JP2010257539A - Magnetic recording head and magnetic recording device - Google Patents

Magnetic recording head and magnetic recording device Download PDF

Info

Publication number
JP2010257539A
JP2010257539A JP2009107830A JP2009107830A JP2010257539A JP 2010257539 A JP2010257539 A JP 2010257539A JP 2009107830 A JP2009107830 A JP 2009107830A JP 2009107830 A JP2009107830 A JP 2009107830A JP 2010257539 A JP2010257539 A JP 2010257539A
Authority
JP
Japan
Prior art keywords
magnetic
magnetization
magnetic pole
magnetic field
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009107830A
Other languages
Japanese (ja)
Other versions
JP4590003B2 (en
Inventor
Kazusukatsu Igarashi
万壽和 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009107830A priority Critical patent/JP4590003B2/en
Publication of JP2010257539A publication Critical patent/JP2010257539A/en
Application granted granted Critical
Publication of JP4590003B2 publication Critical patent/JP4590003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Heads (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-density information recording device having high reliability by stabilizing operation of a magnetization high-speed rotation body that generates high-frequency magnetic field, in microwave assist recording. <P>SOLUTION: A magnetization high-speed rotation body 2 is arranged at the vicinity of a main magnetic pole 5 that generates a magnetization inversion magnetic field, information is recorded by causing a recording medium 7 to magnetically resonate or to be magnetically inverted with a high frequency magnetic field generated from the magnetization high-speed rotation body. A mechanism for reducing a component applied to a magnetization rotation plane of the magnetization high-speed rotation body out of leakage magnetic field from the main magnetic pole applied to the magnetization high-speed rotation body, for example, a mechanism for tilting a main magnetic pole side plane so as to separate from the magnetization high-speed rotation body, is used. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、磁気記録媒体に対して記録磁界を印加するとともに、高周波磁界を照射して磁気共鳴を励起し磁気記録媒体の磁化反転を誘導する機能を有する磁気記録ヘッド、及びその磁気記録ヘッドを備える磁気記録装置に関するものである。   The present invention provides a magnetic recording head having a function of applying a recording magnetic field to a magnetic recording medium and irradiating a high-frequency magnetic field to excite magnetic resonance to induce magnetization reversal of the magnetic recording medium, and the magnetic recording head The present invention relates to a magnetic recording apparatus provided.

磁気記録において記録磁化状態を安定に維持するためには保磁力の大きな(すなわち磁気異方性の大きな)記録媒体を使用する必要があるが、保磁力の大きな記録媒体に記録を行うためには強い記録磁界が必要である。しかし実際には、磁気ヘッドとして利用可能な磁性材料は限られている。従って、記録媒体の保磁力は、記録ヘッドで発生可能な記録磁界の大きさによって制約される。このため、各種の補助手段を使って記録媒体の保磁力を記録時にのみ実効的に低くする記録手法が考案されており、磁気ヘッドとレーザなどの加熱手段を併用して記録を行う熱アシスト記録などがその代表である。   In order to maintain a stable recording magnetization state in magnetic recording, it is necessary to use a recording medium having a large coercive force (that is, a large magnetic anisotropy), but in order to perform recording on a recording medium having a large coercive force. A strong recording magnetic field is required. However, in practice, the magnetic materials that can be used as the magnetic head are limited. Therefore, the coercive force of the recording medium is limited by the magnitude of the recording magnetic field that can be generated by the recording head. For this reason, a recording method has been devised in which the coercive force of the recording medium is effectively lowered only during recording using various auxiliary means, and heat-assisted recording is performed by using a magnetic head and a heating means such as a laser in combination. Such is the representative.

記録ヘッドからの記録磁界に高周波磁界を併用することにより記録媒体の保磁力を局所的に低減させて記録を行うアイディアも古くから存在する。例えば、特開平6−243527号公報には、高周波磁界により磁気記録媒体をジュール加熱あるいは磁気共鳴加熱し、媒体保磁力を局所的に低減せしめることにより、情報を記録する技術が開示されている。このような高周波磁界と磁気ヘッド磁界との磁気共鳴を利用する記録手法(以降、マイクロ波アシスト記録という)では、磁気共鳴を利用するため、媒体異方性磁界に比例する周波数の強い高周波磁界を用いないと、大きな磁化反転磁界の低減効果は得られない。このような強い高周波磁界を発生可能な磁界発生素子を、磁気ヘッドに実装できる程度の大きさで製造することは非常に困難であり、従って、マイクロ波アシスト記録は、実用化の困難さから長い間忘れられた技術となっていた。   There has been an idea for a long time to perform recording by locally reducing the coercive force of a recording medium by using a high-frequency magnetic field in combination with a recording magnetic field from a recording head. For example, Japanese Patent Laid-Open No. 6-243527 discloses a technique for recording information by locally reducing the coercive force of a magnetic recording medium by Joule heating or magnetic resonance heating with a high frequency magnetic field. In such a recording technique that uses magnetic resonance between a high-frequency magnetic field and a magnetic head magnetic field (hereinafter referred to as microwave-assisted recording), a high-frequency magnetic field having a strong frequency proportional to the medium anisotropic magnetic field is used because magnetic resonance is used. Otherwise, the effect of reducing a large magnetization reversal magnetic field cannot be obtained. It is very difficult to manufacture such a magnetic field generating element capable of generating a strong high-frequency magnetic field with a size that can be mounted on a magnetic head. Therefore, microwave-assisted recording is long due to difficulty in practical use. It was a forgotten technology.

ところが近年、スピントルクを用いた高周波磁界の発生原理が提案され、マイクロ波アシスト記録がにわかに脚光をあびるようになった。TMRC−B6(2007)では、垂直磁気ヘッドの主磁極に隣接した磁気記録媒体近傍に、スピントルクによって高速回転する磁化高速回転体(Field Generation Layer:FGL)を配置してマイクロ波(高周波磁界)を発生せしめ、磁気異方性の大きな磁気記録媒体に情報を記録する技術が発表された。さらに、MMM−GA02(2008)では、FGLに近接する主磁極の磁界を利用してFGLの回転方向を制御する高周波磁界発生装置が発表されており、これにより媒体の反転効率のよいマイクロ波アシスト反転が実現できるとされている。   However, in recent years, the principle of generating a high-frequency magnetic field using spin torque has been proposed, and microwave assisted recording has come to the spotlight. In TMRC-B6 (2007), a magnetized high-speed rotating body (Field Generation Layer: FGL) that rotates at high speed by spin torque is disposed in the vicinity of a magnetic recording medium adjacent to a main magnetic pole of a perpendicular magnetic head, and a microwave (high-frequency magnetic field). The technology to record information on magnetic recording media with large magnetic anisotropy has been announced. Furthermore, in MMM-GA02 (2008), a high-frequency magnetic field generator that controls the rotation direction of the FGL by using the magnetic field of the main magnetic pole close to the FGL has been announced. It is said that inversion can be realized.

特開平6−243527号公報JP-A-6-243527

J. G. Zhu and X. Zhu, ‘Microwave Assisted Magnetic Recording,’ The Magnetic Recording Conference (TMRC) 2007 Paper B6 (2007).J. G. Zhu and X. Zhu, ‘Microwave Assisted Magnetic Recording,’ The Magnetic Recording Conference (TMRC) 2007 Paper B6 (2007). J. Zhu1 and Y. Wang, ‘Microwave Assisted Magnetic Recording with Circular AC Field Generated by Spin Torque Transfer,’ MMM Conference 2008 Paper GA-02 (2008).J. Zhu1 and Y. Wang, ‘Microwave Assisted Magnetic Recording with Circular AC Field Generated by Spin Torque Transfer,’ MMM Conference 2008 Paper GA-02 (2008).

マイクロ波アシスト記録において1平方インチ当たり1Tビットを超える記録密度を実現するためには、主磁極からの書き込み磁界が印加されているナノメートルオーダーの領域に、強力な高周波磁界を照射して磁気記録媒体を局所的に磁気共鳴状態にし、磁化反転磁界を低減して情報を記録する必要がある。   In order to realize a recording density exceeding 1 Tbit per square inch in microwave assisted recording, a magnetic field is recorded by irradiating a nanometer-order region to which a writing magnetic field from the main magnetic pole is applied. It is necessary to record the information by locally bringing the medium into a magnetic resonance state and reducing the magnetization reversal field.

TMRC−B6(2007)に開示された技術は、強力な高周波磁界をナノメートルオーダーの領域に照射して記録媒体を局所的に磁気共鳴状態にし、磁化反転磁界を低減して情報を記録することが可能であるが、FGLの磁化の制御について何も考慮していないという問題がある。FGLの磁化は回転軸に対して垂直でないと大きな高周波磁界が得られないため、TMRC−B6(2007)に開示されるFGLの構成のままでは実用的な強度の高周波磁界を得ることが困難である。   The technology disclosed in TMRC-B6 (2007) records information by irradiating a region of nanometer order with a strong high-frequency magnetic field to bring the recording medium into a local magnetic resonance state and reducing the magnetization reversal field. However, there is a problem that no consideration is given to the control of the magnetization of the FGL. Since a large high frequency magnetic field cannot be obtained unless the magnetization of the FGL is perpendicular to the rotation axis, it is difficult to obtain a high frequency magnetic field having a practical strength with the FGL configuration disclosed in TMRC-B6 (2007). is there.

MMM−GA02(2008)に開示された技術は、主磁極からFGLに入射する磁界のうち垂直に入射する磁界成分を利用してFGLの回転方向を制御する構造であるため、FGLが発生する高周波磁界の強度という問題点は解決される。しかし、FGLの回転面内に入射する主磁極からの漏洩磁界に対する対策が施されていない。従って、MMM−GA02(2008)に開示された技術では、FGLの磁化が主磁極からの漏れ磁界方向に固定され、高周波発振が持続しないという問題がある。   The technique disclosed in MMM-GA02 (2008) is a structure that controls the rotation direction of the FGL by using a magnetic field component that is vertically incident among the magnetic fields that are incident on the FGL from the main magnetic pole. The problem of magnetic field strength is solved. However, no countermeasure is taken against the leakage magnetic field from the main magnetic pole incident on the rotation plane of the FGL. Therefore, the technique disclosed in MMM-GA02 (2008) has a problem that the magnetization of the FGL is fixed in the direction of the leakage magnetic field from the main pole, and high-frequency oscillation does not continue.

本発明の目的は、FGLの回転面内に入射する主磁極からの漏洩磁界(以下、横磁界と呼ぶ)に対する対策を講じることにより、信頼性が高く、結果としてコストを低減できる超高密度磁気記録に好適な情報記録装置を提供することにある。   An object of the present invention is to provide an ultra-high-density magnet that is highly reliable and can reduce costs as a result by taking measures against a leakage magnetic field (hereinafter referred to as a transverse magnetic field) from a main magnetic pole incident on the rotation plane of the FGL. An object is to provide an information recording apparatus suitable for recording.

以上の問題を解決する目的で、まず、横磁界をどの程度まで抑制すればよいかを計算機シミュレーションで検討した。LLG(Landau Lifschitz Gilbert)方程式にスピントルクの効果を考慮した次式(1)を用いて、図1に示すようなFGLの磁化mの挙動を解析した。   For the purpose of solving the above problems, first, the extent to which the transverse magnetic field should be suppressed was examined by computer simulation. The behavior of the FGL magnetization m as shown in FIG. 1 was analyzed using the following equation (1) that takes into account the effect of spin torque on the LLG (Landau Lifschitz Gilbert) equation.

Figure 2010257539
Figure 2010257539

ここで、γはジヤイロ磁気定数、α(=0.01を仮定)はダンピング定数、Iは電流、μBはボーア磁子、eは素電荷、VはFGLの体積、Ms(=1.9Tを仮定)はFGLの磁化である。有効磁界Heffは、磁気異方性磁界Ha(=Hkcosθ、θは磁化と磁化容易軸のなす角)、反磁界Hd、及び外部磁界Hextの3成分の和で構成される。磁化容易軸をx軸方向とし、負の磁気異方性(Hk=−800kA/m)を仮定した。FGLの磁化が面内(θ=90度)となるように磁気異方性磁界Haが作用する。また、Polarization layerの磁化m1は、x方向を向き、分極率Pを0.244とした。Hextは、x方向からθh傾いた方向に印加した。 Here, γ is a gyro magnetic constant, α (assuming 0.01) is a damping constant, I is a current, μ B is a Bohr magneton, e is an elementary charge, V is a volume of FGL, and M s (= 1. 9T) is the magnetization of the FGL. The effective magnetic field H eff is composed of the sum of three components: a magnetic anisotropy magnetic field H a (= H k cos θ, θ is an angle formed by magnetization and an easy axis of magnetization), a demagnetizing field H d , and an external magnetic field H ext. . The easy axis of magnetization was the x-axis direction, and negative magnetic anisotropy (H k = −800 kA / m) was assumed. Magnetization of FGL acts anisotropy field H a is such that the plane (theta = 90 degrees). Further, the magnetization m 1 of the Polarization layer is oriented in the x direction and the polarizability P is 0.244. H ext was applied in a direction inclined by θ h from the x direction.

まず、簡単な定常解析解を求めておく。θh=0度とおくと、式(1)がdmx/dt=0を満たすのは、有効磁界Heffのx方向成分Heff-xFirst, a simple steady state analytical solution is obtained. When θ h = 0 degree, the expression (1) satisfies dm x / dt = 0 because the x-direction component H eff-x of the effective magnetic field H eff

Figure 2010257539
を満たすときで、このとき、磁化が周波数fでx軸の周りを回転運動する。
Figure 2010257539
At this time, the magnetization rotates around the x-axis at the frequency f.

2πf=γHeff-x (3) 2πf = γH eff-x (3)

このことから、FGLの面に垂直に印加される磁界が大きいほど、Heff-xが大きくなり高周波磁界の周波数が大きくなることがわかる。従って、主磁極からの漏洩磁界のうちFGLの磁化回転面に垂直な成分は、FGLの周波数向上に有効に作用する。30GHzの高周波磁界を得るには、約800kA/mの磁界が必要である。 This shows that H eff-x increases and the frequency of the high-frequency magnetic field increases as the magnetic field applied perpendicular to the FGL surface increases. Therefore, the component perpendicular to the magnetization rotation plane of the FGL in the leakage magnetic field from the main pole effectively acts on the frequency improvement of the FGL. In order to obtain a high frequency magnetic field of 30 GHz, a magnetic field of about 800 kA / m is required.

外部磁界が、x軸から傾く場合には、直接式(1)を逐次的に解いて磁化の挙動を調べる必要がある。図2は、800kA/mの外部磁界をx方向から15度傾けた場合の、FGL磁化の挙動を示したものである。図2(A)は外部磁界印加時より0.5ns経過するまでの磁化の軌跡を3次元的に示したもので、軌道面が多少y−z面から傾いているが安定した回転が得られている。図2(B)は外部磁界印加時より2ns経過するまでの磁化の軌跡をy−z面に投影して示したもので、安定した回転が得られている。   When the external magnetic field is tilted from the x-axis, it is necessary to investigate the behavior of magnetization by solving Equation (1) sequentially. FIG. 2 shows the behavior of FGL magnetization when an external magnetic field of 800 kA / m is tilted 15 degrees from the x direction. FIG. 2 (A) shows three-dimensionally the magnetization trajectory until 0.5 ns has passed since the application of the external magnetic field, and a stable rotation is obtained although the orbital plane is slightly inclined from the yz plane. ing. FIG. 2B shows a projection of magnetization on the yz plane until 2 ns have passed since the application of the external magnetic field, and stable rotation is obtained.

図3は、800kA/mの外部磁界をx方向から25度傾けた場合の、FGL磁化の挙動を示したものである。図3(A)は外部磁界印加時より0.5ns経過するまでの磁化の軌跡を3次元的に示したもので、軌道面が多少y−z面から大きく傾いており、傾きが時間経過とともに増している。図3(B)は外部磁界印加時より2ns経過するまでの磁化の軌跡をy−z面に投影して示したもので、時間経過とともに軌道収縮していることがわかる。これは、FGL磁化の軌道が横磁界の方向に拘束されるためと考えられる。以上のことから、外部磁界がx方向から25度を超えて印加されるとFGLの磁化が安定に回転しないことがわかる。   FIG. 3 shows the behavior of FGL magnetization when an external magnetic field of 800 kA / m is tilted 25 degrees from the x direction. FIG. 3 (A) shows a three-dimensional magnetization trajectory until 0.5 ns has passed since the application of an external magnetic field. The orbital plane is slightly inclined from the yz plane, and the inclination is gradually increased with time. It is increasing. FIG. 3B shows the magnetization trajectory until 2 ns has passed since the application of the external magnetic field, projected onto the yz plane, and it can be seen that the trajectory contracts over time. This is presumably because the trajectory of FGL magnetization is constrained in the direction of the transverse magnetic field. From the above, it can be seen that when the external magnetic field is applied beyond 25 degrees from the x direction, the magnetization of the FGL does not rotate stably.

次に、主磁極近傍の磁界について3次元磁界シミュレータを用いて解析した。主磁極5、対向磁極6、軟磁性下地層22からなる図4に示す条件において3次元磁界解析を行ったのが図5である。図4中のSLは、回転安定化層である。FGLを設置する部分には横磁界が印加されていることがわかる。図より、この横磁界の原因は、主磁極5の対向磁極側側面からの漏れ磁界が主因であることが推定される。このことから、主磁極5の対向磁極側側面の影響をFGL部分がなるべく受けないようにするため、(1)対向磁極の高さを磁化高速回転体(FGL)高さより十分高くする、(2)主磁極側面を磁化高速回転体から遠ざけるように傾ける、(3)主磁極側面近傍から対向磁極にバイパス磁路を形成する、といった横磁界低減構成が有効であることがわかる。   Next, the magnetic field near the main magnetic pole was analyzed using a three-dimensional magnetic field simulator. FIG. 5 shows a three-dimensional magnetic field analysis performed under the conditions shown in FIG. 4 including the main magnetic pole 5, the counter magnetic pole 6, and the soft magnetic underlayer 22. SL in FIG. 4 is a rotation stabilization layer. It can be seen that a transverse magnetic field is applied to the portion where the FGL is installed. From the figure, it is estimated that the cause of this transverse magnetic field is mainly the leakage magnetic field from the opposite magnetic pole side surface of the main magnetic pole 5. From this, in order to prevent the FGL portion from being affected as much as possible by the opposing magnetic pole side surface of the main magnetic pole 5, (1) the height of the opposing magnetic pole is sufficiently higher than the height of the magnetized high-speed rotating body (FGL). It can be seen that a lateral magnetic field reduction configuration in which the main magnetic pole side surface is inclined so as to be away from the high-speed rotating body of magnetization, and (3) a bypass magnetic path is formed in the counter magnetic pole from the vicinity of the main magnetic pole side surface.

図6は、図5より、FGLを設置する位置における磁界の向きと大きさをグラフ化したものである。図の横軸は位置であり、ABS面の高さを原点として、記録媒体方向を正とした。図には、対向磁極を仮定した範囲をハッチングで示してある。図6(A)より、ABS面(位置=0)から上方(位置<0)に向かうと、磁界の角度は一旦極小値を取り、その後増加に転じており、対向磁極の端部(位置=−60nm)では、40度にまで達している。また、図6(B)より、磁界強度は、ABS面から上方に向かうと増加し、対向磁極の端部より少し手前で最大値1000kA/mをとっている。   FIG. 6 is a graph of the direction and magnitude of the magnetic field at the position where the FGL is installed from FIG. The horizontal axis in the figure is the position, and the height of the ABS surface is the origin and the recording medium direction is positive. In the figure, the range assuming the opposite magnetic pole is shown by hatching. As shown in FIG. 6A, when going from the ABS surface (position = 0) upward (position <0), the angle of the magnetic field once takes a local minimum value and then increases, and the end of the opposing magnetic pole (position = At −60 nm), it reaches 40 degrees. Further, from FIG. 6B, the magnetic field intensity increases upward from the ABS surface, and takes a maximum value of 1000 kA / m slightly before the end of the opposed magnetic pole.

以上のことから、対向磁極の範囲と同じ高さのFGLを用いると、大きな磁界の角度の悪影響を受け、安定な磁化回転が得られないと考えられる。ただし、ABS面近傍においては、比較的磁界の角度が小さいので、FGL高さが対向磁極の端部より十分低ければ、安定なFGLの回転が得られると考えられる。本計算では、主磁極5と対向磁極6との間隔40nmを仮定していることを考えると、主磁極5と対向磁極6との間隔の半分以上の余裕(FGL高さと対向磁極の端部の差)があれば、問題ない。ただし、対向磁極の端部がFGL高さよりも大きくなればなるほど、主磁極5先端部に磁束が達する前に対向磁極6に吸収されてしまうため、主磁極5からの記録磁界が小さくなってしまうので好ましくない。   From the above, it is considered that when FGL having the same height as the range of the opposing magnetic pole is used, a stable magnetic rotation cannot be obtained due to an adverse effect of a large magnetic field angle. However, since the angle of the magnetic field is relatively small in the vicinity of the ABS surface, it is considered that stable FGL rotation can be obtained if the FGL height is sufficiently lower than the end of the opposing magnetic pole. In this calculation, considering that the interval between the main magnetic pole 5 and the counter magnetic pole 6 is assumed to be 40 nm, a margin more than half of the distance between the main magnetic pole 5 and the counter magnetic pole 6 (the FGL height and the end of the counter magnetic pole 6 If there is a difference, there is no problem. However, as the end portion of the counter magnetic pole becomes larger than the FGL height, the magnetic flux is absorbed by the counter magnetic pole 6 before reaching the tip of the main magnetic pole 5, so that the recording magnetic field from the main magnetic pole 5 becomes smaller. Therefore, it is not preferable.

図8は、図7に示す横磁界低減構成(2)の主磁極側面をFGLから遠ざけるように傾けた構造を仮定した場合の、FGLを設置する位置における磁界の向きと大きさをグラフ化したものである。図8(A)より、ABS面から上方に向かうと、磁界の角度は一旦極小値を取り、その後増加に転じる点は、図6(A)と共通である。しかし、対向磁極の範囲内において、磁界の角度が25度以内に収まっている。また、図8(B)に示すように、磁界強度は、ABS面から上方に向かうと増加し、対向磁極の中央で最大値の1000kA/mをとっている。以上のことから、主磁極をFGLから遠ざけるように傾けた構造では、主磁極からの漏洩磁界のうち、FGL面内方向成分が減少するため、FGLの安定な磁化回転が得られるものと考えられる。   FIG. 8 is a graph showing the direction and magnitude of the magnetic field at the position where the FGL is installed, assuming a structure in which the main magnetic pole side surface of the transverse magnetic field reduction configuration (2) shown in FIG. 7 is tilted away from the FGL. Is. As shown in FIG. 8A, the angle of the magnetic field once takes a minimum value when going upward from the ABS surface, and then starts to increase in common with FIG. 6A. However, the magnetic field angle is within 25 degrees within the range of the opposing magnetic pole. Further, as shown in FIG. 8B, the magnetic field intensity increases upward from the ABS surface, and takes a maximum value of 1000 kA / m at the center of the counter magnetic pole. From the above, in the structure in which the main magnetic pole is tilted away from the FGL, the FGL in-plane direction component of the leakage magnetic field from the main magnetic pole is reduced, so that stable magnetization rotation of the FGL can be obtained. .

図9は、主磁極5の対向磁極側側面の影響をFGL部分がなるべく受けないようにする主磁極5、高周波磁界発生素子201、対向磁極6のいくつかの位置関係を示したものである。図中の矢印は磁化方向を表している。図9(A)は、従来構造で、主磁極5の側面からの大きな漏洩磁界が高周波磁界発生素子201のFGL面内方向に印加されるため、安定な高周波磁界の発生が困難である。図9(B)は、上記(2)の主磁極5の高周波磁界発生素子201との接続部の素子高さ方向上方部分を高周波磁界発生素子201の反対側に傾けた横磁界低減構成で、図8に示すように、FGL面内方向に印加される磁界が大きく軽減されている。なお、上記(2)の主磁極側面を磁化高速回転体から遠ざけるように傾ける方法は、主磁極5の高周波磁界発生素子側側面が高周波磁界発生素子201から離れる構造であれば有効であるので、図9(G)に示すような主磁極5を通る磁束の流れの角度が、主磁極5と高周波磁界発生素子201との接続部付近において素子高さ方向上方から高周波磁界発生素子201の反対側に傾けた横磁界低減構成としてもよい。   FIG. 9 shows some positional relationships of the main magnetic pole 5, the high-frequency magnetic field generating element 201, and the counter magnetic pole 6 so that the FGL portion is not affected as much as possible by the side surface of the main magnetic pole 5 facing the counter magnetic pole. The arrow in the figure represents the magnetization direction. FIG. 9A shows a conventional structure in which a large leakage magnetic field from the side surface of the main magnetic pole 5 is applied in the FGL in-plane direction of the high-frequency magnetic field generating element 201, so that it is difficult to generate a stable high-frequency magnetic field. FIG. 9B is a transverse magnetic field reduction configuration in which the upper part in the element height direction of the connection portion of the main magnetic pole 5 of the above (2) with the high frequency magnetic field generating element 201 is inclined to the opposite side of the high frequency magnetic field generating element 201. As shown in FIG. 8, the magnetic field applied in the FGL in-plane direction is greatly reduced. Note that the method of inclining the side surface of the main magnetic pole (2) away from the high-speed rotating magnet is effective if the side surface of the main magnetic pole 5 on the high-frequency magnetic field generating element side is separated from the high-frequency magnetic field generating element 201. The angle of the flow of the magnetic flux passing through the main magnetic pole 5 as shown in FIG. 9G is near the connecting portion between the main magnetic pole 5 and the high-frequency magnetic field generating element 201 from the upper side in the element height direction to the opposite side of the high-frequency magnetic field generating element 201. It is also possible to adopt a configuration in which the transverse magnetic field is inclined to the angle.

図9(C)、(D)は、上記(1)の対向磁極の素子高さ方向高さを磁化高速回転体(FGL)高さより十分高くする横磁界低減構成で、対向磁極6の素子高さ方向高さと高周波磁界発生素子201の素子高さ方向高さの差Htを主磁極5と対向磁極6の間隔Lfの0.5倍から2倍程度とするのがよい。   FIGS. 9C and 9D show a transverse magnetic field reduction configuration in which the height in the element height direction of the counter magnetic pole of (1) above is sufficiently higher than the height of the magnetized high-speed rotating body (FGL). The difference Ht between the height in the vertical direction and the height in the element height direction of the high-frequency magnetic field generating element 201 is preferably about 0.5 to 2 times the distance Lf between the main magnetic pole 5 and the counter magnetic pole 6.

図9(E)、(F)は、上記(3)のバイパス磁路を形成する横磁界低減方法で、対向磁極6から主磁極5に向かって磁路を形成し、主磁極5の側面から漏洩磁界を逃がす働きがある。バイパス磁路が主磁極5に接してしまうと、主磁極5先端部に磁束が達する前に対向磁極6に吸収されてしまい、主磁極5からの記録磁界が小さくなるので好ましくない。   FIGS. 9E and 9F are transverse magnetic field reduction methods for forming the bypass magnetic path described in (3) above, in which a magnetic path is formed from the counter magnetic pole 6 toward the main magnetic pole 5 and from the side surface of the main magnetic pole 5. It works to release the leakage magnetic field. If the bypass magnetic path is in contact with the main magnetic pole 5, the magnetic flux is absorbed by the counter magnetic pole 6 before reaching the tip of the main magnetic pole 5, and the recording magnetic field from the main magnetic pole 5 becomes small.

以上の構成を取ることにより、FGL磁化回転面内に印加される主磁極からの漏れ磁界成分を低減することが可能となるため、記録動作中の安定なFGLの回転が得られ、記録媒体上に良好な記録パタンが形成され、情報記録装置における記録密度を増大できると同時に信頼性をも向上でき、結果としてコストを低減することが可能となる。   By adopting the above configuration, it becomes possible to reduce the leakage magnetic field component from the main magnetic pole applied in the FGL magnetization rotation plane, so that stable FGL rotation during the recording operation can be obtained, and Thus, a good recording pattern can be formed, the recording density in the information recording apparatus can be increased, and at the same time the reliability can be improved, and as a result, the cost can be reduced.

記録密度が1平方インチ当たり1Tビットを超える情報記録装置が実現できると同時に信頼性をも向上でき、結果としてコストを低減することが可能となる。   An information recording apparatus having a recording density exceeding 1 Tbit per square inch can be realized, and at the same time, the reliability can be improved, and as a result, the cost can be reduced.

FGLの磁化回転モデルを示す図。The figure which shows the magnetization rotation model of FGL. FGLの磁化回転挙動を示す図。The figure which shows the magnetization rotation behavior of FGL. FGLの磁化回転挙動を示す別の図。Another figure which shows the magnetization rotation behavior of FGL. 主磁極近傍の磁界分布解析に用いた従来ヘッドの構成図。The block diagram of the conventional head used for the magnetic field distribution analysis of the main magnetic pole vicinity. 主磁極近傍の磁界分布を示す図。The figure which shows magnetic field distribution of the main magnetic pole vicinity. 主磁極近傍の磁界分布を示すグラフ。The graph which shows the magnetic field distribution near the main pole. 主磁極近傍の磁界分布解析に用いた本発明のヘッドの構成図。The block diagram of the head of this invention used for the magnetic field distribution analysis of the main magnetic pole vicinity. 本発明の主磁極近傍の磁界分布を示すグラフ。The graph which shows the magnetic field distribution of the main magnetic pole vicinity of this invention. 本発明の主磁極からの漏洩磁界低減構造を示す図。The figure which shows the leakage magnetic field reduction structure from the main pole of this invention. 磁気ヘッドスライダ及び磁気ヘッドの構成例を示す図。FIG. 3 is a diagram illustrating a configuration example of a magnetic head slider and a magnetic head. 磁気ヘッド部の拡大図。The enlarged view of a magnetic head part. 記録ヘッド部の拡大図。The enlarged view of a recording head part. 試作した従来構造の磁気ヘッドを示す図。The figure which shows the magnetic head of the conventional structure made as an experiment. 高周波磁界発生器構成例を示す図。The figure which shows the example of a high frequency magnetic field generator structure. 磁気ヘッド部の拡大図。The enlarged view of a magnetic head part. 磁気ヘッドスライダ及び磁気ヘッドの構成例を示す図。FIG. 3 is a diagram illustrating a configuration example of a magnetic head slider and a magnetic head. 磁気ヘッド部の拡大図。The enlarged view of a magnetic head part. 実施例2の記録ヘッド部の構成図(断面図)。FIG. 6 is a configuration diagram (cross-sectional view) of a recording head unit according to a second embodiment. 磁気ディスク装置の全体構成図。1 is an overall configuration diagram of a magnetic disk device. 主磁極近傍の磁界分布を示すグラフ。The graph which shows the magnetic field distribution near the main pole.

以下、図10から図14を用いて、高周波磁界が発生する原理について説明する。この原理は、後段で説明する各実施例に共通である。   Hereinafter, the principle of generating a high-frequency magnetic field will be described with reference to FIGS. This principle is common to the embodiments described later.

図10及び図11には、磁化回転体とスピン整流素子及び磁束整流膜を備えたマイクロ波アシスト記録用磁気ヘッドの基本構成を示す。   10 and 11 show the basic configuration of a magnetic head for microwave-assisted recording that includes a magnetization rotator, a spin rectifier, and a magnetic flux rectifier film.

図10は、磁気ヘッドスライダと磁気記録媒体の相対位置関係を模式的に示した図である。磁気ヘッドスライダ102は、サスペンション106により、記録媒体101に対向して支持される。図10において、記録媒体101は紙面右方向に回転し、対向する磁気ヘッドスライダは、記録媒体に対して相対的に紙面左方向に移動しているものとする。従って、図10においては、磁気ヘッド部109はスライダのトレーリング側に配置されていることになる。磁気ヘッド部109の各構成要素の駆動電流は配線108によって給電され、端子110によって各構成要素に供給される。   FIG. 10 is a diagram schematically showing the relative positional relationship between the magnetic head slider and the magnetic recording medium. The magnetic head slider 102 is supported by the suspension 106 so as to face the recording medium 101. In FIG. 10, it is assumed that the recording medium 101 rotates in the right direction on the paper surface, and the opposing magnetic head slider moves relative to the recording medium in the left direction on the paper surface. Therefore, in FIG. 10, the magnetic head portion 109 is arranged on the trailing side of the slider. The drive current of each component of the magnetic head unit 109 is fed by the wiring 108 and supplied to each component by the terminal 110.

図11は、図10に示された磁気ヘッド部109の拡大図である。磁気ヘッド部109は、記録ヘッド部と再生ヘッド部により構成されており、記録ヘッド部は、補助磁極206、主磁極5と対向磁極6との間に配置された高周波磁界発生素子201、主磁極を励磁するコイル205等により構成される。再生ヘッド部は、下部シールド208と上部シールド210の間に配置された再生センサ207等により構成される。補助磁極206と上部シールド210は兼用される場合もある。図示されてはいないが、コイルの励磁電流や再生センサの駆動電流及び高周波磁界発生素子への印加電流は、各々の構成要素毎に設けられた電流供給端子により供給される。   FIG. 11 is an enlarged view of the magnetic head unit 109 shown in FIG. The magnetic head unit 109 includes a recording head unit and a reproducing head unit. The recording head unit includes an auxiliary magnetic pole 206, a high-frequency magnetic field generating element 201 disposed between the main magnetic pole 5 and the counter magnetic pole 6, and a main magnetic pole. The coil 205 etc. which excites The reproducing head unit includes a reproducing sensor 207 disposed between the lower shield 208 and the upper shield 210. The auxiliary magnetic pole 206 and the upper shield 210 may be used in combination. Although not shown, the coil excitation current, the reproduction sensor drive current, and the applied current to the high-frequency magnetic field generating element are supplied from current supply terminals provided for each component.

図11に示すように、対向磁極6は素子高さ方向上方にて主磁極5の方へ延び、互いに磁気的な回路を構成している。ただし、素子高さ方向上方においては電気的にはほぼ絶縁されているものとする。磁気的な回路は、磁力線が閉路を形成するものであり、磁性体のみで形成されている必要はない。図では、主磁極5の対向磁極6と反対側に補助磁極等を配置し、別の磁気回路を形成している。この別の磁気回路では、主磁極5と補助磁極との間は電気的に絶縁されている必要はない。主磁極5と対向磁極6には、電極又は電極に電気的に接触する手段が備わっており、主磁極5側から対向磁極6側、あるいはその逆方向の高周波励起電流が磁化回転体層を通して流せるように構成されている。   As shown in FIG. 11, the counter magnetic pole 6 extends toward the main magnetic pole 5 in the upper direction of the element height, and forms a magnetic circuit with each other. However, it is assumed that the upper part in the element height direction is electrically insulated. In the magnetic circuit, the magnetic lines of force form a closed circuit, and it is not necessary to be formed of only a magnetic material. In the figure, an auxiliary magnetic pole or the like is arranged on the opposite side of the main magnetic pole 5 from the counter magnetic pole 6 to form another magnetic circuit. In this other magnetic circuit, the main magnetic pole 5 and the auxiliary magnetic pole need not be electrically insulated. The main magnetic pole 5 and the counter magnetic pole 6 are provided with an electrode or a means for electrically contacting the electrode, and a high-frequency excitation current flowing from the main magnetic pole 5 side to the counter magnetic pole 6 side or in the opposite direction can flow through the magnetization rotator layer. It is configured as follows.

図12は、図11に示された記録ヘッド部を更に拡大した図である。主磁極5と対向磁極6との間に高周波磁界発生素子201が形成されている。主磁極5と対向磁極6の間には、黒い矢印の向きに定常電流が流れており、ヘッドの相対移動方向は白抜き矢印で示される方向である。磁気記録媒体7としては、基板19上に下地層20を介して垂直記録膜16を積層した媒体を使用した。   FIG. 12 is an enlarged view of the recording head portion shown in FIG. A high frequency magnetic field generating element 201 is formed between the main magnetic pole 5 and the counter magnetic pole 6. Between the main magnetic pole 5 and the counter magnetic pole 6, a steady current flows in the direction of the black arrow, and the relative movement direction of the head is the direction indicated by the white arrow. As the magnetic recording medium 7, a medium in which the perpendicular recording film 16 is laminated on the substrate 19 through the underlayer 20 was used.

高周波磁界発生素子201は、主磁極5の浮上面端部側面よりトレーリング側に向かって、磁束整流層8、非磁性スピン散乱体12、磁化回転層(FGL)2、回転安定化層(SL)11としての負の垂直磁気異方性層、金属非磁性スピン導電層15、対向磁極側磁束整流層13と積層され、対向磁極6に至る構造を有している。回転安定化層(SL)11の自発磁化は積層面内に安定であるため、これと接する磁化回転層2の自発磁化の向きも積層面内に留めようとする力が働き、回転が安定化する。金属非磁性スピン散乱体層12は、金属非磁性スピン導電層15を介して磁化回転体層2に流入するスピントルクの効果を打消す影響を及ぼす恐れのある磁束整流層8から磁化回転体層2に流入するスピンを散乱する作用がある。あるいは、磁化回転体層2側から磁束整流層8へのスピントルクの流出を防ぐ作用があるとも言える。したがって、金属非磁性スピン散乱体層12を用いると必要なスピントルクを得るための電流を小さくすることができる。金属非磁性スピン散乱体層12としてRuを用いるとこの効果は特に大きくなる。   The high-frequency magnetic field generating element 201 has a magnetic flux rectifying layer 8, a nonmagnetic spin scatterer 12, a magnetization rotation layer (FGL) 2, and a rotation stabilization layer (SL) from the air bearing surface end side surface of the main pole 5 toward the trailing side. ) 11, a negative perpendicular magnetic anisotropic layer, a metal nonmagnetic spin conductive layer 15, and a counter magnetic pole side magnetic flux rectifying layer 13, and a structure reaching the counter magnetic pole 6. Since the spontaneous magnetization of the rotation stabilizing layer (SL) 11 is stable in the laminated surface, a force is applied to keep the direction of the spontaneous magnetization of the magnetization rotating layer 2 in contact with the laminated surface in the laminated surface, and the rotation is stabilized. To do. The metal nonmagnetic spin scatterer layer 12 extends from the magnetic flux rectifying layer 8 to the magnetization rotator layer, which may affect the effect of the spin torque flowing into the magnetization rotator layer 2 via the metal nonmagnetic spin conductive layer 15. 2 has the effect of scattering the spins flowing into 2. Alternatively, it can be said that there is an effect of preventing the spin torque from flowing out from the magnetization rotator layer 2 to the magnetic flux rectifying layer 8. Therefore, when the metal nonmagnetic spin scatterer layer 12 is used, the current for obtaining the required spin torque can be reduced. This effect is particularly great when Ru is used as the metal nonmagnetic spin scatterer layer 12.

このような構造の積層膜に対向磁極6から主磁極5の向きに電流を流した場合、電子は主磁極5から各層を経由して対向磁極6まで移動する。ここで、主磁極5が下向きに励磁されている場合には、磁束整流層8及び対向磁極側磁束整流層13が概ね右向きに磁化されるので、右向きのスピンを持つ電子だけが非磁性スピン導電層15を透過して対向磁極側磁束整流層13に達する。左向きのスピンを持つ電子は、対向磁極側磁束整流層13を透過できないため磁化回転層(FGL)2や回転安定化層(SL)11に残留し、磁化回転層2の磁化を左に向けようとするスピントルクとして作用する(作用1)。一方、主磁極5からの漏洩磁界は磁化回転層2の磁化を右に向けようと作用する(作用2)。さらに、負の垂直磁気異方性を有する回転安定化層(SL)11は、磁化回転層2の磁化が層内に留まるよう作用する(作用3)。磁化回転層2の自発磁化の向きは、作用1、作用2、作用3のバランスで決定されるが、作用2と、作用3で決定される方向に復元するようにトルクが発生し、膜面内で高速回転する。その結果、直流電流(以下、高周波励起電流と呼ぶ)にて交流磁界が発生する。発生する交流磁界は、磁化回転層2の向きが膜面内にあるときに最大となる。   When a current is passed through the laminated film having such a structure in the direction from the counter magnetic pole 6 to the main magnetic pole 5, electrons move from the main magnetic pole 5 to the counter magnetic pole 6 via each layer. Here, when the main magnetic pole 5 is excited downward, the magnetic flux rectifying layer 8 and the opposing magnetic pole side magnetic flux rectifying layer 13 are magnetized substantially rightward, so that only electrons having rightward spin are nonmagnetic spin conducting. It passes through the layer 15 and reaches the opposing magnetic pole side magnetic flux rectifying layer 13. Electrons having a leftward spin cannot pass through the opposed magnetic pole side magnetic flux rectifying layer 13 and therefore remain in the magnetization rotation layer (FGL) 2 or the rotation stabilization layer (SL) 11 so that the magnetization of the magnetization rotation layer 2 is directed to the left. Acting as a spin torque (Action 1). On the other hand, the leakage magnetic field from the main magnetic pole 5 acts to turn the magnetization of the magnetization rotation layer 2 to the right (action 2). Furthermore, the rotation stabilization layer (SL) 11 having negative perpendicular magnetic anisotropy acts so that the magnetization of the magnetization rotation layer 2 remains in the layer (operation 3). The direction of spontaneous magnetization of the magnetization rotation layer 2 is determined by the balance of action 1, action 2, and action 3, but torque is generated so as to restore the direction determined by action 2 and action 3, and the film surface Rotate at high speed. As a result, an alternating magnetic field is generated by a direct current (hereinafter referred to as a high frequency excitation current). The generated alternating magnetic field becomes maximum when the direction of the magnetization rotation layer 2 is in the film plane.

電流一定のまま、主磁極5の磁化が逆転した場合でも、磁化回転層2の磁化を主磁極5の磁化と逆向きに向けようとするスピントルクが作用する状況に変わりはない。このとき磁化回転層2の磁化の回転方向は、主磁極5の磁化方向が逆転する前の回転方向と逆向きとなっている。記録密度が高くなって磁化回転体層2の幅が狭い場合には、磁化回転体層2の側面から発生する磁界が無視できなくなり、記録媒体7に印加される高周波磁界の向きが時間とともに回転する(回転振動磁界)ようになる。図12の構成の高周波磁界発生素子201を用いることにより、反転させようとする磁化に対して反時計回り振動磁界が印加されるようになり、効率の良いマイクロ波アシスト磁気記録が可能となる。   Even when the magnetization of the main magnetic pole 5 is reversed while the current is constant, there is no change in the situation in which spin torque is applied to turn the magnetization of the magnetization rotation layer 2 in the opposite direction to the magnetization of the main magnetic pole 5. At this time, the rotation direction of the magnetization of the magnetization rotation layer 2 is opposite to the rotation direction before the magnetization direction of the main magnetic pole 5 is reversed. When the recording density increases and the width of the magnetization rotator layer 2 is narrow, the magnetic field generated from the side surface of the magnetization rotator layer 2 cannot be ignored, and the direction of the high-frequency magnetic field applied to the recording medium 7 rotates with time. (Rotating oscillating magnetic field). By using the high-frequency magnetic field generating element 201 having the configuration shown in FIG. 12, a counterclockwise oscillating magnetic field is applied to the magnetization to be reversed, and efficient microwave-assisted magnetic recording becomes possible.

マイクロ波アシスト磁気記録においては、主磁極5からの記録磁界と磁化回転層2の高周波磁界をナノ領域に重ねる必要があるため、磁化回転層2は主磁極5からの漏洩磁界に曝されることになる。主磁極5からの漏洩磁界のうち、磁化回転層2の層面に垂直な成分は、式(3)より高周波磁界周波数を大きくするように作用する。一方、磁化回転層2の膜面に平行な漏洩磁界成分があると、磁化回転層2の自発磁化が当該方向に固定されてしまい、高周波発振が阻害される可能性がある。図12に示すようなABS面から離れるにしたがって高周波磁界発生素子201から遠ざかる構造を有する主磁極5を用いることにより、FGL面内方向に印加される磁界を大きく軽減することが可能となり、FGLの面内磁化回転が安定化する。磁束整流層8(リップ)は、主磁極5からの漏洩磁界の向きを整え、磁化回転層2の膜面に垂直な磁界成分を大きくする作用及び、平行な磁界成分をできるだけ少なくする作用を有している。   In microwave assisted magnetic recording, since the recording magnetic field from the main magnetic pole 5 and the high frequency magnetic field of the magnetization rotation layer 2 need to be superimposed on the nano region, the magnetization rotation layer 2 is exposed to the leakage magnetic field from the main magnetic pole 5. become. Of the leakage magnetic field from the main magnetic pole 5, the component perpendicular to the layer surface of the magnetization rotation layer 2 acts to increase the high-frequency magnetic field frequency from Equation (3). On the other hand, if there is a leakage magnetic field component parallel to the film surface of the magnetization rotation layer 2, the spontaneous magnetization of the magnetization rotation layer 2 is fixed in this direction, which may hinder high-frequency oscillation. By using the main magnetic pole 5 having a structure that moves away from the high-frequency magnetic field generating element 201 as it moves away from the ABS surface as shown in FIG. 12, it is possible to greatly reduce the magnetic field applied in the FGL in-plane direction. In-plane magnetization rotation is stabilized. The magnetic flux rectifying layer 8 (lip) has the effect of adjusting the direction of the leakage magnetic field from the main magnetic pole 5, increasing the magnetic field component perpendicular to the film surface of the magnetization rotation layer 2, and reducing the parallel magnetic field component as much as possible. is doing.

比較のため、主磁極5が傾いていない従来構造のヘッドを試作し特性を調査した。試作した従来構造の磁気ヘッドを図13に示す。3次元磁界解析ソフトを用いて計算すると、磁化回転層2の面内方向には、図12及び図13の構造で、最大256kA/m及び520kA/mの磁界が印加されることが分かっている。スピンスタンドを用い、磁気スペーシング5nm、トラックピッチ20nmとして磁気記録を行い、さらにこれをシールド間隔20nmのGMRヘッドにより再生した。主磁極励磁電流が弱い領域では、両者のヘッドに大きな差が見られなかったが、オーバーライト特性を向上させる目的で、主磁極励磁電流を強くすると、図13の従来ヘッドを用いると、電流増加とともにSNRが低下し、やがて再生出力が得られなくなるようになった。このとき、実際にマイクロ波磁界が発生しているかどうかを確認するため、高周波磁界発生素子201を挟んで記録媒体7の反対側に高周波磁界検出器を配置してマイクロ波磁界の強度をモニタしたが、高周波出力は得られなかった。これは、磁化回転体層2の磁化が主磁極5の漏れ磁界により、当該漏れ磁界方向に固定してしまった結果、高周波発振していないと考えられる。   For comparison, a head having a conventional structure in which the main magnetic pole 5 is not tilted was manufactured for investigation. A prototype magnetic head having a conventional structure is shown in FIG. When calculated using the three-dimensional magnetic field analysis software, it is known that a maximum magnetic field of 256 kA / m and 520 kA / m is applied in the in-plane direction of the magnetization rotation layer 2 with the structure of FIGS. . Magnetic recording was performed using a spin stand with a magnetic spacing of 5 nm and a track pitch of 20 nm, and this was reproduced by a GMR head having a shield interval of 20 nm. In the region where the main magnetic pole excitation current is weak, there was no significant difference between the two heads. However, if the main magnetic pole excitation current is increased for the purpose of improving the overwrite characteristics, the current increases when the conventional head shown in FIG. 13 is used. At the same time, the SNR was lowered, and eventually it became impossible to obtain a reproduction output. At this time, in order to confirm whether or not a microwave magnetic field was actually generated, a high frequency magnetic field detector was disposed on the opposite side of the recording medium 7 across the high frequency magnetic field generating element 201 to monitor the strength of the microwave magnetic field. However, high frequency output was not obtained. This is thought to be because high-frequency oscillation is not caused as a result of the magnetization of the magnetization rotator layer 2 being fixed in the direction of the leakage magnetic field by the leakage magnetic field of the main magnetic pole 5.

図14は、高周波磁界発生器の構成例を示す図である。図12に示した記録ヘッド構造は、磁束整流層8及び対向磁極側磁束整流層13を有するが、図14(A)に示すように磁束整流層8と対向磁極側磁束整流層13は省略可能である。磁束整流層8を省略すると高周波磁界の発生源となる磁化回転層2を主磁極5に近づけることができるが、磁化回転層2の膜面に平行な主磁極5からの漏洩磁界成分が大きくなるというマイナス面もある。磁束整流層8を適当な厚さとするのがよい。本発明の磁化回転層2の膜面に平行な漏洩磁界成分が小さくなる構造を用いることにより、用いない場合に比べて、磁束整流層8の厚さを薄くすることができる。   FIG. 14 is a diagram illustrating a configuration example of a high-frequency magnetic field generator. The recording head structure shown in FIG. 12 includes the magnetic flux rectifying layer 8 and the opposing magnetic pole side magnetic flux rectifying layer 13, but the magnetic flux rectifying layer 8 and the opposing magnetic pole side magnetic flux rectifying layer 13 can be omitted as shown in FIG. It is. If the magnetic flux rectifying layer 8 is omitted, the magnetization rotation layer 2 serving as a generation source of the high-frequency magnetic field can be brought close to the main magnetic pole 5, but the leakage magnetic field component from the main magnetic pole 5 parallel to the film surface of the magnetization rotation layer 2 is increased. There is also a downside. The magnetic flux rectifying layer 8 is preferably set to an appropriate thickness. By using the structure in which the leakage magnetic field component parallel to the film surface of the magnetization rotation layer 2 of the present invention is small, the thickness of the magnetic flux rectifying layer 8 can be reduced compared to the case where it is not used.

また、図14(A)の磁化回転層(FGL)2と、回転安定化層(SL)11を入替えた図14(B)に示す構造、図14(A)や図14(B)の非磁性スピン散乱体12と金属非磁性スピン導電層15とを入れ替えた図14(C)や図14(D)に示す構造の高周波磁界発生素子201を用いても良い。図14(B)の構造の場合には、磁化回転層(FGL)2に比べて飽和磁化の小さな回転安定化層(SL)11が主磁極5に近くなるため、膜面に平行な主磁極5からの漏洩磁界成分の悪影響が小さくなる。加えて、磁化回転層2に、対向磁極側磁束整流層13(又は、対向磁極側磁束整流層13省略時には対向磁極6)よりスピントルクが非磁性スピン導電層15を介して伝えられるため、高周波磁界発生効率が向上する。金属非磁性スピン導電層15が主磁極側にある場合(図14(C)、図14(D))には、スピントルク源が磁束整流層8となるため、磁束整流層8は省略できない。主磁極5と磁束整流層8との界面には、交換相互作用を低減する目的で、非常に薄い化合物層や金属層、弱い磁性層を用いることにより、高周波磁界発生効率が向上する。   Further, the structure shown in FIG. 14B in which the magnetization rotation layer (FGL) 2 and the rotation stabilization layer (SL) 11 in FIG. 14A are replaced, and the non-shown in FIG. 14A and FIG. 14B. A high-frequency magnetic field generating element 201 having a structure shown in FIGS. 14C and 14D in which the magnetic spin scatterer 12 and the metal nonmagnetic spin conductive layer 15 are replaced may be used. In the case of the structure shown in FIG. 14B, the rotation stabilization layer (SL) 11 having a smaller saturation magnetization than the magnetization rotation layer (FGL) 2 is closer to the main pole 5, so that the main pole parallel to the film surface The adverse effect of the leakage magnetic field component from 5 is reduced. In addition, since the spin torque is transmitted to the magnetization rotation layer 2 from the opposed magnetic pole side magnetic flux rectifying layer 13 (or the opposed magnetic pole 6 when the opposed magnetic pole side magnetic flux rectifying layer 13 is omitted) via the nonmagnetic spin conductive layer 15, Magnetic field generation efficiency is improved. When the metal nonmagnetic spin conductive layer 15 is on the main magnetic pole side (FIG. 14C, FIG. 14D), the spin torque source is the magnetic flux rectifying layer 8, and therefore the magnetic flux rectifying layer 8 cannot be omitted. By using a very thin compound layer, metal layer, or weak magnetic layer at the interface between the main pole 5 and the magnetic flux rectifying layer 8 for the purpose of reducing exchange interaction, the high-frequency magnetic field generation efficiency is improved.

図14には、磁化回転層2と回転安定化層(SL)11とがそれぞれ単層膜の構造を示したが、複数の積層膜で構成しても構わない。或いは、高周波磁界発生素子201の中に離間して配置された層の全体の作用として磁化回転層とスピン整流素子としての機能が実現されていても構わない。更に、上の説明では、磁束整整流層8は、主磁極とは別に設けられた層であるとして説明したが、主磁極に付随する突出部として構成されていても良い。   In FIG. 14, the magnetization rotation layer 2 and the rotation stabilization layer (SL) 11 each have a single-layer structure, but may be configured by a plurality of stacked films. Alternatively, the functions of the magnetization rotation layer and the spin rectification element may be realized as the entire action of the layers arranged separately in the high-frequency magnetic field generation element 201. Furthermore, in the above description, the magnetic flux rectifying layer 8 has been described as a layer provided separately from the main magnetic pole, but may be configured as a protrusion associated with the main magnetic pole.

以上、本発明の構成により、安定的に発振が可能なマイクロ波アシスト記録用磁気ヘッドが実現可能となる。以下、本発明の具体的な実施形態について詳細に説明する。   As described above, the configuration of the present invention makes it possible to realize a microwave-assisted recording magnetic head capable of stable oscillation. Hereinafter, specific embodiments of the present invention will be described in detail.

図12は、記録ヘッド及び記録媒体を、記録媒体面に垂直(図中の上下方向)かつヘッド走行方向(図中の左又は右方向であるトラック方向)に平行な面で切断した記録機構周辺の断面模式図である。主磁極5と対向磁極6の材料は、飽和磁化が大きく、結晶磁気異方性がほとんどないCoFe合金とした。FGL2への漏れ磁界(FGL面内方向成分)を低減して高周波発振を安定化させる為に、主磁極5を高周波磁界発生素子201の反対側に傾けている。   FIG. 12 shows the recording head and the recording medium cut around the recording mechanism by cutting the surface perpendicular to the recording medium surface (vertical direction in the figure) and parallel to the head running direction (track direction which is the left or right direction in the figure). FIG. The material of the main magnetic pole 5 and the counter magnetic pole 6 was a CoFe alloy having a large saturation magnetization and almost no magnetocrystalline anisotropy. In order to reduce the leakage magnetic field (FGL in-plane direction component) to the FGL 2 and stabilize high frequency oscillation, the main magnetic pole 5 is inclined to the opposite side of the high frequency magnetic field generating element 201.

主磁極5に隣接して層状に、磁束整流層8、金属非磁性スピン散乱体12、FGL(磁化高速回転体)2、負の垂直磁気異方性体(安定化層SL)11、金属非磁性スピン伝導層15、対向磁極側磁束整流層13を経て対向磁極6にいたる。尚、磁束整流層8から対向磁極側磁束整流層13までは、図面左右方向に伸びる柱状構造で、断面がABS面に沿った辺が対向辺に比べて短い台形をしている。当該台形形状とすることにより、FGL底面からの高周波磁界とFGL側面からの高周波磁界のバランスがとれ、マイクロ波アシスト反転効率の高い高周波回転磁界が得られる。この台形のABS面に沿った辺の長さwは、記録トラック幅を決定する重要な因子であり、本実施例では15nmとした。マイクロ波アシスト記録においては、主磁極5からの記録磁界とFGL2からの高周波磁界とが揃わないと記録できないような磁気異方性の大きい記録媒体を用いることになる為、主磁極5の幅と厚さ(ヘッド走行方向の長さ)は、記録磁界が大きく取れるよう大きめに設定することが可能である。本実施例では、幅80mと厚さ100nmとすることで、約0.9MA/mの記録磁界が得られている。磁束整流層8は、主磁極5と飽和磁化が同じ又はそれより大きな材料を用い、主磁極5からの磁界がFGL2の層方向にできるだけ垂直となるよう3次元磁界解析ソフトを用いて磁束整流層8の厚さ設計を行った。本実施例における磁束整流層8の厚さは10nmであったが、この値は、前述の台形の形状、対向磁極までの距離と状況、用いる媒体の状況、図面上方における磁気回路の状況に依存する。   A magnetic flux rectifying layer 8, a metal nonmagnetic spin scatterer 12, an FGL (magnetization high-speed rotator) 2, a negative perpendicular magnetic anisotropy (stabilization layer SL) 11, It reaches the counter magnetic pole 6 through the magnetic spin conduction layer 15 and the counter magnetic pole side magnetic flux rectifying layer 13. The magnetic flux rectifying layer 8 to the opposing magnetic pole side magnetic flux rectifying layer 13 have a columnar structure extending in the left-right direction in the drawing, and the side of the cross section along the ABS surface is a trapezoid shorter than the opposing side. By adopting the trapezoidal shape, the high frequency magnetic field from the FGL bottom surface and the high frequency magnetic field from the FGL side surface are balanced, and a high frequency rotating magnetic field with high microwave assist inversion efficiency can be obtained. The side length w along the trapezoidal ABS surface is an important factor for determining the recording track width, and is set to 15 nm in this embodiment. In microwave assisted recording, since a recording medium having a large magnetic anisotropy that cannot be recorded unless the recording magnetic field from the main magnetic pole 5 and the high-frequency magnetic field from the FGL 2 are aligned is used, The thickness (length in the head running direction) can be set large so that a large recording magnetic field can be obtained. In this embodiment, a recording magnetic field of about 0.9 MA / m is obtained by setting the width to 80 m and the thickness to 100 nm. The magnetic flux rectifying layer 8 uses a material having the same or larger saturation magnetization as the main magnetic pole 5 and uses a three-dimensional magnetic field analysis software so that the magnetic field from the main magnetic pole 5 is as perpendicular as possible to the layer direction of the FGL 2. A thickness design of 8 was performed. The thickness of the magnetic flux rectifying layer 8 in this embodiment was 10 nm, but this value depends on the trapezoidal shape, the distance and the situation to the counter magnetic pole, the situation of the medium used, and the situation of the magnetic circuit above the drawing. To do.

FGL2は、飽和磁化が大きく、結晶磁気異方性がほとんどない厚さ20nmのCoFe合金とした。FGL2では、層に沿った面内で磁化が高速回転し、ABS面及び、側面に出現する磁極からの漏れ磁界が、高周波磁界として作用する。FGL2の磁化回転駆動力は、金属非磁性スピン伝導層15を介して対向磁極側磁束整流層13に反射されたスピンによるスピントルクである。このスピントルクは、主磁極5からの漏洩磁界によって発生するFGL2の磁化回転軸に平行な磁化成分が小さくなる方向に作用する。このスピントルクの作用を得るには、対向磁極6側から主磁極5側へ高周波励起(直流)電流を流す必要がある。主磁極5から磁界が流入する場合に、FGL2の磁化の回転方向は高周波励起(直流)電流の上流側から見て反時計周りとなっており、主磁極5からの磁界で反転する記録媒体の磁化の歳差運動方向と同じ向きの回転磁界を印加することができる。主磁極5へ磁界が流入する場合には、FGL2の磁化の回転方向は高周波励起(直流)電流の上流側から見て時計周りとなり、主磁極5への磁界で反転する記録媒体の磁化の歳差運動方向と同じ向きの回転磁界を印加することができる。したがって、FGL2から長じる回転高周波磁界は、主磁極5の極性によらず、主磁極5による磁化反転をアシストする効果がある。本効果は、主磁極5の極性によってスピントルクの向きが変わらない従来の高周波磁界発生器では得られない。   FGL2 was a CoFe alloy having a thickness of 20 nm with a large saturation magnetization and almost no magnetocrystalline anisotropy. In FGL2, the magnetization rotates at high speed in a plane along the layer, and the leakage magnetic field from the magnetic poles appearing on the ABS surface and the side surface acts as a high-frequency magnetic field. The magnetization rotation driving force of the FGL 2 is a spin torque due to the spin reflected on the opposite magnetic pole side magnetic flux rectifying layer 13 through the metal nonmagnetic spin conduction layer 15. This spin torque acts in a direction in which the magnetization component parallel to the magnetization rotation axis of the FGL 2 generated by the leakage magnetic field from the main magnetic pole 5 decreases. In order to obtain the effect of this spin torque, it is necessary to flow a high frequency excitation (DC) current from the counter magnetic pole 6 side to the main magnetic pole 5 side. When the magnetic field flows from the main magnetic pole 5, the rotation direction of the magnetization of the FGL 2 is counterclockwise when viewed from the upstream side of the high frequency excitation (DC) current, and the recording medium is reversed by the magnetic field from the main magnetic pole 5. A rotating magnetic field having the same direction as the direction of magnetization precession can be applied. When the magnetic field flows into the main magnetic pole 5, the rotation direction of the magnetization of the FGL 2 is clockwise when viewed from the upstream side of the high-frequency excitation (DC) current, and the magnetization of the recording medium that is reversed by the magnetic field to the main magnetic pole 5. A rotating magnetic field having the same direction as the differential motion direction can be applied. Therefore, the rotating high frequency magnetic field extending from FGL 2 has an effect of assisting the magnetization reversal by the main magnetic pole 5 regardless of the polarity of the main magnetic pole 5. This effect cannot be obtained with a conventional high-frequency magnetic field generator in which the direction of the spin torque does not change depending on the polarity of the main magnetic pole 5.

スピントルク作用は、高周波励起電流(電子流)が大きくなるほど大きくなり、また、金属非磁性スピン伝導層15と隣接する層との間に分極率の大きなCoFeB層を1nm程度挿入すると大きくなる。金属非磁性スピン伝導層15には、2nm−Cuを用いた。負の垂直磁気異方性体11は、六方晶CoIrのc軸方向が図中の左右方向となるようにし、磁気異方性の大きさは、6.0×105J/m3ものを用いた。負の垂直磁気異方性を有する磁性体をFGL2と隣接させることにより、FGL2の磁化方向を回転軸と垂直方向に留める作用が強化される。この作用により、比較的低い周波数で強い高周波磁界が得られる。この作用は、負の垂直磁気異方性を有する磁性体として知られているα’−FeC、dhcpCoFe、NiAs型MnSb等でも同様に期待できる。FGL2にCoFe合金を用いているので、α’−FeCやdhcpCoFeを用いてもCoIrと同様大きな交換相互作用が働き、磁化方向を回転軸と垂直方向に留める作用が強くなる。金属非磁性スピン散乱体12には、3nm−Ruを用いた。PdやPtを用いても同様な作用がある。対向磁極側磁束整流層13には、l5nmCoFe合金を用いた。記録媒体7には、基板19上に、下地層20として30nm−CoFe上に10nm−Ru層を形成した積層膜、記録層16として磁気異方性磁界が2.4MA/m(30kOe)で、膜厚が10nmのCoCrPt−SiOx層を用いた。強磁性共鳴による吸収線幅の測定の結果、記録層16のダンピングコンスタントαは、0.02であった。 The spin torque action increases as the high-frequency excitation current (electron current) increases, and increases when a CoFeB layer having a high polarizability is inserted between the metal nonmagnetic spin conduction layer 15 and the adjacent layer by about 1 nm. 2 nm-Cu was used for the metal nonmagnetic spin conduction layer 15. The negative perpendicular magnetic anisotropy 11 is such that the c-axis direction of hexagonal CoIr is the left-right direction in the figure, and the magnitude of magnetic anisotropy is 6.0 × 10 5 J / m 3 . Using. By making a magnetic material having negative perpendicular magnetic anisotropy adjacent to FGL2, the action of retaining the magnetization direction of FGL2 in the direction perpendicular to the rotation axis is enhanced. By this action, a strong high-frequency magnetic field can be obtained at a relatively low frequency. This effect can be similarly expected with α′-FeC, dhcpCoFe, NiAs type MnSb, and the like known as magnetic materials having negative perpendicular magnetic anisotropy. Since a CoFe alloy is used for FGL2, even if α′-FeC or dhcpCoFe is used, a large exchange interaction works as in CoIr, and the action of keeping the magnetization direction perpendicular to the rotation axis becomes strong. As the metal nonmagnetic spin scatterer 12, 3 nm-Ru was used. Even if Pd or Pt is used, the same effect is obtained. For the opposing magnetic pole side magnetic flux rectifying layer 13, a 15 nm CoFe alloy was used. The recording medium 7 is a laminated film in which a 10 nm-Ru layer is formed on a substrate 19 as a base layer 20 on a 30 nm-CoFe, and the magnetic anisotropy field is 2.4 MA / m (30 kOe) as the recording layer 16. A CoCrPt—SiOx layer having a thickness of 10 nm was used. As a result of measuring the absorption line width by ferromagnetic resonance, the damping constant α of the recording layer 16 was 0.02.

本発明の高周波磁界発生源201を組み込んだ記録再生部109搭載のスライダ102をサスペンション106に取り付け(図10)、スピンスタンドを用いて記録再生特性を調べた。ヘッド媒体相対速度20m/s、磁気スペーシング7nm、トラックピッチ25nmとして磁気記録を行い、さらにこれをシールド間隔18nmのGMRヘッドにより再生した。高周波励起電流を変化させて1000kFCIでの信号/ノイズ比を測定したところ、最大13.0dBが得られ、1平方インチ当たり2Tビットを超える記録密度の記録再生が十分達成可能であることがわかった。このときの高周波周波数は35.0GHzであった。また、1000kFCIパタン上に125kFCIパタンを記録した場合のオーバーライト特性は32dBで、主磁極励磁電流を大きくすると更によくなった。これに対して主磁極5が傾いていない従来ヘッド(図13)を用いるとオーバーライト特性は最大25dBにとどまり、主磁極励磁電流を大きくするとともに信号/ノイズ比が著しく劣化し、記録できなくなった。   The slider 102 mounted with the recording / reproducing unit 109 incorporating the high-frequency magnetic field generation source 201 of the present invention was attached to the suspension 106 (FIG. 10), and the recording / reproducing characteristics were examined using a spin stand. Magnetic recording was performed at a head medium relative speed of 20 m / s, a magnetic spacing of 7 nm, and a track pitch of 25 nm, and this was reproduced by a GMR head having a shield interval of 18 nm. When the signal / noise ratio at 1000 kFCI was measured by changing the high-frequency excitation current, a maximum of 13.0 dB was obtained, and it was found that recording / reproduction with a recording density exceeding 2 Tbits per square inch can be sufficiently achieved. . The high frequency frequency at this time was 35.0 GHz. In addition, when the 125 kFCI pattern was recorded on the 1000 kFCI pattern, the overwrite characteristic was 32 dB, which was further improved by increasing the main magnetic pole excitation current. On the other hand, when the conventional head (FIG. 13) in which the main magnetic pole 5 is not tilted is used, the overwrite characteristic is limited to a maximum of 25 dB, the main magnetic pole excitation current is increased and the signal / noise ratio is remarkably deteriorated so that recording becomes impossible. .

図15(A)、図15(B)に、磁極5の対向磁極側側面の影響をFGL部分がなるべく受けないようにする記録ヘッドの他の構成例を示す。比較のため、図15(C)に、図13に示す従来ヘッドの構成図を示した。図15(A)は、対向磁極6の高さを磁化高速回転体(FGL)2の高さより十分高くする構成で、対向磁極6の高さと高周波磁界発生素子201の高さの差Htは、主磁極5と対向磁極6の間隔Lfの0.5倍から2倍程度とするのがよい。   FIG. 15A and FIG. 15B show another configuration example of the recording head that prevents the FGL portion from being influenced by the opposing magnetic pole side surface of the magnetic pole 5 as much as possible. For comparison, FIG. 15C shows a configuration diagram of the conventional head shown in FIG. FIG. 15A shows a configuration in which the height of the counter magnetic pole 6 is sufficiently higher than the height of the high-speed magnetization rotator (FGL) 2, and the difference Ht between the height of the counter magnetic pole 6 and the height of the high-frequency magnetic field generating element 201 is The distance Lf between the main magnetic pole 5 and the counter magnetic pole 6 is preferably about 0.5 to 2 times.

図20は、図9(C)の構造パラメータ間隔Lfと高さの差Htの大きさを表1のように設定し、3次元磁界解析ソフトを用いて主磁極の近傍の磁界解析結果を示したものである。最大磁界角度は、図6、図8と同様に、FGL位置でのx方向からの角度を求め、各構造での最大値を求めたものである。通常素子高さ方向で、ABS面から最も離れた位置が最大となる。   FIG. 20 shows the magnetic field analysis results in the vicinity of the main pole using the three-dimensional magnetic field analysis software with the structure parameter interval Lf and the height difference Ht of FIG. 9C set as shown in Table 1. It is a thing. As in FIGS. 6 and 8, the maximum magnetic field angle is obtained by obtaining the angle from the x direction at the FGL position and obtaining the maximum value in each structure. In the normal element height direction, the position farthest from the ABS surface is the maximum.

Figure 2010257539
Figure 2010257539

図20より、最大磁界角度は、比Ht/Lfが0.5近くで大きく減少している。最大磁界角度が30度を超えると図3の検討から、安定なFGL磁化の回転が得られない。従って、比Ht/Lfは0.5より大きな値を取ること必要となる。図20に最大磁界角度とともに示したグラフは、主磁極5と高周波磁界発生素子201の接合面とABS面の交わる直線から記録媒体側へ5nm下がった位置における磁界のz成分Hzの比Ht/Lfに対する依存性を示している。HzはMAMRにおける書込み磁界に相当する。Hzは、比Ht/Lfが小さいときは、比Ht/Lfの増加とともに僅かに増加する。対向磁極6が主磁極5より磁束を引っ張るように作用しているためと考えられる。比Ht/Lfが大きくなり過ぎると、この磁束を引っ張る作用が大きくなり過ぎて、主磁極5から対向磁極6へ直接磁束が流れ込むようになる。比Ht/Lfが2.0の近くで、Hzが大きく減少しており、必要な書込み磁界が得られない。以上の傾向は、Lfの大きさを変えても同様に得られた。ただし、Lfが小さいほどHzが大きくなるので好ましい。 From FIG. 20, the maximum magnetic field angle is greatly reduced when the ratio Ht / Lf is close to 0.5. If the maximum magnetic field angle exceeds 30 degrees, stable rotation of the FGL magnetization cannot be obtained from the examination of FIG. Therefore, the ratio Ht / Lf needs to take a value larger than 0.5. The graph shown together with the maximum magnetic field angle in FIG. 20 shows the ratio Ht / ratio of the z component H z of the magnetic field at a position 5 nm down from the straight line where the joint surface of the main magnetic pole 5 and the high frequency magnetic field generating element 201 intersects the ABS surface to the recording medium side. The dependence on Lf is shown. H z corresponds to a write magnetic field in MAMR. H z, when the ratio Ht / Lf is small, increases slightly with increasing the ratio Ht / Lf. This is probably because the counter magnetic pole 6 acts to pull the magnetic flux from the main magnetic pole 5. When the ratio Ht / Lf becomes too large, the action of pulling the magnetic flux becomes too great, and the magnetic flux directly flows from the main magnetic pole 5 to the counter magnetic pole 6. When the ratio Ht / Lf is close to 2.0, H z is greatly reduced, and a necessary write magnetic field cannot be obtained. The above tendency was obtained similarly even when the size of Lf was changed. However, it is preferable that Lz is smaller because Hz is larger.

図15(B)は、バイパス磁路を形成する構成例を示している。対向磁極6から主磁極5に向かってバイパス磁路211を形成し、主磁極5の側面からの漏洩磁界を、バイパス磁路211を通して対向磁極6に逃がす。バイパス磁路211が主磁極5に接してしまうと、主磁極5先端部に磁束が達する前に対向磁極6に吸収されてしまうため、主磁極5からの記録磁界が小さくなってしまい好ましくない。図15(A)、図15(B)のヘッドによっても、FGL磁化回転面内に印加される当該主磁極からの漏れ磁界成分を低減することが可能となり、記録動作中の安定なFGLの回転が得られ、記録媒体上に良好な記録パタンが形成され、情報記録装置における記録密度が増大できると同時に信頼性をも向上でき、結果としてコストを低減が達成された。   FIG. 15B shows a configuration example for forming a bypass magnetic path. A bypass magnetic path 211 is formed from the counter magnetic pole 6 toward the main magnetic pole 5, and a leakage magnetic field from the side surface of the main magnetic pole 5 is released to the counter magnetic pole 6 through the bypass magnetic path 211. If the bypass magnetic path 211 is in contact with the main magnetic pole 5, the magnetic flux is absorbed by the counter magnetic pole 6 before reaching the tip of the main magnetic pole 5, so that the recording magnetic field from the main magnetic pole 5 becomes small. The heads of FIGS. 15A and 15B can also reduce the leakage magnetic field component from the main magnetic pole applied in the FGL magnetization rotation plane, and stable rotation of the FGL during the recording operation. As a result, a good recording pattern was formed on the recording medium, the recording density in the information recording apparatus could be increased, and at the same time the reliability could be improved, resulting in a reduction in cost.

図16(A)、図16(B)を用いて、ヘッドスライダに対する磁気ヘッドの搭載位置と磁気ヘッド走行方向との関係について説明する。磁気ヘッドの磁気ヘッドスライダへの載置形態は2種類あり、1つは図16(A)に示すトレーリング側への配置、もう1つが図16(B)に示すリーディング側への配置である。ここで、トレーリング側、リーディング側は、記録媒体に対する磁気ヘッドスライダの相対的な移動方向によって決まり、記録媒体の回転方向が図16(A)及び図16(B)に示した向きと逆であれば、図16(A)がリーディング側への載置、図16(B)がトレーリング側への載置となる。なお原理的には、スピンドルモータの極性を逆にして記録媒体を逆向きに回転させれば、トレーリング側とリーディング側の関係を逆にすることが可能であるが、回転数を正確に制御する必要上、スピンドルモータの極性を変えるのは非現実的である。図15(A)、図15(B)のヘッドを用いた場合には、図16(A)(B)のどちらの配置を用いても、1平方インチ当たり2Tビットを超える記録密度の記録再生に十分な信号/ノイズ比とオーバーライト特性が得られた。   The relationship between the mounting position of the magnetic head with respect to the head slider and the magnetic head traveling direction will be described with reference to FIGS. There are two types of mounting modes of the magnetic head on the magnetic head slider, one is the arrangement on the trailing side shown in FIG. 16 (A) and the other is the arrangement on the leading side shown in FIG. 16 (B). . Here, the trailing side and the leading side are determined by the relative moving direction of the magnetic head slider with respect to the recording medium, and the rotation direction of the recording medium is opposite to the direction shown in FIGS. 16 (A) and 16 (B). If so, FIG. 16A shows placement on the leading side, and FIG. 16B shows placement on the trailing side. In principle, it is possible to reverse the relationship between the trailing side and the leading side if the polarity of the spindle motor is reversed and the recording medium is rotated in the opposite direction, but the rotational speed is accurately controlled. Therefore, it is unrealistic to change the polarity of the spindle motor. When the heads shown in FIGS. 15A and 15B are used, recording / reproduction with a recording density exceeding 2 Tbits per square inch is possible regardless of which arrangement shown in FIGS. 16A and 16B is used. A sufficient signal / noise ratio and overwrite characteristics were obtained.

図17、図18は、本発明による記録ヘッド及び記録媒体の第2の構成例を示す図である。   17 and 18 are diagrams showing a second configuration example of the recording head and the recording medium according to the present invention.

図17(A)〜(D)は、主磁極5をABS面から離れるに従い高周波磁界発生素子201から遠ざける記録ヘッドの第2の構成例を示す図である。図17(A)は、図11と同じ構成で、図17(B)〜(D)と比較できるように再度示した。図17(B)には、本実施例の磁気ヘッドの別の構成例を示す。図17(B)に示す磁気ヘッドにおいては、主磁極5の励磁用コイルが横向きでは無く上向きに巻かれている。本構成の磁気ヘッドの場合、図17(A)の構造に比べて励磁位置がより主磁極浮上面から離れるので、図17(A)に比べて主磁極5から発生する磁界は弱くなるが、コイル205の設置スペースに余裕があり、対向磁極6を素子高さ方向上部で主磁極5側に曲げて磁気的な回路を構成しないので、簡便な構造となり、安価なヘッドが生産可能となる。   FIGS. 17A to 17D are diagrams illustrating a second configuration example of the recording head that moves the main magnetic pole 5 away from the high-frequency magnetic field generating element 201 as the distance from the ABS surface increases. FIG. 17A is shown again so that it can be compared with FIGS. 17B to 17D with the same configuration as FIG. FIG. 17B shows another configuration example of the magnetic head of this embodiment. In the magnetic head shown in FIG. 17B, the exciting coil of the main magnetic pole 5 is wound upward rather than horizontally. In the case of the magnetic head of this configuration, since the excitation position is further away from the main magnetic pole air bearing surface than the structure of FIG. 17A, the magnetic field generated from the main magnetic pole 5 is weaker than that of FIG. Since there is a sufficient space for installing the coil 205 and the magnetic pole is not bent by bending the counter magnetic pole 6 toward the main magnetic pole 5 at the upper part in the element height direction, the structure becomes simple and an inexpensive head can be produced.

図17(C)には、記録ヘッド部をリーディング側に配置し、再生ヘッド部をトレーリング側に配置したマイクロ波アシスト記録用磁気ヘッドの構成例を示す。図17(C)に示す構成の磁気ヘッドにおいては、主磁極5がリーディング側最端部に配置され、対向磁極6は主磁極5に対してトレーリング側に配置される。図17(C)に示した例では対向磁極6と再生センサ用シールドを共用しているが、分離しても構わない。励磁コイル205の巻線方向は、図17(B)と同様に上巻きであるが、図17(D)に示すように横巻きにしても良い。高周波励起電流が高周波磁界発生素子201に流れるようにするために、主磁極5と対向磁極6とは電気的に絶縁されている必要がある。   FIG. 17C shows a configuration example of a magnetic head for microwave assist recording in which the recording head portion is disposed on the leading side and the reproducing head portion is disposed on the trailing side. In the magnetic head configured as shown in FIG. 17C, the main magnetic pole 5 is disposed at the leading end and the opposing magnetic pole 6 is disposed on the trailing side with respect to the main magnetic pole 5. In the example shown in FIG. 17C, the counter magnetic pole 6 and the regeneration sensor shield are shared, but they may be separated. The winding direction of the excitation coil 205 is an upper winding as in FIG. 17B, but may be a horizontal winding as shown in FIG. In order for the high-frequency excitation current to flow through the high-frequency magnetic field generating element 201, the main magnetic pole 5 and the counter magnetic pole 6 need to be electrically insulated.

なお、図17(A)〜(D)に示す構成の記録ヘッド部は、図16(A)(B)のいずれの構造の磁気ヘッドスライダに実装することも可能である。また、高周波発生器201の積層順序は、図14(A)〜(D)に示したどの積層順序としても良い。   17A to 17D can be mounted on the magnetic head slider having any structure shown in FIGS. 16A and 16B. Further, the stacking order of the high frequency generator 201 may be any stacking order shown in FIGS.

図17(A)(C)(D)に示されたどの構造を用いてもほぼ同等の結果が得られたが、本実施例では、図17(C)を一例として、説明する。図18は、図17(C)の書込みヘッド部と用いた媒体の拡大図である。   Although almost the same results were obtained using any of the structures shown in FIGS. 17A, 17C, and 17D, this embodiment will be described using FIG. 17C as an example. FIG. 18 is an enlarged view of a medium used with the write head unit of FIG.

記録媒体7には、基板19上に、下部記録層18として磁気異方性磁界が2.4MA/m(30kOe)、膜厚が10nmのCoCrPt−SiOx層、上部記録層17として磁気異方性磁界が1.4kA/m(l7kOe)の6nm−(Co/Pt)−SiOx人工格子層を用いた。強磁性共鳴による吸収線幅の測定の結果、上部記録層17と下部記録層18のダンピングコンスタントαは、それぞれ0.20と0.02であった。Pt層やPd層があるとαを大きくでき、磁化反転速度を速めることができる。スパッタリングにより連続膜を形成した後、ナノインプリント技術により、トラック方向の長さが15nmでダウントラック方向が6nmの磁性体パタンを、トラックピッチ20.0nm、ビットピッチ8.0nmで配置するように作製した。パタン間の間隙21にはSiOxを埋包した。スピンスタンドを用い、ヘッド媒体相対速度20m/s、磁気スペーシング5nm、トラックピッチ20.0nmで記録を行い、さらにこれをシールド間隔12nmのGMRヘッドにより再生した。高周波励起電流を変化させて1590kFCIでの信号/ノイズ比を測定したところ、最大13.0dBが得られ、1平方インチ当たり4Tビットを超える記録密度の記録再生が十分達成可能であることがわかった。このときの高周波周波数は27.0GHzであった。比較の為に、パタン加工する前の媒体について、ヘッド媒体相対速度30m/s、磁気スペーシング5nm、27.0GHzで記録再生特性を測定したところ、1250kFCIでの信号/ノイズ比が13.0dBより大きくなったのは、トラックピッチ40nmを超えた場合であり、連続媒体においても、1平方インチ当たり1.5Tビットを超える記録密度の記録再生が十分達成可能であることが分かった。   The recording medium 7 includes a substrate 19, a CoCrPt—SiOx layer having a magnetic anisotropy field of 2.4 MA / m (30 kOe) and a film thickness of 10 nm as the lower recording layer 18, and a magnetic anisotropy as the upper recording layer 17. A 6 nm- (Co / Pt) -SiOx artificial lattice layer having a magnetic field of 1.4 kA / m (17 kOe) was used. As a result of measurement of the absorption line width by ferromagnetic resonance, the damping constant α of the upper recording layer 17 and the lower recording layer 18 was 0.20 and 0.02, respectively. If there is a Pt layer or a Pd layer, α can be increased and the magnetization reversal speed can be increased. After a continuous film was formed by sputtering, a magnetic pattern having a track direction length of 15 nm and a down track direction of 6 nm was arranged by a nanoimprint technique so that the track pitch was 20.0 nm and the bit pitch was 8.0 nm. . In the gap 21 between the patterns, SiOx was embedded. Recording was performed using a spin stand at a head medium relative speed of 20 m / s, a magnetic spacing of 5 nm, and a track pitch of 20.0 nm, and this was reproduced by a GMR head having a shield interval of 12 nm. When the signal / noise ratio at 1590 kFCI was measured while changing the high-frequency excitation current, a maximum of 13.0 dB was obtained, and it was found that recording / reproduction with a recording density exceeding 4 Tbits per square inch was sufficiently achievable. . The high frequency frequency at this time was 27.0 GHz. For comparison, the recording / reproduction characteristics of the medium before patterning were measured at a head medium relative speed of 30 m / s, a magnetic spacing of 5 nm, and 27.0 GHz. The signal / noise ratio at 1250 kFCI was 13.0 dB. The increase was when the track pitch exceeded 40 nm, and it was found that recording / reproduction with a recording density exceeding 1.5 Tbits per square inch can be sufficiently achieved even with a continuous medium.

本発明による実施例1、実施例2の各構成例に示された記録ヘッド及び記録媒体を磁気ディスク装置に組み込んで、性能評価を行った。図19は本実施例の情報記録装置の全体構成を示す模式図であり、(A)は上面図、(B)はそのA−A′での断面図である。記録媒体101は回転軸受け104に固定され、モータ100により回転する。図19では3枚の磁気ディスク、6本の磁気ヘッドを搭載した例について示したが、磁気ディスクは1枚以上、磁気ヘッドは1本以上あれば良い。記録媒体101は、円盤状をしており、その両面に記録層を形成している。スライダ102は、回転する記録媒体面上を略半径方向移動し、先端部に磁気ヘッドを有する。サスペンション106は、アーム105を介してロータリアクチユエータ103に支持される。サスペンション106は、スライダ102を記録媒体101に所定の荷重で押しつける又は引き離そうとする機能を有する。磁気ヘッドの各構成要素を駆動するための電流はICアンプ113から配線108を介して供給される。記録ヘッド部に供給される記録信号や再生ヘッド部から検出される再生信号の処理は、リードライト用のチャネルIC112により実行される。また、情報処理装置全体の制御動作は、メモリ111に格納されたディスクコントロール用プログラムをプロセッサ110が実行することにより実現される。従って、本実施例の場合には、プロセッサ110とメモリ111とがいわゆるディスクコントローラを構成する。   The recording head and the recording medium shown in each configuration example of Example 1 and Example 2 according to the present invention were incorporated into a magnetic disk device, and performance evaluation was performed. 19A and 19B are schematic views showing the overall configuration of the information recording apparatus of the present embodiment. FIG. 19A is a top view, and FIG. 19B is a sectional view taken along line AA ′. The recording medium 101 is fixed to the rotary bearing 104 and is rotated by the motor 100. FIG. 19 shows an example in which three magnetic disks and six magnetic heads are mounted. However, one or more magnetic disks and one or more magnetic heads are sufficient. The recording medium 101 has a disk shape, and recording layers are formed on both sides thereof. The slider 102 moves in a substantially radial direction on the rotating recording medium surface, and has a magnetic head at the tip. The suspension 106 is supported by the rotor reactor 103 via the arm 105. The suspension 106 has a function of pressing or pulling the slider 102 against the recording medium 101 with a predetermined load. A current for driving each component of the magnetic head is supplied from the IC amplifier 113 via the wiring 108. Processing of the recording signal supplied to the recording head unit and the reproduction signal detected from the reproducing head unit is executed by the read / write channel IC 112. The control operation of the entire information processing apparatus is realized by the processor 110 executing a disk control program stored in the memory 111. Accordingly, in this embodiment, the processor 110 and the memory 111 constitute a so-called disk controller.

l…垂直磁気異方性体、2…磁化高速回転体(FGL)、5…主磁極、6…対向磁極、7…記録媒体、8…磁束整流層、11…負の垂直磁気異方性体(SL)、12…金属非磁性スピン散乱体、13…対向磁極側磁束整流層、15…金属非磁性スピン伝導層、16…記録層、17…上部記録層、18…下部記録層、19…基板、20…下地層、100…モータ、101…記録媒体、102…スライダ、103…ロータリアクチユエータ、104…回転軸受け、105…アーム、106…サスペンション、108…配線、110…プロセッサ、111…メモリ、112…チャネルIC、113…ICアンプ、200…記録ヘッド、201…高周波磁界発生器、205…コイル、206…補助磁極、207…GMR素子、208…シールド膜、209…絶縁膜、210…上部シールド、211…バイパス磁路 DESCRIPTION OF SYMBOLS 1 ... Perpendicular magnetic anisotropy body, 2 ... Magnetization high speed rotary body (FGL), 5 ... Main magnetic pole, 6 ... Opposing magnetic pole, 7 ... Recording medium, 8 ... Magnetic flux rectification layer, 11 ... Negative perpendicular magnetic anisotropy body (SL), 12 ... Metal nonmagnetic spin scatterer, 13 ... Opposite magnetic pole side magnetic flux rectifying layer, 15 ... Metal nonmagnetic spin conducting layer, 16 ... Recording layer, 17 ... Upper recording layer, 18 ... Lower recording layer, 19 ... Substrate, 20 ... underlayer, 100 ... motor, 101 ... recording medium, 102 ... slider, 103 ... rotary actuator, 104 ... rotary bearing, 105 ... arm, 106 ... suspension, 108 ... wiring, 110 ... processor, 111 ... Memory 112, channel IC 113, IC amplifier 200, recording head 201, high frequency magnetic field generator 205, coil 206, auxiliary magnetic pole 207 GMR element 208, shield film, 2 9: insulating film, 210 ... upper shield, 211 ... bypass magnetic flux path

Claims (6)

磁化反転磁界を発生させる主磁極と、補助磁極と、対向磁極と、前記主磁極と前記対向磁極の間に配置された磁化高速回転体と、前記磁化高速回転体に直流電流を供給する手段とを備え、前記磁化高速回転体より高周波磁界を発生させて磁気記録媒体を磁気共鳴状態にして前記主磁極からの磁化反転磁界によって磁化反転せしめて情報を記録する磁気記録ヘッドにおいて、
前記磁化高速回転体に印加される前記主磁極からの漏れ磁界のうち、前記磁化高速回転体の磁化回転面内に印加される成分を低減する構造をとることを特徴とする磁気記録ヘッド。
A main magnetic pole for generating a magnetization reversal magnetic field, an auxiliary magnetic pole, a counter magnetic pole, a magnetization high-speed rotating body disposed between the main magnetic pole and the counter magnetic pole, and means for supplying a direct current to the magnetization high-speed rotating body; A magnetic recording head for recording information by generating a high-frequency magnetic field from the magnetization high-speed rotating body to bring the magnetic recording medium into a magnetic resonance state and reversing magnetization by a magnetization reversal magnetic field from the main pole,
A magnetic recording head having a structure in which a component applied to a magnetization rotation surface of the high-speed magnetization rotator is reduced in a leakage magnetic field from the main magnetic pole applied to the high-speed magnetization rotator.
請求項1記載の磁気記録ヘッドにおいて、前記対向磁極の素子高さ方向の高さは、前記磁化高速回転体の素子高さ方向高さより、前記主磁極と前記対向磁極の間隔の0.5倍から2倍だけ高いことを特徴とする磁気記録ヘッド。   2. The magnetic recording head according to claim 1, wherein the height of the counter magnetic pole in the element height direction is 0.5 times the distance between the main magnetic pole and the counter magnetic pole than the height of the magnetization high-speed rotating body in the element height direction. A magnetic recording head characterized by being twice as high as 請求項1記載の磁気記録ヘッドにおいて、前記主磁極は、前記磁化高速回転体との接続部の素子高さ方向上方が前記磁化高速回転体から遠ざかるように傾いていることを特徴とする磁気記録ヘッド。   2. The magnetic recording head according to claim 1, wherein the main magnetic pole is inclined so that an upper portion in the element height direction of a connection portion with the high-speed magnetization rotator is away from the high-speed magnetization rotator. head. 請求項1記載の磁気記録ヘッドにおいて、前記主磁極側面からの漏洩磁界を前記対向磁極に逃がすバイパス磁路を有することを特徴とする磁気記録ヘッド。   2. The magnetic recording head according to claim 1, further comprising a bypass magnetic path for allowing a leakage magnetic field from the side surface of the main magnetic pole to escape to the counter magnetic pole. 請求項1又は3記載の磁気記録ヘッドにおいて、前記補助磁極が前記対向磁極を兼用していることを特徴とする磁気記録ヘッド。   4. The magnetic recording head according to claim 1, wherein the auxiliary magnetic pole also serves as the counter magnetic pole. 磁気記録媒体と、前記磁気記録媒体を駆動する媒体駆動部と、磁気記録ヘッドと磁気再生ヘッドを備える磁気ヘッドと、前記磁気ヘッドを前記磁気記録媒体上に位置決めする磁気ヘッド駆動部とを有し、
前記磁気記録ヘッドは請求項1〜5のいずれか1項記載の磁気ヘッドであることを特徴とする磁気記録装置。
A magnetic recording medium; a medium driving unit that drives the magnetic recording medium; a magnetic head including a magnetic recording head and a magnetic reproducing head; and a magnetic head driving unit that positions the magnetic head on the magnetic recording medium. ,
The magnetic recording apparatus according to claim 1, wherein the magnetic recording head is a magnetic head according to claim 1.
JP2009107830A 2009-04-27 2009-04-27 Magnetic recording head and magnetic recording apparatus Active JP4590003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107830A JP4590003B2 (en) 2009-04-27 2009-04-27 Magnetic recording head and magnetic recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107830A JP4590003B2 (en) 2009-04-27 2009-04-27 Magnetic recording head and magnetic recording apparatus

Publications (2)

Publication Number Publication Date
JP2010257539A true JP2010257539A (en) 2010-11-11
JP4590003B2 JP4590003B2 (en) 2010-12-01

Family

ID=43318288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107830A Active JP4590003B2 (en) 2009-04-27 2009-04-27 Magnetic recording head and magnetic recording apparatus

Country Status (1)

Country Link
JP (1) JP4590003B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118958A (en) * 2009-11-30 2011-06-16 Toshiba Corp Magnetic head and disk device equipped with same
JP2012108981A (en) * 2010-11-18 2012-06-07 Hitachi Ltd Microwave-assisted magnetic recording head and magnetic recording and reproducing device
JP2013047999A (en) * 2011-08-29 2013-03-07 Hitachi Ltd Magnetic recording head and magnetic recorder
US20130063837A1 (en) * 2011-09-13 2013-03-14 Hitachi, Ltd. Magnetic recording head, manufacturing method thereof, and magnetic disk device
JP2013246852A (en) * 2012-05-25 2013-12-09 Toshiba Corp Magnetic recording head, magnetic head assembly and magnetic recording/reproducing device
US8824103B2 (en) 2011-09-06 2014-09-02 Hitachi, Ltd. Magnetic recording head and magnetic recording apparatus
JP2015149112A (en) * 2014-02-07 2015-08-20 株式会社東芝 Magnetic recording head and disk unit including the same
GB2536544A (en) * 2015-01-23 2016-09-21 HGST Netherlands BV Stabilizing layer for a spin torque oscillator (STO)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5793483B2 (en) 2012-09-14 2015-10-14 株式会社東芝 Magnetic recording head and disk device provided with the same
JP2014229324A (en) 2013-05-20 2014-12-08 Tdk株式会社 Microwave assisted magnetic recording/reproducing apparatus
JP2015005324A (en) 2013-05-20 2015-01-08 Tdk株式会社 Microwave-assisted magnetic head, head gimbal assembly, and magnetic recording reproduction apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285242A (en) * 2004-03-30 2005-10-13 Toshiba Corp Magnetic recording head and magnetic storage device
JP2009070541A (en) * 2007-08-22 2009-04-02 Toshiba Corp Magnetic recording head and magnetic recording apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285242A (en) * 2004-03-30 2005-10-13 Toshiba Corp Magnetic recording head and magnetic storage device
JP2009070541A (en) * 2007-08-22 2009-04-02 Toshiba Corp Magnetic recording head and magnetic recording apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118958A (en) * 2009-11-30 2011-06-16 Toshiba Corp Magnetic head and disk device equipped with same
US8159781B2 (en) 2009-11-30 2012-04-17 Kabushiki Kaisha Toshiba Magnetic head for perpendicular recording and disk drive with the same
JP2012108981A (en) * 2010-11-18 2012-06-07 Hitachi Ltd Microwave-assisted magnetic recording head and magnetic recording and reproducing device
JP2013047999A (en) * 2011-08-29 2013-03-07 Hitachi Ltd Magnetic recording head and magnetic recorder
US8824103B2 (en) 2011-09-06 2014-09-02 Hitachi, Ltd. Magnetic recording head and magnetic recording apparatus
US20130063837A1 (en) * 2011-09-13 2013-03-14 Hitachi, Ltd. Magnetic recording head, manufacturing method thereof, and magnetic disk device
US8837086B2 (en) * 2011-09-13 2014-09-16 Hitachi, Ltd. Magnetic recording head, manufacturing method thereof, and magnetic disk device
JP2013246852A (en) * 2012-05-25 2013-12-09 Toshiba Corp Magnetic recording head, magnetic head assembly and magnetic recording/reproducing device
JP2015149112A (en) * 2014-02-07 2015-08-20 株式会社東芝 Magnetic recording head and disk unit including the same
GB2536544A (en) * 2015-01-23 2016-09-21 HGST Netherlands BV Stabilizing layer for a spin torque oscillator (STO)

Also Published As

Publication number Publication date
JP4590003B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP4590003B2 (en) Magnetic recording head and magnetic recording apparatus
JP5760064B2 (en) Information recording device
US8760806B2 (en) Microwave assisted magnetic recording head and microwave assisted magnetic recording apparatus having a magnetic flux rectifying layer with a magnetic flux rectifying action
JP5172004B1 (en) Magnetic recording head and magnetic recording apparatus
JP5320009B2 (en) Spin torque oscillator, magnetic recording head, magnetic head assembly, and magnetic recording apparatus
US8654480B2 (en) Magnetic head with spin torque oscillator and magnetic recording head
JP5361259B2 (en) Spin torque oscillator, magnetic recording head, magnetic head assembly, and magnetic recording apparatus
JP5581980B2 (en) Magnetic recording head and magnetic recording apparatus
US8970996B2 (en) Spin-torque oscillator for microwave assisted magnetic recording
JP5173750B2 (en) Spin torque oscillator, magnetic recording head, magnetic head assembly, and magnetic recording apparatus
US20100027158A1 (en) Magnetic head for high-frequency field assist recording and magnetic recording apparatus using magnetic head for high-frequency field assist recording
JP2013251042A (en) Spin torque oscillator, magnetic recording head, magnetic head assembly, and magnetic recorder
JP2010003353A (en) Magnetic recording head, magnetic head assembly, and magnetic recorder
JP2010003351A (en) Magnetic head assembly and magnetic recording and reproducing device
JP2013058298A (en) Magnetic recording head capable of performing adjacent track interference suppression by new microwave assist magnetic recording element
JP2011198399A (en) Magnetic recording head, magnetic head assembly, and magnetic recording and reproducing apparatus
JP5570745B2 (en) Magnetic recording head, magnetic head assembly, and magnetic recording apparatus
JP2011170925A (en) Magnetic recording head and magnetic recording/reproducing apparatus using the same
JP2013054809A (en) Magnetic recording head and magnetic recording apparatus
JP5011331B2 (en) Magnetic recording device
JP2013235621A (en) Microwave-assisted recording magnetic head and magnetic recording device
US9336797B2 (en) Extended spin torque oscillator
JP5468124B2 (en) Magnetic recording head and magnetic recording apparatus
JP2014149911A (en) Magnetic recording head, magnetic head assembly, and magnetic recording device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100910

R151 Written notification of patent or utility model registration

Ref document number: 4590003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3