JP2007186351A - Reformer - Google Patents

Reformer Download PDF

Info

Publication number
JP2007186351A
JP2007186351A JP2006003261A JP2006003261A JP2007186351A JP 2007186351 A JP2007186351 A JP 2007186351A JP 2006003261 A JP2006003261 A JP 2006003261A JP 2006003261 A JP2006003261 A JP 2006003261A JP 2007186351 A JP2007186351 A JP 2007186351A
Authority
JP
Japan
Prior art keywords
supply pipe
reformer
catalyst layer
walls
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006003261A
Other languages
Japanese (ja)
Other versions
JP4804925B2 (en
Inventor
Takeshi Kuwabara
武 桑原
Yasushi Yoshino
靖 吉野
Shiro Fujishima
史郎 藤島
Shigeki Kobayashi
茂樹 小林
Takuya Moroishi
拓也 諸石
Jun Ono
小野  純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Rad Co Ltd
Original Assignee
T Rad Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Rad Co Ltd filed Critical T Rad Co Ltd
Priority to JP2006003261A priority Critical patent/JP4804925B2/en
Publication of JP2007186351A publication Critical patent/JP2007186351A/en
Application granted granted Critical
Publication of JP4804925B2 publication Critical patent/JP4804925B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the deformation of a supply pipe for supplying oxidation air in a self-oxidation internal heating type reformer. <P>SOLUTION: In the self-oxidation internal heating type reformer 1, in which the supply pipe 14 for supplying oxidation air is extended into a mixed catalyst layer 5 arranged in a main reforming chamber 3 and a plurality of air ejecting holes 17 are provided in the extended part of the supply pipe 14, the cross section of the supply pipe 14 is made flat and a plurality of rows of the plurality of air ejecting holes 17 are provided in each of both walls of the major diameter side of the supply pipe 14, and a supporting part 19 having gas permeability is provided between the rows of the air ejecting holes 17 so as to prevent the mutual approximation of the both walls. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は原料ガスを水蒸気改質して水素リッチな改質ガスを生成する自己酸化内部加熱型の改質器に関し、特に、酸化空気を供給する供給管の熱変形を防止すると共に、空気の流通を円滑に行う自己酸化内部加熱型の改質器に関する。   The present invention relates to a self-oxidation internal heating type reformer that generates a hydrogen-rich reformed gas by steam reforming a raw material gas, and in particular, prevents thermal deformation of a supply pipe that supplies oxidized air, The present invention relates to a self-oxidation internal heating type reformer that facilitates circulation.

従来から、原料ガスと水蒸気の混合物(以下、原料一水蒸気混合物という。)を改質触媒の存在下に水蒸気改質し、水素リッチな改質ガスを生成する改質器が知られている。改質器で得られる水素リッチな改質ガスは、残留するCO(一酸化炭素)をCO低減手段で触媒の存在下に酸素含有ガスと反応させてCOへ変換し、特に低温で作動する固体高分子電解質型燃料電池用には、数ppmレベルまでCOを低減してから燃料として供給される。原料ガスには、メタン等の炭化水素、メタノール等の脂肪族アルコール類、或いはジメチルエーテル等のエーテル類、都市ガスなどが用いられる。このような改質器において、メタンを原料ガスとして使用した場合の水蒸気改質の反応式は、CH+2HO→CO+4Hで示すことができ、好ましい改質反応温度は、650〜750℃の範囲である。 2. Description of the Related Art Conventionally, there is known a reformer that generates a hydrogen-rich reformed gas by steam reforming a mixture of a source gas and steam (hereinafter referred to as a source-steam mixture) in the presence of a reforming catalyst. The hydrogen-rich reformed gas obtained in the reformer is converted to CO 2 by reacting residual CO (carbon monoxide) with an oxygen-containing gas in the presence of a catalyst by means of CO reduction, and operates at a particularly low temperature. For solid polymer electrolyte fuel cells, CO is reduced to several ppm level before being supplied as fuel. As the source gas, hydrocarbons such as methane, aliphatic alcohols such as methanol, ethers such as dimethyl ether, city gas, and the like are used. In such a reformer, the reaction formula of steam reforming when methane is used as a raw material gas can be expressed as CH 4 + 2H 2 O → CO 2 + 4H 2 , and a preferable reforming reaction temperature is 650 to The range is 750 ° C.

改質器の改質反応に必要な熱を供給する方式として外部加熱型と、内部加熱型がある。外部加熱型の改質器は、外部に加熱部を設け、その熱源で原料ガスと水蒸気を反応させて改質ガスを生成するようになっている。内部加熱型の改質器はその供給側(上流側)に部分酸化反応層を設け、該部分酸化反応層で発生した熱を用いて下流側に配備した水蒸気改質反応層を水蒸気改質反応温度まで加熱し、該加熱された水蒸気改質触媒層で水蒸気改質反応をさせて水素リッチな改質ガスを生成するようになっている。   There are an external heating type and an internal heating type as a system for supplying heat necessary for the reforming reaction of the reformer. The external heating type reformer is provided with a heating unit outside, and a reformed gas is generated by reacting a raw material gas and water vapor with a heat source. The internal heating type reformer is provided with a partial oxidation reaction layer on the supply side (upstream side), and the steam reforming reaction layer disposed on the downstream side using the heat generated in the partial oxidation reaction layer is subjected to a steam reforming reaction. Heating to a temperature is performed, and a steam reforming reaction is performed in the heated steam reforming catalyst layer to generate a hydrogen-rich reformed gas.

