができる。また、内筒と酸化空気管を特別な部品を用いることなく容易に一体化できる。また耐圧試験等の検圧工程も1回で済む。   According to the manufacturing method of the present invention, the oxidized air pipe can be coaxially and accurately disposed along the axial center portion of the inner cylinder. Further, the inner cylinder and the oxidized air pipe can be easily integrated without using any special parts. Moreover, the pressure detection process such as a pressure test is only required once.

上記改質器の製造方法において、請求項4に記載のように、前記各溝形金属板における各フランジ間に階段状となる段差部を所定間隔で複数形成し、各段差部をろう付けにより固定することができる。   In the reformer manufacturing method, as described in claim 4, a plurality of stepped portions having a step shape are formed at predetermined intervals between the flanges of the grooved metal plates, and the stepped portions are brazed. Can be fixed.

一般に、改質器は複数のステンレス鋼板などを重ねた細長い接合部分を互いに固定する場合には、ニッケルろうによるろう付け法が採用されるが、その際、ジェル状の糊に粉末状のニッケルろうを混ぜたペースト状のろう材が用いられる。そして接合部分に沿って所定間隔で複数個所にろう材を上から置き(塗布)、加熱炉内でろう付けされる。   Generally, the reformer uses a brazing method using nickel brazing when fixing a long and thin joining portion of a plurality of stainless steel plates to each other. At that time, a powdery nickel brazing is applied to a gel paste. A paste-like brazing material mixed with is used. Then, a brazing material is placed (applied) at a plurality of locations at predetermined intervals along the joining portion and brazed in a heating furnace.

しかし接合部分の上面にろう材を置いたとき、その流動性により一部は接合部の隙間に浸透するが、残りの一部は重力方向に流れ落ちて拡散し、接合部分におけるろう材の付着が不均一になるという問題がある。また、ペースト状のろう材が炉内で乾燥すると、ろう材と接合部分との接着性が低下し、加熱炉などへの搬送途中に振動や傾きなどが生じ、ろう材の部分的な剥離現象を生じることがある。   However, when brazing material is placed on the upper surface of the joint part, part of it penetrates into the gap of the joint part due to its fluidity, but the remaining part flows down in the direction of gravity and diffuses, and adhesion of the brazing material at the joint part is difficult. There is a problem of non-uniformity. Also, when the brazing filler metal is dried in the furnace, the adhesiveness between the brazing filler metal and the joint will decrease, causing vibrations and tilts during transport to the heating furnace, etc. May occur.

しかし上記製造方法のように、ろう付けするフランジ間に階段状の段差部を形成すると、ペースト状のろう材をその段差部に置いたとき、従来のように重力方向への流れ落ち現象がなくなる。これはペースト状のろう材が段差の隅角の部分に発生する表面張力の作用で、そこに留まろうとする現象が発生しているからと推定される。   However, when a stepped step portion is formed between the flanges to be brazed as in the above manufacturing method, when a paste-like brazing material is placed on the stepped portion, the phenomenon of flow-down in the gravitational direction is eliminated as in the prior art. This is presumed to be due to the phenomenon that the paste-like brazing material tries to stay there due to the action of the surface tension generated at the corner of the step.

また上記製造方法のように、ろう付けする部分に階段状の段差部を形成すると、ペースト状のろう材が加熱乾燥した際に、段差の隅角の部分にろう材が留まる作用(隅角への入り込み作用)により、加熱炉などへの搬送時に振動や衝撃が加わったとしても、ろう材が接合部分から剥離することはない。そして加熱炉内でろう付けを行う際には、ろう材は融点を超えて液体に変化し、階段状に加工された部品同士の隙間に毛細管現象によりろう材が浸透していく。これにより、接合部分全体にろう材を塗布しなくても所定強度のろう付けが達成される。   In addition, when the stepped step portion is formed in the brazed portion as in the above manufacturing method, when the paste-like brazing material is heated and dried, the brazing material remains in the corner portion of the step (to the corner angle). The brazing material does not peel off from the joined portion even if vibrations or impacts are applied during transportation to a heating furnace or the like due to the intrusion action. When brazing in a heating furnace, the brazing material changes to a liquid exceeding the melting point, and the brazing material penetrates into the gaps between the parts processed in a staircase shape by capillary action. As a result, brazing with a predetermined strength can be achieved without applying a brazing material to the entire joint portion.

