JP2010256811A - Galvano scanner - Google Patents

Galvano scanner Download PDF

Info

Publication number
JP2010256811A
JP2010256811A JP2009109656A JP2009109656A JP2010256811A JP 2010256811 A JP2010256811 A JP 2010256811A JP 2009109656 A JP2009109656 A JP 2009109656A JP 2009109656 A JP2009109656 A JP 2009109656A JP 2010256811 A JP2010256811 A JP 2010256811A
Authority
JP
Japan
Prior art keywords
holding member
magnet
permanent magnet
galvano scanner
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009109656A
Other languages
Japanese (ja)
Other versions
JP5153719B2 (en
Inventor
Takeshi Mori
剛 森
Masaya Inoue
正哉 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009109656A priority Critical patent/JP5153719B2/en
Publication of JP2010256811A publication Critical patent/JP2010256811A/en
Application granted granted Critical
Publication of JP5153719B2 publication Critical patent/JP5153719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a galvano scanner in which the magnetic path of a movable part is composed by permanent magnets only, inertia is reduced by making movable parts light, magnetic flux is increased by increasing the volume of permanent magnets, and a high acceleration is available by suppressing the increase in the electric current supplied to a coil. <P>SOLUTION: The galvano scanner includes: a holding member 3 made of a resin, which has a back face shaped in a semicylindrical face 3b and holds a reflecting mirror 2 so that the center axis O of the semicylindrical face 3b is located at the anti-diagonal face of a reflecting mirror 2; the permanent magnets 5 provided as a unit with the holding member 3 and configuring the movable part together with the holding member; a base member 9 which supports the holding member 3 freely turnably around the center axis O; a core 7 disposed on the base member 9 so as to face the semicylindrical face 3b of the holding member 3; and a coil 8 fixed on the core 7 and drives the holding member 3 to turn around the center axis O by cooperating with the permanent magnets 5. The holding member 3 is made of a nonmagnetic resin material and the magnetic path of the movable part is composed by the permanent magnets 5 only. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、光学部材を回転駆動して光線を反射、或いは回折偏光するガルバノスキャナに関するものである。   The present invention relates to a galvano scanner that rotates an optical member to reflect or diffract polarized light.

従来のガルバノスキャナは、下面を半円筒面に形成した永久磁石を反射ミラーを保持する保持部材に取り付け、永久磁石の半円筒面を空気膜により回転可能に支持する空気軸受をベース部材に固定するとともに空気軸受とベース部材との間にコイルを配置し、永久磁石の磁力により保持部材を空気軸受に付勢するように構成されていた(例えば、特許文献1参照)。   In a conventional galvano scanner, a permanent magnet having a semi-cylindrical surface formed on a lower surface is attached to a holding member that holds a reflecting mirror, and an air bearing that rotatably supports the semi-cylindrical surface of the permanent magnet by an air film is fixed to a base member. In addition, a coil is arranged between the air bearing and the base member, and the holding member is urged to the air bearing by the magnetic force of the permanent magnet (see, for example, Patent Document 1).

特開2000−81588号公報JP 2000-81588 A

従来のガルバノスキャナでは、反射ミラーを保持する保持部材が永久磁石とベース部材とともに磁気回路を構成している。そこで、保持部材が重量の重い磁性材料で作製されることになり、可動部の慣性が増加する。また、保持部材は起磁力をもっていないので、磁束増加には貢献しない。したがって、従来のガルバノスキャナは、高加速度化に対応できなかった。言い換えれば、従来のガルバノスキャナにおいて、高加速度化を実現するには、コイルに流す電流を増加して高トルクを得る必要があった。
しかし、コイルに流す電流を増加すると、コイルジュール損や磁石渦損が大きくなるので、コイルや磁石での発熱量が多くなり、エンコーダの動作温度範囲を逸脱したり、永久磁石が熱減磁し、トルクが低下するという問題が生じる。
In a conventional galvano scanner, a holding member that holds a reflection mirror constitutes a magnetic circuit together with a permanent magnet and a base member. Therefore, the holding member is made of a heavy magnetic material, and the inertia of the movable part increases. Moreover, since the holding member does not have a magnetomotive force, it does not contribute to an increase in magnetic flux. Therefore, the conventional galvano scanner cannot cope with high acceleration. In other words, in the conventional galvano scanner, in order to achieve high acceleration, it is necessary to increase the current flowing through the coil to obtain a high torque.
However, if the current flowing through the coil is increased, coil joule loss and magnet vortex loss increase, so the amount of heat generated in the coil and magnet increases, deviating from the operating temperature range of the encoder, and the permanent magnet is thermally demagnetized. This causes a problem that the torque decreases.

この発明は、このような課題を解決するためになされたものであって、永久磁石のみで可動部の磁路を構成し、保持部材を軽量の非磁性材料により作製できるようにし、可動部の軽量化により慣性を小さくでき、かつ永久磁石の体積を増加して、磁束を増加でき、コイルへの通電電流の増加を抑えて高加速度化を実現できるガルバノスキャナを得ることを目的とする。   The present invention has been made in order to solve such a problem. The magnetic path of the movable part is constituted only by permanent magnets, the holding member can be made of a light non-magnetic material, and It is an object of the present invention to obtain a galvano scanner capable of reducing inertia, increasing the volume of a permanent magnet, increasing magnetic flux, and suppressing increase in energization current to a coil and realizing high acceleration.

この発明に係るガルバノスキャナは、裏面を円弧面とし、該円弧面の中心軸が光学部材の反斜面或いは偏光面上に位置するように該光学部材を保持する保持部材と、上記保持部材に一体に設けられ、該保持部材とともに可動部を構成する永久磁石と、上記保持部材を上記中心軸回りに回動自在に支持するベース部材と、上記保持部材の上記円弧面に相対するように上記ベース部材に配置されたコアと、上記コアに固着されて、上記永久磁石と協働して上記保持部材を上記中心軸回りに回動駆動するコイルと、を備え、上記保持部材が非磁性の樹脂材料で作製され、上記可動部の磁路が上記永久磁石のみで構成されている。   The galvano scanner according to the present invention includes a holding member that holds the optical member such that the back surface has an arc surface, and the central axis of the arc surface is located on the anti-slope or polarization plane of the optical member, and the holding member is integrated with the holding member. A permanent magnet that forms a movable part together with the holding member, a base member that rotatably supports the holding member around the central axis, and the base that faces the arc surface of the holding member. A core disposed on the member, and a coil that is fixed to the core and that rotates the holding member around the central axis in cooperation with the permanent magnet, wherein the holding member is a non-magnetic resin. The magnetic path of the movable part is made of only the permanent magnet.

この発明によれば、光学部材を保持する可動部における磁路が永久磁石のみで構成されているので、磁石体積が増加し、磁束量が増大し、トルクを大きくすることができる。さらに、保持部材が樹脂材料で作製されているので、保持部材の軽量化が図られ、可動部の慣性を小さくできる。したがって、可動部の慣性当たりのトルク(トルク/可動部慣性)が増大し、損失の大きな増加なしに高い加速度を得ることができる。   According to this invention, since the magnetic path in the movable part holding the optical member is composed of only permanent magnets, the magnet volume increases, the amount of magnetic flux increases, and the torque can be increased. Furthermore, since the holding member is made of a resin material, the weight of the holding member can be reduced and the inertia of the movable portion can be reduced. Accordingly, the torque per inertia of the movable part (torque / movable part inertia) increases, and a high acceleration can be obtained without a large increase in loss.

この発明の実施の形態1に係るガルバノスキャナを示す斜視図である。It is a perspective view which shows the galvano scanner which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るガルバノスキャナの構成を説明する分解斜視図である。It is a disassembled perspective view explaining the structure of the galvano scanner which concerns on Embodiment 1 of this invention. 図1のIII−III矢視断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. この発明の実施の形態2に係るガルバノスキャナの構成を示す横断面図である。It is a cross-sectional view which shows the structure of the galvano scanner which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係るガルバノスキャナの構成を示す横断面図である。It is a cross-sectional view which shows the structure of the galvano scanner which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係るガルバノスキャナの構成を示す横断面図である。It is a cross-sectional view which shows the structure of the galvano scanner which concerns on Embodiment 4 of this invention.

以下、本発明のガルバノスキャナの好適な実施の形態につき図面を用いて説明する。   Hereinafter, preferred embodiments of the galvano scanner of the present invention will be described with reference to the drawings.

実施の形態1.
図1はこの発明の実施の形態1に係るガルバノスキャナを示す斜視図、図2はこの発明の実施の形態1に係るガルバノスキャナの構成を説明する分解斜視図、図3は図1のIII−III矢視断面図である。
Embodiment 1 FIG.
1 is a perspective view showing a galvano scanner according to Embodiment 1 of the present invention, FIG. 2 is an exploded perspective view for explaining the configuration of the galvano scanner according to Embodiment 1 of the present invention, and FIG. It is III arrow sectional drawing.

図1乃至図3において、ガルバノスキャナ1は、光学部材としての反射ミラー2と、裏面が半円筒面3bに形成され、半円筒面3bの中心軸Oが反射ミラー2の反射面上に位置するように反射ミラー2をミラー搭載面3aに保持する保持部材3と、保持部材3に一体に設けられた永久磁石5と、保持部材3を半円筒面3bの中心軸O回りに回動自在に支持するベース部材9と、内周面を保持部材3の半円筒面3bより大きな曲率半径を有する半円筒面とする半円筒体に作製され、内周面の中心軸が中心軸Oに一致するように、保持部材3の半円筒面3bに対向してベース部材9に保持された圧粉鉄心からなるコア7と、コア7の内周面上に配設され、永久磁石5と協働して保持部材3を半円筒面3bの中心軸O回りに回動駆動するコイル8と、を備えている。ここで、半円筒面とは、中心角を180°する円弧を、その中心を中心軸に一致させて中心軸の軸方向に集合してできる曲面(円弧面)である。   1 to 3, a galvano scanner 1 includes a reflection mirror 2 as an optical member, a back surface formed on a semi-cylindrical surface 3b, and a central axis O of the semi-cylindrical surface 3b positioned on the reflection surface of the reflection mirror 2. As described above, the holding member 3 that holds the reflecting mirror 2 on the mirror mounting surface 3a, the permanent magnet 5 that is provided integrally with the holding member 3, and the holding member 3 are rotatable about the central axis O of the semi-cylindrical surface 3b. The base member 9 to be supported and a semi-cylindrical body whose inner peripheral surface is a semi-cylindrical surface having a larger radius of curvature than the semi-cylindrical surface 3b of the holding member 3, and the central axis of the inner peripheral surface coincides with the central axis O. Thus, the core 7 made of a dust core held by the base member 9 so as to face the semi-cylindrical surface 3 b of the holding member 3 and the inner peripheral surface of the core 7 are arranged and cooperates with the permanent magnet 5. A coil 8 for driving the holding member 3 around the central axis O of the semi-cylindrical surface 3b; It is equipped with a. Here, the semi-cylindrical surface is a curved surface (arc surface) formed by collecting arcs having a central angle of 180 ° in the axial direction of the central axis with the center coincident with the central axis.

ここで、ガルバノスキャナ1の各構成について、具体的に説明する。
反射ミラー2は、矩形平板状に作製され、表面が反射面となる。
保持部材3は、上面を平坦なミラー搭載面3aとし、裏面を半円筒面3bとする非磁性の樹脂成型体である。そして、一対の回転軸4が、その軸心を半円筒面3bの中心軸Oに一致するように、ミラー搭載面3aを挟んで相対して保持部材3に一体にモールド成形されている。
Here, each configuration of the galvano scanner 1 will be specifically described.
The reflection mirror 2 is manufactured in a rectangular flat plate shape, and the surface is a reflection surface.
The holding member 3 is a non-magnetic resin molded body having an upper surface as a flat mirror mounting surface 3a and a back surface as a semi-cylindrical surface 3b. The pair of rotating shafts 4 are molded integrally with the holding member 3 so as to face each other with the mirror mounting surface 3a interposed therebetween so that the axial center thereof coincides with the central axis O of the semi-cylindrical surface 3b.

永久磁石5は、長さ方向と直交する断面を所定厚みの円弧形とする湾曲した短冊状に作製され、着磁配向方向6を断面円弧形の周方向とするネオジウム焼結磁石である。この永久磁石5は、長さ方向を半円筒面3bの中心軸Oと平行にして、断面円弧形の外周面を半円筒面3bの中心軸Oに向けて、かつ断面円弧形の両側面を半円筒面3bと面一にして、保持部材3に一体にモールド成形されている。永久磁石5は、保持部材3の中心軸Oの方向の中央位置で、中心軸Oに直交する平面に対して対称、かつ保持部材3の半円筒面3bの中心角の二等分線により構成される平面に対して対称となるように保持部材3に配設されている。そして、永久磁石5の外周面が半円筒面3bの一部を構成する。   The permanent magnet 5 is a neodymium sintered magnet that is manufactured in a curved strip shape having an arc shape having a predetermined thickness in a cross section perpendicular to the length direction, and having a magnetization orientation direction 6 in the circumferential direction of the arc shape in cross section. . The permanent magnet 5 has a longitudinal direction parallel to the central axis O of the semi-cylindrical surface 3b, an outer peripheral surface having a cross-sectional arc shape directed toward the central axis O of the semi-cylindrical surface 3b, and both sides of the cross-sectional arc shape. The surface is flush with the semi-cylindrical surface 3b and is molded integrally with the holding member 3. The permanent magnet 5 is configured by a bisector of a central angle of the holding member 3 in the direction of the central axis O and symmetrical with respect to a plane orthogonal to the central axis O and the central angle of the semi-cylindrical surface 3b of the holding member 3. The holding member 3 is disposed so as to be symmetric with respect to the plane. And the outer peripheral surface of the permanent magnet 5 comprises a part of semi-cylindrical surface 3b.

コイル8は、導線を所定回巻回して作製され、平行な一対の直線部8a,8bの両端部を円弧部でそれぞれ連結してなるレーストラック状に成形された平板状コイルである。
ベース部材9は、例えば、銅などの良熱伝導材料で直方体に作製され、コア7の外周面と同等の曲率半径を有する半円筒面を内周面10aとする凹部10が上面に凹設されている。また、一対の転がり軸受11が、その軸心を凹部10の内周面10aの中心軸に一致させて、凹部10を挟んで相対するようにベース部材9に装着されている。さらに、流入ポート12と排出ポート13とがベース部材9の内部に形成された冷却水流路14の両端に接続されている。
The coil 8 is a flat coil that is formed by winding a conducting wire a predetermined number of times and is formed into a racetrack shape in which both ends of a pair of parallel straight portions 8a and 8b are connected by arc portions.
The base member 9 is formed in a rectangular parallelepiped with a good heat conductive material such as copper, for example, and a concave portion 10 having a semi-cylindrical surface having a radius of curvature equivalent to the outer peripheral surface of the core 7 as an inner peripheral surface 10a is provided on the upper surface. ing. Further, a pair of rolling bearings 11 is mounted on the base member 9 so as to be opposed to each other with the concave portion 10 in between, with the axial center thereof aligned with the central axis of the inner peripheral surface 10a of the concave portion 10. Further, the inflow port 12 and the discharge port 13 are connected to both ends of a cooling water flow path 14 formed inside the base member 9.

このように構成されたガルバノスキャナ1を組み立てるには、まず、保持部材3がモールド成形される。この時、回転軸4と永久磁石5とが保持部材3にインサートモールドされる。ついで、反射ミラー2を保持部材3のミラー搭載面3aに接着剤などを用いて固着し、可動部を作製する。また、コア7の外周面を凹部10の内周面10aに接着剤などを用いて固着し、コア7を凹部10に収納保持する。ついで、コイル8の直線部8a,8bの長さ方向をコア7の軸方向(内周面10aの中心軸の軸方向)に平行として、コア7の内周面に接し、かつ内周面に沿って湾曲させて、接着剤などを用いてコイル8をコア7に固着し、固定部を作製する。
そして、回転軸4が転がり軸受11に支持され、保持部材3が中心軸O回りに回動自在にベース部材9に取り付けられ、ガルバノスキャナ1が組み立てられる。なお、保持部材3の半円筒面3bとコア7の内周面との間の隙間は、0.5mm程度に調整されている。
In order to assemble the galvano scanner 1 configured as described above, first, the holding member 3 is molded. At this time, the rotating shaft 4 and the permanent magnet 5 are insert-molded into the holding member 3. Next, the reflecting mirror 2 is fixed to the mirror mounting surface 3a of the holding member 3 using an adhesive or the like, and a movable part is produced. Further, the outer peripheral surface of the core 7 is fixed to the inner peripheral surface 10 a of the recess 10 using an adhesive or the like, and the core 7 is stored and held in the recess 10. Next, the length direction of the straight portions 8a and 8b of the coil 8 is parallel to the axial direction of the core 7 (the axial direction of the central axis of the inner peripheral surface 10a) and is in contact with the inner peripheral surface of the core 7 and on the inner peripheral surface. Then, the coil 8 is fixed to the core 7 using an adhesive or the like, and a fixed portion is produced.
The rotating shaft 4 is supported by the rolling bearing 11, the holding member 3 is attached to the base member 9 so as to be rotatable around the central axis O, and the galvano scanner 1 is assembled. The gap between the semi-cylindrical surface 3b of the holding member 3 and the inner peripheral surface of the core 7 is adjusted to about 0.5 mm.

つぎに、このように構成されたガルバノスキャナ1の動作について説明する。
ガルバノスキャナ1では、永久磁石5が長さ方向を中心軸Oと平行にして、外周面を中心軸Oに向けて、かつ両側面を半円筒面3bと面一にして、保持部材3に一体にモールド成形されている。さらに、永久磁石5の着磁配向方向6が断面円弧形の周方向に一致している。これにより、永久磁石5はコア7とともに、図3中矢印で示されるような磁気回路Mを構成する。そこで、永久磁石5の磁束が、その一端から空隙を介してコイル8の直線部8aを通過してコア7に入り、コア7内を周方向の他側に流れ、ついでコイル8の直線部8bを通過し、空隙を介して永久磁石5の周方向の他側に戻るように流れる。
Next, the operation of the galvano scanner 1 configured as described above will be described.
In the galvano scanner 1, the permanent magnet 5 is integrated with the holding member 3 so that the length direction is parallel to the central axis O, the outer peripheral surface is directed to the central axis O, and both side surfaces are flush with the semi-cylindrical surface 3 b. Is molded. Further, the magnetization orientation direction 6 of the permanent magnet 5 coincides with the circumferential direction of the circular arc cross section. Thereby, the permanent magnet 5 and the core 7 constitute a magnetic circuit M as indicated by an arrow in FIG. Therefore, the magnetic flux of the permanent magnet 5 passes through the linear part 8a of the coil 8 from one end of the permanent magnet 5 and enters the core 7, flows in the core 7 to the other side in the circumferential direction, and then the linear part 8b of the coil 8. And flows so as to return to the other side in the circumferential direction of the permanent magnet 5 through the air gap.

ここで、コア7の内周面に配設されたコイル8の直線部8a,8bの長さ方向がコア7の軸方向に一致しているので、磁束は、導線にほぼ直交するようにコイル8を鎖交する。そこで、コイル8の導線に電流を流すことで、電流の向きと磁束の向きとに直交する方向にローレンツ力が発生する。そして、直線部8a,8bにおける電流の向きが逆向きとなっているので、直線部8a,8bで発生するローレンツ力は中心軸O回りに同じ方向の力となる。このローレンツ力が保持部材3の駆動トルクとして作用し、保持部材3(可動部)が中心軸O回りに回動する。そして、コイル8の導線に流す電流の向きを変えることで、中心軸O回りの保持部材3(可動部)の回動方向が変えられる。   Here, since the length directions of the straight portions 8a and 8b of the coil 8 disposed on the inner peripheral surface of the core 7 coincide with the axial direction of the core 7, the magnetic flux is coiled so as to be substantially orthogonal to the conducting wire. Interlink 8 Therefore, when a current is passed through the conducting wire of the coil 8, a Lorentz force is generated in a direction orthogonal to the direction of the current and the direction of the magnetic flux. And since the direction of the current in the straight portions 8a and 8b is opposite, the Lorentz force generated in the straight portions 8a and 8b becomes a force in the same direction around the central axis O. This Lorentz force acts as a driving torque of the holding member 3, and the holding member 3 (movable part) rotates around the central axis O. Then, by changing the direction of the current flowing through the conducting wire of the coil 8, the rotation direction of the holding member 3 (movable part) around the central axis O can be changed.

つぎに、ガルバノスキャナ1を用いたレーザ加工について説明する。
まず、X軸方向用とY軸方向用との2つガルバノスキャナ1が、レーザ加工機(図示せず)のレーザ光線の経路に配置される。そして、ガルバノスキャナ1のそれぞれに設けられたロータリエンコーダ(図示せず)の出力に基づいて制御回路(図示せず)により反射ミラー2の回動角度が制御される。これにより、レーザ光線の反射方向が変えられ、レーザ光線の被加工物への入射位置が制御される。
Next, laser processing using the galvano scanner 1 will be described.
First, two galvano scanners 1 for the X-axis direction and for the Y-axis direction are arranged in a laser beam path of a laser processing machine (not shown). The rotation angle of the reflection mirror 2 is controlled by a control circuit (not shown) based on the output of a rotary encoder (not shown) provided in each galvano scanner 1. Thereby, the reflection direction of the laser beam is changed, and the incident position of the laser beam on the workpiece is controlled.

そして、エポキシ基板の穴加工を例にとると、ガルバノスキャナ1は、加速→減速→静止→加速→減速・・・を繰り返し、レーザ光線のエポキシ基板上での照射位置を変えながら、穴を1つずつ順番に開口することになる。なお、静止中に穴加工する。また、コイル8に流す電流は、加速時は増加方向となり、減速時は減少方向となり、静止時はゼロとなるが、実際には、静止時間が短いため、連続加工時には、電流波形は正弦波に近い波形となる。そして、制御回路が回転位置の制御を安定して行えるよう、コイル8に流す電流波形は、主に正弦波に制御周波数のN倍調波(N=1,2,・・・)の高調波を重畳した波形となる。例えば、2,000points/secの速度の穴加工を制御周波数100kHzで行う場合、コイル8に流す電流波形は、2,000Hzの正弦波に100×NkHzの高調波群が重畳された波形となる。   Taking the hole processing of the epoxy substrate as an example, the galvano scanner 1 repeats acceleration → deceleration → stationary → acceleration → deceleration..., While changing the irradiation position of the laser beam on the epoxy substrate. Open one by one in turn. In addition, the hole is machined while stationary. The current flowing through the coil 8 increases during acceleration, decreases during deceleration, and becomes zero when stationary. However, since the stationary time is short, the current waveform is a sine wave during continuous machining. The waveform is close to. In order for the control circuit to stably control the rotational position, the current waveform flowing through the coil 8 is mainly a sine wave and a harmonic of an N-times harmonic (N = 1, 2,...) Of the control frequency. The waveform is superimposed. For example, when drilling at a speed of 2,000 points / sec is performed at a control frequency of 100 kHz, the current waveform flowing through the coil 8 is a waveform in which a harmonic group of 100 × N kHz is superimposed on a sine wave of 2,000 Hz.

このとき、コイル8でのジュール損Wcuは、コイル抵抗をR、電流実効値をIとすると、Wcu=R×Iとなる。また、ネオジウム焼結磁石は高抵抗であるが導電性を有しているので、コイル8に流れる電流の作る磁束変化に対応した渦電流が永久磁石5の内部に流れ、渦電流損が発生する。これらの2つの損失は、コイル8に流れる電流の大きさに比例して大きくなるので、高加速時には、損失が大きくなる。
そして、冷却水が流入ポート12から冷却水流路14に供給され、永久磁石5やコイル8からベース部材9に伝達された熱を吸熱し、排出ポート13から排出される。
At this time, the Joule loss Wcu in the coil 8 is Wcu = R × I 2 where R is the coil resistance and I is the effective current value. In addition, since the neodymium sintered magnet has high resistance but has conductivity, an eddy current corresponding to a change in magnetic flux generated by the current flowing in the coil 8 flows into the permanent magnet 5 and eddy current loss occurs. . Since these two losses increase in proportion to the magnitude of the current flowing through the coil 8, the losses increase during high acceleration.
Then, the cooling water is supplied from the inflow port 12 to the cooling water flow path 14, absorbs the heat transmitted from the permanent magnet 5 or the coil 8 to the base member 9, and is discharged from the discharge port 13.

この実施の形態1によれば、可動部の磁路が永久磁石5のみで構成されているので、可動部の主部である保持部材3を鉄などの重い磁性材料で作製する必要がない。つまり、保持部材3を樹脂などの軽量の部材で作製でき、可動部の軽量化が図られ、可動部の慣性が小さくなる。また、永久磁石5の容積を増やすことができ、永久磁石5の発生する磁束量を増大できる。そこで、コイル8に流す電流を増やすことなく可動部の慣性当たりのトルクを増大でき、損失を抑えて高加速化が実現される。そして、損失が抑えられるので、永久磁石5やコイル8での発熱が抑えられ、エンコーダの動作温度範囲を逸脱したり、永久磁石5が熱減磁したりする不具合が未然に回避される。   According to the first embodiment, since the magnetic path of the movable part is composed only of the permanent magnet 5, it is not necessary to produce the holding member 3 that is the main part of the movable part from a heavy magnetic material such as iron. That is, the holding member 3 can be made of a lightweight member such as a resin, the weight of the movable portion is reduced, and the inertia of the movable portion is reduced. Further, the volume of the permanent magnet 5 can be increased, and the amount of magnetic flux generated by the permanent magnet 5 can be increased. Therefore, the torque per inertia of the movable part can be increased without increasing the current flowing through the coil 8, and a high acceleration can be realized while suppressing the loss. And since loss is suppressed, the heat_generation | fever in the permanent magnet 5 or the coil 8 is suppressed, and the malfunction which deviates from the operating temperature range of an encoder, or the permanent magnet 5 carries out a heat demagnetization is avoided beforehand.

また、ベース部材9が銅などの良熱伝導材で作製され、かつ冷却水流路14がベース部材9の内部に形成されている。そこで、永久磁石5やコイル8での発熱は、ベース部材9に伝達され、冷却水流路14内を流れる冷却水に放熱されるので、永久磁石5やコイル8の過度の温度上昇が抑えられる。これにより、永久磁石5やコイル8の温度を上昇させることなくコイル8に流す電流を増大でき、トルクが増大し、高加速度化が図られる。   The base member 9 is made of a good heat conductive material such as copper, and the cooling water flow path 14 is formed inside the base member 9. Therefore, since the heat generated by the permanent magnet 5 and the coil 8 is transmitted to the base member 9 and radiated to the cooling water flowing through the cooling water flow path 14, an excessive temperature rise of the permanent magnet 5 and the coil 8 can be suppressed. As a result, the current flowing through the coil 8 can be increased without increasing the temperature of the permanent magnet 5 or the coil 8, torque is increased, and acceleration is increased.

実施の形態2.
図4はこの発明の実施の形態2に係るガルバノスキャナの構成を示す横断面図である。なお、横断面図とは中心軸Oと直交する平面における断面図である。
Embodiment 2. FIG.
FIG. 4 is a cross-sectional view showing the configuration of a galvano scanner according to Embodiment 2 of the present invention. In addition, a transverse sectional view is a sectional view in a plane orthogonal to the central axis O.

図4において、永久磁石5Aは、それぞれネオジウム焼結磁石で作製され、断面等脚台形の角柱に形成された第1磁石体21と、第1磁石体21と等しい長さを有し、平行な二辺と斜辺と円弧辺とからなる断面擬似台形の角柱に形成された第2および第3磁石体22,23と、から構成されている。そして、第2および第3磁石体22,23は、断面擬似台形の斜辺で構成される一方の側面を、断面等脚台形の斜辺で構成される第1磁石体21の側面と同一形状の平坦面に、円弧辺で構成される他方の側面を、保持部材3の半円筒面3bと同じ曲率半径の曲面に形成されている。第1磁石体21の着磁配向方向6は、断面等脚台形の平行な二辺に平行な方向である。第2磁石体22は、断面擬似台形の平行な二辺に平行、かつ断面擬似台形の斜辺から円弧辺に向かう方向である。第3磁石体23は、断面擬似台形の平行な二辺に平行、かつ断面擬似台形の円弧辺から斜辺に向かう方向である。   In FIG. 4, permanent magnets 5 </ b> A are each made of a neodymium sintered magnet and have a first magnet body 21 formed in a rectangular column with an isosceles trapezoidal cross section, a length equal to that of the first magnet body 21, and parallel to each other. The second and third magnet bodies 22 and 23 are formed in a pseudo-trapezoidal prism having two sides, a hypotenuse and an arc side. The second and third magnet bodies 22 and 23 are flat in the same shape as the side surface of the first magnet body 21 formed of the hypotenuse having the isosceles trapezoidal cross section on one side face constituted by the hypotenuse of the pseudo trapezoidal section. On the surface, the other side surface constituted by the arc sides is formed into a curved surface having the same radius of curvature as the semi-cylindrical surface 3 b of the holding member 3. The magnetization orientation direction 6 of the first magnet body 21 is a direction parallel to two parallel sides of a trapezoidal cross section. The second magnet body 22 is parallel to two parallel sides of the cross-sectional pseudo trapezoid and is in a direction from the hypotenuse of the cross-section pseudo trapezoid to the arc side. The third magnet body 23 is parallel to two parallel sides of the pseudo-trapezoidal cross section and is directed in a direction from the arc side of the pseudo-trapezoidal cross section toward the oblique side.

第1乃至第3磁石体21〜23は、第1磁石体21の断面等脚台形の平行な二辺のうちの長辺で構成される底面を中心軸Oに向け、第2および第3磁石体22,23の一方の側面を第1磁石体21の両側面に突き合わせた状態で、保持部材3にインサート成形されている。そして、第2および第3磁石体22,23の他方の側面が、保持部材3の半円筒面3bと面一になっている。そして、第1磁石体21は、着磁配向方向6が第3磁石体23から第2磁石体22に向かうようになっている。さらに、第1乃至第3磁石体21〜23の着磁配向方向6と直交する断面積は等しくなっている。   The 1st thru | or 3rd magnet bodies 21-23 have the bottom face comprised by the long side of the parallel parallel sides of the cross-section isosceles trapezoid of the 1st magnet body 21 toward the central axis O, and are the 2nd and 3rd magnets. The holding member 3 is insert-molded in a state where one side surface of the bodies 22 and 23 is abutted against both side surfaces of the first magnet body 21. The other side surfaces of the second and third magnet bodies 22 and 23 are flush with the semi-cylindrical surface 3 b of the holding member 3. The first magnet body 21 has a magnetization orientation direction 6 from the third magnet body 23 toward the second magnet body 22. Furthermore, the cross-sectional areas orthogonal to the magnetization orientation direction 6 of the first to third magnet bodies 21 to 23 are equal.

このように保持部材3にインサート成形された永久磁石5Aは、保持部材3の中心軸Oの方向の中央位置で、中心軸Oに直交する平面に対して対称、かつ保持部材3の半円筒面3bの中心角の二等分線により構成される平面に対して対称となっている。
なお、この実施の形態2では、永久磁石5に代えて永久磁石5Aを用いている点を除いて、上記実施の形態1と同様に構成されている。
The permanent magnet 5A insert-molded in the holding member 3 in this way is symmetric with respect to a plane orthogonal to the central axis O at the center position in the direction of the central axis O of the holding member 3 and the semi-cylindrical surface of the holding member 3 It is symmetric with respect to a plane constituted by bisectors having a central angle of 3b.
The second embodiment is configured in the same manner as in the first embodiment except that the permanent magnet 5A is used instead of the permanent magnet 5.

このように構成されたガルバノスキャナ1Aにおいても、上記実施の形態1によるガルバノスキャナ1と同様に動作する。
したがって、この実施の形態2においても、上記実施の形態1と同様の効果を奏する。
この実施の形態2では、永久磁石5Aが磁路方向に3つに分割されているので、永久磁石5Aの内部に流れる渦電流の経路が分断され、渦電流損が低減される。
第1乃至第3磁石体21〜23が断面等脚台形或いは断面擬似台形の角柱に作製されているので、第1乃至第3磁石体21〜23の作製が容易となる。
また、第1乃至第3磁石体21〜23の着磁配向方向6が断面等脚台形或いは断面擬似台形の平行な二辺に平行な方向となっているので、第1乃至第3磁石体21〜23の着磁配向処理が容易となる。
The galvano scanner 1A configured as described above operates in the same manner as the galvano scanner 1 according to the first embodiment.
Therefore, the second embodiment also has the same effect as the first embodiment.
In the second embodiment, since the permanent magnet 5A is divided into three in the magnetic path direction, the path of the eddy current flowing inside the permanent magnet 5A is divided, and the eddy current loss is reduced.
Since the 1st thru | or 3rd magnet bodies 21-23 are produced by the square pillar of cross-section isosceles trapezoid or cross-section pseudo trapezoid, manufacture of the 1st thru | or 3rd magnet bodies 21-23 becomes easy.
In addition, since the magnetization orientation directions 6 of the first to third magnet bodies 21 to 23 are parallel to two parallel sides of the cross-section isosceles trapezoid or the cross-section pseudo trapezoid, the first to third magnet bodies 21 are provided. The magnetization orientation process of ˜23 becomes easy.

実施の形態3.
図5はこの発明の実施の形態3に係るガルバノスキャナの構成を示す横断面図である。
Embodiment 3 FIG.
FIG. 5 is a cross-sectional view showing a configuration of a galvano scanner according to Embodiment 3 of the present invention.

図5において、永久磁石5Bは、それぞれネオジウム焼結磁石で作製され、断面等脚台形の角柱に形成された第1磁石体31と、第1磁石体31と等しい長さを有し、相対する底辺および円弧辺と相対する一対の側辺とからなる断面擬似四角形の角柱に形成された第2乃至第5磁石体32〜35と、から構成されている。そして、第1磁石体21の着磁配向方向6は、断面等脚台形の平行な二辺に平行、かつ他方の斜辺から一方の斜辺に向かう方向である。   In FIG. 5, permanent magnets 5 </ b> B are each made of a neodymium sintered magnet, and have a first magnet body 31 formed in a rectangular column with an isosceles trapezoidal cross section, and have a length equal to that of the first magnet body 31, and are opposed to each other. It is comprised from the 2nd thru | or 5th magnet bodies 32-35 formed in the square pillar of a cross-section pseudo-quadrangle which consists of a pair of side edge opposite to a base and a circular arc side. The magnetization orientation direction 6 of the first magnet body 21 is parallel to two parallel sides of the isosceles trapezoidal cross section and is directed from the other hypotenuse to one hypotenuse.

第2および第3磁石体32,33は、断面擬似四角形の一方の側辺で構成される側面同士が接するように配置された時に、断面擬似四角形の底辺で構成される両底面で構成される面形状が、断面等脚台形の一方の斜辺で構成される第1磁石体31の一方の側面と同一形状となり、断面擬似四角形の円弧辺で構成される両頂面で構成される面形状が、保持部材3の半円筒面3bと同じ曲率半径の曲面に形成されている。また、第2および第3磁石体34,35は、それぞれ断面擬似四角形の両側辺で構成される側面間の間隔が底面から頂面に向かって漸次狭くなるように形成されている。さらに、第2および第3磁石体32,33の着磁配向方向6は、断面擬似四角形の他方の側辺と平行、かつ底辺から円弧辺に向かう方向である。   The second and third magnet bodies 32 and 33 are configured by both bottom surfaces configured by the bottom sides of the cross-section pseudo-rectangle when the side surfaces configured by one side of the cross-section pseudo-rectangle are in contact with each other. The surface shape is the same shape as one side surface of the first magnet body 31 constituted by one oblique side of the isosceles trapezoidal cross section, and the surface shape constituted by both top surfaces constituted by the arc sides of the pseudo-quadratic section. The holding member 3 is formed in a curved surface having the same radius of curvature as the semi-cylindrical surface 3b of the holding member 3. In addition, the second and third magnet bodies 34 and 35 are formed such that the distance between the side surfaces formed by the two sides of the pseudo quadrangular cross section gradually decreases from the bottom surface to the top surface. Further, the magnetization orientation direction 6 of the second and third magnet bodies 32 and 33 is a direction parallel to the other side of the pseudoquadrangle in section and from the bottom toward the arc.

第4および第5磁石体34,35は、断面擬似四角形の一方の側辺で構成される側面同士が接するように配置された時に、断面擬似四角形の底辺で構成される両底面で構成される面形状が、断面等脚台形の他方の斜辺で構成される第1磁石体31の他方の側面と同一形状となり、断面擬似四角形の円弧辺で構成される両頂面で構成される面形状が、保持部材3の半円筒面3bと同じ曲率半径の曲面に形成されている。また、42および第5磁石体34,35は、それぞれ断面擬似四角形の両側辺で構成される側面間の間隔が底面から頂面に向かって漸次狭くなるように形成されている。さらに、第4および第5磁石体34,35の着磁配向方向6は、断面擬似四角形の他方の側辺と平行、かつ円弧辺から底辺に向かう方向である。   The fourth and fifth magnet bodies 34 and 35 are configured by both bottom surfaces configured by the bottom sides of the cross-sectional pseudo-rectangle when the side surfaces configured by one side of the cross-sectional pseudo-rectangle are in contact with each other. The surface shape is the same shape as the other side surface of the first magnet body 31 composed of the other oblique side of the isosceles trapezoidal cross section, and the surface shape composed of both top surfaces composed of the arc sides of the pseudoquadrangle of the cross section. The holding member 3 is formed in a curved surface having the same radius of curvature as the semi-cylindrical surface 3b of the holding member 3. Further, the 42 and the fifth magnet bodies 34 and 35 are formed such that the distance between the side surfaces constituted by both sides of the pseudo-quadrangle is gradually narrowed from the bottom surface to the top surface. Further, the magnetization orientation direction 6 of the fourth and fifth magnet bodies 34 and 35 is a direction parallel to the other side of the pseudoquadrangle in section and from the arc side to the bottom side.

第1乃至第5磁石体31〜35は、第1磁石体31の断面等脚台形の平行な二辺のうちの長辺で構成される底面を中心軸Oに向け、第2および第3磁石体32,33の断面擬似四角形の一方の側辺で構成される側面同士を密接させて、両底面を第1磁石体31の一方の側面に突き合わせ、さらに第4および第5磁石体34,35の断面擬似四角形の一方の側辺で構成される側面同士を密接させて、両底面を第1磁石体31の他方の側面に突き合わせた状態で、保持部材3にインサート成形されている。そして、第2乃至第5磁石体32〜35の頂面が、保持部材3の半円筒面3bと面一になっている。   The 1st thru | or 5th magnet bodies 31-35 turn the bottom face comprised by the long side of the parallel two sides of the isosceles trapezoid of the cross section of the 1st magnet body 31 to the central axis O, and are the 2nd and 3rd magnets. The side surfaces constituted by one side of the cross-sectional pseudo-rectangle of the bodies 32 and 33 are brought into close contact with each other, both bottom surfaces are butted against one side surface of the first magnet body 31, and the fourth and fifth magnet bodies 34 and 35 are further made. The holding member 3 is insert-molded in such a state that the side surfaces constituted by one side of the pseudo-quadrature of the cross section are brought into close contact with each other and both bottom surfaces are butted against the other side surface of the first magnet body 31. The top surfaces of the second to fifth magnet bodies 32 to 35 are flush with the semi-cylindrical surface 3b of the holding member 3.

このように保持部材3にインサート成形された永久磁石5Bは、保持部材3の中心軸Oの方向の中央位置で、中心軸Oに直交する平面に対して対称、かつ保持部材3の半円筒面3bの中心角の二等分線により構成される平面に対して対称となっている。
なお、この実施の形態3では、永久磁石5Aに代えて永久磁石5Bを用いている点を除いて、上記実施の形態2と同様に構成されている。
The permanent magnet 5B insert-molded on the holding member 3 in this manner is symmetrical with respect to a plane orthogonal to the central axis O at the center position in the direction of the central axis O of the holding member 3 and the semi-cylindrical surface of the holding member 3 It is symmetric with respect to a plane constituted by bisectors having a central angle of 3b.
The third embodiment is configured in the same manner as in the second embodiment except that a permanent magnet 5B is used instead of the permanent magnet 5A.

このように構成されたガルバノスキャナ1Bにおいても、上記実施の形態2によるガルバノスキャナ1Aと同様に動作する。
したがって、この実施の形態3においても、上記実施の形態2と同様の効果を奏する。
この実施の形態3では、第1磁石体31の一方の側辺に接して配置される第2および第3永久磁石32,33の磁石体対の磁路断面積が、中心軸Oに向かって漸次大きくなっている。同様に、第1磁石体31の他方の側辺に接して配置される第4および第5永久磁石34,35の磁石体対の磁路断面積が、中心軸Oに向かって漸次大きくなっている。これにより、永久磁石5Bの重心が中心軸Oに近づき、慣性が小さくなるので、可動部の慣性当たりのトルクを増大でき、高加速度を得やすい。
The galvano scanner 1B configured as described above operates in the same manner as the galvano scanner 1A according to the second embodiment.
Therefore, the third embodiment also has the same effect as the second embodiment.
In the third embodiment, the magnetic path cross-sectional area of the magnet body pair of the second and third permanent magnets 32 and 33 arranged in contact with one side of the first magnet body 31 is directed toward the central axis O. It is getting bigger gradually. Similarly, the magnetic path cross-sectional area of the magnet body pair of the fourth and fifth permanent magnets 34 and 35 arranged in contact with the other side of the first magnet body 31 gradually increases toward the central axis O. Yes. As a result, the center of gravity of the permanent magnet 5B approaches the central axis O, and the inertia is reduced, so that the torque per inertia of the movable part can be increased and high acceleration can be easily obtained.

実施の形態4.
図6はこの発明の実施の形態4に係るガルバノスキャナの構成を示す横断面図である。
Embodiment 4 FIG.
FIG. 6 is a cross-sectional view showing the configuration of a galvano scanner according to Embodiment 4 of the present invention.

図6において、永久磁石5Cは、それぞれネオジウム焼結磁石で作製され、相対する底辺および円弧辺と相対する一対の側辺とからなる断面擬似四角形の角柱に形成された第1乃至第4磁石体41〜44から構成されている。   In FIG. 6, each of the permanent magnets 5C is made of a neodymium sintered magnet, and is a first to fourth magnet body formed in a square column having a pseudo-quadrangle cross section composed of an opposing base and a pair of side edges opposing to an arc side. It is comprised from 41-44.

第1および第2磁石体41,42は、断面擬似四角形の一方の側辺で構成される側面同士が接するように配置された時に、断面擬似四角形の底辺で構成される両底面が直交し、断面擬似四角形の円弧辺で構成される両頂面で構成される面形状が、保持部材3の半円筒面3bと同じ曲率半径の曲面に形成されている。また、第1および第2磁石体41,42は、それぞれ断面擬似四角形の両側辺で構成される側面間の間隔が底面から頂面に向かって漸次狭くなるように形成されている。さらに、第1および第2磁石体41,42の着磁配向方向6は、断面擬似四角形の他方の側辺と平行、かつ底辺から円弧辺に向かう方向である。   When the first and second magnet bodies 41 and 42 are arranged so that side surfaces constituted by one side of the cross-section pseudo-rectangle are in contact with each other, both bottom surfaces constituted by the bottom sides of the cross-section pseudo-rectangle are orthogonal to each other, A surface shape formed by both top surfaces formed by arcuate sides of a pseudoquadrangle in cross section is formed on a curved surface having the same radius of curvature as the semi-cylindrical surface 3 b of the holding member 3. In addition, the first and second magnet bodies 41 and 42 are formed such that the distance between the side surfaces formed by the both sides of the pseudo-quadrangle is gradually narrowed from the bottom surface to the top surface. Furthermore, the magnetization orientation direction 6 of the first and second magnet bodies 41 and 42 is a direction parallel to the other side of the pseudoquadrangle in cross section and from the bottom toward the arc.

第3および第4磁石体43,44は、断面擬似四角形の一方の側辺で構成される側面同士が接するように配置された時に、断面擬似四角形の底辺で構成される両底面が直交し、断面擬似四角形の円弧辺で構成される両頂面で構成される面形状が、保持部材3の半円筒面3bと同じ曲率半径の曲面に形成されている。また、第3および第4磁石体43,44は、それぞれ断面擬似四角形の両側辺で構成される側面間の間隔が底面から頂面に向かって漸次狭くなるように形成されている。さらに、第3および第4磁石体43,44の着磁配向方向6は、断面擬似四角形の他方の側辺と平行、かつ円弧辺から底辺に向かう方向である。   When the third and fourth magnet bodies 43 and 44 are arranged so that side surfaces constituted by one side of the cross-section pseudo-rectangle are in contact with each other, both bottom surfaces constituted by the bottom sides of the cross-section pseudo-rectangle are orthogonal, A surface shape formed by both top surfaces formed by arcuate sides of a pseudoquadrangle in cross section is formed on a curved surface having the same radius of curvature as the semi-cylindrical surface 3 b of the holding member 3. In addition, the third and fourth magnet bodies 43 and 44 are formed such that the distance between the side surfaces constituted by both sides of the pseudo-quasi-cross section gradually decreases from the bottom surface to the top surface. Further, the magnetization orientation direction 6 of the third and fourth magnet bodies 43 and 44 is a direction parallel to the other side of the pseudoquadrangle in section and from the arc side to the bottom side.

第1乃至第4磁石体41〜44は、第1および第2磁石体41,42の断面擬似四角形の一方の側辺で構成される側面同士を密接させ、第3および第4磁石体43,44の断面擬似四角形の一方の側辺で構成される側面同士を密接させ、さらに第2および第4磁石体42,44の底面同士を突き合わせた状態で、保持部材3にインサート成形されている。そして、第1乃至第4磁石体41〜44の頂面が、保持部材3の半円筒面3bと面一になっている。さらに、第1および第3磁石体41,43の底面がミラー搭載面3aと面一になっている。   The 1st thru | or 4th magnet bodies 41-44 closely_contact | adhere the side surface comprised by one side of the cross-section pseudo-quadrangle of the 1st and 2nd magnet bodies 41 and 42, the 3rd and 4th magnet bodies 43, The holding member 3 is insert-molded in such a state that the side surfaces constituted by one side of the cross section pseudo-rectangular shape 44 are brought into close contact with each other and the bottom surfaces of the second and fourth magnet bodies 42 and 44 are in contact with each other. The top surfaces of the first to fourth magnet bodies 41 to 44 are flush with the semi-cylindrical surface 3b of the holding member 3. Furthermore, the bottom surfaces of the first and third magnet bodies 41 and 43 are flush with the mirror mounting surface 3a.

このように保持部材3にインサート成形された永久磁石5Cは、保持部材3の中心軸Oの方向の中央位置で、中心軸Oに直交する平面に対して対称、かつ保持部材3の半円筒面3bの中心角の二等分線により構成される平面に対して対称となっている。
なお、この実施の形態4では、永久磁石5Bに代えて永久磁石5Cを用いている点を除いて、上記実施の形態3と同様に構成されている。
The permanent magnet 5 </ b> C insert-molded on the holding member 3 in this way is symmetric with respect to a plane perpendicular to the central axis O at the center position in the direction of the central axis O of the holding member 3, and the semi-cylindrical surface of the holding member 3. It is symmetric with respect to a plane constituted by bisectors having a central angle of 3b.
The fourth embodiment is configured in the same manner as in the third embodiment except that a permanent magnet 5C is used instead of the permanent magnet 5B.

このように構成されたガルバノスキャナ1Cにおいても、上記実施の形態3によるガルバノスキャナ1Bと同様に動作する。
したがって、この実施の形態4においても、上記実施の形態3と同様の効果を奏する。
この実施の形態4では、永久磁石5Cが第1乃至第4磁石体41〜44により構成されているので、上記実施の形態3に比べて、磁石体の個数を減らすことができ、組立性を向上させることができる。
The galvano scanner 1C configured as described above operates in the same manner as the galvano scanner 1B according to the third embodiment.
Therefore, this fourth embodiment also has the same effect as the third embodiment.
In the fourth embodiment, since the permanent magnet 5C is constituted by the first to fourth magnet bodies 41 to 44, the number of magnet bodies can be reduced and the assemblability can be reduced as compared with the third embodiment. Can be improved.

なお、上記各実施の形態では、光学部材として反射ミラーを用いるものとしているが、光学部材は反射ミラーに限定されるものではなく、例えば回折格子でもよい。この場合、回折格子は、中心軸Oがその偏光面上に位置するように保持部材に保持される。
また、上記各実施の形態では、コアが圧粉鉄心で作製されているものとしているが、コアが磁性材料で作製されていればよく、例えば磁性鋼板を積層一体化してなる積層鉄心でもよい。
In each of the above embodiments, a reflection mirror is used as the optical member. However, the optical member is not limited to the reflection mirror, and may be a diffraction grating, for example. In this case, the diffraction grating is held by the holding member so that the central axis O is located on the polarization plane.
Moreover, in each said embodiment, although the core shall be produced with the powder iron core, the core should just be produced with the magnetic material, for example, the laminated iron core formed by laminating | stacking and integrating a magnetic steel plate may be sufficient.

また、上記各実施の形態では、保持部材の裏面やコアの内周面などが、中心角を180°とする円弧を、その中心を中心軸に一致させて中心軸の軸方向に集合してできる半円筒面に構成されているものとしているが、保持部材の裏面やコアの内周面などは必ずしも半円筒面(円弧面)とする必要はなく、例えば、中心角を160°や200°とする円弧を、その中心を中心軸に一致させて中心軸の軸方向に集合してできる円弧面としてもよい。   In each of the above embodiments, the back surface of the holding member, the inner peripheral surface of the core, and the like are gathered in the axial direction of the central axis with an arc having a central angle of 180 °, with the center aligned with the central axis. However, the back surface of the holding member, the inner peripheral surface of the core, and the like are not necessarily a semi-cylindrical surface (arc surface). For example, the central angle is 160 ° or 200 °. May be a circular arc surface formed by gathering the centers thereof in the axial direction of the central axis so that the center coincides with the central axis.

また、上記各実施の形態では、可動部がベース部材に設けられた転がり軸受に回動自在に支持されているものとしているが、軸受は転がり軸受に限定されるものではなく、可動部は中心軸O回りに回動可能にベース部材に支持されていればよく、例えば空気軸受でもよい。
また、上記各実施の形態では、コイルがコアの内周面上に配設されているものとしているが、コアの内周面にコイル収納凹部を凹設し、コイルをコイル収納凹部内に収納するようにしてもよい。
また、上記各実施の形態では、永久磁石がネオジウム焼結磁石で作製されているものとしているが、永久磁石はネオジウム焼結磁石に限定される必要はなく、例えばサマリウム系焼結磁石でもよい。
Further, in each of the embodiments described above, the movable part is rotatably supported by the rolling bearing provided on the base member. However, the bearing is not limited to the rolling bearing, and the movable part is the center. What is necessary is just to be supported by the base member so that rotation around the axis | shaft O is possible, for example, an air bearing may be sufficient.
In each of the above embodiments, the coil is disposed on the inner peripheral surface of the core. However, a coil storage recess is provided on the inner peripheral surface of the core, and the coil is stored in the coil storage recess. You may make it do.
Moreover, in each said embodiment, although the permanent magnet shall be produced with the neodymium sintered magnet, a permanent magnet does not need to be limited to a neodymium sintered magnet, For example, a samarium type sintered magnet may be sufficient.

1,1A,1B,1C ガルバノスキャナ、2 反射ミラー(光学部材)、3 保持部材(可動部)、3b 半円筒面(円弧面)、5,5A,5B,5C 永久磁石(可動部)、7 コア、8 コイル、O 中心軸。   1, 1A, 1B, 1C Galvano scanner, 2 reflection mirror (optical member), 3 holding member (movable part), 3b semi-cylindrical surface (arc surface), 5, 5A, 5B, 5C permanent magnet (movable part), 7 Core, 8 coils, O center axis.

Claims (4)

光学部材を回動駆動して光線を反射或いは回折偏光するガルバノスキャナにおいて、
裏面を円弧面とし、該円弧面の中心軸が上記光学部材の反斜面或いは偏光面上に位置するように該光学部材を保持する保持部材と、
上記保持部材に一体に設けられ、該保持部材とともに可動部を構成する永久磁石と、
上記保持部材を上記中心軸回りに回動自在に支持するベース部材と、
上記保持部材の上記円弧面に相対するように上記ベース部材に配置されたコアと、
上記コアに固着されて、上記永久磁石と協働して上記保持部材を上記中心軸回りに回動駆動するコイルと、を備え、
上記保持部材が非磁性の樹脂材料で作製され、上記可動部の磁路が上記永久磁石のみで構成されていることを特徴とするガルバノスキャナ。
In a galvano scanner that rotates or drives an optical member to reflect or diffract polarized light,
A holding member that holds the optical member such that the back surface is an arc surface, and the central axis of the arc surface is positioned on the anti-slope or polarization surface of the optical member;
A permanent magnet provided integrally with the holding member and constituting a movable part together with the holding member;
A base member that rotatably supports the holding member around the central axis;
A core disposed on the base member so as to face the arc surface of the holding member;
A coil that is fixed to the core and that drives the holding member to rotate about the central axis in cooperation with the permanent magnet;
A galvano scanner, wherein the holding member is made of a non-magnetic resin material, and the magnetic path of the movable part is composed only of the permanent magnet.
上記永久磁石は、複数の磁石体に分割構成されていることを特徴とする請求項1記載のガルバノスキャナ。   The galvano scanner according to claim 1, wherein the permanent magnet is divided into a plurality of magnet bodies. 上記永久磁石は、上記円弧面側の着磁配向方向と直交する磁石断面積が上記中心軸側の着磁配向方向と直交する磁石断面積より小さく構成されていることを特徴とする請求項1又は請求項2記載のガルバノスキャナ。   2. The permanent magnet according to claim 1, wherein a magnet cross-sectional area perpendicular to the magnetization orientation direction on the arc surface side is smaller than a magnet cross-sectional area perpendicular to the magnetization orientation direction on the central axis side. Alternatively, the galvano scanner according to claim 2. 上記永久磁石が、上記保持部材にインサート成形されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載のガルバノスキャナ。   The galvano scanner according to any one of claims 1 to 3, wherein the permanent magnet is insert-molded in the holding member.
JP2009109656A 2009-04-28 2009-04-28 Galvano scanner Active JP5153719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109656A JP5153719B2 (en) 2009-04-28 2009-04-28 Galvano scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009109656A JP5153719B2 (en) 2009-04-28 2009-04-28 Galvano scanner

Publications (2)

Publication Number Publication Date
JP2010256811A true JP2010256811A (en) 2010-11-11
JP5153719B2 JP5153719B2 (en) 2013-02-27

Family

ID=43317759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109656A Active JP5153719B2 (en) 2009-04-28 2009-04-28 Galvano scanner

Country Status (1)

Country Link
JP (1) JP5153719B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098399A (en) * 2010-10-29 2012-05-24 Hitachi Via Mechanics Ltd Galvano scanner and laser beam machine
JP2014182167A (en) * 2013-03-18 2014-09-29 Mitsubishi Electric Corp Galvano scanner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004524575A (en) * 2001-03-30 2004-08-12 ジーエスアイ ルモニクス コーポレイション Surface orientation method and apparatus
JP2005169553A (en) * 2003-12-10 2005-06-30 Canon Inc Micro-actuator
JP2008046460A (en) * 2006-08-18 2008-02-28 Sumitomo Heavy Ind Ltd Beam scanner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004524575A (en) * 2001-03-30 2004-08-12 ジーエスアイ ルモニクス コーポレイション Surface orientation method and apparatus
JP2005169553A (en) * 2003-12-10 2005-06-30 Canon Inc Micro-actuator
JP2008046460A (en) * 2006-08-18 2008-02-28 Sumitomo Heavy Ind Ltd Beam scanner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098399A (en) * 2010-10-29 2012-05-24 Hitachi Via Mechanics Ltd Galvano scanner and laser beam machine
JP2014182167A (en) * 2013-03-18 2014-09-29 Mitsubishi Electric Corp Galvano scanner

Also Published As

Publication number Publication date
JP5153719B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP4193685B2 (en) Axial gap motor structure
JP5108236B2 (en) Rotor for motor
US9030060B2 (en) Galvanoscanner and laser processing machine
JP2007525937A5 (en)
JP2010246367A (en) Core member of rotating machine, and rotating machine
JP5035578B2 (en) Magnetic circuit for voice coil motor and voice coil motor
JP5176225B2 (en) Rotary electromagnetic generator
JP5404718B2 (en) Magnetic gear unit
JP5153719B2 (en) Galvano scanner
JP5943669B2 (en) Galvano scanner and laser processing device
JP7109713B1 (en) Power generation elements, magnetic sensors, encoders and motors
JP2007037338A (en) Driver
JP5153806B2 (en) Galvano scanner
JP5875546B2 (en) Galvano scanner
JPS60180466A (en) Rotary drive device
JP5359452B2 (en) Brushless motor
JP2001118265A (en) Lens driving device
TW200903460A (en) Voice coil motor and magnetic circuit therefor
JP2010035268A (en) Axial gap type motor
WO2023188430A1 (en) Galvanometer scanner
JP5303907B2 (en) Axial gap type rotating electrical machine and field element core
JP4330019B2 (en) Spindle motor and disk drive using the spindle motor
JP2004120932A (en) Motor and disk unit
JP2005092004A (en) Imaging apparatus
JP3644424B2 (en) Motor and disk device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5153719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250