部分酸化反応は、CH+1/2・O→CO+2Hで示すことができ、好ましい部分酸化反応の温度は250℃以上の範囲である。内部加熱型の改質器を改良したものとして自己酸化内部加熱型の改質器が例えば特許文献1、2に記載されている.特許文献1、2の改質器は外側の予備改質室と内側の主改質室を備えた二重構造になっており、予備改質室には原料一水蒸気混合物の供給部、改質触媒層および排出部が設けられ、主改質室には前記排出部からの排出物を受け入れる供給部、酸化空気の供給管、改質触媒と酸化触媒を混合した混合触媒層、シフト触媒層および改質ガスの排出部が設けられている。 The partial oxidation reaction can be represented by CH 4 + 1/2 · O 2 → CO + 2H 2 , and the preferable partial oxidation reaction temperature is in the range of 250 ° C. or higher. For example, Patent Documents 1 and 2 describe a self-oxidation internal heating type reformer as an improvement of the internal heating type reformer. The reformers of Patent Documents 1 and 2 have a double structure including an outer preliminary reforming chamber and an inner main reforming chamber. The main reforming chamber is provided with a catalyst layer and a discharge unit, the main reforming chamber receives a discharge from the discharge unit, a supply pipe for oxidized air, a mixed catalyst layer in which the reforming catalyst and the oxidation catalyst are mixed, a shift catalyst layer, and A reformed gas discharge unit is provided.

図5は自己酸化内部加熱型の改質器を模式的に示す断面図、図6は図5のA−A断面図である。改質器1は二重筒状に配置した外側の予備改質室2と内側の主改質室3を備えており全体が薄型に形成されている。予備改質室2と主改質室3はそれぞれ細長く断面が偏平状(図示の例では偏平な方形)に形成されると共に、それらの断面は互いに略相似形とされる。予備改質室2は外筒2aと内筒3aの間に形成され、主改質室3は内筒3aの内側に形成される。予備改質室2に改質触媒層4が設けられ、主改質室3に改質触媒と酸化触媒を混合した混合触媒層5とシフト触媒層6が設けられ、シフト触媒層6は高温シフト触媒層7と低温シフト触媒層8により構成される。なお、これら触媒層に充填される触媒は一般に粒子状またはハニカム状のものが用いられる。   FIG. 5 is a cross-sectional view schematically showing a self-oxidation internal heating type reformer, and FIG. 6 is a cross-sectional view taken along line AA of FIG. The reformer 1 includes an outer preliminary reforming chamber 2 and an inner main reforming chamber 3 arranged in a double cylinder shape, and is formed thin as a whole. The preliminary reforming chamber 2 and the main reforming chamber 3 are each elongated and have a flat cross section (in the illustrated example, a flat square shape), and the cross sections thereof are substantially similar to each other. The preliminary reforming chamber 2 is formed between the outer cylinder 2a and the inner cylinder 3a, and the main reforming chamber 3 is formed inside the inner cylinder 3a. The reforming catalyst layer 4 is provided in the pre-reforming chamber 2, the mixed catalyst layer 5 and the shift catalyst layer 6 in which the reforming catalyst and the oxidation catalyst are mixed are provided in the main reforming chamber 3, and the shift catalyst layer 6 is shifted at a high temperature. The catalyst layer 7 and the low temperature shift catalyst layer 8 are configured. The catalyst filled in the catalyst layer is generally in the form of particles or honeycomb.

改質触媒は原料ガスを水蒸気改質するものであり、例えばNiO−A1あるいはNiO−SiO・A1などのNi系改質反応触媒やWO−SiO・A1やNiO−WO・SiO・A1などが使用される。混合触媒層5を構成する改質触媒は上記と同様なものが使用され、それに均一に分散される酸化触媒は原料一水蒸気混合物中の原料ガスを酸化発熱させて水蒸気改質反応に必要な温度を得るもので、例えば白金(Pt)やロジウム(Rh)あるいはルテニウム(Ru)あるいはパラジウム(Pd)が使用される。なお改質触媒に対する酸化触媒の混合割合は、水蒸気改質すべき原料ガスの種類に応じて1〜15%程度の範囲で選択され、例えば原料ガスとしてメタンを使用する場合は5%±2%程度、メタノールの場合は2%±1%程度の混合割合とされる。 Reforming catalyst are those of the raw material gas to steam reforming, for example, NiO-A1 2 O 3 or Ni-based reforming catalyst such as NiO-SiO 2 · A1 2 O 3 and WO 2 -SiO 2 · A1 2 O 3 and NiO-WO 2 · SiO 2 · A1 2 O 3 are used. The reforming catalyst constituting the mixed catalyst layer 5 is the same as described above, and the oxidation catalyst uniformly dispersed therein is the temperature required for the steam reforming reaction by oxidizing the raw material gas in the raw material-steam mixture. For example, platinum (Pt), rhodium (Rh), ruthenium (Ru), or palladium (Pd) is used. The mixing ratio of the oxidation catalyst to the reforming catalyst is selected in the range of about 1 to 15% according to the type of the raw material gas to be steam reformed. For example, when methane is used as the raw material gas, it is about 5% ± 2%. In the case of methanol, the mixing ratio is about 2% ± 1%.

予備改質室2の下部に原料―水蒸気混合物の供給部9が設けられ、予備改質室2の上部に予備改質後の流出物が排出する排出部10が設けられる。主改質室3の上部には前記予備改質室2の排出部10に連通する供給部11が設けられ、主改質室3の中央部に酸化空気を供給する酸素供給管14が延長され、その酸素供給管14が混合触媒層5に延長する部分に複数のノズルからなる空気噴出部17が形成されている。さらに主改質室3の下部には改質ガスの排出部12が設けられる。なお酸素供給管14の断面は偏平状(図示の例では偏平な方形)に形成されると共に、前記予備改質室2と主改質室3の断面と略相似形になっている。   A raw material-steam mixture supply unit 9 is provided at the lower part of the preliminary reforming chamber 2, and a discharge unit 10 for discharging the effluent after the preliminary reforming is provided at the upper part of the preliminary reforming chamber 2. A supply unit 11 communicating with the discharge unit 10 of the preliminary reforming chamber 2 is provided above the main reforming chamber 3, and an oxygen supply pipe 14 for supplying oxidized air to the central portion of the main reforming chamber 3 is extended. In the portion where the oxygen supply pipe 14 extends to the mixed catalyst layer 5, an air ejection portion 17 composed of a plurality of nozzles is formed. Further, a reformed gas discharge section 12 is provided at the lower portion of the main reforming chamber 3. The cross section of the oxygen supply pipe 14 is formed in a flat shape (a flat square in the illustrated example), and is substantially similar to the cross sections of the preliminary reforming chamber 2 and the main reforming chamber 3.

主改質室3には上部から下部に順に混合触媒層5、高温シフト触媒層7および低温シフト触媒層8が設けられるが、各触媒層の境界部および排出部12を含む低温シフト触媒層8の下側には触媒粒子を支持する支持板15が配置される。(なお予備改質室2にも同様な支持板15が配置される。さらには、シフト層境界には支持板を挿入しなくてもよい。)これら支持板15は気体流通性を有するが触媒粒子は通過させない孔径を有しており、通常、板状のパンチメタルやメッシュ等の多孔性の部材が使用される。   The main reforming chamber 3 is provided with a mixed catalyst layer 5, a high temperature shift catalyst layer 7 and a low temperature shift catalyst layer 8 in order from the top to the bottom, and the low temperature shift catalyst layer 8 including the boundary portion of each catalyst layer and the discharge portion 12. A support plate 15 for supporting the catalyst particles is disposed on the lower side. (It should be noted that a similar support plate 15 is also disposed in the pre-reforming chamber 2. Furthermore, it is not necessary to insert a support plate at the boundary of the shift layer.) Although these support plates 15 have gas flow properties, they are catalysts. The particles have a pore diameter that does not allow passage, and usually a porous member such as a plate-like punch metal or mesh is used.

排出部12には支持板15の下方空間に設けたマニホールドと、そのマニホールドが改質器1の外側に延長する端部に連接した出口用タンクが存在する。そして排出部12に流出した改質ガスは支持板15を通過してマニホールドに入り、そこから出口タンクを通って外部に排出される。   The discharge unit 12 includes a manifold provided in a space below the support plate 15 and an outlet tank connected to an end portion of the manifold extending outside the reformer 1. Then, the reformed gas that has flowed out to the discharge unit 12 passes through the support plate 15 and enters the manifold, and is discharged from there through the outlet tank.

一方、主改質室3の上部には起動用のプレヒーター13が連接される。プレヒーター13はシステム起動時に混合触媒層5を迅速に酸化反応温度まで昇温するものであり、その内部に電気ヒーターが配置されると共に、白金(Pt)やパラジウム(Pd)等の酸化触媒が充填される。そして起動時にプレヒーター13に吸引混合手段16から原料ガスとスタート空気が供給され、原料ガスが空気中の酸素により酸化反応し、その酸化熱により発生する高温ガスで混合触媒層5を酸化反応可能な温度まで加熱するようになっている。   On the other hand, a starting preheater 13 is connected to the upper portion of the main reforming chamber 3. The preheater 13 rapidly raises the mixed catalyst layer 5 to the oxidation reaction temperature when the system is started up. An electric heater is disposed inside the preheater 13 and an oxidation catalyst such as platinum (Pt) or palladium (Pd) is provided. Filled. At the start-up, the preheater 13 is supplied with the raw material gas and the start air from the suction mixing means 16, and the raw material gas is oxidized by oxygen in the air, and the mixed catalyst layer 5 can be oxidized by the high temperature gas generated by the oxidation heat. Heats up to a certain temperature.

一方、エジェクタにより構成される吸引混合手段16の流体導入部には、図示しない水蒸気発生手段からの水蒸気と原料供給部からの原料ガスが導入される。また吸引混合手段15の排出部は予備改質室2の供給部9に連通される。   On the other hand, water vapor from a water vapor generating means (not shown) and raw material gas from a raw material supply part are introduced into the fluid introducing part of the suction mixing means 16 constituted by an ejector. The discharge part of the suction mixing means 15 is communicated with the supply part 9 of the preliminary reforming chamber 2.

次に、図5の改質器1の作用を概略的に説明する。供給部9から供給される原料―水蒸気混合物は、予備改質室2の改質触媒4の作用でその原料ガスの一部が改質されて水素リッチな改質ガスを生成し、生成した改質ガスと残りの原料―水蒸気混合物は排出部10から主改質室3の供給部11に流入する。   Next, the operation of the reformer 1 of FIG. 5 will be schematically described. The raw material-steam mixture supplied from the supply unit 9 is partly reformed by the action of the reforming catalyst 4 in the preliminary reforming chamber 2 to generate a hydrogen-rich reformed gas. The quality gas and the remaining raw material-steam mixture flow from the discharge unit 10 to the supply unit 11 of the main reforming chamber 3.

主改質室3に流入した原料―水蒸気混合物は、混合触媒層5に含まれる酸化触媒の作用で原料ガスの一部が空気中の酸素と反応(酸化反応)し、その酸化熱で原料ガスが水蒸気と反応(改質反応)して改質ガスを生成する。生成した改質ガスは高温シフト触媒層7で残存するCO(一酸化炭素)を水素に変換し、次いで低温シフト触媒層8でさらに残存するCOを水素に変換して排出部12から外部に排出される。   The raw material-steam mixture flowing into the main reforming chamber 3 reacts with the oxygen in the air (oxidation reaction) due to the action of the oxidation catalyst contained in the mixed catalyst layer 5, and the raw material gas is generated by the oxidation heat. Reacts with water vapor (reforming reaction) to generate a reformed gas. The generated reformed gas converts CO (carbon monoxide) remaining in the high temperature shift catalyst layer 7 into hydrogen, and then further converts the remaining CO into hydrogen in the low temperature shift catalyst layer 8 to be discharged from the discharge unit 12 to the outside. Is done.

図7は実用的な改質器1の部分断面図、図8は図7のVIII−VIII線断面図である。これらの図に示す例は改質器1が2つの薄型の改質器を重ねた構造とすることにより、ユニットあたりの処理容量を増加させたものであるが、構成及び作用は図5に示すものと実質的に同一である。これら図7、図8における図3と同じ部分には図3と同一符号を付している。なお符号18はサーミスタ等の温度検出器であり、改質器1の温度監視もしくは温度制御に利用される。   7 is a partial cross-sectional view of the practical reformer 1, and FIG. 8 is a cross-sectional view taken along the line VIII-VIII of FIG. In the examples shown in these figures, the reformer 1 has a structure in which two thin reformers are stacked to increase the processing capacity per unit. The configuration and operation are shown in FIG. Is substantially the same. 7 and FIG. 8 that are the same as in FIG. 3 are assigned the same reference numerals as in FIG. Reference numeral 18 denotes a temperature detector such as a thermistor, which is used for temperature monitoring or temperature control of the reformer 1.

本例の酸化空気の酸素供給管14は、図7,8に示すように、混合触媒層5中に延長した部分の断面の長径に平行な平面において、その平面に小さな貫通孔からなる空気噴出孔17の群がそれぞれ設けられる。これら空気噴出孔17は供給管の先端部付近に2列配置されているが、3列以上配置することもできる。そして酸素供給管14の先端部はロウ付け等により閉鎖されている。   As shown in FIGS. 7 and 8, the oxygen supply pipe 14 for oxidized air of this example is an air jet comprising a small through hole in a plane parallel to the major axis of the cross section of the portion extending into the mixed catalyst layer 5. Each group of holes 17 is provided. These air ejection holes 17 are arranged in two rows near the tip of the supply pipe, but three or more rows can also be arranged. The tip of the oxygen supply pipe 14 is closed by brazing or the like.

特開2001−192201号公報JP 2001-192201 A 特開2005−149860号公報JP-A-2005-149860

前記のような改質器1の混合触媒層5は、酸化反応による発熱と改質反応による吸熱が同時に起こるが、酸化反応は酸化空気の噴出部分が最も大きく、そこから遠ざかるほど次第に小さくなる傾向がある。そのため空気噴出孔に近い領域の温度は高くなり、それから離れた周辺領域の温度はそれより低くなって両領域の間に温度差が生じる傾向がある。このような温度差が生じると、ステンレスなどの金属で作られる熱膨張率の大きい酸素供給管14とアルミナ等の無機担体に担持された熱膨張率の小さい混合触媒層5の熱膨張差による応力や、酸素供給管14各部の温度差により酸素供給管14に変形を生じることがある。   In the mixed catalyst layer 5 of the reformer 1 as described above, heat generation due to the oxidation reaction and heat absorption due to the reforming reaction occur simultaneously. There is. For this reason, the temperature in the region close to the air ejection hole is high, and the temperature in the peripheral region far from it is lower than that, and there is a tendency that a temperature difference occurs between the two regions. When such a temperature difference occurs, the stress due to the difference in thermal expansion between the oxygen supply pipe 14 having a large thermal expansion coefficient made of metal such as stainless steel and the mixed catalyst layer 5 having a small thermal expansion coefficient supported on an inorganic carrier such as alumina. In addition, the oxygen supply pipe 14 may be deformed due to a temperature difference in each part of the oxygen supply pipe 14.

また、熱膨張率の小さい混合装触媒層5とステンレス等の金属で作られた熱膨張率の大きい内筒3aの熱膨張差により、改質器1が平常運転して高温になっているときには改質触媒層5が下方に沈み込み、改質器1が停止して低温になっているときにその沈み込みが回復せず、酸素供給管14が周囲から押しつぶされるような変形を受けることもある。   Further, when the reformer 1 is operating at a high temperature due to a difference in thermal expansion between the mixed catalyst layer 5 having a small coefficient of thermal expansion and the inner cylinder 3a having a large coefficient of thermal expansion made of a metal such as stainless steel. When the reforming catalyst layer 5 sinks downward and the reformer 1 stops and is at a low temperature, the sinking does not recover and the oxygen supply pipe 14 may be deformed to be crushed from the surroundings. is there.

図9は酸素供給管14が周囲からの応力で変形を受ける状態を模式的に説明する図である。図9(A)は改質器1が運転停止中で例えば150℃程度の保温されている場合であり、図9(B)は改質器1が700℃程度で平常運転している場合であり、図9(C)は改質器1が平常運転から再び運転停止の状態に戻った場合である。   FIG. 9 is a diagram schematically illustrating a state in which the oxygen supply pipe 14 is deformed by stress from the surroundings. FIG. 9A shows a case where the reformer 1 is stopped and kept at a temperature of about 150 ° C., for example. FIG. 9B shows a case where the reformer 1 is operating normally at about 700 ° C. FIG. 9C shows the case where the reformer 1 returns from the normal operation to the operation stop state again.

最初、図9(A)の状態で混合触媒層5が正常なレベルであったとすると、改質器1が高温の図9(B)の状態になると、内筒3aの熱膨張がアルミナ等の無機担体に担持される混合触媒層5の熱膨張より大きいので、結果として図示のように混合触媒層5が内筒3a内で下方に沈み込む状態になる。すなわち混合触媒層5の全体容積は殆ど変化しないので、内筒3aの内径が拡大する分だけ混合触媒層5の上面が下降することになる。   First, assuming that the mixed catalyst layer 5 is at a normal level in the state of FIG. 9A, when the reformer 1 is in a high temperature state of FIG. 9B, the thermal expansion of the inner cylinder 3a is made of alumina or the like. Since it is larger than the thermal expansion of the mixed catalyst layer 5 supported on the inorganic carrier, as a result, the mixed catalyst layer 5 sinks downward in the inner cylinder 3a as shown in the figure. That is, since the entire volume of the mixed catalyst layer 5 hardly changes, the upper surface of the mixed catalyst layer 5 is lowered by an amount corresponding to an increase in the inner diameter of the inner cylinder 3a.