本発明の改質器の主要部である内筒と酸化空気管の部分を示す斜視図。The perspective view which shows the part of the inner cylinder and oxidation air pipe which are the principal parts of the reformer of this invention. 図1のA−A矢視及びB−B矢視から見た部分に外筒部分を組み合わせた断面図。Sectional drawing which combined the outer cylinder part with the part seen from the AA arrow of FIG. 1, and the BB arrow. 酸化空気管の溝形金属板14aの平面図。The top view of the groove-shaped metal plate 14a of an oxidation air pipe. 図1の改質器の接合部に段差部20を形成した部分を拡大して示す部分斜視図。The partial perspective view which expands and shows the part which formed the level | step-difference part 20 in the junction part of the modifier of FIG. 従来の自己酸化内部加熱型の改質器を模式的に示す断面図。Sectional drawing which shows the conventional auto-oxidation internal heating type reformer typically. 図5の外筒と内筒部分の一部破断斜視図。FIG. 6 is a partially broken perspective view of the outer cylinder and the inner cylinder part of FIG. 5.

次に、図面に基づいて本発明の最良の実施形態を説明する。なお本実施形態の改質器1が前述した図5、図6の改質器1と異なる部分は、内筒3と酸化空気管14の構造とそれらの接合部分のみで、そのほかは同様に構成される。そこで図5、図6の改質器と同じ部分は同一符号を付し、重複する説明は省略する。   Next, the best embodiment of the present invention will be described based on the drawings. The reformer 1 of the present embodiment is different from the reformer 1 of FIGS. 5 and 6 described above only in the structure of the inner cylinder 3 and the oxidized air pipe 14 and the joint portion thereof, and the rest is configured similarly. Is done. Therefore, the same parts as those of the reformer of FIGS.

内筒3は、両側にフランジ3bを有する断面が略溝形状(コ字状)の細長い同寸法の2枚のステンレス鋼板等の溝形金属板3aを対向配置することにより構成され、それら溝形金属板3aの各フランジ3bを密着して重ね合わせることにより、それらの内側に断面偏平な空間が形成され、その空間に酸化空気管14は配置されると共に触媒が充填される。なお内筒3は図5にも示されているように、その上部の僅かな領域の断面は大きく、それ以外の下部の断面は小さくなっており、その断面の大きい部分から小さい部分に移行する肩部分3cが図2(a)に示されている。   The inner cylinder 3 is configured by disposing two groove-shaped metal plates 3a such as two stainless steel plates having the same dimensions and having a flange 3b on both sides and a substantially groove-shaped (U-shaped) cross section. By closely overlapping the flanges 3b of the metal plate 3a, a space having a flat cross section is formed inside thereof, and the oxidized air tube 14 is disposed in the space and filled with a catalyst. As shown in FIG. 5, the inner cylinder 3 has a large cross section in a small region at the top thereof and a small cross section at the other lower portion, and shifts from a large section to a small section. The shoulder portion 3c is shown in FIG.

酸化空気管14も、フランジ14bを有する断面が略溝形(コ字状)の細長い同寸法の2枚のアルミニウムやステンレス等の溝形金属板14aを対向配置することにより構成され、それら溝形金属板14aのフランジ14bを密着して重ね合わせることにより、それらの内側に断面偏平な空間が形成され、その空間に酸化用の空気が流通する流通路が形成される。   The oxidized air pipe 14 is also configured by arranging two elongated metal plates 14a made of aluminum or stainless steel having the same dimensions and having a flange 14b in cross section in a substantially groove shape (U shape). By closely overlapping the flanges 14b of the metal plate 14a, a space having a flat cross section is formed inside thereof, and a flow passage through which oxidizing air flows is formed in the space.

内筒3における断面の大きい部分(僅かな領域の部分)を形成する2枚の溝形金属板3aのフランジ3bは、互いに密着して重ね合わせた2重重ね合わせ部分を構成し、その二重重ね合わせ部分がろう付けにより互いに固定されている。一方、内筒3の断面の小さい部分(残る大部分の領域)を形成する2枚の溝形金属板3aのフランジ3bと、酸化空気管14を形成する2枚の溝形金属板14aのフランジ14bは、互いに密着して重ね合わせた4重の重ね合わせ部分を構成し、その4重の重ね合わせ部分がろう付けにより互いに固定されている。この固定により内筒3の中心部に沿って酸化空気管14が正確に同軸的に配置された状態となり、且つ内筒3と酸化空気管14が互いに一体化される。なお、内筒3と酸化空気管14の軸方向の断面を一定とすることもでき、その場合は両者のフランジ全体を互いに密着して重ね合わせた4重の重ね合わせ部分に構成し、その4重の重ね合わせ部分をろう付けにより互いに固定することもできる。   The flange 3b of the two groove-shaped metal plates 3a forming a large cross-section portion (a small area portion) in the inner cylinder 3 constitutes a double overlap portion that is in close contact with each other, and its double overlap The joining portions are fixed to each other by brazing. On the other hand, the flanges 3b of the two grooved metal plates 3a that form a small section (most remaining region) of the inner cylinder 3 and the flanges of the two grooved metal plates 14a that form the oxidized air tube 14 14b constitutes a quadruple overlapped portion that is in close contact with each other, and the four overlapped portions are fixed to each other by brazing. By this fixing, the oxidized air pipe 14 is accurately disposed coaxially along the center of the inner cylinder 3, and the inner cylinder 3 and the oxidized air pipe 14 are integrated with each other. In addition, the axial section of the inner cylinder 3 and the oxidized air pipe 14 can be made constant, and in that case, the flanges of both are formed in a four-layer overlapped portion in close contact with each other. It is also possible to fix the overlapping parts of each other by brazing.

図3は図1、図2に示す酸化空気管14を形成するための溝形金属板14aの正面図である。溝形金属板14aは平坦部14fとその周縁に形成されたテーパ部14cを有している。すなわち平坦部14fとテーパ部14cにより全体が略皿状に形成されている。一方、平坦部14fの上部には複数のノズル(小孔)からなる空気噴出部15が形成されている。さらに平坦部14fには複数のディンプル14dが分散して内面側に突設形成されている。   FIG. 3 is a front view of the grooved metal plate 14a for forming the oxidized air tube 14 shown in FIGS. The groove-shaped metal plate 14a has a flat portion 14f and a tapered portion 14c formed on the periphery thereof. That is, the entire portion is formed in a substantially dish shape by the flat portion 14f and the tapered portion 14c. On the other hand, an air ejection portion 15 composed of a plurality of nozzles (small holes) is formed on the upper portion of the flat portion 14f. Furthermore, a plurality of dimples 14d are dispersed and formed on the inner surface side of the flat portion 14f.

これらディンプル14dは2枚の溝形金属板14aを対向配置したその先端どうしが接触する。一方、溝形金属板14aのテーパ部14cの外側、すなわち溝形金属板14aの周縁部に所定間隔で複数の切り欠き部14eが形成されている。これら切り欠き部14eは後述する接合部の段階部を形成するものである。   These dimples 14d come into contact with each other at the tips of two groove-shaped metal plates 14a arranged opposite to each other. On the other hand, a plurality of notches 14e are formed at predetermined intervals on the outside of the tapered portion 14c of the groove-shaped metal plate 14a, that is, on the peripheral edge of the groove-shaped metal plate 14a. These cutout portions 14e form a step portion of a joint portion described later.

次に、図1に示す内筒3と酸化空気管14の固定方法について説明する。固定はこの分野で代表的に行われているろう付け法を採用する。本実施形態では、先ず酸化空気管14を形成する2枚の溝形金属板14aのフランジ14bを互いに重ね合わせて対向配置して断面偏平な酸化空気管14に組み立てる。次に組み立てた酸化空気管14のフランジ14bの外側に内筒3を形成する2枚の溝形金属板3aのフランジ3bをそれぞれ重ね合わせ、接合部となる4重重ね合わせ部を形成する。この状態で内筒3の中心部に沿って酸化空気管14が正確に同軸的に配置される。   Next, a method for fixing the inner cylinder 3 and the oxidized air pipe 14 shown in FIG. 1 will be described. For fixing, a brazing method typically used in this field is adopted. In this embodiment, the flanges 14b of the two groove-shaped metal plates 14a forming the oxidized air tube 14 are first placed on top of each other so as to face each other and assembled into the oxidized air tube 14 having a flat cross section. Next, the flanges 3b of the two groove-shaped metal plates 3a forming the inner cylinder 3 are overlapped on the outer side of the flange 14b of the assembled oxidized air tube 14 to form a quadruple overlapped portion serving as a joint portion. In this state, the oxidized air pipe 14 is accurately coaxially disposed along the center portion of the inner cylinder 3.

次に水平状態にした接合部を水平にして、その上側にペースト状のニッケルろう材を置き(塗布し)、加熱炉でろう付けを行う。本実施形態では接合部の長手方向に沿って所定間隔で予め段階部をフランジ3b,14b間に形成し、その段階部ごとにペースト状のろう材を置く方法を採用する。   Next, the horizontal joint is leveled, a paste-like nickel brazing material is placed (applied) on the upper side, and brazing is performed in a heating furnace. In the present embodiment, a method is adopted in which step portions are formed in advance between the flanges 3b and 14b at predetermined intervals along the longitudinal direction of the joint portion, and a paste-like brazing material is placed in each step portion.

図4は接合部に段階状の段差部20を形成した部分を拡大して示す部分斜視図であり、図中の左側の段差部20はペースト状のろう材21を置く前の状態で、右側の段差部20はペースト状のろう材21を置いた状態を例示的に示している。   FIG. 4 is an enlarged partial perspective view showing a portion where the stepped stepped portion 20 is formed in the joint portion. The left stepped portion 20 in the drawing is in a state before the paste-like brazing material 21 is placed. The step portion 20 shows an example in which a paste-like brazing material 21 is placed.

段差部20を形成するため、内筒3を形成する溝形金属板3aに切り欠き部3dが設けられると共に、酸化空気管14を形成する溝形金属板14aに図3に示したような切り欠き部14eが設けられる。これら切り欠き部3d、14eにおける接合部の長手方向の長さは、4重に重ね合わされた溝形金属板3a、14aの各接触部に複数の段差もしくは隅角を形成するために、図示のように互いに異なった寸法とされる。   In order to form the stepped portion 20, the grooved metal plate 3a forming the inner cylinder 3 is provided with a notch 3d, and the grooved metal plate 14a forming the oxidized air tube 14 is cut as shown in FIG. A notch portion 14e is provided. The lengths in the longitudinal direction of the joints in these notches 3d and 14e are shown in the figure in order to form a plurality of steps or corners in each contact portion of the grooved metal plates 3a and 14a that are superimposed four times. Thus, the dimensions are different from each other.

接合部における上記段差部20に図示のようにペースト状のろう材21を置くと、前述のように、ペースト状のろう材21が重力方向へ流れ落ちる現象を防止できる。また、ペースト状のろう材21が段差の隅角部分に留まる作用(隅角への入り込み作用)により、加熱炉などへの搬送時に振動や衝撃が加わったとしても、ろう材21が接合部分から剥離する恐れはない。そして加熱炉内でろう付けを行う際には、ろう材21は融点を超えて液体に変化し、階段状に加工された部品同士の隙間に毛細管現象によりろう材が浸透していく。これにより、接合部分全体に(長手方向全長に亘って)ろう材を塗布しなくても良好なろう付けが達成できる。   When the paste-like brazing material 21 is placed on the stepped portion 20 in the joint as shown in the figure, the phenomenon that the paste-like brazing material 21 flows down in the direction of gravity can be prevented as described above. Further, due to the action that the paste-like brazing material 21 stays at the corner portion of the step (the entry action into the corner), even if vibration or impact is applied during conveyance to a heating furnace or the like, the brazing material 21 is removed from the joint portion. There is no fear of peeling. When brazing is performed in the heating furnace, the brazing material 21 changes to a liquid exceeding the melting point, and the brazing material penetrates into the gaps between the parts processed in a staircase shape by capillary action. Thereby, even if it does not apply | coat a brazing material to the whole junction part (over a longitudinal direction full length), favorable brazing can be achieved.

本発明の改質器およびその製造方法は、燃料電池に水素リッチな改質ガスを燃料として供給する改質器に利用できる。   The reformer and the manufacturing method thereof of the present invention can be used for a reformer that supplies hydrogen-rich reformed gas as fuel to a fuel cell.

1 改質器
22 予備改質室
2 外筒
33 主改質室
3 内筒
3a 溝形金属板
3b フランジ
3c 肩部分
3d 切り欠き部
DESCRIPTION OF SYMBOLS 1 Reformer 22 Preliminary reforming chamber 2 Outer cylinder 33 Main reforming chamber 3 Inner cylinder 3a Groove-shaped metal plate 3b Flange 3c Shoulder part 3d Notch

4 改質触媒層
5 混合触媒層
6 シフト触媒層
7 高温シフト触媒層
8 低温シフト触媒層
9 供給部
10 排出部
11 供給部
4 reforming catalyst layer 5 mixed catalyst layer 6 shift catalyst layer 7 high temperature shift catalyst layer 8 low temperature shift catalyst layer 9 supply unit 10 discharge unit 11 supply unit

12 排出部
14 酸化空気管
14a 溝形金属板
14b フランジ
14c テーパ部
14d ディンプル
14e 切り欠き部
14f 平坦部
12 Discharge unit 14 Oxidized air pipe
14a Channel metal plate
14b flange
14c Taper part
14d dimple
14e Notch
14f flat part

15 空気噴出部
16 ケーシング
17 配管
18 支持板
20 段差部
21 ろう材
DESCRIPTION OF SYMBOLS 15 Air ejection part 16 Casing 17 Piping 18 Support plate 20 Step part 21 Brazing material

Claims (4)

外筒2とその内部に配置された内筒3と、内筒3の中心部に配置された酸化空気管14とを備え、外筒2と内筒3の間に予備改質室が形成され、内筒3の内部に主改質室が形成される自己酸化内部加熱型の改質器において、
内筒3と酸化空気管14はいずれも両側にフランジ(3b,14b)を有する2枚の溝形金属板(3a,14a)を対向配置することにより構成され、且つ内筒3の各フランジ3bで、酸化空気管14を構成する各溝形金属板14aの各フランジ14bを挟持して、それらが4重に密着された状態で互いにろう付け固定されていることを特徴とする改質器。
An outer cylinder 2, an inner cylinder 3 disposed inside the outer cylinder 2, and an oxidized air pipe 14 disposed at the center of the inner cylinder 3, and a preliminary reforming chamber is formed between the outer cylinder 2 and the inner cylinder 3. In the self-oxidation internal heating type reformer in which the main reforming chamber is formed inside the inner cylinder 3,
The inner cylinder 3 and the oxidized air pipe 14 are both configured by opposingly arranging two grooved metal plates (3a, 14a) having flanges (3b, 14b) on both sides, and each flange 3b of the inner cylinder 3 is disposed. The reformer is characterized in that the flanges 14b of the grooved metal plates 14a constituting the oxidized air pipe 14 are sandwiched and fixed to each other by brazing in a state of being in close contact with each other.
請求項1において、
前記酸化空気管14を構成する2枚の溝形金属板14aの内面が外圧により互いに密着することを防止するため、それら溝形金属板14aの少なくとも一方の内面に複数のディンプル14dが突出されていることを特徴とする改質器。
In claim 1,
In order to prevent the inner surfaces of the two groove-shaped metal plates 14a constituting the oxidized air tube 14 from coming into close contact with each other due to external pressure, a plurality of dimples 14d are projected on at least one inner surface of the groove-shaped metal plates 14a. A reformer characterized by comprising:
外筒2とその内部に配置された内筒3と、内筒3の中心部に沿って配置された酸化空気管14とを備え、外筒2と内筒3の間に予備改質室が形成され、内筒3の内部に主改質室が形成される自己酸化内部加熱型の改質器の製造方法において、
内筒3と酸化空気管14をいずれも2枚の溝形金属板(3a,14a)を対向配置すると共に、酸化空気室14の一対のフランジ部14bを内筒3の一対のフランジ3bで挟持し、その際、内筒3と酸化空気管14を形成する各溝形金属板(3a,14a)における各フランジ(3b,14b)を4重に密着した状態で互いにろう付け固定することを特徴とする改質器の製造方法。
An outer cylinder 2, an inner cylinder 3 disposed inside the outer cylinder 2, and an oxidized air pipe 14 disposed along the center of the inner cylinder 3, and a preliminary reforming chamber is provided between the outer cylinder 2 and the inner cylinder 3. In the manufacturing method of the reformer of the self-oxidation internal heating type in which the main reforming chamber is formed inside the inner cylinder 3,
Both the inner cylinder 3 and the oxidized air pipe 14 are arranged so that two grooved metal plates (3a, 14a) face each other, and the pair of flange portions 14b of the oxidized air chamber 14 are sandwiched between the pair of flanges 3b of the inner cylinder 3. At this time, the flanges (3b, 14b) in the grooved metal plates (3a, 14a) forming the inner cylinder 3 and the oxidized air pipe 14 are fixed to each other by brazing in a state of being in close contact with each other. A method for manufacturing a reformer.
請求項3において、前記各溝形金属板(3a,14a)における各フランジ(3b,14b)間に、それぞれ階段状となる段差部20を所定間隔で複数形成し、各段差部20をろう付けにより固定することを特徴とする改質器の製造方法。   4. A plurality of stepped portions 20 each having a step shape are formed at predetermined intervals between the flanges (3b, 14b) of the grooved metal plates (3a, 14a) according to claim 3, and the stepped portions 20 are brazed. A method for producing a reformer, characterized in that the reformer is fixed by the method.
JP2009111159A 2009-04-30 2009-04-30 Reformer and manufacturing method thereof Expired - Fee Related JP5363182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009111159A JP5363182B2 (en) 2009-04-30 2009-04-30 Reformer and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111159A JP5363182B2 (en) 2009-04-30 2009-04-30 Reformer and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010260734A true JP2010260734A (en) 2010-11-18
JP5363182B2 JP5363182B2 (en) 2013-12-11

Family

ID=43359147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009111159A Expired - Fee Related JP5363182B2 (en) 2009-04-30 2009-04-30 Reformer and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5363182B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013177707A1 (en) * 2012-05-31 2013-12-05 Dana Canada Corporation Fuel processor with a floating catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268966A (en) * 1989-04-07 1990-11-02 Sumitomo Light Metal Ind Ltd Manufacture of heat exchanger
JPH07151486A (en) * 1993-09-30 1995-06-16 Sanden Corp Heat exchanger
JPH08226321A (en) * 1995-02-21 1996-09-03 Calsonic Corp Exhaust pipe with double structure
JPH11229869A (en) * 1998-02-13 1999-08-24 Toyota Motor Corp Exhaust manifold structure for internal combustion engine for marine vessel
JP2001253704A (en) * 2000-03-09 2001-09-18 Honda Motor Co Ltd Fuel reforming device
JP2003254513A (en) * 2002-02-26 2003-09-10 Noritz Corp Combustor
JP2007186351A (en) * 2006-01-11 2007-07-26 T Rad Co Ltd Reformer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268966A (en) * 1989-04-07 1990-11-02 Sumitomo Light Metal Ind Ltd Manufacture of heat exchanger
JPH07151486A (en) * 1993-09-30 1995-06-16 Sanden Corp Heat exchanger
JPH08226321A (en) * 1995-02-21 1996-09-03 Calsonic Corp Exhaust pipe with double structure
JPH11229869A (en) * 1998-02-13 1999-08-24 Toyota Motor Corp Exhaust manifold structure for internal combustion engine for marine vessel
JP2001253704A (en) * 2000-03-09 2001-09-18 Honda Motor Co Ltd Fuel reforming device
JP2003254513A (en) * 2002-02-26 2003-09-10 Noritz Corp Combustor
JP2007186351A (en) * 2006-01-11 2007-07-26 T Rad Co Ltd Reformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013177707A1 (en) * 2012-05-31 2013-12-05 Dana Canada Corporation Fuel processor with a floating catalyst
CN104350006A (en) * 2012-05-31 2015-02-11 达纳加拿大公司 Fuel processor with a floating catalyst
US8992850B2 (en) 2012-05-31 2015-03-31 Dana Canada Corporation Floating catalyst/regenerator

Also Published As

Publication number Publication date
JP5363182B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
US11591215B2 (en) Hydrogen production by steam methane reforming
JP5042853B2 (en) Oxidation autothermal reformer and oxidation autothermal reforming method using the same
US20090258263A1 (en) Hydrogen generator and fuel cell system
CA2792173C (en) Cylindrical steam reformer
CN107324281A (en) It is quick to start self-heating type preparing hydrogen by reforming methanol microreactor
JP5363182B2 (en) Reformer and manufacturing method thereof
US20090117424A1 (en) Solid oxide fuel cell and reformer
JP4804925B2 (en) Reformer
JP2007204343A (en) Reformer and its manufacturing method
JP4963372B2 (en) REACTOR, REACTOR MANUFACTURING METHOD, AND REACTOR UNIT MEMBER
US20110158866A1 (en) Reformer with high durability
JP2008166233A (en) Fuel cell
JP4720101B2 (en) Method for manufacturing honeycomb catalyst
JP2004182494A (en) Co reduction device in reformed gas
JP4463579B2 (en) Hydrogen separator
JP2007090321A (en) Fluid treatment apparatus and manufacturing method thereof
JP2009062223A (en) Reforming apparatus
JP5332130B2 (en) Fuel cell stack structure
JP6383554B2 (en) Fuel reformer
JP2009199784A (en) Fuel cell module, method of producing the same, and fuel cells
JP2003086226A (en) Fuel cell system
JP2006036567A (en) Steam reforming method and mixed catalyst
JP4804883B2 (en) Reformer
JP2003287382A (en) Multilayer heat exchanger
US20100119421A1 (en) Catalyst support, method of manufacturing the same, and reformer having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees