JP2010260557A - Method for manufacturing gas adsorbing device, and gas adsorbing device - Google Patents

Method for manufacturing gas adsorbing device, and gas adsorbing device Download PDF

Info

Publication number
JP2010260557A
JP2010260557A JP2009110566A JP2009110566A JP2010260557A JP 2010260557 A JP2010260557 A JP 2010260557A JP 2009110566 A JP2009110566 A JP 2009110566A JP 2009110566 A JP2009110566 A JP 2009110566A JP 2010260557 A JP2010260557 A JP 2010260557A
Authority
JP
Japan
Prior art keywords
gas
brazing material
opening
container
permeable container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009110566A
Other languages
Japanese (ja)
Other versions
JP2010260557A5 (en
JP5304419B2 (en
Inventor
Masamichi Hashida
昌道 橋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009110566A priority Critical patent/JP5304419B2/en
Publication of JP2010260557A publication Critical patent/JP2010260557A/en
Publication of JP2010260557A5 publication Critical patent/JP2010260557A5/ja
Application granted granted Critical
Publication of JP5304419B2 publication Critical patent/JP5304419B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Packages (AREA)
  • Vacuum Packaging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a gas adsorbing device capable of suppressing the determine of a gas adsorbing material, and preventing any through-hole from being formed in a container. <P>SOLUTION: After a gas adsorbing material 14 is filled in a gas hardly-permeable container 7 from an opening 8 of the gas hardly-permeable container 7 composed of a cylindrical metal member with one end opened, and the other end sealed, a lid material 11 having a substantially projecting longitudinal section composed of a bar-like part 12 with its outside diameter smaller than the inside diameter of the opening 8 and a flange 13 with its outside diameter larger than the inside diameter of the opening 8 is mounted to the gas hardly-permeable container 7 so that the bar-like part 12 is accommodated in the opening 8. An annular brazing filler metal 5 is installed close to a gap between an open end of the gas hardly-permeable container 7 and the flange 13 with the flange 13 side downwardly in the direction of gravity. The brazing filler metal 5 and its peripheral part are heated. After the brazing filler metal 5 is melted, and the brazing filler metal flows into a space between the gas hardly-permeable container 7 and the bar-like part 12 of the lid material 11 due to a capillary phenomenon, the brazing filler metal is cooled and solidified to seal the opening 8 of the gas hardly-permeable container 7. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、容器に気体吸着材を充填した気体吸着デバイスに係わり、詳しくは、容器内に気体吸着材を充填した後の容器の開口部の封止に関するものである。   The present invention relates to a gas adsorption device in which a container is filled with a gas adsorbent, and more particularly to sealing of an opening of a container after the gas adsorbent is filled in the container.

近年、真空断熱材、真空断熱容器、プラズマディスプレイパネル等、高度な真空環境により性能を発揮することができる機器(以下、真空機器と記述)の開発が盛んになってきている。   In recent years, development of devices (hereinafter referred to as vacuum devices) capable of exhibiting performance in an advanced vacuum environment, such as vacuum heat insulating materials, vacuum heat insulating containers, and plasma display panels, has become active.

これらの真空機器にとって、製造時における残留気体や経時的に侵入する気体による内部の圧力上昇は性能を劣化する原因になる。そこで、これらの気体を吸着するための気体吸着材の適用が試みられている。   For these vacuum devices, an increase in internal pressure due to residual gas at the time of manufacture or gas that enters over time causes deterioration in performance. Therefore, application of gas adsorbents for adsorbing these gases has been attempted.

気体吸着材は大気中で空気に接触すると、空気を吸着してしまい、気体の吸着能力が低下してしまう。そこで、気体難透過性容器や気体難透過性素材で被うことが試みられている(例えば、特許文献1参照)。   When the gas adsorbent comes into contact with air in the atmosphere, the gas adsorbent adsorbs air, resulting in a reduction in gas adsorption capacity. Thus, attempts have been made to cover with a gas poorly permeable container or a gas permeable material (see, for example, Patent Document 1).

また、気体吸着材の吸着性能を発揮させるために熱処理を要する場合、気体吸着材を気体難透過性容器で被って封止するためには、予め気体難透過性容器とロウ材をセットにして熱処理炉の中に設置して温度を上昇させることにより、気体吸着材の熱処理と同一の工程でロウ材を融解してロウ付けをする手法が有効である。   In addition, when heat treatment is required to exert the adsorption performance of the gas adsorbent, in order to seal the gas adsorbent with a gas impermeable container, set the gas impermeable container and the brazing material in advance as a set. A method of melting and brazing the brazing material in the same process as the heat treatment of the gas adsorbent by installing in a heat treatment furnace and raising the temperature is effective.

従来のこのようなロウ付けの方法としては、例えば、特許文献2に開示されているものがある。以下、図4を参照しながら従来のロウ付けの方法を説明する。   As a conventional brazing method, there is one disclosed in Patent Document 2, for example. Hereinafter, a conventional brazing method will be described with reference to FIG.

図4(a)に示すように、内容器1と、排気孔2を設けた外容器3とを端部4で接合して二重構造とし、排気口2を上にして、周りにロウ材5を配置し、このロウ材5上に封止板6を設置した後、真空加熱炉内で真空加熱処理を行ない、内容器1と外容器3により形成される空間内を真空にした後にロウ材5を軟化させることにより封止板6を自重により外容器3に近づけ、図4(b)の状態にすることにより、排気孔2を密封する。   As shown in FIG. 4 (a), the inner container 1 and the outer container 3 provided with the exhaust hole 2 are joined at the end part 4 to form a double structure, with the exhaust port 2 facing upward, 5 is disposed, and the sealing plate 6 is placed on the brazing material 5 and then vacuum heat treatment is performed in a vacuum heating furnace, and the space formed by the inner container 1 and the outer container 3 is evacuated and then brazed. By softening the material 5, the sealing plate 6 is brought close to the outer container 3 by its own weight, and the exhaust hole 2 is sealed by making the state shown in FIG. 4B.

特表平9−512088号公報Japanese National Patent Publication No. 9-512088 特開昭58−192516号公報JP 58-192516 A

しかしながら、特許文献1に記載の方法では、気体吸着材を被う気体難透過性素材の気体バリア性が必ずしも十分ではなく、気体吸着材を吸着対象の気体が存在する空間に設置する工程で、気体吸着材が周囲の気体を吸着してしまうため、吸着材の劣化抑制が困難であった。   However, in the method described in Patent Document 1, the gas barrier property of the gas-impermeable material covering the gas adsorbent is not necessarily sufficient, and in the step of installing the gas adsorbent in the space where the gas to be adsorbed exists, Since the gas adsorbent adsorbs the surrounding gas, it was difficult to suppress the deterioration of the adsorbent.

また、一般に、大気中のロウ付けは、融解したロウ材を接合対象の部材に付着させた後、速やかに冷却することにより終了する。一方、特許文献2に記載の方法では、接合対象となる外容器と溶融状態のロウ材が、大気中でのロウ付けに比較して長時間接触することになる。それは、加熱時に炉内の温度がロウ材の融点に到達してから、冷却時にロウ材の融点を下回るまで、ロウ材は融解状態にあるが、一般に、真空加熱炉の冷却は、大気中の炉より大幅に長い時間を要するためである。   In general, brazing in the atmosphere is completed by quickly cooling the molten brazing material after the molten brazing material is attached to the member to be joined. On the other hand, in the method described in Patent Document 2, the outer container to be joined and the brazing material in a molten state are in contact with each other for a longer time than brazing in the air. It is said that the brazing material is in a molten state from the time when the temperature in the furnace reaches the melting point of the brazing material during heating until it falls below the melting point of the brazing material during cooling. This is because it takes much longer than the furnace.

一方で、溶融状態にある異なる金属や組成が異なる合金を接触させて保持すると、互いの構成元素が交じり合って均一化しようとする現象が生じる。この現象が、組成の異なる筒状薄肉金属部材とロウ材とのロウ付け時に生じると、金属部材は薄肉であるため、貫通孔が生じる可能性がある。よって、本来は、真空加熱炉の中でロウ付けを行う場合、接合対象の部材が薄肉であることは好ましくない。   On the other hand, when different metals in the molten state or alloys with different compositions are held in contact with each other, a phenomenon occurs in which the constituent elements of each other mix and try to make uniform. When this phenomenon occurs during brazing between a cylindrical thin metal member having a different composition and a brazing material, the metal member is thin and thus a through hole may be generated. Therefore, originally, when brazing is performed in a vacuum heating furnace, it is not preferable that the members to be joined are thin.

ところが、気体吸着デバイスは、真空機器の内部で開封する必要があるため、容易に開封できるように、気体難透過性容器は薄肉である必要がある。   However, since the gas adsorption device needs to be opened inside the vacuum apparatus, the gas-impermeable container needs to be thin so that it can be easily opened.

そこで、本発明は、気体吸着デバイスの作製工程および吸着対象の気体が存在する空間への設置の工程での気体吸着材の劣化を抑制し、かつ、薄肉の容器に貫通孔を生じることのない優れた気体遮断性を有する気体吸着デバイスの作製方法を提供することを目的とする。   Therefore, the present invention suppresses the deterioration of the gas adsorbent in the gas adsorption device manufacturing process and the installation process in the space where the gas to be adsorbed exists, and does not cause a through-hole in the thin container. It aims at providing the preparation method of the gas adsorption device which has the outstanding gas barrier property.

上記目的を達成するために、本発明の気体吸着デバイスの作製方法は、一端が開口し他端が密封され一端から他端までの胴部の長さが端部の最大幅以上の中空の筒状薄肉金属部材からなる気体難透過性容器の前記開口部より気体吸着材を充填した後に、外径が前記開口部の内径より小さい棒状部と外径が前記開口部の内径より大きいフランジ部からなる縦断面が略凸型の蓋材を、前記棒状部が前記開口部内に収まるように前記気体難透過性容器に取付け、前記フランジ部側を重力方向の下向きにして、前記気体難透過性容器の開口した端部と前記フランジ部との隙間に近接してロウ材を設置して、前記ロウ材とその周辺部を加熱し、前記ロウ材が溶融し毛細管現象により前記気体難透過性容器と前記蓋材の棒状部の間に流れ込んだ後、冷却固化することにより、前記気体難透過性容器の前記開口部を封止するのである。   In order to achieve the above object, the gas adsorption device manufacturing method of the present invention is a hollow cylinder in which one end is open and the other end is sealed, and the length of the body part from one end to the other end is equal to or greater than the maximum width of the end part. After filling the gas adsorbent from the opening of the gas-impermeable container made of a thin metal member, the rod-shaped portion whose outer diameter is smaller than the inner diameter of the opening and the flange portion whose outer diameter is larger than the inner diameter of the opening A lid member having a substantially convex longitudinal section is attached to the gas-impermeable container so that the rod-shaped portion is accommodated in the opening, and the flange-side is directed downward in the direction of gravity so that the gas-impermeable container A brazing material is installed in the vicinity of the gap between the open end of the flange and the flange portion, the brazing material and its peripheral part are heated, and the brazing material is melted to cause the gas-impermeable permeable container and After flowing between the rod-shaped parts of the lid, cooling solid By is to seal the opening of the gas-impermeable container.

これによると、気体吸着デバイスの作製(容器の開口部の封止)を真空中で行うことができ、気体吸着デバイス作製工程における気体吸着材の劣化を抑制し、大気中の保存時における気体吸着材の劣化も抑えた気体吸着デバイスを得る事ができる。   According to this, the production of the gas adsorption device (sealing of the opening of the container) can be performed in vacuum, the deterioration of the gas adsorbent in the gas adsorption device production process is suppressed, and the gas adsorption during storage in the atmosphere It is possible to obtain a gas adsorption device that suppresses deterioration of the material.

さらに、次に示すようにして、気体難透過性容器への貫通孔の生成を抑えることができる。   Furthermore, as shown below, it is possible to suppress the formation of through holes in the gas permeable container.

気体難透過性容器と蓋材の棒状部の間に、ロウ材が毛細管現象で流れ込むことにより、ロウ材は、気体難透過性容器と蓋材を構成する元素を取り込む。ロウ材が元素を取り込むことができる総量には限界があるため、蓋材を構成する元素が、気体難透過性容器の主元素と同じ元素を多く含む場合は、ロウ材は蓋材と気体難透過性容器との両方から、この元素を多く取り込む。その結果、ロウ材が取り込む元素の気体難透過性容器からの寄与度が小さくなり、気体難透過性容器の貫通孔の生成を抑えることができる。この結果、優れた気体遮断性を有する気体吸着デバイスを得る事ができる。   The brazing material flows in between the gas-impermeable container and the rod-shaped portion of the lid material by capillary action, so that the brazing material takes in the elements constituting the gas-impermeable container and the lid material. Because the total amount of brazing material that can be incorporated into the element is limited, if the elements that make up the lid contain many of the same elements as the main elements of the gas permeable container, A large amount of this element is taken from both the permeable container. As a result, the contribution degree of the element taken in by the brazing material from the gas-impermeable container becomes small, and the formation of the through hole of the gas-impermeable container can be suppressed. As a result, a gas adsorption device having excellent gas barrier properties can be obtained.

本発明の気体吸着デバイスの作製方法によれば、気体吸着デバイスの作製工程と、気体吸着デバイスを吸着対象の気体が存在する空間へ設置する工程での気体吸着材の劣化を抑制可能な気体吸着デバイスを提供することができる。   According to the method for producing a gas adsorption device of the present invention, gas adsorption capable of suppressing the deterioration of the gas adsorbent in the gas adsorption device production step and the step of installing the gas adsorption device in the space where the gas to be adsorbed exists. A device can be provided.

さらに、気体難透過性容器と蓋材の間に、融解したロウ材を流し込むことにより、融解したロウ材の組成が気体難透過性容器の組成と均質化する際に生じる、気体難透過性容器への貫通孔の生成を抑えることができる。   Furthermore, a poorly gas permeable container that is produced when the composition of the molten brazing material is homogenized with the composition of the hardly gas permeable container by pouring a molten brazing material between the hardly gas permeable container and the lid. The formation of through-holes can be suppressed.

本発明の実施の形態1の気体吸着デバイスの作製工程における熱処理前の気体吸着デバイスの概略断面図Schematic sectional view of the gas adsorption device before the heat treatment in the production process of the gas adsorption device of Embodiment 1 of the present invention 同実施の形態の気体吸着デバイスの作製工程における熱処理後の気体吸着デバイスの概略断面図Schematic sectional view of the gas adsorption device after the heat treatment in the production process of the gas adsorption device of the embodiment 二元合金の模式的状態を示す特性図Characteristic diagram showing schematic state of binary alloy (a)従来の気体難透過性容器のロウ付け前の側面図(b)同従来の気体難透過性容器のロウ付け後の側面図(A) Side view before brazing of conventional gas-impermeable container (b) Side view after brazing of the conventional gas-impermeable container

第1の発明は、一端が開口し他端が密封され一端から他端までの胴部の長さが端部の最大幅以上の中空の筒状薄肉金属部材からなる気体難透過性容器の前記開口部より気体吸着材を充填した後に、外径が前記開口部の内径より小さい棒状部と外径が前記開口部の内径より大きいフランジ部からなる縦断面が略凸型の蓋材を、前記棒状部が前記開口部内に収まるように前記気体難透過性容器に取付け、前記フランジ部側を重力方向の下向きにして、前記気体難透過性容器の開口した端部と前記フランジ部との隙間に近接してロウ材を設置して、前記ロウ材とその周辺部を加熱し、前記ロウ材が溶融し毛細管現象により前記気体難透過性容器と前記蓋材の棒状部の間に流れ込んだ後、冷却固化することにより、前記気体難透過性容器の前記開口部を封止する気体吸着デバイスの作製方法である。   According to a first aspect of the present invention, there is provided the gas permeable container comprising a hollow cylindrical thin-walled metal member having one end opened and the other end sealed, and the length of the body from one end to the other is not less than the maximum width of the end. After filling the gas adsorbent from the opening, the longitudinal section consisting of a rod-shaped portion whose outer diameter is smaller than the inner diameter of the opening and a flange portion whose outer diameter is larger than the inner diameter of the opening is a substantially convex lid. The rod-shaped part is attached to the gas-impermeable container so that the rod-shaped part fits in the opening, the flange part side is directed downward in the direction of gravity, and the gap between the opened end of the gas-impermeable container and the flange part After the brazing material is installed in the vicinity, the brazing material and its peripheral part are heated, and after the brazing material is melted and flows between the gas-impermeable container and the rod-shaped part of the lid material by capillary action, By cooling and solidifying, the opening of the gas permeable container A method for manufacturing a gas adsorption device for sealing.

気体吸着材は、使用時までに、目的外の気体に触れると、その気体を吸着し、吸着容量が減少(劣化)したり、吸着能力を失ってしまう(失活)ため、使用時までは外気と接触しないような気体吸着デバイスに封入する必要がある。よって、気体吸着デバイスの重要な機能の一つは、使用時まで気体との接触を抑制し、気体吸着材の気体吸着能力を保持することである。   If the gas adsorbent is exposed to a gas other than the intended purpose before use, the gas will be adsorbed and the adsorption capacity will be reduced (deteriorated) or the adsorption capacity will be lost (deactivated). It is necessary to enclose in a gas adsorption device that does not come into contact with outside air. Therefore, one of the important functions of the gas adsorption device is to suppress the contact with the gas until the time of use and maintain the gas adsorption ability of the gas adsorbent.

従って、気体吸着材の作製は、真空中或いは、気体吸着材が吸着し得ない気体、例えばアルゴン等の不活性ガス中でなされる必要があった。   Therefore, the production of the gas adsorbing material has to be performed in a vacuum or in an inert gas such as argon, which the gas adsorbing material cannot adsorb.

一般には、アルゴン等の不活性ガスで満たしたグローブボックス内で実施されることが多いが、作業性が悪く、取り扱いに時間を要する、また、アルゴンガスの消費量が多い等、コスト的には不利な条件となっていた。また、グローブボックス内に外部より侵入した空気等の不純物ガスが存在することにより、気体吸着材が劣化することも課題の一つであった。   In general, it is often carried out in a glove box filled with an inert gas such as argon, but the workability is poor, handling takes time, and the consumption of argon gas is large. It was an unfavorable condition. Another problem is that the gas adsorbent deteriorates due to the presence of impurity gas such as air that has entered from the outside in the glove box.

本構成による気体吸着デバイスの作製方法では、一例として、真空熱処理によって活性を付与された後は大気に触れると劣化または失活する気体吸着材の劣化を低く抑えて気体吸着デバイスを作製することができる。   In the method for producing a gas adsorbing device according to this configuration, as an example, the gas adsorbing device can be produced while suppressing deterioration of the gas adsorbent that deteriorates or deactivates when exposed to the atmosphere after being activated by vacuum heat treatment. it can.

すなわち、本構成による気体吸着デバイスの作製方法によると、気体吸着材を充填した気体難透過性容器を、外部と接触することなく、加熱のみにより封止することができる。従って、不活性ガスを充填したグローブボックス内での作業を行わずに気体難透過性容器の封止、すなわち気体吸着デバイスの作製が可能となり、気体吸着デバイス作製工程での気体吸着材の劣化や、不活性ガス使用のランニングコスト増大を抑制することができる。   That is, according to the method for producing a gas adsorbing device according to the present configuration, the gas-impermeable container filled with the gas adsorbing material can be sealed only by heating without contacting the outside. Therefore, it becomes possible to seal a gas-impermeable container without performing an operation in a glove box filled with an inert gas, that is, to produce a gas adsorption device. The running cost increase due to the use of inert gas can be suppressed.

また、棒状部からなる蓋材を設置した開口部の付近にロウ材を設置することにより、加熱して融解したロウ材が、気体難透過性容器と蓋材の間に流れ込み、開口部を封止することができるとともに、ロウ材による貫通孔生成による気体難透過性容器の封止ロスを低減することができる。   In addition, by installing a brazing material in the vicinity of the opening in which the lid made of a rod-shaped portion is installed, the brazing material heated and melted flows between the gas-impermeable container and the lid, and the opening is sealed. While being able to stop, the sealing loss of the gas poorly permeable container by the through-hole production | generation by brazing material can be reduced.

この作用効果について以下に述べる。   This effect will be described below.

一般に、気体難透過性容器の組成とロウ材の組成は異なるため、ロウ材を融解すると、気体難透過性容器の組成とロウ材の組成が均一化する現象が生じる。気体難透過性容器の組成とロウ材の組成が大きく異なる場合、この現象が強く生じる。例えば、気体難透過性容器が純アルミニウムで、ロウ材がアルミニウムとシリコンの合金である場合、ロウ材が気体難透過性容器のアルミニウムを取り込み、気体難透過性容器に貫通孔が生じる。   In general, since the composition of the hardly gas permeable container and the composition of the brazing material are different, when the brazing material is melted, a phenomenon occurs in which the composition of the hardly gas permeable container and the composition of the brazing material become uniform. This phenomenon occurs strongly when the composition of the gas permeable container and the composition of the brazing material are greatly different. For example, when the gas hardly permeable container is pure aluminum and the brazing material is an alloy of aluminum and silicon, the brazing material takes in the aluminum of the gas hardly permeable container and a through hole is formed in the gas hardly permeable container.

しかし、本発明においては次のような理由で貫通孔は生じない。   However, in the present invention, no through hole is generated for the following reason.

気体難透過性容器と蓋材の棒状部の間にロウ材が毛細管現象で流れ込むことにより、気体難透過性容器と蓋材を構成する物質を取り込む。しかし、ロウ材が物質を取り込むことができる総量には限界があるため、蓋材を構成する物質が、気体難透過性容器を構成する物質の主元素と同じ元素を多く含む場合は、ロウ材は蓋材と気体難透過性容器との両方から、この元素を多く取り込む。その結果、ロウ材が取り込む物質の気体難透過性容器からの寄与度が小さくなり、気体難透過性容器の貫通孔の生成を抑えることができる。この結果、優れた気体遮断性を有する気体吸着デバイスを得る事ができる。   The brazing material flows by capillary action between the gas-impermeable container and the rod-shaped portion of the lid material, thereby taking in the substances constituting the gas-impermeable container and the lid material. However, since the total amount that the brazing material can take in the substance is limited, if the substance that constitutes the lid material contains many elements that are the same as the main element of the substance that constitutes the gas permeable container, the brazing material Takes in a lot of this element from both the lid and the gas-impermeable container. As a result, the contribution of the substance taken in by the brazing material from the gas permeable container becomes small, and the formation of through holes in the gas permeable container can be suppressed. As a result, a gas adsorption device having excellent gas barrier properties can be obtained.

この結果、優れた気体遮断性を有する気体吸着デバイスを得る事ができる。   As a result, a gas adsorption device having excellent gas barrier properties can be obtained.

さらに、フランジ部と前記開口部の周縁境界部にロウ材を設置することにより、気体吸着デバイス作製のコストを抑えることができ、この要因は次に示す通りである。   Furthermore, by installing a brazing material at the peripheral boundary between the flange and the opening, the cost of manufacturing the gas adsorption device can be reduced, and this factor is as follows.

フランジ部と前記開口部の周縁境界部にロウ材を設置するには、上記の位置にロウ材を固定する必要がある。例えば、ロウ材の形状を、内径が気体難透過性容器の開口部がある方の端部の外径より大きく、フランジ部の外径より小さい環状とすると、環状にした前記ロウ材の中空部に前記気体難透過性容器を通し、フランジ部を底部として設置すると、自動的に重力によりフランジ部に接触して固定される。このようにして前記ロウ材は前記フランジ部と前記開口部の周縁境界部に設置される。   In order to install the brazing material at the peripheral boundary between the flange and the opening, it is necessary to fix the brazing material at the above position. For example, if the shape of the brazing material is an annular shape whose inner diameter is larger than the outer diameter of the end portion having the opening of the gas permeable container and smaller than the outer diameter of the flange portion, the hollow portion of the annular brazing material When the gas poorly permeable container is passed through and the flange portion is installed as the bottom portion, the flange portion is automatically contacted and fixed by gravity. In this way, the brazing material is installed at the peripheral boundary between the flange and the opening.

従って、ロウ材の設置に煩雑な作業を要することがなく、速やかに作業を終えることができる。   Therefore, the installation of the brazing material does not require a complicated operation, and the operation can be completed promptly.

ここで、端部とは、筒状部材の最も長い方向の、周囲との境界部分であり、底面、上面がこれに相当する。   Here, the end portion is a boundary portion with the periphery in the longest direction of the cylindrical member, and the bottom surface and the top surface correspond to this.

開口部とは、中空の気体難透過性容器の内部と外部が、気体難透過性容器の構成材料を経ずにつながることが可能であり、ここから気体吸着材の充填が可能な部分である。   The opening is a portion where the inside and outside of the hollow gas permeable container can be connected without passing through the constituent material of the gas permeable container, and from here the gas adsorbent can be filled. .

胴部とは、筒状部材の大部分を構成する部分であり、1つの端部から5mm程度の部分から、もう一方の端部から5mm程度の部分までの部分である。   The trunk portion is a portion constituting most of the cylindrical member, and is a portion from a portion of about 5 mm from one end portion to a portion of about 5 mm from the other end portion.

筒状とは、一方向が長い物体であり、中空のものである。   A cylindrical shape is an object that is long in one direction and is hollow.

ここで、気体難透過性容器とは、容器の気体透過度が、104[cm3/m2・day・atm]以下となるものであり、より望ましくは103[cm3/m2・day・atm]以下のものである。 Here, the poorly gas permeable container means that the gas permeability of the container is 10 4 [cm 3 / m 2 · day · atm] or less, more desirably 10 3 [cm 3 / m 2 · day.atm].

また、気体難透過性容器を構成する金属は、特に指定するものではないが、例えば、鉄、銅、アルミニウム等を用いることが可能である。また、アルミニウム合金、銅合金等の合金を用いることも可能である。   Moreover, although the metal which comprises a gas poorly permeable container is not specified in particular, iron, copper, aluminum etc. can be used, for example. An alloy such as an aluminum alloy or a copper alloy can also be used.

気体吸着材とは、気体中に含まれる非凝縮性気体を吸着できるものである。特に指定するものではないが、ZSM−5型ゼオライトを銅でイオン交換したCuZSM−5や、アルカリ金属やアルカリ土類金属の酸化物や、アルカリ金属やアルカリ土類金属の水酸化物等が利用でき、特に、酸化リチウム、水酸化リチウム、酸化バリウム、水酸化バリウム等がある。   The gas adsorbent can adsorb non-condensable gas contained in the gas. Although not specified in particular, CuZSM-5 obtained by ion exchange of ZSM-5 zeolite with copper, oxides of alkali metals and alkaline earth metals, hydroxides of alkali metals and alkaline earth metals, etc. are used. In particular, there are lithium oxide, lithium hydroxide, barium oxide, barium hydroxide and the like.

また、気体吸着デバイスは、吸着対象の気体が存在する空間に設置後は、気体難透過性容器を破壊し、通気性を確保して外部の気体を吸着できるようにする必要がある。従って、気体吸着デバイス容器材質の厚さは、真空断熱材内に設置した際、画鋲のような突起物を大気圧で押圧することにより容易に破壊できる程度に薄いことが望ましい。例えば、アルミニウムの場合は1mm以下の場合が良く、望ましくは0.5mm以下、さらに望ましくは0.15mm以下の場合が良い。   Further, after the gas adsorption device is installed in the space where the gas to be adsorbed exists, it is necessary to destroy the gas-impermeable container and ensure the air permeability so that the external gas can be adsorbed. Therefore, the thickness of the gas adsorbing device container material is desirably thin enough to be easily broken by pressing a projection such as a thumbtack at atmospheric pressure when installed in a vacuum heat insulating material. For example, in the case of aluminum, it may be 1 mm or less, desirably 0.5 mm or less, and more desirably 0.15 mm or less.

また、ロウ材は、熱で融解した後、冷却固化することにより、気体難透過性容器を密封できるものであれば良い。そして、封止部の気体通過量が、気体難透過性容器の気体通過量と同等程度に小さくできるものであればよい。   The brazing material may be any material that can seal the hardly gas permeable container by being melted by heat and then cooled and solidified. And what is necessary is just to be able to make the gas passage amount of a sealing part small to the same extent as the gas passage amount of a gas poorly permeable container.

ロウ材は、一般には合金材料であり、特に指定するものではないが、銅ロウ、アルミロウ等を用いることができる。   The brazing material is generally an alloy material and is not particularly specified, but copper brazing, aluminum brazing, or the like can be used.

ロウ材の溶融温度は、温度制御の観点から、アルミニウムの融解温度より30℃以上低いことが望ましいが、精密な温度制御が可能な場合はこの限りではない。   The melting temperature of the brazing material is preferably lower by 30 ° C. or more than the melting temperature of aluminum from the viewpoint of temperature control, but this is not the case when precise temperature control is possible.

冷却固化の温度制御条件は、特に指定するものではなく、加熱炉内での自然冷却を行うことが可能である。また、気体難透過性容器が厚く、破壊することが難しい場合は、焼きなましによる軟化を行うために300℃/h程度で冷却することも可能である。さらに、気体難透過性容器が薄く、容易に破壊できる場合は、気体吸着デバイスの生産性向上のため、10℃/min程度で冷却してもよい。   The temperature control conditions for cooling and solidification are not particularly specified, and natural cooling in the heating furnace can be performed. In addition, when the gas permeable container is thick and difficult to break, it can be cooled at about 300 ° C./h in order to perform softening by annealing. Furthermore, when the gas permeable container is thin and can be easily broken, it may be cooled at about 10 ° C./min in order to improve the productivity of the gas adsorption device.

以上の構成により、目的外の気体に触れると、その気体を吸着し、劣化したり、失活したりする気体吸着材を、目的外の気体に触れさせないように封止して十分な吸着能力が得られ、作製してから使用時までの保管時、真空機器への適用時の劣化を低減できる気体吸着デバイスを安価に提供することができる。   With the above configuration, the gas adsorbent that adsorbs, deteriorates, or deactivates when exposed to unintended gas is sealed so that it does not come into contact with unintended gas. Thus, it is possible to provide a gas adsorption device that can reduce deterioration during storage from production to use and when applied to vacuum equipment at low cost.

また、ロウ材による気体難透過性容器への貫通孔の生成を抑えて優れた気体遮断性を確保することにより、長期間保存しても気体吸着材の劣化を低減した気体吸着デバイスを提供することができる。   Further, by providing a gas adsorbing device in which deterioration of the gas adsorbing material is reduced even when stored for a long period of time by suppressing the formation of through holes in the gas permeable container by the brazing material and ensuring excellent gas barrier properties. be able to.

第2の発明は、特に、第1の発明において、気体難透過性容器に、アルミニウムまたはアルミニウムを主成分とする合金を用い、ロウ材に、アルミニウムとシリコンからなる合金を用いたものである。   In a second aspect of the invention, in particular, in the first aspect of the invention, the gas-impermeable container is made of aluminum or an alloy mainly composed of aluminum, and the brazing material is made of an alloy made of aluminum and silicon.

アルミニウムは柔らかく、真空機器に設置後の破壊が容易であるため、取扱い性に優れた気体吸着デバイスを得る事ができる。   Since aluminum is soft and easy to break after being installed in a vacuum device, it is possible to obtain a gas adsorbing device with excellent handleability.

さらに、アルミニウムとシリコンからなる合金のロウ材は気体難透過性容器として用いるアルミニウムまたはアルミニウム合金と親和性に優れるため、適している。   Further, an alloy brazing material made of aluminum and silicon is suitable because it has excellent affinity with aluminum or aluminum alloy used as a gas-impermeable container.

以上の構成により、気体吸着デバイスの作製工程と、気体吸着デバイスを吸着対象の気体が存在する空間へ設置する工程での気体吸着材の劣化を抑制可能な気体吸着デバイスを得る事ができ、気体吸着材の加熱とロウ材の加熱を同時に行なうことにより、気体吸着デバイスの作製にかかる設備稼働電力、工数を低減することができ、気体吸着デバイス作製のコストを低減することができる。   With the above configuration, it is possible to obtain a gas adsorption device capable of suppressing the deterioration of the gas adsorbent in the gas adsorption device manufacturing process and the process of installing the gas adsorption device in the space where the gas to be adsorbed exists. By simultaneously performing heating of the adsorbent and heating of the brazing material, it is possible to reduce facility operating power and man-hours required for manufacturing the gas adsorbing device, and to reduce the cost of manufacturing the gas adsorbing device.

第3の発明は、特に、第1または第2の発明において、固化後のロウ材のフランジ部からの最大距離が、融解前のロウ材のフランジ部からの最大距離より大きいものである。   In the third invention, in particular, in the first or second invention, the maximum distance from the flange portion of the brazing material after solidification is larger than the maximum distance from the flange portion of the brazing material before melting.

固化後のロウ材のフランジ部からの最大距離が、融解前のロウ材のフランジ部からの最大距離より高いことにより、ロウ材の浸食により気体難透過性容器の開口部付近に貫通孔が生じても密閉空間を形成して、優れた気体遮断性を有する気体難透過性容器を得る事ができる。   Since the maximum distance from the flange portion of the brazing material after solidification is higher than the maximum distance from the flange portion of the brazing material before melting, through holes are generated near the opening of the gas-impermeable container due to erosion of the brazing material. However, it is possible to form a sealed space and obtain a gas permeable container having excellent gas barrier properties.

第4の発明は、第1から第3のいずれかの発明の気体吸着デバイスの作製方法で作製された気体吸着デバイスである。   A fourth invention is a gas adsorption device produced by the method for producing a gas adsorption device according to any one of the first to third inventions.

作製工程において、気体吸着材の劣化が少ないため、優れた気体吸着特性を有する。さらに、活性化に熱処理が必要な気体吸着材を用いる場合において、熱処理と気体難透過性容器内への封止を同一工程で行うことができるため、安価という特徴がある。   In the manufacturing process, since the gas adsorbent is hardly deteriorated, it has excellent gas adsorption characteristics. Furthermore, in the case of using a gas adsorbing material that requires heat treatment for activation, heat treatment and sealing in a gas hardly permeable container can be performed in the same process, and thus there is a feature that it is inexpensive.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1の気体吸着デバイスの作製工程における熱処理前の気体吸着デバイスの概略断面図、図2は、同実施の形態の気体吸着デバイスの作製工程における熱処理後の気体吸着デバイスの概略断面図である。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of a gas adsorption device before heat treatment in the gas adsorption device fabrication process of Embodiment 1 of the present invention, and FIG. 2 is a gas after heat treatment in the gas adsorption device fabrication process of the same embodiment. It is a schematic sectional drawing of an adsorption device.

図1、図2において、気体難透過性容器7は金属製であり、一方の端部に円形の開口部8を有する。また気体難透過性容器7の端部間の距離(胴部9の長さ)は120mm、胴部9の壁厚は0.10mm、開口部8とは反対側の端部の封止面10の厚さは1mm、内径10mmの円筒形である。   1 and 2, the gas permeable container 7 is made of metal and has a circular opening 8 at one end. The distance between the ends of the gas permeable container 7 (the length of the body 9) is 120 mm, the wall thickness of the body 9 is 0.10 mm, and the sealing surface 10 at the end opposite to the opening 8 is used. Has a cylindrical shape with a thickness of 1 mm and an inner diameter of 10 mm.

また、開口部8内には、蓋材11の棒状部12が挿入され、蓋材11のフランジ部13と開口部8側の端部が接触するようになっている。   Moreover, the rod-shaped part 12 of the cover material 11 is inserted into the opening part 8, and the flange part 13 of the cover material 11 and the edge part by the side of the opening part 8 contact.

ここで、蓋材11の棒状部12は直径9.9mm、高さ5mmの円柱形である。また、蓋材11のフランジ部13は直径15mm、高さ1mmの円筒形である。   Here, the rod-shaped portion 12 of the lid member 11 has a cylindrical shape with a diameter of 9.9 mm and a height of 5 mm. Further, the flange portion 13 of the lid member 11 has a cylindrical shape having a diameter of 15 mm and a height of 1 mm.

また、蓋材11と空気吸着材13の間には、気体吸着材14の飛散を防ぐために耐熱性を有する繊維の集合体からなるフィルター15が設置されている。さらに、直径1.5mm、長さ35mmの断面が円形の棒状のものを環状に加工したロウ材5がフランジ部13の上部に設置されている。   In addition, a filter 15 made of an aggregate of heat-resistant fibers is installed between the lid member 11 and the air adsorbent 13 in order to prevent the gas adsorbent 14 from scattering. Further, a brazing material 5 obtained by processing a rod-like member having a diameter of 1.5 mm and a length of 35 mm into a circular shape is installed on the upper portion of the flange portion 13.

以上の様に構成された本実施の形態の気体吸着デバイスについて、以下、その作製方法を説明する。   A method for manufacturing the gas adsorption device of the present embodiment configured as described above will be described below.

図1に示す気体難透過性容器7内に、熱処理により活性を示す気体吸着材14、例えば銅でイオン交換されたZSM−5ゼオライトである粉末状のCuZSM−5を1g充填し、その後、ロックウールからなるフィルター15を気体難透過性容器7内に設置する。ここで、フィルター15にロックウールを用いたが、耐熱性を有しガス発生が少ないものであれば良く、アルミナ繊維、石英繊維等の無機繊維、スチールウール等の金属繊維を用いることができる。   1 g of gas adsorbent 14 which shows activity by heat treatment, for example, powdery CuZSM-5 which is ZSM-5 zeolite ion-exchanged with copper, is filled in the gas impermeable container 7 shown in FIG. A filter 15 made of wool is installed in the gas permeable container 7. Here, rock wool is used for the filter 15, but it is only required to have heat resistance and low gas generation, and inorganic fibers such as alumina fibers and quartz fibers, and metal fibers such as steel wool can be used.

この一連の作業は、気体難透過性容器7に充填した気体吸着材14が、こぼれないように、密封された端部の封止面10を重力方向下側にして行うが、フィルター15を設置した後は、フィルター15により気体吸着材14が、こぼれなくなるために、自由に方向を決定することができる。   This series of operations is carried out with the sealing surface 10 at the sealed end facing downward in the direction of gravity so that the gas adsorbent 14 filled in the gas impermeable container 7 does not spill, but the filter 15 is installed. After that, the gas adsorbent 14 is not spilled by the filter 15, so that the direction can be freely determined.

フィルター15を設置した後、蓋材11の棒状部12を、開口部8に挿入し、フランジ部13に接触させる。次に、この状態で蓋材11を下方、封止面10を上方に設置して、低部10側からロウ材5に通して、ロウ材5とフランジ部13を接触させる。   After the filter 15 is installed, the rod-like portion 12 of the lid member 11 is inserted into the opening 8 and brought into contact with the flange portion 13. Next, in this state, the lid member 11 is placed downward and the sealing surface 10 is placed upward, and the brazing material 5 is brought into contact with the flange portion 13 through the brazing material 5 from the lower portion 10 side.

この状態で、気体難透過性容器7と、気体吸着材14と、ロウ材5を真空加熱炉(図示せず)に設置する。真空加熱炉を0.01Paまで減圧した後に、ロウ材の固相線温度まで昇温した。この際、気体難透過性容器7内部の気体は、開口部8と棒状部12の間から排出される。   In this state, the gas hardly permeable container 7, the gas adsorbing material 14, and the brazing material 5 are installed in a vacuum heating furnace (not shown). After depressurizing the vacuum heating furnace to 0.01 Pa, the temperature was raised to the solidus temperature of the brazing material. At this time, the gas inside the gas permeable container 7 is discharged from between the opening 8 and the rod-shaped portion 12.

二元合金では、固相線温度以下では、第一成分の元素と第二成分の元素からなる固溶体に第一成分の金属が単体で存在する状態を取りうる。このような状態の合金が融解するメカニズムは、次に示すとおりである。   In the binary alloy, at a temperature below the solidus temperature, a state in which the first component metal is present alone in the solid solution composed of the first component element and the second component element can be taken. The mechanism by which the alloy in such a state melts is as follows.

まず、二元合金の状態を示す特性図を図3に示す。   First, a characteristic diagram showing the state of the binary alloy is shown in FIG.

ロウ材5が図3の共晶点より第一成分の割合が大きい亜共晶合金の場合について説明するが、亜共晶合金に限るものではなく、共晶合金、過共晶合金を用いることもできる。   The case where the brazing material 5 is a hypoeutectic alloy in which the ratio of the first component is larger than the eutectic point in FIG. 3 will be described. However, the present invention is not limited to the hypoeutectic alloy, and eutectic alloy and hypereutectic alloy are used. You can also.

この説明で、固体で存在するものを第一成分S、第二成分Sと記述し、液体で存在するものを第一成分L、第二成分Lと記述する。   In this description, a solid component is described as a first component S and a second component S, and a liquid component is described as a first component L and a second component L.

亜共晶合金は、固相線温度以下では、第一成分Sと第二成分Sからなる固溶体と、単体の第一成分Sが混ざり合った状態を取り、合金の温度が上昇して固相線温度に達すると、固溶体の部分が融解して、第一成分Lと第二成分Lからなる液体中に第一成分Sが析出した状態になる。   A hypoeutectic alloy takes a state in which a solid solution composed of a first component S and a second component S and a single first component S are mixed below the solidus temperature, and the temperature of the alloy rises to increase the solid phase. When the line temperature is reached, the solid solution portion melts and the first component S is deposited in the liquid composed of the first component L and the second component L.

さらに温度が上昇すると、融解して液体となった第一成分Lと第二成分Lに、第一成分Sの金属が溶け込む。この結果、融解して液体となった部分に含まれる第一成分Lの金属の割合が増加する。   When the temperature further rises, the metal of the first component S dissolves in the first component L and the second component L that have been melted into a liquid. As a result, the ratio of the metal of the first component L contained in the portion that has melted to become a liquid increases.

さらに温度が上昇すると、第一成分Sの金属は、完全に液体となった部分に溶け込んで第一成分Sが無くなり、合金全体が均一な液体になる。この温度が液相線温度である。   When the temperature further rises, the metal of the first component S dissolves into the completely liquid portion, the first component S disappears, and the entire alloy becomes a uniform liquid. This temperature is the liquidus temperature.

合金全体の組成で、第一成分と第二成分の割合に従って、第一成分の元素が液体の部分に完全に取り込まれる温度、すなわち液相線温度が異なり、合金全体の組成ごとにこの温度を結んだものが状態図の液相線である。   According to the ratio of the first component and the second component in the composition of the entire alloy, the temperature at which the element of the first component is completely taken into the liquid part, that is, the liquidus temperature differs, and this temperature is different for each composition of the entire alloy. What is connected is a liquidus line in the state diagram.

従って、固相線温度以上で液相線温度以下まで加熱された状態ではロウ材5は合金の液体中に割合が多い、すなわち第一成分が析出した、半溶融状態になる。半溶融状態のロウ材5の融点が低い部分が溶解し、毛細管現象により開口部8と棒状部12の間に流れ込む。さらに、真空加熱炉を冷却することにより、ロウ材5が固化して封止がなされる。   Therefore, in the state heated above the solidus temperature and below the liquidus temperature, the brazing material 5 is in a semi-molten state in which the ratio is large in the alloy liquid, that is, the first component is precipitated. A part of the semi-molten brazing material 5 having a low melting point melts and flows between the opening 8 and the rod-like part 12 by capillary action. Further, by cooling the vacuum heating furnace, the brazing material 5 is solidified and sealed.

ロウ材5が固化した後の、開口部8付近はロウ材5により浸食されて薄くなっていたが、ロウ材5は棒状部12を完全に被う程度に流れ込み気体難透過性容器7の胴部8と、蓋材11を接合し、気体吸着材を密閉することができた。   After the brazing material 5 is solidified, the vicinity of the opening 8 has been eroded and thinned by the brazing material 5, but the brazing material 5 flows into the extent that it completely covers the rod-like portion 12, and the body of the gas permeable container 7. The part 8 and the lid member 11 were joined, and the gas adsorbent could be sealed.

この際の冷却速度を遅くすることで、気体難透過性容器7を構成する金属が焼きなましされて柔軟になる。従って、吸着対象の気体が存在する空間に設置された際の破壊が容易になる。また、真空熱処理炉から取り出して大気中に開放すると、気体吸着デバイスは大気圧により圧縮されるため、気体吸着材を充填した部分の最も薄い部分の厚さは5mmであった。   By slowing down the cooling rate at this time, the metal constituting the gas permeable container 7 is annealed and becomes flexible. Therefore, the destruction when installed in the space where the gas to be adsorbed is facilitated. Further, when the gas adsorption device was taken out from the vacuum heat treatment furnace and opened to the atmosphere, the gas adsorption device was compressed by atmospheric pressure. Therefore, the thickness of the thinnest portion filled with the gas adsorption material was 5 mm.

本実施の形態の気体吸着デバイスの作製方法は、一端が開口し他端が密封され一端から他端までの胴部9の長さが端部の最大幅以上の中空の円筒状薄肉金属部材からなる気体難透過性容器7の開口部8より気体吸着材14を気体難透過性容器7内に充填し、さらに、フィルター15を気体難透過性容器7内に挿入して、気体吸着材14が気体難透過性容器7の開口部8から出ないようにした後に、外径が開口部8の内径より小さい棒状部12と外径が開口部8の内径より大きいフランジ部13からなる縦断面が略凸型の蓋材11を、棒状部12が開口部8内に収まるように気体難透過性容器7に取付け、フランジ部13側を重力方向の下向きにして、気体難透過性容器7の開口した端部(開口部8側の端部)とフランジ部13との隙間に近接して環状のロウ材5を設置して、ロウ材5とその周辺部を加熱し、ロウ材5が溶融し毛細管現象により気体難透過性容器7と蓋材11の棒状部12の間に流れ込んだ後、冷却固化することにより、気体難透過性容器7の開口部8を封止するものである。   The manufacturing method of the gas adsorption device according to the present embodiment is such that a hollow cylindrical thin metal member having one end opened and the other end sealed, and the length of the body portion 9 from one end to the other end is equal to or greater than the maximum width of the end portion. The gas adsorbent 14 is filled into the gas impermeable container 7 through the opening 8 of the gas impermeable container 7, and the filter 15 is inserted into the gas impermeable container 7. After preventing from coming out of the opening 8 of the gas permeable container 7, a longitudinal section composed of the rod-shaped portion 12 whose outer diameter is smaller than the inner diameter of the opening 8 and the flange portion 13 whose outer diameter is larger than the inner diameter of the opening 8 is formed. The substantially convex lid member 11 is attached to the gas-impermeable container 7 so that the rod-shaped portion 12 is accommodated in the opening 8, and the opening of the gas-impermeable container 7 is made with the flange portion 13 facing downward in the gravity direction. Close to the gap between the end (opening 8 side end) and the flange 13 An annular brazing material 5 is installed, the brazing material 5 and its peripheral part are heated, and the brazing material 5 is melted and flows between the gas-impermeable container 7 and the rod-shaped part 12 of the lid material 11 by capillary action. Thereafter, the opening 8 of the gas permeable container 7 is sealed by cooling and solidifying.

以上の様にして作製した気体吸着デバイスの空気吸着量の測定を、作製1時間後に行ったところ、吸着量は吸着平衡圧力10Paで5cc/gであった。また、同様の測定を作製30日後に行ったところ、吸着量は吸着平衡圧力10Paで5cc/gであった。この結果、本実施の形態の気体吸着デバイスの作製方法で作製された気体吸着デバイスは、長期間保存しても性能の劣化が生じないことが判る。   When the air adsorption amount of the gas adsorption device produced as described above was measured 1 hour after production, the adsorption amount was 5 cc / g at an adsorption equilibrium pressure of 10 Pa. Moreover, when the same measurement was performed 30 days after production, the amount of adsorption was 5 cc / g at an adsorption equilibrium pressure of 10 Pa. As a result, it can be seen that the gas adsorption device produced by the gas adsorption device production method of the present embodiment does not deteriorate in performance even when stored for a long period of time.

吸着量を測定後に気体難透過性容器7を解体して蓋材11付近を調べると、ロウ材5は蓋材11を完全に覆い、フランジ部13からロウ材5までの最大距離は5mmであった。フランジ部13にロウ材5を設置した当初は、フランジ部13からロウ材5の最大距離は、ロウ材5の断面の直径であるため、1.5mmである。このことから、ロウ材5は気体難透過性容器7棒状部12の間を流れ、棒状部12の上面を被うことにより封止がなされていることが判った。   When the gas permeable container 7 is disassembled after the adsorption amount is measured and the vicinity of the lid material 11 is examined, the brazing material 5 completely covers the lid material 11 and the maximum distance from the flange portion 13 to the brazing material 5 is 5 mm. It was. At the beginning of installing the brazing material 5 on the flange portion 13, the maximum distance of the brazing material 5 from the flange portion 13 is 1.5 mm because it is the diameter of the cross section of the brazing material 5. From this, it was found that the brazing material 5 was sealed by covering the upper surface of the rod-shaped portion 12 by flowing between the gas-permeable container 7 and the rod-shaped portion 12.

(実施例1)
実施の形態1の構成において、気体難透過性容器7と蓋材11が純アルミニウム、ロウ材5がアルミニウムとシリコンの合金の場合を説明する。
Example 1
In the configuration of the first embodiment, the case where the gas-impermeable container 7 and the lid material 11 are pure aluminum and the brazing material 5 is an alloy of aluminum and silicon will be described.

真空加熱炉内の温度が上昇して固相線温度に達すると、フランジ部13上部に載せたロウ材5が融解を開始する。融解開始の時点では、シリコンを比較的多く含む部分が融解し、シリコンを比較的少なく含む部分は融解せず、固相と液相が混合した状態になる。この状態で、融解した部分はシリコンを多く含むため、アルミニウムに接触すると、このアルミニウムを浸食する。このため、真空機器に設置した際、容易に破壊できるようにするために薄いことが特徴である、気体難透過性容器7の開口部8付近は侵食されて貫通孔が生じる可能性がある。   When the temperature in the vacuum heating furnace rises and reaches the solidus temperature, the brazing material 5 placed on the upper portion of the flange portion 13 starts to melt. At the start of melting, the portion containing a relatively large amount of silicon is melted, the portion containing a relatively small amount of silicon is not melted, and the solid phase and the liquid phase are mixed. In this state, since the melted portion contains a large amount of silicon, when it comes into contact with aluminum, the aluminum is eroded. For this reason, when installed in a vacuum device, the vicinity of the opening 8 of the gas permeable container 7, which is thin so that it can be easily broken, may be eroded and a through hole may be formed.

さらに、融解したロウ材5は蓋材11の棒状部12と気体難透過性容器7の間に、毛細管現象により流れ込む。蓋材11の棒状部12と気体難透過性容器7の間に流れ込んだロウ材5は、蓋材11の棒状部12を構成するアルミニウムと、気体難透過性容器7を構成するアルミニウムを浸食しながら開口部12から離れた部分へ到達する。   Further, the melted brazing material 5 flows between the rod-like portion 12 of the lid member 11 and the gas hardly permeable container 7 by capillary action. The brazing material 5 that has flowed between the rod-shaped portion 12 of the lid member 11 and the hardly gas permeable container 7 erodes the aluminum constituting the rod-like portion 12 of the lid member 11 and the aluminum constituting the hardly gas permeable container 7. However, it reaches a part away from the opening 12.

ロウ材5は気体難透過性容器7と蓋材11のアルミニウムを浸食することにより、次第にアルミニウムを浸食しにくくなる。この結果、気体難透過性容器7に接触しても、開口部8から離れた部分では、ロウ材5の浸食による気体難透過性容器7の貫通孔が生成しなくなる。   The brazing material 5 gradually erodes the aluminum by eroding the aluminum of the gas permeable container 7 and the lid 11. As a result, even if the gas poorly permeable container 7 is contacted, a through hole of the gas hardly permeable container 7 due to the erosion of the brazing material 5 is not generated in a portion away from the opening 8.

以上の過程により、気体難透過性容器7、蓋材11、ロウ材5により密閉空間が形成され、気体吸着デバイスを得る事ができる。   Through the above process, a sealed space is formed by the gas permeable container 7, the lid member 11, and the brazing material 5, and a gas adsorption device can be obtained.

以上の様にして作製した気体吸着デバイスの空気吸着量の測定を、作製1時間後に行ったところ、吸着量は吸着平衡圧力10Paで5cc/gであった。また、同様の測定を作製30日後に行ったところ、吸着量は吸着平衡圧力10Paで5cc/gであった。この結果、この気体吸着デバイスは長期間保存しても性能の劣化が生じないことが判る。   When the air adsorption amount of the gas adsorption device produced as described above was measured 1 hour after production, the adsorption amount was 5 cc / g at an adsorption equilibrium pressure of 10 Pa. Moreover, when the same measurement was performed 30 days after production, the adsorption amount was 5 cc / g at an adsorption equilibrium pressure of 10 Pa. As a result, it is understood that the performance of the gas adsorption device does not deteriorate even when stored for a long time.

気体難透過性容器7、蓋材11として純アルミニウム、ロウ材5としてアルミニウムとシリコンの合金の場合を示したが、これらに限定するものではなく、銅、鉄等の金属を用いることも可能である。   Although the case of pure aluminum as the gas permeable container 7 and the lid 11 and the alloy of aluminum and silicon as the brazing material 5 is shown, it is not limited to these, and metals such as copper and iron can be used. is there.

ここで、純アルミニウムとは、アルミニウムを99%以上含むものである。   Here, pure aluminum includes 99% or more of aluminum.

本発明にかかる気体吸着デバイスの作製方法および気体吸着デバイスは、作製工程で空気に触れると吸着特性を失う気体吸着材の劣化を抑制する気体吸着デバイスの作製を、真空熱処理炉内に可動部を設置すること無しに達成し、安価に気体吸着デバイスを得る事ができる。さらに、気体吸着能力を発現するために熱処理が必要であり、熱処理後は気体に触れると劣化する薬品等の熱処理及び封止に用いることができる。   A gas adsorption device manufacturing method and a gas adsorption device according to the present invention include a gas adsorption device that suppresses deterioration of a gas adsorbent that loses adsorption characteristics when exposed to air in a production process. This can be achieved without installation, and a gas adsorption device can be obtained at low cost. Furthermore, heat treatment is required to develop gas adsorption ability, and after heat treatment, it can be used for heat treatment and sealing of chemicals that deteriorate when touched by gas.

5 ロウ材
7 気体難透過性容器
8 開口部
9 胴部
10 封止面
11 蓋材
12 棒状部
13 フランジ部
14 気体吸着材
DESCRIPTION OF SYMBOLS 5 Brazing material 7 Gas | liquid hardly permeable container 8 Opening part 9 Body part 10 Sealing surface 11 Cover material 12 Rod-shaped part 13 Flange part 14 Gas adsorbent

Claims (4)

一端が開口し他端が密封され一端から他端までの胴部の長さが端部の最大幅以上の中空の筒状薄肉金属部材からなる気体難透過性容器の前記開口部より気体吸着材を充填した後に、外径が前記開口部の内径より小さい棒状部と外径が前記開口部の内径より大きいフランジ部からなる縦断面が略凸型の蓋材を、前記棒状部が前記開口部内に収まるように前記気体難透過性容器に取付け、前記フランジ部側を重力方向の下向きにして、前記気体難透過性容器の開口した端部と前記フランジ部との隙間に近接してロウ材を設置して、前記ロウ材とその周辺部を加熱し、前記ロウ材が溶融し毛細管現象により前記気体難透過性容器と前記蓋材の棒状部の間に流れ込んだ後、冷却固化することにより、前記気体難透過性容器の前記開口部を封止する気体吸着デバイスの作製方法。 A gas adsorbent from the opening of the gas-impermeable container made of a hollow cylindrical thin-walled metal member having one end opened and the other end sealed and the length of the body from one end to the other being equal to or greater than the maximum width of the end A lid having a substantially convex cross-section comprising a rod-shaped portion whose outer diameter is smaller than the inner diameter of the opening and a flange portion whose outer diameter is larger than the inner diameter of the opening, and the rod-shaped portion is located inside the opening. The brazing material is attached to the hardly gas permeable container so that it fits in, the flange part side is directed downward in the direction of gravity, and close to the gap between the open end of the hardly gas permeable container and the flange part. By installing, heating the brazing material and its peripheral portion, the brazing material melts and flows between the gas-impermeable container and the rod-shaped portion of the lid material by capillary phenomenon, and then solidifies by cooling. Gas that seals the opening of the gas permeable container A manufacturing method of wearing the device. 気体難透過性容器がアルミニウムまたはアルミニウムを主成分とする合金であり、ロウ材がアルミニウムとシリコンからなる合金である請求項1に記載の気体吸着デバイスの作製方法。 The method for producing a gas adsorption device according to claim 1, wherein the gas-impermeable container is aluminum or an alloy containing aluminum as a main component, and the brazing material is an alloy composed of aluminum and silicon. 固化後のロウ材のフランジ部からの最大距離が、融解前のロウ材のフランジ部からの最大距離より大きい請求項1または2に記載の気体吸着デバイスの作製方法。 The method for producing a gas adsorption device according to claim 1 or 2, wherein the maximum distance from the flange portion of the brazing material after solidification is greater than the maximum distance from the flange portion of the brazing material before melting. 請求項1から3のいずれか一項に記載の気体吸着デバイスの作製方法で作製された気体吸着デバイス。 A gas adsorption device produced by the method for producing a gas adsorption device according to any one of claims 1 to 3.
JP2009110566A 2009-04-30 2009-04-30 Method for producing gas adsorption device and gas adsorption device Expired - Fee Related JP5304419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110566A JP5304419B2 (en) 2009-04-30 2009-04-30 Method for producing gas adsorption device and gas adsorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110566A JP5304419B2 (en) 2009-04-30 2009-04-30 Method for producing gas adsorption device and gas adsorption device

Publications (3)

Publication Number Publication Date
JP2010260557A true JP2010260557A (en) 2010-11-18
JP2010260557A5 JP2010260557A5 (en) 2011-01-06
JP5304419B2 JP5304419B2 (en) 2013-10-02

Family

ID=43358999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110566A Expired - Fee Related JP5304419B2 (en) 2009-04-30 2009-04-30 Method for producing gas adsorption device and gas adsorption device

Country Status (1)

Country Link
JP (1) JP5304419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198596A1 (en) * 2014-06-24 2015-12-30 パナソニックIpマネジメント株式会社 Gas-adsorbing device and evacuated insulating material using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592136A (en) * 1991-08-30 1993-04-16 Nippon Sanso Kk Adsorbent packing bag and production thereof
JP2000170915A (en) * 1998-12-07 2000-06-23 Benkan Corp Manufacture of vacuum sealed structural body
JP2005291400A (en) * 2004-03-31 2005-10-20 Seven Seven:Kk Manufacturing method for vacuum heat insulation material and manufacturing method for heat insulation body
JP2006068152A (en) * 2004-08-31 2006-03-16 Seven Seven:Kk Manufacturing method of cold/heat retaining body and cold/heat retaining device
JP2008055365A (en) * 2006-09-01 2008-03-13 Matsushita Electric Ind Co Ltd Gas adsorption device
WO2010109846A1 (en) * 2009-03-24 2010-09-30 パナソニック株式会社 Fabrication method for gas-adsorbing device, gas-adsorbing device, and method of using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592136A (en) * 1991-08-30 1993-04-16 Nippon Sanso Kk Adsorbent packing bag and production thereof
JP2000170915A (en) * 1998-12-07 2000-06-23 Benkan Corp Manufacture of vacuum sealed structural body
JP2005291400A (en) * 2004-03-31 2005-10-20 Seven Seven:Kk Manufacturing method for vacuum heat insulation material and manufacturing method for heat insulation body
JP2006068152A (en) * 2004-08-31 2006-03-16 Seven Seven:Kk Manufacturing method of cold/heat retaining body and cold/heat retaining device
JP2008055365A (en) * 2006-09-01 2008-03-13 Matsushita Electric Ind Co Ltd Gas adsorption device
WO2010109846A1 (en) * 2009-03-24 2010-09-30 パナソニック株式会社 Fabrication method for gas-adsorbing device, gas-adsorbing device, and method of using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198596A1 (en) * 2014-06-24 2015-12-30 パナソニックIpマネジメント株式会社 Gas-adsorbing device and evacuated insulating material using same
CN106457121A (en) * 2014-06-24 2017-02-22 松下知识产权经营株式会社 Gas-adsorbing device and evacuated insulating material using same
JPWO2015198596A1 (en) * 2014-06-24 2017-04-20 パナソニックIpマネジメント株式会社 Gas adsorption device and vacuum heat insulating material using the same
US10232302B2 (en) 2014-06-24 2019-03-19 Panasonic Intellectual Property Management Co., Ltd. Gas-adsorbing device and evacuated insulating material using same
CN106457121B (en) * 2014-06-24 2020-02-21 松下知识产权经营株式会社 Gas adsorption device and vacuum heat insulation member using the same

Also Published As

Publication number Publication date
JP5304419B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5381845B2 (en) Method for producing gas adsorption device, gas adsorption device, and method of using gas adsorption device
KR102110921B1 (en) Vacuum insulated glass (vig) window unit including hybrid getter and method of making same
JP5032662B2 (en) Storage method of target comprising rare earth metal or oxide thereof
US9278334B2 (en) Non-evaporable getter compositions which can be reactivated at low temperature after exposure to reactive gases at a higher temperature
US9064668B2 (en) Non-evaporable getter alloys reactivable after exposure to reactive gases
JP5304419B2 (en) Method for producing gas adsorption device and gas adsorption device
JP4626674B2 (en) Vacuum structure sealing method
CN201046984Y (en) Alloy smelting furnace
CN105636389B (en) Vacuum seal structure and its manufacturing method
CN203525724U (en) Composite getter for vacuum insulation plate
CN211814553U (en) VD stove tombarthite alloy adds device
JP3105205B2 (en) Sealing method of metal vacuum double container and its sealing structure
JP4716269B2 (en) Vacuum structure sealing method
CN107380740B (en) A kind of efficient cool-bag manufacturing method and its cool-bag of manufacture
KR100234827B1 (en) Metallic vacuum double-walled container
CN207689222U (en) A kind of anti-metal sample high-temperature oxidization equipment
JP2011092827A (en) Gas adsorption device and method of using the same
JP2012217940A (en) Method for manufacturing gas adsorption device
JP2012217939A (en) Gas adsorption device and method for manufacturing the same
CN206842140U (en) A kind of vacuum heat-insulating container with strong sealing structure
CN107557627B (en) A kind of damping alloy and preparation method
JP2010094599A (en) Gas adsorption device
CN114058875A (en) Aluminum alloy casting sinking and floating type degassing method
CN203782213U (en) Vacuum degassing device for aluminum alloy melt
JP2020202104A (en) Battery pack

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120427

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

LAPS Cancellation because of no payment of annual fees