そして、再び改質器1が低温に戻る図9(C)の状態になっても、内筒3a内に沈み込んだ混合触媒層5の全体の容積は殆ど変化しないので、沈み込んで半径方向に拡大した混合触媒層5によって内筒3aは元の状態に回復できずに外側に膨らむような変形を起こす。この変形によって内側に向かう応力が生じ、その応力は混合触媒層5を通して酸素供給管14に加わり、酸素供給管14を外側から押し潰すような変形を与える。そしてこの変形の程度は酸素供給管14の空気噴出孔17に近い領域が最も大きいことが分かった。   Even when the reformer 1 returns to the low temperature state shown in FIG. 9C, the entire volume of the mixed catalyst layer 5 submerged in the inner cylinder 3a hardly changes. The inner cylinder 3a cannot be restored to its original state due to the mixed catalyst layer 5 expanded to the extent that it deforms so as to bulge outward. Due to this deformation, an inward stress is generated, and the stress is applied to the oxygen supply pipe 14 through the mixed catalyst layer 5 to deform the oxygen supply pipe 14 from the outside. It has been found that the extent of this deformation is greatest in the region near the air ejection hole 17 of the oxygen supply pipe 14.

酸素供給管14に変形が生じると酸化空気の供給能力が低下し、空気噴出も不均一になるおそれがある。そこで本発明は、このような従来の自己酸化内部加熱型の改質器における酸化空気の供給管における問題を解決することを課題とし、そのための新しい構造の改質器を提供することを目的とする。   When the oxygen supply pipe 14 is deformed, the supply capacity of the oxidized air is lowered, and the air ejection may be uneven. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a reformer having a new structure for solving the problem in the oxidizing air supply pipe in the conventional self-oxidation internal heating type reformer. To do.

前記課題を解決する本発明の改質器は、主改質室内に配置された混合触媒層中に酸化空気を供給する供給管が延長され、前記供給管の前記延長部分に複数の空気噴出孔が設けられた自己酸化内部加熱型の改質器である。そして、前記供給管は断面が偏平状とされ、その断面の長径に平行な両壁に複数の空気噴出孔がそれぞれ複数列設けられ、前記両壁が互いに接近することを防止すると共に、気体の流通を可能とする支持部が前記空気噴出孔の列間に配置されていることを特徴とする(請求項1)。   In the reformer of the present invention that solves the above-described problem, a supply pipe for supplying oxidized air is extended into a mixed catalyst layer disposed in a main reforming chamber, and a plurality of air ejection holes are formed in the extended portion of the supply pipe. Is a self-oxidation internal heating type reformer. The supply pipe has a flat cross section, and a plurality of rows of air ejection holes are provided in both walls parallel to the major axis of the cross section, preventing the both walls from approaching each other, and The support part which enables distribution | circulation is arrange | positioned between the row | line | columns of the said air ejection hole (Claim 1), It is characterized by the above-mentioned.

上記改質器において、前記支持部は、両壁に所定間隔で列状に形成した複数のディンプルまたは両壁の間に配置した断面波形のフィン若しくはスペーサとすることができる(請求項2)。   In the reformer, the support portion may be a plurality of dimples formed in a row at predetermined intervals on both walls, or a fin or spacer having a corrugated cross section disposed between both walls.

上記改質器において、前記複数のディンプル、フィン若しくはスペーサのピッチは、供給管の板厚の25倍以下とすることができる(請求項3)。   In the reformer, the pitch of the plurality of dimples, fins, or spacers can be 25 times or less the plate thickness of the supply pipe.

本発明の改質器は、供給管は断面が偏平状とされ、その長径に平行な両壁に複数の空気噴出孔がそれぞれ複数列設けられ、前記両壁が互い接近することを防止すると共に、気体の流通を可能とする支持部が前記空気噴出孔の列間に配置されていることを特徴とする。このように構成すると、供給管、混合触媒層および内筒等の熱膨張差により、供給管の長径に平行な両壁に外側からの応力が加わったとしても、複数の支持部により供給管の変形を防止することができる。   In the reformer of the present invention, the supply pipe has a flat cross section, and a plurality of rows of air ejection holes are provided on both walls parallel to the major axis, thereby preventing the walls from approaching each other. Further, the present invention is characterized in that a support portion that enables gas flow is disposed between the rows of the air ejection holes. With this configuration, even if stress from the outside is applied to both walls parallel to the long diameter of the supply pipe due to differences in thermal expansion of the supply pipe, the mixed catalyst layer, the inner cylinder, and the like, Deformation can be prevented.

上記改質器において、前記支持部は、両壁に所定間隔で列状に形成した複数のディンプルまたは両壁の間に配置した断面波形のフィン若しくはスペーサとすることができる。このような複数のディンプルまたはフィンやスペーサを用いることにより、気体流通性を有し且つ変形防止機能の高い支持部を容易に構成できる。   In the reformer, the support portion may be a plurality of dimples formed in a row at predetermined intervals on both walls, or a fin or spacer having a corrugated cross section disposed between both walls. By using such a plurality of dimples, fins or spacers, it is possible to easily configure a support portion having gas flowability and a high deformation preventing function.

上記改質器において、前記複数のディンプル、フィン若しくはスペーサのピッチを供給管の板厚の25倍以下とすると、支持部に実用上十分な変形防止機能を確実に発揮させることができる。   In the above reformer, if the pitch of the plurality of dimples, fins or spacers is 25 times or less the plate thickness of the supply pipe, the support section can surely exhibit a practically sufficient deformation preventing function.

次に、図面を参照して本発明を実施するための最良の形態を説明する。図1は本発明の改質器における供給管部分を具体的に示す縦断面図およびその部分拡大図であり、図2は図1のII−II線断面図およびその部分拡大図である。これらの図に示す改質器1は図7、図8の改質器1と主要部は同じである。そこで、同じ部分には同一符号を付し、重複する説明は出来るだけ省略する。なお本発明が適用できる改質器1はこのような二重構造に構成されたものに限らず、予備改質室2と主改質室3が別体として構成されるもの、あるいは予備改質室2を有さず主改質室3のみで水蒸気改質を行うように構成されたものにも適用できる。したがって本発明における酸素供給管14が配置される「主改質室3」は、図1のような二重構造の内側に配置される主改質室3以外に、別体として配置される主改質室3または予備改質室2を有しない主改質室3なども含むことを意味する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view specifically showing a supply pipe portion in the reformer of the present invention and a partially enlarged view thereof, and FIG. 2 is a sectional view taken along the line II-II in FIG. 1 and a partially enlarged view thereof. The reformer 1 shown in these figures is the same as the reformer 1 shown in FIGS. Therefore, the same parts are denoted by the same reference numerals, and redundant description is omitted as much as possible. The reformer 1 to which the present invention can be applied is not limited to such a double structure, but the pre-reforming chamber 2 and the main reforming chamber 3 are configured as separate bodies, or the pre-reforming. The present invention can also be applied to a configuration in which steam reforming is performed only in the main reforming chamber 3 without the chamber 2. Therefore, the “main reforming chamber 3” in which the oxygen supply pipe 14 in the present invention is disposed is the main main chamber disposed separately from the main reforming chamber 3 disposed inside the double structure as shown in FIG. This means that the reforming chamber 3 or the main reforming chamber 3 having no preliminary reforming chamber 2 is included.

本発明の改質器1に設けられる酸化空気の酸素供給管14は、内筒3aで囲まれた主改質室3の長手方向に平行に且つその中央部に沿って延長され、その先端側は混合触媒層5の上部に達し、その先端は上蓋14a(図1(B))のロウ付け等により閉鎖されている。酸素供給管14の断面は偏平状とされ、混合触媒層5中に延長した部分には、その断面の長径に平行な両壁に貫通孔からなる空気噴出孔17が多数設けられている。図2(A)に示す如く、これら空気噴出孔17は酸素供給管14の両壁にそれぞれ2列平行して設けられ、第1列にはこの例では13個配列され、第2列には12個の空気噴出孔17が定間隔で配列されている。なお、酸素供給管14の断面は、偏平な方形状であっても偏平な楕円形状、或いは断面の長径端のみ円弧状に形成されたものであってもよい。   The oxygen supply pipe 14 for oxidized air provided in the reformer 1 of the present invention is extended in parallel with the longitudinal direction of the main reforming chamber 3 surrounded by the inner cylinder 3a and along the central portion thereof, and its distal end side. Reaches the upper part of the mixed catalyst layer 5, and the tip thereof is closed by brazing of the upper lid 14a (FIG. 1B). The cross section of the oxygen supply pipe 14 is flat, and a portion extending into the mixed catalyst layer 5 is provided with a large number of air ejection holes 17 consisting of through holes on both walls parallel to the major axis of the cross section. As shown in FIG. 2 (A), these air ejection holes 17 are provided in two rows in parallel on both walls of the oxygen supply pipe 14, respectively. In the first row, 13 are arranged in this example, and in the second row, Twelve air ejection holes 17 are arranged at regular intervals. The cross section of the oxygen supply pipe 14 may be a flat square shape, a flat elliptical shape, or an arc shape only at the major axis end of the cross section.

2列の空気噴出孔17の列間には、両壁が互い接近することを防止すると共に、気体の流通を確保する一対づつの円錐台形(截頭円錐形)の支持部19が両壁から凹陥し、その対向面が接している。図示の支持部19は、所定間隔で列状に設けられた複数(この例では13個)のディンプル20により構成される。これらディンプル20は、図1(B)に示すように、酸素供給管14の両壁を外側から内側に向かって押し込んだ形状を有し、対向するそれぞれのディンプル20の先端部は互いに密着してろう付けされている。このような支持部19を設けることにより、断面の短径方向両側から加わる外力がその支持部19で受け止められ、その支持力により酸素供給管14の変形が防止される。また各ディンプル20は所定間隔で互いに離反しているので内部の気体流通性を損なうことはない。なお各ディンプル20は例えば酸素供給管14の長径を外側からプレス加工して形成することができる。   Between the two rows of the air ejection holes 17, a pair of frustoconical (conical frustoconical) support portions 19 that prevent the two walls from approaching each other and ensure the flow of gas from both walls. It is recessed and its opposite surface is in contact. The illustrated support portion 19 is constituted by a plurality of (in this example, 13) dimples 20 arranged in a row at a predetermined interval. As shown in FIG. 1B, these dimples 20 have a shape in which both walls of the oxygen supply pipe 14 are pushed in from the outside to the inside, and the tip portions of the opposing dimples 20 are in close contact with each other. It is brazed. By providing such a support portion 19, external force applied from both sides of the cross-section in the minor axis direction is received by the support portion 19, and deformation of the oxygen supply pipe 14 is prevented by the support force. Further, since the dimples 20 are separated from each other at a predetermined interval, the internal gas flowability is not impaired. Each dimple 20 can be formed, for example, by pressing the major axis of the oxygen supply pipe 14 from the outside.

酸素供給管14は前記のように空気噴出孔17付近の領域において応力を受け易いが、このように空気噴出孔17の列間に支持部19を配置することにより、その応力に対する抵抗力を該領域において重点的に増大することができる。本実施形態では空気噴出孔17を酸素供給管14の両壁にそれぞれ2列設けられているが、3列以上設けることもできる。空気噴出孔17を3列以上設ける場合は、それらの列間ごとに支持部19を設ければよい。   The oxygen supply pipe 14 is easily subjected to stress in the region near the air ejection holes 17 as described above. However, by arranging the support portions 19 between the rows of the air ejection holes 17 as described above, the resistance force against the stress can be increased. It can increase mainly in the area. In the present embodiment, two rows of air ejection holes 17 are provided on both walls of the oxygen supply pipe 14, but three or more rows may be provided. In the case where three or more rows of air ejection holes 17 are provided, a support portion 19 may be provided for each of those rows.

本実施形態では支持部19を空気噴出部17の列間に設けているが、図示のように、それ以外の混合触媒層5の部分およびシフト触媒層6(特に高温シフト触媒層7)の領域にも空気流通に偏りが生じない配列で支持部19を配置し、それらの領域の補強も行うこともできる。なお場合によっては、これら列間以外の支持部19は省略することもできる。また、シフト触媒層6にはインナーフィン22を配置してもよい。   In the present embodiment, the support portion 19 is provided between the rows of the air ejection portions 17. However, as shown in the figure, the other portion of the mixed catalyst layer 5 and the region of the shift catalyst layer 6 (particularly the high temperature shift catalyst layer 7). In addition, it is also possible to arrange the support portions 19 in an arrangement in which no deviation occurs in the air flow and to reinforce those regions. In some cases, the support portions 19 other than those between the rows can be omitted. Further, the inner fins 22 may be disposed on the shift catalyst layer 6.

ディンプル20の平面形状は円形、楕円形、方形、多角形など任意のものであってよい。またその平面寸法、例えば円形の場合、その平面の直径は板厚の2倍〜10倍程度がよい。また、支持部19として複数のディンプル20を用いる場合、実験によればそのピッチ(隣接するディンプル19の中心間の間隔)を酸素供給管14の板厚(短径側と長径の板厚が異なる場合は、その長軸側の板厚)の25倍以下に設定することにより、十分な補強効果を発揮することが確かめられている。例えば酸素供給管14の板厚が0.8mmの場合、ディンプル20のピッチを20mm以下とすることが望ましい。   The plane shape of the dimple 20 may be any shape such as a circle, an ellipse, a rectangle, or a polygon. Further, in the case of the plane dimension, for example, a circle, the diameter of the plane is preferably about 2 to 10 times the plate thickness. Further, when a plurality of dimples 20 are used as the support portion 19, according to an experiment, the pitch (interval between the centers of adjacent dimples 19) is determined by changing the thickness of the oxygen supply pipe 14 (the thickness of the minor axis differs from that of the major axis) In this case, it has been confirmed that a sufficient reinforcing effect is exhibited by setting it to 25 times or less of the plate thickness on the major axis side). For example, when the thickness of the oxygen supply pipe 14 is 0.8 mm, the pitch of the dimples 20 is desirably 20 mm or less.

図3に本発明の改質器1の他の実施形態を図2に準じて示す。図3が図2に示す構造と異なる部分は、酸素供給管14に設ける支持部19の形状であり、そのほかは同様に構成される。支持部19は図4(A)に示すような幅方向に細長い波型若しくは図4(B)に示すような細長い矩形のフィン21で構成される。このフィン21の山部や谷部を酸素供給管14の長径に平行な両壁間に接触させて配置することにより、図2(図1)の例と同様な補強効果を発揮することができる。なお支持部19はフィン21の変わりにスペーサであってもよい。そのようなスペーサは図示していないが、例えば酸素供給管14の長軸側の両壁の内面の少なくとも一方に連結もしくは接合可能な複数の板材や棒材で構成することができる。   FIG. 3 shows another embodiment of the reformer 1 of the present invention according to FIG. 3 differs from the structure shown in FIG. 2 in the shape of the support portion 19 provided in the oxygen supply pipe 14, and the other configuration is the same. The support portion 19 is constituted by a corrugated fin 21 elongated in the width direction as shown in FIG. 4A or an elongated rectangular fin 21 as shown in FIG. By arranging the peaks and valleys of the fin 21 in contact between both walls parallel to the long diameter of the oxygen supply pipe 14, the same reinforcing effect as in the example of FIG. 2 (FIG. 1) can be exhibited. . The support portion 19 may be a spacer instead of the fin 21. Such a spacer is not shown, but can be composed of, for example, a plurality of plates or bars that can be connected to or joined to at least one of the inner surfaces of both walls on the long axis side of the oxygen supply pipe 14.

本発明の改質器は原料ガスを水蒸気改質して水素リッチな改質ガスを生成する改質器に利用できる。   The reformer of the present invention can be used for a reformer that generates a hydrogen-rich reformed gas by steam reforming a raw material gas.

本発明の改質器の1例を示す縦断面図。The longitudinal section showing an example of the reformer of the present invention. 図1の右側面図。The right view of FIG. 本発明の改質器の他の例を示す側面図。The side view which shows the other example of the reformer of this invention. 図3の支持部19として使用されるフィン21の部分斜視図。The fragmentary perspective view of the fin 21 used as the support part 19 of FIG. 自己酸化内部加熱型の改質器を模式的に示す断面図。Sectional drawing which shows a self-oxidation internal heating type reformer typically. 図5のA−A断面図。AA sectional drawing of FIG. 実用的な改質器1の部分断面図。FIG. 2 is a partial cross-sectional view of a practical reformer 1. 図7の右側面図。The right view of FIG. 酸素供給管14が周囲からの応力で変形を受ける状態を模式的に説明する図。The figure which illustrates typically the state in which the oxygen supply pipe 14 receives a deformation | transformation with the stress from the circumference.

符号の説明Explanation of symbols

1 改質器
2 予備改質室
2a 外筒
3 主改質室
3a 内筒
4 改質触媒層
5 混合触媒層
6 シフト触媒層
7 高温シフト触媒層
8 低温シフト触媒層
9 供給部
10 排出部
11 供給部
12 排出部
DESCRIPTION OF SYMBOLS 1 Reformer 2 Preliminary reforming chamber 2a Outer cylinder 3 Main reforming chamber 3a Inner cylinder 4 Reforming catalyst layer 5 Mixed catalyst layer 6 Shift catalyst layer 7 High temperature shift catalyst layer 8 Low temperature shift catalyst layer 9 Supply unit 10 Discharge unit 11 Supply section 12 Discharge section

13 プレヒーター
14 酸素供給管
14a 上蓋
14b 空気導入管
14c マニホールド
15 支持板
16 吸引混合手段
17 空気噴出部
19 支持部
20 ディンプル
21 フィン
22 インナーフィン
23 断熱材
24 酸化用空気
26 改質ガス
DESCRIPTION OF SYMBOLS 13 Preheater 14 Oxygen supply pipe 14a Top cover 14b Air introduction pipe 14c Manifold 15 Support plate 16 Suction mixing means 17 Air ejection part 19 Support part 20 Dimple 21 Fin 22 Inner fin 23 Heat insulating material 24 Oxidation air 26 Reformed gas

Claims (3)

主改質室3内に配置された混合触媒層5中に酸化空気を供給する供給管14が延長され、前記供給管14の前記延長部分に複数の空気噴出孔17が設けられた自己酸化内部加熱型の改質器1において、前記供給管14は断面が偏平状とされ、その長径側の両壁に複数の空気噴出孔17がそれぞれ複数列設けられ、前記両壁が互い接近することを防止すると共に、気体の流通を可能とする支持部19が前記空気噴出孔17の列間に配置されていることを特徴とする改質器。   A supply pipe 14 for supplying oxidized air is extended into the mixed catalyst layer 5 disposed in the main reforming chamber 3, and a plurality of air ejection holes 17 are provided in the extended portion of the supply pipe 14. In the heating type reformer 1, the supply pipe 14 has a flat cross section, and a plurality of rows of air ejection holes 17 are provided on both walls on the long diameter side, and the both walls approach each other. A reformer characterized in that a support portion 19 that prevents gas flow and is arranged between rows of the air ejection holes 17 is provided. 請求項1において、前記支持部19は前記両壁に所定間隔で列状に形成した複数のディンプル20または前記両壁の間に配置した断面波形のフィン21若しくはスペーサであることを特徴とする改質器。   2. The modification according to claim 1, wherein the support portion 19 is a plurality of dimples 20 formed in a row at predetermined intervals on the both walls, or fins 21 or spacers having a corrugated cross section disposed between the both walls. A genitalia. 請求項2において、前記複数のディンプル20、フィン21若しくはスペーサのピッチは供給管14の板厚の25倍以下であることを特徴とする改質器。   3. The reformer according to claim 2, wherein the pitch of the plurality of dimples 20, fins 21, or spacers is 25 times or less the plate thickness of the supply pipe 14.
JP2006003261A 2006-01-11 2006-01-11 Reformer Expired - Fee Related JP4804925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006003261A JP4804925B2 (en) 2006-01-11 2006-01-11 Reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006003261A JP4804925B2 (en) 2006-01-11 2006-01-11 Reformer

Publications (2)

Publication Number Publication Date
JP2007186351A true JP2007186351A (en) 2007-07-26
JP4804925B2 JP4804925B2 (en) 2011-11-02

Family

ID=38341785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006003261A Expired - Fee Related JP4804925B2 (en) 2006-01-11 2006-01-11 Reformer

Country Status (1)

Country Link
JP (1) JP4804925B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235346A (en) * 2009-03-30 2010-10-21 Japan Energy Corp Self-heated oxidation reforming apparatus and fuel cell system
JP2010260734A (en) * 2009-04-30 2010-11-18 T Rad Co Ltd Reformer and method for manufacturing the same
KR101720577B1 (en) * 2016-09-02 2017-03-29 연세대학교 산학협력단 Fixed-bed reforming system and method using the oxygen transfer material
WO2021193657A1 (en) * 2020-03-26 2021-09-30 大阪瓦斯株式会社 Reaction device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192201A (en) * 1999-10-20 2001-07-17 Nippon Chem Plant Consultant:Kk Auto-oxidizable internal heating reformer and reforming process
JP2002039023A (en) * 1999-10-07 2002-02-06 Toyota Motor Corp Evaporator and fuel reformer mounted on vehicle
JP2004175581A (en) * 2002-11-22 2004-06-24 Toyo Radiator Co Ltd Internal heating steam reformer
JP2005149860A (en) * 2003-11-13 2005-06-09 Toyo Radiator Co Ltd Self-oxidation inside heating type steam reforming system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039023A (en) * 1999-10-07 2002-02-06 Toyota Motor Corp Evaporator and fuel reformer mounted on vehicle
JP2001192201A (en) * 1999-10-20 2001-07-17 Nippon Chem Plant Consultant:Kk Auto-oxidizable internal heating reformer and reforming process
JP2004175581A (en) * 2002-11-22 2004-06-24 Toyo Radiator Co Ltd Internal heating steam reformer
JP2005149860A (en) * 2003-11-13 2005-06-09 Toyo Radiator Co Ltd Self-oxidation inside heating type steam reforming system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235346A (en) * 2009-03-30 2010-10-21 Japan Energy Corp Self-heated oxidation reforming apparatus and fuel cell system
JP2010260734A (en) * 2009-04-30 2010-11-18 T Rad Co Ltd Reformer and method for manufacturing the same
KR101720577B1 (en) * 2016-09-02 2017-03-29 연세대학교 산학협력단 Fixed-bed reforming system and method using the oxygen transfer material
WO2021193657A1 (en) * 2020-03-26 2021-09-30 大阪瓦斯株式会社 Reaction device
JP7407635B2 (en) 2020-03-26 2024-01-04 大阪瓦斯株式会社 reactor

Also Published As

Publication number Publication date
JP4804925B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
EP2198951B1 (en) Reformer
US9884303B2 (en) Reformer
JP4804925B2 (en) Reformer
CA2647797C (en) Solid oxide fuel cell and reformer
CN101276924B (en) Reaction vessel and reaction device
US20010024629A1 (en) Reformer of layered structure
JP2001106507A (en) Reformer and fuel cell power generating device provided with the same
JP4545118B2 (en) Fuel reforming system and fuel cell system including fuel reforming system
JP2008166233A (en) Fuel cell
JP2007204343A (en) Reformer and its manufacturing method
JP5336696B2 (en) Fluid processing apparatus and manufacturing method thereof
US8690976B2 (en) Fuel reformer
JP2009007204A (en) Hydrogen production apparatus and fuel cell system
JP4804883B2 (en) Reformer
US20110038762A1 (en) Apparatus, systems and methods for the production of hydrogen
JP4813169B2 (en) Reformer
JP5584022B2 (en) Fuel cell system and starting method thereof
JP4804900B2 (en) Oxygen supply pipe structure of reformer
JP5000092B2 (en) Fuel reformer
JP2005239525A (en) Steam reformer
JP2006036567A (en) Steam reforming method and mixed catalyst
JP5363182B2 (en) Reformer and manufacturing method thereof
JP2004292269A (en) Steam reformer
JP5658897B2 (en) Reforming apparatus and fuel cell system
JP2003160305A (en) Reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees