WO2023188430A1 - Galvanometer scanner - Google Patents

Galvanometer scanner Download PDF

Info

Publication number
WO2023188430A1
WO2023188430A1 PCT/JP2022/016998 JP2022016998W WO2023188430A1 WO 2023188430 A1 WO2023188430 A1 WO 2023188430A1 JP 2022016998 W JP2022016998 W JP 2022016998W WO 2023188430 A1 WO2023188430 A1 WO 2023188430A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
galvano scanner
stator core
diameter side
Prior art date
Application number
PCT/JP2022/016998
Other languages
French (fr)
Japanese (ja)
Inventor
剛 森
悌史 ▲高▼橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/016998 priority Critical patent/WO2023188430A1/en
Publication of WO2023188430A1 publication Critical patent/WO2023188430A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets

Definitions

  • the present disclosure relates to a galvano scanner that rotates an optical member.
  • a galvano scanner has a stator equipped with a coil, a rotor equipped with a permanent magnet, and an optical member that is a mirror attached to the rotation axis of the rotor.
  • the rotor of the galvano scanner repeats acceleration, deceleration, and stopping operations.
  • the frequency of the drive current increases.
  • eddy currents flow through the permanent magnets of the rotor, causing eddy loss and increasing the temperature of the permanent magnets.
  • the temperature of a permanent magnet becomes too high, thermal demagnetization occurs. This deteriorates the properties of the permanent magnet and causes problems in the operation of the galvano scanner.
  • Patent Document 1 a plurality of grooves extending from the outer diameter side to the inner diameter side are formed in the permanent magnet so as to block the path of eddy current, thereby suppressing the temperature rise of the permanent magnet due to eddy loss.
  • the plurality of grooves formed in the permanent magnet are formed at positions that obstruct the path of eddy current, so the temperature rise of the permanent magnet due to eddy loss is suppressed.
  • the magnets are connected near the shaft of the permanent magnet, the eddy current is not completely blocked and flows around the groove.
  • the current magnetic flux that causes eddy loss passes through the groove, an eddy current loop occurs locally in the portion separated by the groove, resulting in eddy loss. For this reason, when the drive current is large and the frequency is high, there are problems such as the temperature of the permanent magnet rising beyond the limit and the rotation sensor exceeding the operating temperature range.
  • the present disclosure has been made in view of the above, and aims to provide a galvano scanner that can reduce the eddy loss generated in the permanent magnet and suppress the temperature rise of the permanent magnet.
  • a galvano scanner includes a permanent magnet in which different magnetic poles are alternately formed in the circumferential direction, and a rotating shaft arranged on both sides of the permanent magnet in the axial direction.
  • a stator having a rotor, a stator core, and a plurality of coils disposed on the inner diameter side of the stator core and on the outer diameter side of the rotor through a gap, and having a center hole, which is a space, an optical member connected to the rotating shaft.
  • the stator is characterized by comprising a first magnetic body disposed at a position corresponding to at least one end in the axial direction of the permanent magnet, inside the plurality of coils, and on the inner diameter side of the stator core.
  • the galvano scanner of the present disclosure it is possible to reduce the eddy loss generated in the permanent magnet and suppress the temperature rise of the permanent magnet.
  • a top view showing a coil of the galvano scanner according to Embodiment 1. 2 is a cross-sectional view showing essential parts of the galvano scanner according to Embodiment 1, and is a cross-sectional view taken along line IV-IV in FIG. 1.
  • 2 is a cross-sectional view showing essential parts of the galvano scanner according to Embodiment 1, and is a cross-sectional view taken along line VV in FIG. 1.
  • Cross-sectional view showing the main parts of a galvano scanner as a comparative example A cross-sectional perspective view showing the internal structure of a quarter portion of the galvano scanner according to the second embodiment.
  • Vertical cross-sectional view in which a part of the galvano scanner according to Embodiment 4 is enlarged A cross-sectional perspective view showing the internal structure of a quarter portion of the stator of the galvano scanner according to Embodiment 5.
  • FIG. 6 Top view showing the configuration of a galvano scanner according to Embodiment 6
  • Cross-sectional view showing main parts of a galvano scanner according to Embodiment 7 A cross-sectional perspective view showing the internal structure of a quarter portion of a stator of a galvano scanner according to Embodiment 8.
  • FIG. 1 is a longitudinal cross-sectional view showing the configuration of a galvano scanner according to the first embodiment.
  • the vertical cross-sectional view is a cross-sectional view taken along a plane that includes the rotation axis of the galvano scanner.
  • the galvano scanner 1 includes a rotor 7, a stator 13, a galvanometer mirror 14 as an optical member, and a rotation sensor 11.
  • the rotor 7 has a rotating shaft 4, a permanent magnet 6, and a detour 5 that is a second magnetic body.
  • the rotating shaft 4 is rotatably supported by the housing 2 via a pair of bearings 3.
  • the permanent magnet 6 has a cylindrical shape, is placed inside the rotating shaft 4, and is fixed to the rotating shaft 4 with an adhesive or the like.
  • the direction parallel to the axial direction of the rotating shaft 4 is defined as the X direction.
  • the detour path 5 is arranged at both ends of the permanent magnet 6 in the X direction.
  • the permanent magnet 6 has different magnetic poles alternately formed in the circumferential direction.
  • the rotating shaft 4 is arranged on both sides of the permanent magnet 6 in the X direction.
  • the stator 13 is fixed to the housing 2 and placed on the outer diameter side of the rotor 7 with a gap 20 interposed therebetween.
  • the stator 13 includes a plurality of coils 9, a stator core 12 that is a magnetic material, and a detour 8 that is a first magnetic material.
  • the plurality of coils 9 are arranged on the outer diameter side of the rotor 7.
  • the plurality of coils 9 have a hollow shape (doughnut shape), and have a center hole 9a in a hollow portion that is a space.
  • the stator core 12 is arranged on the outer diameter side of the plurality of coils 9.
  • the stator core 12 is formed in a cylindrical shape and includes a removed portion 10, which is a first space, on the outer diameter side of the center hole 9a of the coil 9.
  • the removed portion 10 only needs to have at least a portion removed on the inner diameter side.
  • the deleted portion 10 is a through hole.
  • the detour 8 is arranged on the inner diameter side of the stator core 12 and inside the coil 9. The inside of the coil 9 refers to the inner diameter side of the hollow coil 9. Further, the detour 8 is disposed at a position in the X direction opposite to the detour 5 of the rotor 7 with the gap 20 interposed therebetween.
  • the stator core 12 is manufactured using, for example, a compacted iron core that is heat-treated after pressure-molding insulated permalloy powder.
  • the stator core 12 may be manufactured by punching out a plate material of a magnetic material such as an electromagnetic steel plate.
  • the detour 5 disposed on the rotor 7 and the detour 8 disposed on the stator 13 are made of a magnetic material similarly to the stator core 12.
  • the stator core 12 only needs to have an inner circumferential surface formed of a cylindrical surface, and an outer circumferential surface thereof does not need to be a cylindrical surface.
  • the galvanometer mirror 14 is fixed to one end of the rotating shaft 4 in the axial direction.
  • the galvanometer mirror 14 is an optical member connected to the rotor 7.
  • the galvanometer mirror 14 is formed into a rectangular flat plate shape.
  • the surface of the galvanometer mirror 14 serves as a reflective surface for the laser beam.
  • the rotor 7 rotates within a predetermined angular range of about -4° to +4° mechanical angle. Therefore, the galvanometer mirror 14, which is an optical member connected to the rotor 7, rotates within a predetermined angular range of about -4° to +4° mechanical angle.
  • the rotation sensor 11 includes an encoder plate 22 and a sensor head 23.
  • the encoder plate 22 is fixed to the other end of the rotating shaft 4 in the axial direction.
  • the encoder plate 22 has a plurality of slits on its surface.
  • the encoder plate 22 cooperates with the sensor head 23 to constitute a rotary encoder that feeds back the rotation angle of the galvanometer mirror 14 to a control circuit (not shown).
  • the rotary encoder may be any rotation angle detection device that detects the angular displacement of the galvanometer mirror 14 used for feedback control. Therefore, the rotation angle detection device is not limited to a rotary encoder, but may be a resolver.
  • FIG. 2 is a top view showing the arrangement of the coil 9, etc. of the galvano scanner 1 according to the first embodiment.
  • FIG. 2 is a diagram showing essential parts of the galvano scanner 1 when viewed along arrow c in FIG. 1.
  • the coil 9 and the detour 8 are indicated by broken lines in order to show the positional relationship between the stator core 12, the coil 9, and the detour 8.
  • illustration of the housing 2, rotor 7, bearing 3, galvanometer mirror 14, and encoder plate 22 is omitted. In the following figures, similar omissions are made unless otherwise stated.
  • four rectangular coils 9 (the one on the back side is omitted in FIG. 2) each having a center hole 9a have a pair of parallel long sides of the rectangle parallel to the X direction. They are arranged circumferentially on the inner peripheral surface of the stator core 12. Coil 9 is fixed to stator core 12 with adhesive or mold. The coils 9 are arranged so that the removed portion 10 provided in the stator core 12 overlaps with the center hole 9a, and the long sides of the adjacent coils 9 are in contact with each other. Adjacent coils 9 are manufactured by winding in opposite directions. Therefore, the directions of currents flowing in the long sides of adjacent rectangular shapes of adjacent coils 9 are the same.
  • FIG. 3 is a top view showing the coil 9 of the galvano scanner 1 according to the first embodiment.
  • the coil 9 is made by winding a wire such as copper around a flat rectangular frame (not shown) the required number of times, and winding it in an arc shape along the inner peripheral surface of the stator core 12. It is made by bending and shaping.
  • the coils 9 are arranged in the circumferential direction with the long sides of the rectangles touching each other, but the coils 9 are arranged in the circumferential direction with the long sides of the adjacent rectangles separated by a predetermined gap. may be arranged in the direction.
  • FIG. 4 is a sectional view showing essential parts of the galvano scanner 1 according to the first embodiment, and is a sectional view taken along the line IV-IV in FIG. 1.
  • FIG. 5 is a sectional view showing essential parts of the galvano scanner 1 according to the first embodiment, and is a sectional view taken along the line VV in FIG. 1.
  • FIG. 6 is a cross-sectional perspective view showing the internal structure of a quarter portion of the galvano scanner 1 according to the first embodiment. In FIG. 6, for example, a quarter portion is extracted by cutting along line VI-VI in FIG.
  • FIG. 7 is a cross-sectional perspective view showing the internal structure of a quarter portion of the galvano scanner 1 according to the first embodiment, with the rotor 7 omitted. In FIG. 7, the rotor 7 is removed from FIG. 6. 4 and 5, illustration of the housing 2 is omitted.
  • the outer peripheral surface of the permanent magnet 6 shows an N pole and an S pole, which are the polarities on the outer peripheral surface side of the magnetic poles of the permanent magnet 6.
  • Different magnetic poles are alternately formed on the permanent magnet 6 along the circumferential direction, which is the rotational direction of the rotating shaft 4.
  • the number of magnetic poles formed on the permanent magnet 6 is four.
  • the permanent magnet 6 is a polar anisotropic magnet magnetized into four poles, and is, for example, a magnet formed by sintering neodymium. Since the permanent magnet 6 is disposed inside the rotating shaft 4, the surface of the permanent magnet 6 is covered with the rotating shaft 4.
  • the rotating shaft 4 is made of a non-magnetic material to prevent the magnet magnetic flux from short-circuiting.
  • SUS304 is used as the rotating shaft 4, but it is desirable to use a material with low electrical conductivity and little eddy current. For example, it may be a non-magnetic material such as ceramic.
  • the removed portion 10 of the stator core 12 is visible, and the center hole 9a of the coil 9 is also visible.
  • the removed portion 10 of the stator core 12 is removed and a detour 8 is provided.
  • the detour path 8 is arranged on both sides of the center hole 9a of the coil 9 in the X direction. It can also be said that the detour path 8 is arranged inside the coil 9 in the X direction.
  • the detour 5 has a circular shape and is arranged inside the rotating shaft 4.
  • the detour path 5 is arranged at both ends of the permanent magnet 6 in the X direction.
  • the detour 8 and the detour 5 are arranged at opposing positions in the X direction.
  • the number of poles of the permanent magnet 6 is four, and the number of coils 9 is four.
  • the magnetic flux 24 of the permanent magnet 6 passes through the coil 9 from the N pole of the permanent magnet 6 and reaches the stator core 12, as shown by the dotted arrow in FIG.
  • the magnetic flux passes through the coil 9 and enters the S poles on both sides of the N pole of the permanent magnet 6, forming two magnetic paths that pass through the permanent magnet 6 and return to the N pole.
  • a current magnetic flux 25 flows in order through the surface of 4 and the detour 5.
  • the galvano mirror 14 of the galvano scanner 1 is placed in the path of a laser beam of a laser processing machine (not shown). Based on the output of the rotary encoder using the encoder plate 22, the rotation angle of the galvanometer mirror 14 is controlled by a control circuit (not shown). Since the direction of reflection of the laser beam changes depending on the rotation angle of the galvanometer mirror 14, the incident position of the laser beam onto the workpiece is controlled.
  • the rotation angle of the rotor 7 is adjusted. Specifically, the rotor 7 rotates to the reference angle. When a current is applied to the coil 9 in this state, the rotor 7 rotates in a direction according to Fleming's left-hand rule (clockwise in FIG. 4) due to interaction with the magnetic flux 24 of the permanent magnet 6. The rotation direction of the rotor 7 changes depending on the direction of the current flowing through the coil 9.
  • the current direction is controlled based on the rotation angle information from the rotary encoder, and the rotor 7 is accelerated and rotated.
  • the current direction is controlled in the opposite direction to decelerate the rotor 7, and the rotor 7 stops at the target stopping angle.
  • the rotor 7 repeats rotational operations in the order of acceleration, deceleration, stop, acceleration, and so on. For this reason, the galvano scanner 1 sequentially opens holes in the workpiece one by one while changing the irradiation position of the laser beam on the workpiece.
  • the continuous drilling speed is 4000 points/sec
  • the current frequency is 4 kHz.
  • FIG. 8 is a sectional view showing the main parts of a galvano scanner of a comparative example.
  • FIG. 8 is a sectional view corresponding to FIGS. 4 and 5 of the galvano scanner 101 of the comparative example.
  • the first embodiment there are two types of cross-sectional structures perpendicular to the rotation axis 4, as shown in FIGS. 4 and 5, but in the galvano scanner 101 of the comparative example, there is only one type of cross-sectional structure perpendicular to the rotation axis. It is.
  • FIGS. 9 corresponds to the magnet magnetic flux 24 and the current magnetic flux 25.
  • the current magnetic flux 125 of the coil 109 reaches the inside of the permanent magnet 106.
  • the magnetic field that reaches the interior of the permanent magnet 106 varies at 4kHz. Therefore, an eddy current flows through the permanent magnet 106, and the permanent magnet 106 generates heat due to Joule loss. That is, eddy loss occurs in the permanent magnet 6.
  • stator core 112 is being cooled by a stator cooling device (not shown). Therefore, the temperature of stator core 112 is lower than that of rotor 107. Therefore, the heat of the permanent magnets 106 in the rotor 107 is radiated to the stator core 112. Further, the heat of the permanent magnet 106 is transmitted through the rotating shaft 104 and radiated in the axial direction. Therefore, the operating temperature range is reduced due to the occurrence of demagnetization due to the temperature rise of the permanent magnet 106, and the heat being transmitted to the rotation sensor corresponding to the rotation sensor 11 of the first embodiment via the rotation shaft 104, and the temperature of the rotation sensor increasing. deviation occurs.
  • the magnet magnetic flux 24 mainly flows through the path shown in FIG. 4, and the current magnetic flux 25 mainly flows through the path shown in FIG.
  • the path of the magnet magnetic flux 24 is a closed loop path passing through the N pole of the permanent magnet 6, the surface of the rotating shaft 4, the coil 9, the stator core 12, the coil 9, the surface of the rotating shaft 4, and the S pole of the permanent magnet 6 in this order.
  • the path of the current magnetic flux 25 is a closed loop path passing through the detour 5, the surface of the rotating shaft 4, the detour 8, the stator core 12, the detour 8, the surface of the rotating shaft 4, and the detour 5 in this order.
  • the stator core 12 is common to these two routes. This means that in the stator core 12, since the magnetic flux flows avoiding the deleted portion 10, there are portions that follow the same path.
  • the path passing through the permanent magnet 6 and the path passing through the detour 5 are parallel in terms of magnetic circuits. Furthermore, since the permanent magnet 6 has a larger magnetic resistance than the magnetic material of the stator core 12 and the magnetic materials of the detours 5 and 8, the current magnetic flux 25 flowing through the detour 5 does not flow through the path that flows out to the permanent magnet 6. There are almost no Therefore, the current magnetic flux 25 hardly flows through the permanent magnet 6. Therefore, no eddy loss occurs and temperature rise is suppressed. On the other hand, although a current magnetic flux 25 flows through the detour path 5, when a dust core is used as the magnetic material, almost no eddy current flows and almost no eddy loss occurs.
  • the removed portion 10 is provided in the stator core 12 at the cross-sectional position shown in FIG. Considering the current magnetic flux 125 at this cross-sectional position as in the comparative example shown in FIG. It will be about the thickness.
  • the magnetic gap between the rotor 7 and the stator core 12 is larger than the thickness of the coil 9 in the radial direction. Therefore, in the current magnetic flux path that passes through the permanent magnet 6, the magnetic resistance increases, making it difficult for the current magnetic flux 25 to flow.
  • the current magnetic flux 25 will flow preferentially. As described above, the current magnetic flux 25 flowing through the permanent magnet 6 is reduced, and the eddy loss in the permanent magnet 6 can be reduced. As a result, demagnetization of the permanent magnet 6 and deviation of the operating temperature range of the rotation sensor 11 can be prevented.
  • the rotor 7 is provided with the detour 5, and the stator 13 is provided with the detour 8 and the deletion portion 10. Therefore, the current magnetic flux flowing into the permanent magnet 6 is reduced, the eddy current generated due to the change in the current magnetic flux is reduced, and as a result, the eddy loss generated in the rotor 7 is reduced. For this reason, the amount of heat generated by the rotor 7 is reduced, so that a rise in temperature of the rotation sensor 11 connected to the rotor 7 can be suppressed. Therefore, malfunction of the rotation sensor 11 can be prevented. Moreover, since demagnetization of the permanent magnet 6 can be prevented, a decrease in torque can be prevented.
  • FIG. 9 is a cross-sectional perspective view showing the internal structure of a quarter portion of the galvano scanner according to the second embodiment.
  • the detour 5 is not provided within the rotor 7.
  • the other configurations are the same as those in Embodiment 1, and redundant explanation will be omitted.
  • the current magnetic flux path is a closed loop path passing through the rotating shaft 4, the detour 8, the stator core 12, the detour 8, and the rotating shaft 4 in this order. The portion of the path 5 is changed to the rotating shaft 4.
  • the current magnetic flux path of this second embodiment has a larger magnetic resistance than the current magnetic flux path of the first embodiment, but Since the detour 8 exists, the magnetic resistance is much smaller than the current magnetic flux path passing through the permanent magnet 6. Therefore, as in the first embodiment, the current magnetic flux 25 flows preferentially toward the current magnetic flux path passing through the detour 8, and almost no current magnetic flux flows through the permanent magnet 6.
  • the current magnetic flux flowing through the permanent magnet 6 is reduced, and the eddy loss in the permanent magnet 6 can be reduced.
  • demagnetization of the permanent magnet 6 and deviation of the operating temperature range of the rotation sensor 11 can be prevented.
  • the existing rotor can be used as is, it is easier to apply than the first embodiment and is advantageous in terms of cost.
  • Embodiment 3 In the third embodiment, the detour path 8 and the detour path 5 are arranged only at the end portion of the permanent magnet 6 on both sides in the X direction where the rotation sensor 11 is installed.
  • the detour 8 and the detour 5 are arranged only at the end where the rotation sensor 11 is installed. Therefore, when there is a greater concern about the temperature rise of the rotation sensor 11, it is possible to preferentially prevent the temperature rise of the rotation sensor 11, and this is advantageous in terms of cost.
  • FIG. 10 is a partially enlarged vertical cross-sectional view of the galvano scanner according to the fourth embodiment.
  • the length of the removed portion 10 of the stator core 12 in the X direction is set to be longer than the length of the permanent magnet 6 in the axial direction.
  • the length of the center hole 9a of the coil 9 in the X direction is set to be longer than the length of the permanent magnet 6 in the axial direction.
  • the other configurations are the same as those in Embodiment 1, and redundant explanation will be omitted.
  • the gap between the rotor 7 and the stator core 12 becomes larger in the side region of the permanent magnet 6, making it difficult for current magnetic flux to flow through the permanent magnet 6. Therefore, the eddy loss generated in the permanent magnet 6 can be efficiently reduced.
  • FIG. 11 is a cross-sectional perspective view showing the internal structure of a quarter portion of the stator 13 of the galvano scanner according to the fifth embodiment.
  • FIG. 12 is a perspective view showing the overall configuration of the detour path 8 of the galvano scanner according to the fifth embodiment.
  • the detour unit 80 includes a ring portion 8c that connects the plurality of detours 8, and a plurality of detours 8 that are protrusions that protrude in the outer diameter direction from the ring portion 8c. Accordingly, the outer diameter of the portion of the rotating shaft 4 that faces the plurality of detours 8 of the rotor 7 is reduced.
  • the other configurations are the same as those in Embodiment 1, and redundant explanation will be omitted.
  • the detour 8 is configured as a detour unit 80 which is one component, so the current magnetic flux path can be formed as a closed circuit within the stator 13 without passing through the rotor 7. . Therefore, the occurrence of eddy currents and eddy losses in the permanent magnet 6 can be suppressed more reliably.
  • FIG. 13 is a top view showing the configuration of a galvano scanner according to Embodiment 6.
  • the deletion section 10 is divided into a plurality of deletion holes 10a, 10b, and 10c.
  • the other configurations are the same as those in Embodiment 1, and redundant explanation will be omitted.
  • the removed portion 10 is divided into a plurality of removed holes 10a, 10b, and 10c, the removed portion 10 can be provided without reducing the mechanical strength of the stator core 12.
  • FIG. 14 is a sectional view showing essential parts of a galvano scanner according to Embodiment 7.
  • FIG. 14 corresponds to a cross-sectional view taken along line IV-IV in FIG.
  • the stator core 12 is provided with the cutout portion 10 of the through hole.
  • the removed portion 10d has a groove shape in which a part of the inner diameter side is removed and the outer diameter side is connected.
  • the deleted portion 10d has a groove shape extending in the X direction.
  • the other configurations are the same as those in Embodiment 1, and redundant explanation will be omitted.
  • the removed portion 10 since the removed portion 10 is formed into a groove shape, the removed portion 10 can be provided without reducing the mechanical strength of the stator core 12. Thereby, the removed portion 10 can be provided without reducing the mechanical strength of the stator core 12.
  • FIG. 15 is a cross-sectional perspective view showing the internal structure of a quarter portion of the stator 13 of the galvano scanner according to the eighth embodiment.
  • the stator core 12 is provided with the deleted portion 10, but the stator 13 is not provided with the detour 8. Further, the detour 5 is not provided within the rotor 7.
  • the other configurations are the same as those in Embodiment 1, and redundant explanation will be omitted.
  • the stator core 12 is provided with the deleted portion 10, the current magnetic flux flowing into the permanent magnet 6 is reduced, and the eddy current generated due to the change in the current magnetic flux is reduced, and as a result, the eddy current generated in the rotor 7 is reduced. Eddy losses are reduced. For this reason, the amount of heat generated by the rotor 7 is reduced, so that a rise in temperature of the rotation sensor 11 connected to the rotor 7 can be suppressed. Therefore, malfunction of the rotation sensor 11 can be prevented. Moreover, since demagnetization of the permanent magnet 6 can be prevented, a decrease in torque can be prevented.

Abstract

A galvanometer scanner (1) is provided with: a rotor (7) having a permanent magnet (6) in which circumferentially differing magnetic poles are formed alternately, and a rotational shaft (4) disposed on both sides axially with respect to the permanent magnet (6); a stator (13) having a stator core (12), and a plurality of coils (9) that are disposed on the inner-diameter side of the stator core (12) and on the outer-diameter side of the rotor (7) with a gap (20) therebetween, and that have a central hole (9a) which is a space; and a galvanometer mirror (14) coupled to the rotational shaft (4) of the rotor (7). The stator (13) is provided with a detouring path (8), which is a magnetic component disposed: in a location corresponding to at least one axial end of the permanent magnet (6); on the inner side of the plurality of coils (9); and on the inner-diameter side of the stator core (12).

Description

ガルバノスキャナgalvano scanner
 本開示は、光学部材を回転させるガルバノスキャナに関する。 The present disclosure relates to a galvano scanner that rotates an optical member.
 ガルバノスキャナは、コイルを備えたステータと、永久磁石を備えたロータと、ロータの回転軸に取り付けられたミラーである光学部材と、を有する。ガルバノスキャナを適用したレーザ加工機において連続穴加工を行う場合、ガルバノスキャナのロータは、加速、減速、停止の動作を繰り返す。ロータが高速に動作すると、駆動電流の周波数が高くなる。このため、ロータの永久磁石に渦電流が流れて渦損が発生し、永久磁石の温度が高くなる。永久磁石の温度が過度に高くなると、熱減磁が発生する。これによって、永久磁石の特性が劣化し、ガルバノスキャナの動作に支障が生じる。 A galvano scanner has a stator equipped with a coil, a rotor equipped with a permanent magnet, and an optical member that is a mirror attached to the rotation axis of the rotor. When performing continuous hole machining with a laser processing machine that uses a galvano scanner, the rotor of the galvano scanner repeats acceleration, deceleration, and stopping operations. When the rotor operates at high speed, the frequency of the drive current increases. As a result, eddy currents flow through the permanent magnets of the rotor, causing eddy loss and increasing the temperature of the permanent magnets. When the temperature of a permanent magnet becomes too high, thermal demagnetization occurs. This deteriorates the properties of the permanent magnet and causes problems in the operation of the galvano scanner.
 特許文献1では、渦電流の経路を遮断するように、永久磁石に外径側から内径側に延びる複数の溝が形成され、渦損による永久磁石の温度上昇を抑えている。 In Patent Document 1, a plurality of grooves extending from the outer diameter side to the inner diameter side are formed in the permanent magnet so as to block the path of eddy current, thereby suppressing the temperature rise of the permanent magnet due to eddy loss.
特開2008-43133号公報Japanese Patent Application Publication No. 2008-43133
 特許文献1では、永久磁石に形成された複数の溝が渦電流の経路を妨げる位置に形成されるため、渦損による永久磁石の温度上昇が抑えられる。しかし、永久磁石のシャフトに近い部分では磁石が繋がっているため、渦電流は完全に遮断されず溝を迂回して流れる。また、渦損の原因となる電流磁束が通過するため、溝によって区切られた部分では局所的に渦電流ループが発生し渦損が生じる。このため、駆動電流が大きく、周波数が高い場合には、永久磁石の温度が限界以上に上昇する、回転センサが動作温度範囲を逸脱するといった課題がある。 In Patent Document 1, the plurality of grooves formed in the permanent magnet are formed at positions that obstruct the path of eddy current, so the temperature rise of the permanent magnet due to eddy loss is suppressed. However, because the magnets are connected near the shaft of the permanent magnet, the eddy current is not completely blocked and flows around the groove. Further, since the current magnetic flux that causes eddy loss passes through the groove, an eddy current loop occurs locally in the portion separated by the groove, resulting in eddy loss. For this reason, when the drive current is large and the frequency is high, there are problems such as the temperature of the permanent magnet rising beyond the limit and the rotation sensor exceeding the operating temperature range.
 本開示は、上記に鑑みてなされたものであり、永久磁石に発生する渦損を低減し、永久磁石の温度上昇を抑えることができるガルバノスキャナを得ることを目的とする。 The present disclosure has been made in view of the above, and aims to provide a galvano scanner that can reduce the eddy loss generated in the permanent magnet and suppress the temperature rise of the permanent magnet.
 上述した課題を解決し、目的を達成するために、本開示におけるガルバノスキャナは、周方向に異なる磁極が交互に形成された永久磁石と、永久磁石に対し軸方向の両側に配置される回転軸と、を有するロータと、ステータコアと、ステータコアの内径側であって、空隙を介してロータの外径側に配置され、空間である中心穴を有する複数のコイルと、を有するステータと、ロータの回転軸に連結される光学部材と、を備える。ステータは、永久磁石の軸方向の少なくとも一端部に対応する位置であって、複数のコイルの内側であって、かつステータコアの内径側に配置される第1磁性体、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the objective, a galvano scanner according to the present disclosure includes a permanent magnet in which different magnetic poles are alternately formed in the circumferential direction, and a rotating shaft arranged on both sides of the permanent magnet in the axial direction. A stator having a rotor, a stator core, and a plurality of coils disposed on the inner diameter side of the stator core and on the outer diameter side of the rotor through a gap, and having a center hole, which is a space, an optical member connected to the rotating shaft. The stator is characterized by comprising a first magnetic body disposed at a position corresponding to at least one end in the axial direction of the permanent magnet, inside the plurality of coils, and on the inner diameter side of the stator core. .
 本開示におけるガルバノスキャナによれば、永久磁石に発生する渦損を低減し、永久磁石の温度上昇を抑えることができるという効果を奏する。 According to the galvano scanner of the present disclosure, it is possible to reduce the eddy loss generated in the permanent magnet and suppress the temperature rise of the permanent magnet.
実施の形態1に係るガルバノスキャナの構成を示す縦断面図A vertical cross-sectional view showing the configuration of a galvano scanner according to Embodiment 1. 実施の形態1に係るガルバノスキャナのコイルなどの配置を示す上面図A top view showing the arrangement of coils, etc. of the galvano scanner according to Embodiment 1. 実施の形態1に係るガルバノスキャナのコイルを示す上面図A top view showing a coil of the galvano scanner according to Embodiment 1. 実施の形態1に係るガルバノスキャナの要部を示す断面図であり、図1のIV-IV線に沿った断面図2 is a cross-sectional view showing essential parts of the galvano scanner according to Embodiment 1, and is a cross-sectional view taken along line IV-IV in FIG. 1. 実施の形態1に係るガルバノスキャナの要部を示す断面図であり、図1のV-V線に沿った断面図2 is a cross-sectional view showing essential parts of the galvano scanner according to Embodiment 1, and is a cross-sectional view taken along line VV in FIG. 1. 実施の形態1に係るガルバノスキャナの1/4部分の内部構造を示す断面斜視図A cross-sectional perspective view showing the internal structure of a quarter portion of the galvano scanner according to the first embodiment. 実施の形態1に係るガルバノスキャナの1/4部分の内部構造をロータを省略して示す断面斜視図A cross-sectional perspective view showing the internal structure of a quarter portion of the galvano scanner according to Embodiment 1, with the rotor omitted. 比較例のガルバノスキャナの要部を示す断面図Cross-sectional view showing the main parts of a galvano scanner as a comparative example 実施の形態2に係るガルバノスキャナの1/4部分の内部構造を示す断面斜視図A cross-sectional perspective view showing the internal structure of a quarter portion of the galvano scanner according to the second embodiment. 実施の形態4に係るガルバノスキャナの一部が拡大された縦断面図Vertical cross-sectional view in which a part of the galvano scanner according to Embodiment 4 is enlarged 実施の形態5に係るガルバノスキャナのステータの1/4部分の内部構造を示す断面斜視図A cross-sectional perspective view showing the internal structure of a quarter portion of the stator of the galvano scanner according to Embodiment 5. 実施の形態5に係るガルバノスキャナの迂回路の全体的構成を示す斜視図A perspective view showing the overall configuration of a detour of a galvano scanner according to Embodiment 5. 実施の形態6に係るガルバノスキャナの構成を示す上面図Top view showing the configuration of a galvano scanner according to Embodiment 6 実施の形態7に係るガルバノスキャナの要部を示す断面図Cross-sectional view showing main parts of a galvano scanner according to Embodiment 7 実施の形態8に係るガルバノスキャナのステータの1/4部分の内部構造を示す断面斜視図A cross-sectional perspective view showing the internal structure of a quarter portion of a stator of a galvano scanner according to Embodiment 8.
 以下に、実施の形態にかかるガルバノスキャナを図面に基づいて詳細に説明する。 Below, a galvano scanner according to an embodiment will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1に係るガルバノスキャナの構成を示す縦断面図である。縦断面図とは、ガルバノスキャナの回転軸を含む平面で切断した断面図である。図1において、ガルバノスキャナ1は、ロータ7と、ステータ13と、光学部材であるガルバノミラー14と、回転センサ11と、を備える。
Embodiment 1.
FIG. 1 is a longitudinal cross-sectional view showing the configuration of a galvano scanner according to the first embodiment. The vertical cross-sectional view is a cross-sectional view taken along a plane that includes the rotation axis of the galvano scanner. In FIG. 1, the galvano scanner 1 includes a rotor 7, a stator 13, a galvanometer mirror 14 as an optical member, and a rotation sensor 11.
 ロータ7は、回転軸4と、永久磁石6と、第2磁性体である迂回路5と、を有している。回転軸4は、一対のベアリング3を介してハウジング2に回転可能に支持されている。永久磁石6は、円筒形を呈し、回転軸4の内部に配置され、接着剤などによって回転軸4に固着されている。以下の説明においては、回転軸4の軸方向に平行な方向をX方向と定義する。迂回路5は、永久磁石6のX方向の両端部に配置されている。永久磁石6は、周方向に異なる磁極が交互に形成されている。回転軸4は、永久磁石6に対しX方向の両側に配置されている。 The rotor 7 has a rotating shaft 4, a permanent magnet 6, and a detour 5 that is a second magnetic body. The rotating shaft 4 is rotatably supported by the housing 2 via a pair of bearings 3. The permanent magnet 6 has a cylindrical shape, is placed inside the rotating shaft 4, and is fixed to the rotating shaft 4 with an adhesive or the like. In the following description, the direction parallel to the axial direction of the rotating shaft 4 is defined as the X direction. The detour path 5 is arranged at both ends of the permanent magnet 6 in the X direction. The permanent magnet 6 has different magnetic poles alternately formed in the circumferential direction. The rotating shaft 4 is arranged on both sides of the permanent magnet 6 in the X direction.
 ステータ13は、ハウジング2に固着されて、ロータ7の外径側に空隙20を介して配置されている。ステータ13は、複数のコイル9と、磁性体であるステータコア12と、第1磁性体である迂回路8と、を備える。複数のコイル9は、ロータ7の外径側に配置されている。複数のコイル9は、中空形状(ドーナツ形状)であり、空間である中空部に中心穴9aを有する。ステータコア12は、複数のコイル9の外径側に配置されている。ステータコア12は、円筒形状に形成されており、コイル9の中心穴9aの外径側に、第1空間である削除部10を備えている。削除部10は、少なくとも内径側の一部が削除されていればよい。実施の形態1では、削除部10は、貫通穴である。迂回路8は、ステータコア12の内径側であって、コイル9の内側に配置される。コイル9の内側とは、中空形状であるコイル9の内径側のことである。また、迂回路8は、空隙20を介してロータ7の迂回路5に対向するX方向の位置に配置されている。 The stator 13 is fixed to the housing 2 and placed on the outer diameter side of the rotor 7 with a gap 20 interposed therebetween. The stator 13 includes a plurality of coils 9, a stator core 12 that is a magnetic material, and a detour 8 that is a first magnetic material. The plurality of coils 9 are arranged on the outer diameter side of the rotor 7. The plurality of coils 9 have a hollow shape (doughnut shape), and have a center hole 9a in a hollow portion that is a space. The stator core 12 is arranged on the outer diameter side of the plurality of coils 9. The stator core 12 is formed in a cylindrical shape and includes a removed portion 10, which is a first space, on the outer diameter side of the center hole 9a of the coil 9. The removed portion 10 only needs to have at least a portion removed on the inner diameter side. In the first embodiment, the deleted portion 10 is a through hole. The detour 8 is arranged on the inner diameter side of the stator core 12 and inside the coil 9. The inside of the coil 9 refers to the inner diameter side of the hollow coil 9. Further, the detour 8 is disposed at a position in the X direction opposite to the detour 5 of the rotor 7 with the gap 20 interposed therebetween.
 ステータコア12は、例えば、絶縁されたパーマロイ粉末を加圧成形した後に熱処理される圧粉鉄心を用いて作製される。なお、ステータコア12は、電磁鋼板などの磁性材料の板材から打ち抜いて作製されても良い。ロータ7に配置された迂回路5およびステータ13に配置された迂回路8は、ステータコア12と同様に磁性材料で作成されている。また、ステータコア12は、内周面が円筒面で構成されていればよく、外周面は円筒面でなくてもよい。 The stator core 12 is manufactured using, for example, a compacted iron core that is heat-treated after pressure-molding insulated permalloy powder. Note that the stator core 12 may be manufactured by punching out a plate material of a magnetic material such as an electromagnetic steel plate. The detour 5 disposed on the rotor 7 and the detour 8 disposed on the stator 13 are made of a magnetic material similarly to the stator core 12. Moreover, the stator core 12 only needs to have an inner circumferential surface formed of a cylindrical surface, and an outer circumferential surface thereof does not need to be a cylindrical surface.
 ガルバノミラー14は、回転軸4の軸方向の一端に固着されている。ガルバノミラー14は、ロータ7に連結された光学部材である。ガルバノミラー14は、矩形平板状に形成されている。ガルバノミラー14の表面は、レーザ光線の反射面となる。ロータ7は、機械角-4°~+4°程度の予め定められた角度範囲内で回転する。このため、ロータ7に連結された光学部材であるガルバノミラー14は、機械角-4°~+4°程度の予め定められた角度範囲内で回転する。 The galvanometer mirror 14 is fixed to one end of the rotating shaft 4 in the axial direction. The galvanometer mirror 14 is an optical member connected to the rotor 7. The galvanometer mirror 14 is formed into a rectangular flat plate shape. The surface of the galvanometer mirror 14 serves as a reflective surface for the laser beam. The rotor 7 rotates within a predetermined angular range of about -4° to +4° mechanical angle. Therefore, the galvanometer mirror 14, which is an optical member connected to the rotor 7, rotates within a predetermined angular range of about -4° to +4° mechanical angle.
 回転センサ11は、エンコーダ板22と、センサヘッド23と、を有する。エンコーダ板22は、回転軸4の軸方向の他端に固着されている。エンコーダ板22は、表面に複数のスリットを有する。エンコーダ板22は、センサヘッド23と協働して、ガルバノミラー14の回転角度を、不図示の制御回路にフィードバックするロータリエンコーダを構成している。なお、ロータリエンコーダは、フィードバック制御に用いられるガルバノミラー14の角度変位を検出する回転角度検出装置であればよい。このため、回転角度検出装置は、ロータリエンコーダに限らず、レゾルバでもよい。 The rotation sensor 11 includes an encoder plate 22 and a sensor head 23. The encoder plate 22 is fixed to the other end of the rotating shaft 4 in the axial direction. The encoder plate 22 has a plurality of slits on its surface. The encoder plate 22 cooperates with the sensor head 23 to constitute a rotary encoder that feeds back the rotation angle of the galvanometer mirror 14 to a control circuit (not shown). Note that the rotary encoder may be any rotation angle detection device that detects the angular displacement of the galvanometer mirror 14 used for feedback control. Therefore, the rotation angle detection device is not limited to a rotary encoder, but may be a resolver.
 図2は、実施の形態1に係るガルバノスキャナ1のコイル9などの配置を示す上面図である。図2は、図1の矢印cに沿って見たときのガルバノスキャナ1の要部を示す図である。図2では、ステータコア12とコイル9、迂回路8の位置関係を示すために、コイル9、迂回路8を破線で表している。また、ハウジング2、ロータ7、ベアリング3、ガルバノミラー14およびエンコーダ板22の図示が省略されている。以下の図では、特に述べない限り同様の省略を行う。 FIG. 2 is a top view showing the arrangement of the coil 9, etc. of the galvano scanner 1 according to the first embodiment. FIG. 2 is a diagram showing essential parts of the galvano scanner 1 when viewed along arrow c in FIG. 1. As shown in FIG. In FIG. 2, the coil 9 and the detour 8 are indicated by broken lines in order to show the positional relationship between the stator core 12, the coil 9, and the detour 8. Further, illustration of the housing 2, rotor 7, bearing 3, galvanometer mirror 14, and encoder plate 22 is omitted. In the following figures, similar omissions are made unless otherwise stated.
 図2に示すように、中心穴9aを有する4個の方形状のコイル9(図2では奥側の1個を省略)が、方形状の平行な一対の長辺をX方向と平行に、ステータコア12の内周面に周方向に並んで配列されている。コイル9は、接着剤またはモールドによってステータコア12に固着されている。コイル9は、ステータコア12に設けられている削除部10と中心穴9aが重なるように、また、隣り合うコイル9については、方形状の長辺が接するように配設されている。隣り合うコイル9は、互いに逆向きに巻回して作製されている。このため、隣り合うコイル9の隣接する方形状の長辺に流れる電流の方向は、同じ方向となる。 As shown in FIG. 2, four rectangular coils 9 (the one on the back side is omitted in FIG. 2) each having a center hole 9a have a pair of parallel long sides of the rectangle parallel to the X direction. They are arranged circumferentially on the inner peripheral surface of the stator core 12. Coil 9 is fixed to stator core 12 with adhesive or mold. The coils 9 are arranged so that the removed portion 10 provided in the stator core 12 overlaps with the center hole 9a, and the long sides of the adjacent coils 9 are in contact with each other. Adjacent coils 9 are manufactured by winding in opposite directions. Therefore, the directions of currents flowing in the long sides of adjacent rectangular shapes of adjacent coils 9 are the same.
 図3は、実施の形態1に係るガルバノスキャナ1のコイル9を示す上面図である。コイル9は、図3に示すように、銅などの線材を扁平な方形状の枠(図示せず)に必要な回数だけ巻回したものを、ステータコア12の内周面に沿って円弧状に曲げて成形することによって作製される。 FIG. 3 is a top view showing the coil 9 of the galvano scanner 1 according to the first embodiment. As shown in FIG. 3, the coil 9 is made by winding a wire such as copper around a flat rectangular frame (not shown) the required number of times, and winding it in an arc shape along the inner peripheral surface of the stator core 12. It is made by bending and shaping.
 なお、図2では、コイル9が方形状の長辺同士を接して周方向に配列されているが、コイル9は、隣り合う方形状の長辺同士が予め定められた隙間だけ離間して周方向に配列されてもよい。 In addition, in FIG. 2, the coils 9 are arranged in the circumferential direction with the long sides of the rectangles touching each other, but the coils 9 are arranged in the circumferential direction with the long sides of the adjacent rectangles separated by a predetermined gap. may be arranged in the direction.
 図4は、実施の形態1に係るガルバノスキャナ1の要部を示す断面図であり、図1のIV-IV線に沿った断面図である。図5は、実施の形態1に係るガルバノスキャナ1の要部を示す断面図であり、図1のV-V線に沿った断面図である。図6は、実施の形態1に係るガルバノスキャナ1の1/4部分の内部構造を示す断面斜視図である。図6は、例えば、図1のVI-VI線に沿って切断して1/4部分を抽出している。図7は、実施の形態1に係るガルバノスキャナ1の1/4部分の内部構造をロータ7を省略して示す断面斜視図である。図7では、図6からロータ7を削除している。図4、図5では、ハウジング2の図示を省略している。 FIG. 4 is a sectional view showing essential parts of the galvano scanner 1 according to the first embodiment, and is a sectional view taken along the line IV-IV in FIG. 1. FIG. 5 is a sectional view showing essential parts of the galvano scanner 1 according to the first embodiment, and is a sectional view taken along the line VV in FIG. 1. FIG. 6 is a cross-sectional perspective view showing the internal structure of a quarter portion of the galvano scanner 1 according to the first embodiment. In FIG. 6, for example, a quarter portion is extracted by cutting along line VI-VI in FIG. FIG. 7 is a cross-sectional perspective view showing the internal structure of a quarter portion of the galvano scanner 1 according to the first embodiment, with the rotor 7 omitted. In FIG. 7, the rotor 7 is removed from FIG. 6. 4 and 5, illustration of the housing 2 is omitted.
 図4において、永久磁石6の外周面には、永久磁石6の磁極の外周面側の極性であるN極およびS極が示されている。永久磁石6には、回転軸4の回転方向である周方向にそって異なる磁極が交互に形成されている。永久磁石6に形成された磁極の数である極数は4極である。また、永久磁石6は、4極に着磁された極異方性磁石であって、例えば、ネオジウムを焼結して成形された磁石である。永久磁石6は回転軸4の中に配置されているため永久磁石6の表面は回転軸4でおおわれている。回転軸4は、非磁性材料で構成されており、磁石磁束が短絡しないようにしている。ここでは、回転軸4として、SUS304を使用しているが、渦電流が少ない導電率の低い材料が望ましい。例えば、セラミックなどの非磁性材料であってもよい。 In FIG. 4, the outer peripheral surface of the permanent magnet 6 shows an N pole and an S pole, which are the polarities on the outer peripheral surface side of the magnetic poles of the permanent magnet 6. Different magnetic poles are alternately formed on the permanent magnet 6 along the circumferential direction, which is the rotational direction of the rotating shaft 4. The number of magnetic poles formed on the permanent magnet 6 is four. Further, the permanent magnet 6 is a polar anisotropic magnet magnetized into four poles, and is, for example, a magnet formed by sintering neodymium. Since the permanent magnet 6 is disposed inside the rotating shaft 4, the surface of the permanent magnet 6 is covered with the rotating shaft 4. The rotating shaft 4 is made of a non-magnetic material to prevent the magnet magnetic flux from short-circuiting. Here, SUS304 is used as the rotating shaft 4, but it is desirable to use a material with low electrical conductivity and little eddy current. For example, it may be a non-magnetic material such as ceramic.
 図4においては、ステータコア12の削除部10が見えており、コイル9の中心穴9aも見えている。図5においては、ステータコア12の削除部10がなくなり、迂回路8が配置されている。迂回路8は、X方向については、コイル9の中心穴9aの両側に配置されている。迂回路8は、X方向については、コイル9の内側に配置されているともいえる。迂回路5は、円形状を呈し、回転軸4の内側に配置される。迂回路5は、永久磁石6のX方向の両端部に配置されている。迂回路8および迂回路5は、X方向の対向する位置に配置されている。 In FIG. 4, the removed portion 10 of the stator core 12 is visible, and the center hole 9a of the coil 9 is also visible. In FIG. 5, the removed portion 10 of the stator core 12 is removed and a detour 8 is provided. The detour path 8 is arranged on both sides of the center hole 9a of the coil 9 in the X direction. It can also be said that the detour path 8 is arranged inside the coil 9 in the X direction. The detour 5 has a circular shape and is arranged inside the rotating shaft 4. The detour path 5 is arranged at both ends of the permanent magnet 6 in the X direction. The detour 8 and the detour 5 are arranged at opposing positions in the X direction.
 このように構成されたガルバノスキャナ1においては、永久磁石6の極数が4極であり、コイル9の個数が4個である。永久磁石6の極数とコイル9の個数とが同じである場合、図4に示すように、永久磁石6の磁極の中心が隣り合うコイル9の間にある位置は、ロータ7の回転方向における基準角度となる。そして、永久磁石6の磁石磁束24は、図4の点線の矢印で示されるように、永久磁石6のN極からコイル9を突き抜けてステータコア12に達し、ステータコア12内の削除部10を避けるように流れ、コイル9を突き抜けて永久磁石6のN極の両隣のS極に入り、永久磁石6内を通って再びN極に戻る2つの磁路を形成する。また、図5に実線の矢印で示されるように、コイル9に電流を流すとコイル9の周りに、迂回路5、回転軸4の表面、迂回路8、ステータコア12、迂回路8、回転軸4の表面、迂回路5、を順に流れる電流磁束25が流れる。 In the galvano scanner 1 configured in this way, the number of poles of the permanent magnet 6 is four, and the number of coils 9 is four. When the number of poles of the permanent magnet 6 and the number of coils 9 are the same, as shown in FIG. This becomes the reference angle. The magnetic flux 24 of the permanent magnet 6 passes through the coil 9 from the N pole of the permanent magnet 6 and reaches the stator core 12, as shown by the dotted arrow in FIG. The magnetic flux passes through the coil 9 and enters the S poles on both sides of the N pole of the permanent magnet 6, forming two magnetic paths that pass through the permanent magnet 6 and return to the N pole. Moreover, as shown by the solid arrow in FIG. A current magnetic flux 25 flows in order through the surface of 4 and the detour 5.
 つぎに、ガルバノスキャナ1を用いたレーザ加工動作について説明する。ガルバノスキャナ1のガルバノミラー14は、レーザ加工機(図示せず)のレーザ光線の経路内に配置される。エンコーダ板22を用いたロータリエンコーダの出力に基づいて、制御回路(図示せず)によってガルバノミラー14の回転角度が制御される。ガルバノミラー14の回転角度によってレーザ光線の反射方向が変化するため、被加工物へのレーザ光線の入射位置が制御される。 Next, a laser processing operation using the galvano scanner 1 will be explained. The galvano mirror 14 of the galvano scanner 1 is placed in the path of a laser beam of a laser processing machine (not shown). Based on the output of the rotary encoder using the encoder plate 22, the rotation angle of the galvanometer mirror 14 is controlled by a control circuit (not shown). Since the direction of reflection of the laser beam changes depending on the rotation angle of the galvanometer mirror 14, the incident position of the laser beam onto the workpiece is controlled.
 レーザ加工動作前に、ロータ7の回転角度の調整が行われる。具体的には、ロータ7が基準角度まで回転する。この状態でコイル9に電流を流すと、永久磁石6の磁石磁束24との相互作用によって、ロータ7は、フレミングの左手の法則に従う方向(図4においては、時計回りの方向)に回転する。ロータ7の回転方向は、コイル9に流す電流方向によって変化する。 Before the laser processing operation, the rotation angle of the rotor 7 is adjusted. Specifically, the rotor 7 rotates to the reference angle. When a current is applied to the coil 9 in this state, the rotor 7 rotates in a direction according to Fleming's left-hand rule (clockwise in FIG. 4) due to interaction with the magnetic flux 24 of the permanent magnet 6. The rotation direction of the rotor 7 changes depending on the direction of the current flowing through the coil 9.
 ロータリエンコーダからの回転角度情報に基づいて電流方向が制御され、ロータ7は加速されて回転する。ロータ7は、目標の停止角度に近づくと、電流方向が逆方向に制御されて減速され、目標の停止角度に停止する。 The current direction is controlled based on the rotation angle information from the rotary encoder, and the rotor 7 is accelerated and rotated. When the rotor 7 approaches the target stopping angle, the current direction is controlled in the opposite direction to decelerate the rotor 7, and the rotor 7 stops at the target stopping angle.
 ロータ7は、上述のように、加速、減速、停止、加速、・・・の順に回転動作を繰り返す。このため、ガルバノスキャナ1は、被加工物に対するレーザ光線の照射位置を変えながら、被加工物に穴を1つずつ順番に開口して加工する。ここで、連続穴あけ速度を4000[point/sec]とすると、電流周波数は4kHzとなる。 As described above, the rotor 7 repeats rotational operations in the order of acceleration, deceleration, stop, acceleration, and so on. For this reason, the galvano scanner 1 sequentially opens holes in the workpiece one by one while changing the irradiation position of the laser beam on the workpiece. Here, if the continuous drilling speed is 4000 points/sec, the current frequency is 4 kHz.
 図8は、比較例のガルバノスキャナの要部を示す断面図である。図8は、比較例のガルバノスキャナ101の図4および図5に対応する断面図である。実施の形態1では、回転軸4に垂直な断面構造は図4、図5に示したように、2種類あるが、比較例のガルバノスキャナ101では、回転軸に垂直な断面構造は1種類のみである。図8における回転軸104、永久磁石106、ロータ107、ステータコア112、コイル109、磁石磁束124および電流磁束125は、図4、図5における回転軸4、ロータ7、永久磁石6、ステータコア12、コイル9、磁石磁束24および電流磁束25に対応する。コイル109に電流を流すことによって、コイル109の電流磁束125は、永久磁石106の内部に達する。永久磁石106の内部に達した磁界は、4kHzで変化する。このため、渦電流が永久磁石106に流れ、ジュール損によって永久磁石106が発熱する。すなわち、永久磁石6に渦損が発生する。 FIG. 8 is a sectional view showing the main parts of a galvano scanner of a comparative example. FIG. 8 is a sectional view corresponding to FIGS. 4 and 5 of the galvano scanner 101 of the comparative example. In the first embodiment, there are two types of cross-sectional structures perpendicular to the rotation axis 4, as shown in FIGS. 4 and 5, but in the galvano scanner 101 of the comparative example, there is only one type of cross-sectional structure perpendicular to the rotation axis. It is. The rotating shaft 104, permanent magnet 106, rotor 107, stator core 112, coil 109, magnet magnetic flux 124, and current magnetic flux 125 in FIG. 8 are the rotating shaft 4, rotor 7, permanent magnet 6, stator core 12, coil in FIGS. 9 corresponds to the magnet magnetic flux 24 and the current magnetic flux 25. By passing a current through the coil 109, the current magnetic flux 125 of the coil 109 reaches the inside of the permanent magnet 106. The magnetic field that reaches the interior of the permanent magnet 106 varies at 4kHz. Therefore, an eddy current flows through the permanent magnet 106, and the permanent magnet 106 generates heat due to Joule loss. That is, eddy loss occurs in the permanent magnet 6.
 このとき、ステータコア112は、ステータ冷却装置(図示せず)によって冷却されている。このため、ステータコア112は、ロータ107の温度よりも低い。よって、ロータ107における永久磁石106の熱は、ステータコア112へ放熱される。また、永久磁石106の熱は、回転軸104を伝わり軸方向に放熱される。よって、永久磁石106の温度上昇による減磁の発生と、回転軸104経由で実施の形態1の回転センサ11に相当する回転センサに熱が伝わり、回転センサの温度が上昇することによる動作温度範囲の逸脱とが発生する。 At this time, the stator core 112 is being cooled by a stator cooling device (not shown). Therefore, the temperature of stator core 112 is lower than that of rotor 107. Therefore, the heat of the permanent magnets 106 in the rotor 107 is radiated to the stator core 112. Further, the heat of the permanent magnet 106 is transmitted through the rotating shaft 104 and radiated in the axial direction. Therefore, the operating temperature range is reduced due to the occurrence of demagnetization due to the temperature rise of the permanent magnet 106, and the heat being transmitted to the rotation sensor corresponding to the rotation sensor 11 of the first embodiment via the rotation shaft 104, and the temperature of the rotation sensor increasing. deviation occurs.
 以下では、実施の形態1に係るガルバノスキャナ1の作用効果について述べる。実施の形態1に係るガルバノスキャナ1では、コイル9のX方向位置についての断面は図4、図5に示したように、2種類ある。磁石磁束24は、図4に示した経路を主に流れ、電流磁束25は、図5に示した経路を主に流れる。磁石磁束24の経路は、永久磁石6のN極、回転軸4の表面、コイル9、ステータコア12、コイル9、回転軸4の表面、永久磁石6のS極を順に通る閉ループ経路となる。電流磁束25の経路は、迂回路5、回転軸4の表面、迂回路8、ステータコア12、迂回路8、回転軸4の表面、迂回路5を順に通る閉ループ経路となる。この2つの経路で、ステータコア12の部分は共通となっている。これは、ステータコア12では、削除部10を避けて磁束が流れるため、同一経路となる部分が存在することを意味している。 Below, the effects of the galvano scanner 1 according to the first embodiment will be described. In the galvano scanner 1 according to the first embodiment, there are two types of cross sections of the coil 9 in the X direction position, as shown in FIGS. 4 and 5. The magnet magnetic flux 24 mainly flows through the path shown in FIG. 4, and the current magnetic flux 25 mainly flows through the path shown in FIG. The path of the magnet magnetic flux 24 is a closed loop path passing through the N pole of the permanent magnet 6, the surface of the rotating shaft 4, the coil 9, the stator core 12, the coil 9, the surface of the rotating shaft 4, and the S pole of the permanent magnet 6 in this order. The path of the current magnetic flux 25 is a closed loop path passing through the detour 5, the surface of the rotating shaft 4, the detour 8, the stator core 12, the detour 8, the surface of the rotating shaft 4, and the detour 5 in this order. The stator core 12 is common to these two routes. This means that in the stator core 12, since the magnetic flux flows avoiding the deleted portion 10, there are portions that follow the same path.
 ここで、ロータ7の回転軸4の内部では、永久磁石6を通るパスと、迂回路5を通るパスが磁気回路的に並列となっている。また、永久磁石6は、ステータコア12の磁性材料および迂回路5,8の磁性材料に比べて磁気抵抗が大きいため、迂回路5を流れる電流磁束25が、永久磁石6に流出するパスを流れることはほとんどない。よって、電流磁束25は、永久磁石6をほとんど流れない。このため、渦損も発生せず、温度上昇が抑えられる。一方、迂回路5には電流磁束25が流れるが磁性材料として圧粉鉄心を採用すると渦電流はほとんど流れず、渦損もほとんど発生しない。 Here, inside the rotating shaft 4 of the rotor 7, the path passing through the permanent magnet 6 and the path passing through the detour 5 are parallel in terms of magnetic circuits. Furthermore, since the permanent magnet 6 has a larger magnetic resistance than the magnetic material of the stator core 12 and the magnetic materials of the detours 5 and 8, the current magnetic flux 25 flowing through the detour 5 does not flow through the path that flows out to the permanent magnet 6. There are almost no Therefore, the current magnetic flux 25 hardly flows through the permanent magnet 6. Therefore, no eddy loss occurs and temperature rise is suppressed. On the other hand, although a current magnetic flux 25 flows through the detour path 5, when a dust core is used as the magnetic material, almost no eddy current flows and almost no eddy loss occurs.
 また、実施の形態1では、図4に示す断面位置では、ステータコア12に削除部10を設けている。この断面位置で、図8に示した比較例のような、電流磁束125を考えると、比較例では削除部10がないのでロータ107とステータコア112との間の磁気ギャップはコイル109の半径方向の厚さ程度となる。これに対し、実施の形態1では、削除部10も磁気ギャップに含められるため、コイル9の半径方向の厚さよりも、ロータ7とステータコア12との間の磁気ギャップは大きくなる。従って、永久磁石6を通るような電流磁束パスでは、磁気抵抗が大きくなるため電流磁束25が流れにくくなり、並列関係にある、図5に示した、迂回路5,8を通る電流磁束パスに優先的に電流磁束25が流れることになる。以上より、永久磁石6に流れる電流磁束25が削減され、永久磁石6での渦損を低減することができる。その結果、永久磁石6の減磁、回転センサ11の動作温度範囲の逸脱を防止することができる。 Furthermore, in the first embodiment, the removed portion 10 is provided in the stator core 12 at the cross-sectional position shown in FIG. Considering the current magnetic flux 125 at this cross-sectional position as in the comparative example shown in FIG. It will be about the thickness. On the other hand, in the first embodiment, since the deleted portion 10 is also included in the magnetic gap, the magnetic gap between the rotor 7 and the stator core 12 is larger than the thickness of the coil 9 in the radial direction. Therefore, in the current magnetic flux path that passes through the permanent magnet 6, the magnetic resistance increases, making it difficult for the current magnetic flux 25 to flow. The current magnetic flux 25 will flow preferentially. As described above, the current magnetic flux 25 flowing through the permanent magnet 6 is reduced, and the eddy loss in the permanent magnet 6 can be reduced. As a result, demagnetization of the permanent magnet 6 and deviation of the operating temperature range of the rotation sensor 11 can be prevented.
 このように実施の形態1によれば、ロータ7に迂回路5を設け、ステータ13に迂回路8および削除部10を設けている。このため、永久磁石6に流入する電流磁束が減少し、電流磁束の変化により発生する渦電流が少なくなり、結果としてロータ7で発生する渦損が減少する。このため、ロータ7での発熱量が減少するため、ロータ7に接続されている回転センサ11の温度上昇を抑えられる。このため回転センサ11の誤動作を防止できる。また、永久磁石6の減磁を防止できるため、トルク低下を防ぐことができる。 As described above, according to the first embodiment, the rotor 7 is provided with the detour 5, and the stator 13 is provided with the detour 8 and the deletion portion 10. Therefore, the current magnetic flux flowing into the permanent magnet 6 is reduced, the eddy current generated due to the change in the current magnetic flux is reduced, and as a result, the eddy loss generated in the rotor 7 is reduced. For this reason, the amount of heat generated by the rotor 7 is reduced, so that a rise in temperature of the rotation sensor 11 connected to the rotor 7 can be suppressed. Therefore, malfunction of the rotation sensor 11 can be prevented. Moreover, since demagnetization of the permanent magnet 6 can be prevented, a decrease in torque can be prevented.
実施の形態2.
 図9は、実施の形態2に係るガルバノスキャナの1/4部分の内部構造を示す断面斜視図である。実施の形態2では、ロータ7内に迂回路5を設けていない。他の構成は、実施の形態1と同様であり、重複する説明を省略する。実施の形態2では、電流磁束パスは、回転軸4、迂回路8、ステータコア12、迂回路8、回転軸4を順に通る閉ループ経路となり、実施の形態1の電流磁束パスと比較して、迂回路5の部分が回転軸4に変更となる。
Embodiment 2.
FIG. 9 is a cross-sectional perspective view showing the internal structure of a quarter portion of the galvano scanner according to the second embodiment. In the second embodiment, the detour 5 is not provided within the rotor 7. The other configurations are the same as those in Embodiment 1, and redundant explanation will be omitted. In the second embodiment, the current magnetic flux path is a closed loop path passing through the rotating shaft 4, the detour 8, the stator core 12, the detour 8, and the rotating shaft 4 in this order. The portion of the path 5 is changed to the rotating shaft 4.
 回転軸4の材料は迂回路5の材料に比べて透磁率が小さいので、この実施の形態2の電流磁束パスは、実施の形態1の電流磁束パスより磁気抵抗が大きくなるが、ステータ13に迂回路8が存在しているので、永久磁石6を通過する電流磁束パスより磁気抵抗は格段に小さい。従って、実施の形態1と同様に、迂回路8を通る電流磁束パスの方に電流磁束25が優先的に流れ、永久磁石6にはほとんど電流磁束が流れない。 Since the material of the rotating shaft 4 has a lower magnetic permeability than the material of the detour 5, the current magnetic flux path of this second embodiment has a larger magnetic resistance than the current magnetic flux path of the first embodiment, but Since the detour 8 exists, the magnetic resistance is much smaller than the current magnetic flux path passing through the permanent magnet 6. Therefore, as in the first embodiment, the current magnetic flux 25 flows preferentially toward the current magnetic flux path passing through the detour 8, and almost no current magnetic flux flows through the permanent magnet 6.
 このように実施の形態2によれば、永久磁石6に流れる電流磁束が削減され、永久磁石6での渦損を低減することができる。その結果、永久磁石6の減磁、回転センサ11の動作温度範囲の逸脱を防止することができる。また、従前のロータがそのまま使用できるため、実施の形態1に比べて適用が容易であり、コスト面で有利である。 As described above, according to the second embodiment, the current magnetic flux flowing through the permanent magnet 6 is reduced, and the eddy loss in the permanent magnet 6 can be reduced. As a result, demagnetization of the permanent magnet 6 and deviation of the operating temperature range of the rotation sensor 11 can be prevented. Furthermore, since the existing rotor can be used as is, it is easier to apply than the first embodiment and is advantageous in terms of cost.
実施の形態3.
 実施の形態3では、迂回路8および迂回路5を、永久磁石6のX方向の両側のうち回転センサ11が設置してある方の端部にのみ配置する。
Embodiment 3.
In the third embodiment, the detour path 8 and the detour path 5 are arranged only at the end portion of the permanent magnet 6 on both sides in the X direction where the rotation sensor 11 is installed.
 実施の形態3によれば、迂回路8および迂回路5を回転センサ11が設置してある方の端部にのみ配置する。したがって、回転センサ11の温度上昇がより懸念される場合に、優先的に回転センサ11の温度上昇を防ぐことができ、またコスト面で有利である。 According to the third embodiment, the detour 8 and the detour 5 are arranged only at the end where the rotation sensor 11 is installed. Therefore, when there is a greater concern about the temperature rise of the rotation sensor 11, it is possible to preferentially prevent the temperature rise of the rotation sensor 11, and this is advantageous in terms of cost.
実施の形態4.
 図10は、実施の形態4に係るガルバノスキャナの一部が拡大された縦断面図である。実施の形態4では、ステータコア12の削除部10のX方向の長さを永久磁石6の軸方向の長さよりも長くなるように設定している。また、コイル9の中心穴9aのX方向の長さを永久磁石6の軸方向の長さよりも長くなるように設定している。他の構成は、実施の形態1と同様であり、重複する説明を省略する。
Embodiment 4.
FIG. 10 is a partially enlarged vertical cross-sectional view of the galvano scanner according to the fourth embodiment. In the fourth embodiment, the length of the removed portion 10 of the stator core 12 in the X direction is set to be longer than the length of the permanent magnet 6 in the axial direction. Further, the length of the center hole 9a of the coil 9 in the X direction is set to be longer than the length of the permanent magnet 6 in the axial direction. The other configurations are the same as those in Embodiment 1, and redundant explanation will be omitted.
 実施の形態4によれば、永久磁石6の側面領域で、ロータ7とステータコア12との間のギャップが大きくなるため、永久磁石6を通過する電流磁束が流れにくくなる。よって、永久磁石6で発生する渦損を効率的に低減することができる。 According to Embodiment 4, the gap between the rotor 7 and the stator core 12 becomes larger in the side region of the permanent magnet 6, making it difficult for current magnetic flux to flow through the permanent magnet 6. Therefore, the eddy loss generated in the permanent magnet 6 can be efficiently reduced.
実施の形態5.
 図11は、実施の形態5に係るガルバノスキャナのステータ13の1/4部分の内部構造を示す断面斜視図である。図12は、実施の形態5に係るガルバノスキャナの迂回路8の全体的構成を示す斜視図である。実施の形態1では、永久磁石6の両端部に対応するX方向の位置に、4個ずつの迂回路8が設置されていた。実施の形態5では、この4個の迂回路8を有する迂回路ユニット80を一つの部品として構成している。迂回路ユニット80は、複数の迂回路8を接続するリング部8cと、リング部8cから外径方向に突出する突出部である複数の迂回路8と、を有する。これに伴い、ロータ7の複数の迂回路8に対向する回転軸4の部分の外径を小さくしている。他の構成は、実施の形態1と同様であり、重複する説明を省略する。
Embodiment 5.
FIG. 11 is a cross-sectional perspective view showing the internal structure of a quarter portion of the stator 13 of the galvano scanner according to the fifth embodiment. FIG. 12 is a perspective view showing the overall configuration of the detour path 8 of the galvano scanner according to the fifth embodiment. In the first embodiment, four detours 8 were installed at positions in the X direction corresponding to both ends of the permanent magnet 6. In the fifth embodiment, a detour unit 80 having these four detours 8 is configured as one component. The detour unit 80 includes a ring portion 8c that connects the plurality of detours 8, and a plurality of detours 8 that are protrusions that protrude in the outer diameter direction from the ring portion 8c. Accordingly, the outer diameter of the portion of the rotating shaft 4 that faces the plurality of detours 8 of the rotor 7 is reduced. The other configurations are the same as those in Embodiment 1, and redundant explanation will be omitted.
 実施の形態5によれば、迂回路8をひとつの部品である迂回路ユニット80として構成しているので、電流磁束パスをロータ7を経由しないステータ13内での閉回路として形成することができる。よって、永久磁石6での渦電流、渦損の発生をより確実に抑えることができる。 According to the fifth embodiment, the detour 8 is configured as a detour unit 80 which is one component, so the current magnetic flux path can be formed as a closed circuit within the stator 13 without passing through the rotor 7. . Therefore, the occurrence of eddy currents and eddy losses in the permanent magnet 6 can be suppressed more reliably.
実施の形態6.
 図13は、実施の形態6に係るガルバノスキャナの構成を示す上面図である。実施の形態6では、削除部10を、複数の削除穴10a,10b,10cに分割している。他の構成は、実施の形態1と同様であり、重複する説明を省略する。
Embodiment 6.
FIG. 13 is a top view showing the configuration of a galvano scanner according to Embodiment 6. In the sixth embodiment, the deletion section 10 is divided into a plurality of deletion holes 10a, 10b, and 10c. The other configurations are the same as those in Embodiment 1, and redundant explanation will be omitted.
 実施の形態6では、削除部10を、複数の削除穴10a,10b,10cに分割しているので、ステータコア12の機械的強度を低下させずに削除部10を設けることができる。 In the sixth embodiment, since the removed portion 10 is divided into a plurality of removed holes 10a, 10b, and 10c, the removed portion 10 can be provided without reducing the mechanical strength of the stator core 12.
実施の形態7.
 図14は、実施の形態7に係るガルバノスキャナの要部を示す断面図である。図14は、図1のIV-IV線に沿った断面図に対応する。実施の形態1では、ステータコア12に貫通穴の削除部10を設けていた。実施の形態7では、削除部10dは、内径側の一部が削除され、外径側は接続された溝形状としている。削除部10dは、X方向に延在する溝形状を呈する。他の構成は、実施の形態1と同様であり、重複する説明を省略する。
Embodiment 7.
FIG. 14 is a sectional view showing essential parts of a galvano scanner according to Embodiment 7. FIG. 14 corresponds to a cross-sectional view taken along line IV-IV in FIG. In the first embodiment, the stator core 12 is provided with the cutout portion 10 of the through hole. In the seventh embodiment, the removed portion 10d has a groove shape in which a part of the inner diameter side is removed and the outer diameter side is connected. The deleted portion 10d has a groove shape extending in the X direction. The other configurations are the same as those in Embodiment 1, and redundant explanation will be omitted.
 実施の形態7では、削除部10を、溝形状としているので、ステータコア12の機械的強度を低下させずに削除部10を設けることができる。これにより、ステータコア12の機械的強度を低下させずに削除部10を設けることができる。 In the seventh embodiment, since the removed portion 10 is formed into a groove shape, the removed portion 10 can be provided without reducing the mechanical strength of the stator core 12. Thereby, the removed portion 10 can be provided without reducing the mechanical strength of the stator core 12.
実施の形態8.
 図15は、実施の形態8に係るガルバノスキャナのステータ13の1/4部分の内部構造を示す断面斜視図である。実施の形態8では、ステータコア12に削除部10を設けているが、ステータ13に迂回路8を設けていない。また、ロータ7内に迂回路5を設けていない。他の構成は、実施の形態1と同様であり、重複する説明を省略する。
Embodiment 8.
FIG. 15 is a cross-sectional perspective view showing the internal structure of a quarter portion of the stator 13 of the galvano scanner according to the eighth embodiment. In the eighth embodiment, the stator core 12 is provided with the deleted portion 10, but the stator 13 is not provided with the detour 8. Further, the detour 5 is not provided within the rotor 7. The other configurations are the same as those in Embodiment 1, and redundant explanation will be omitted.
 実施の形態8では、ステータコア12に削除部10を設けているため、永久磁石6に流入する電流磁束が減少し、電流磁束の変化により発生する渦電流が少なくなり、結果としてロータ7で発生する渦損が減少する。このため、ロータ7での発熱量が減少するため、ロータ7に接続されている回転センサ11の温度上昇を抑えられる。このため、回転センサ11の誤動作を防止できる。また、永久磁石6の減磁を防止できるため、トルク低下を防ぐことができる。 In the eighth embodiment, since the stator core 12 is provided with the deleted portion 10, the current magnetic flux flowing into the permanent magnet 6 is reduced, and the eddy current generated due to the change in the current magnetic flux is reduced, and as a result, the eddy current generated in the rotor 7 is reduced. Eddy losses are reduced. For this reason, the amount of heat generated by the rotor 7 is reduced, so that a rise in temperature of the rotation sensor 11 connected to the rotor 7 can be suppressed. Therefore, malfunction of the rotation sensor 11 can be prevented. Moreover, since demagnetization of the permanent magnet 6 can be prevented, a decrease in torque can be prevented.
 以上の実施の形態に示した構成は、本開示の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本開示の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the embodiments described above are examples of the contents of the present disclosure, and can be combined with other known techniques, and the configurations can be modified without departing from the gist of the present disclosure. It is also possible to omit or change parts.
 1,101 ガルバノスキャナ、2 ハウジング、3 ベアリング、4,104 回転軸、5,8 迂回路、6,106 永久磁石、7,107 ロータ、8c リング部、9,109 コイル、9a 中心穴、10,10d 削除部、10a,10b,10c 削除穴、11 回転センサ、12,112 ステータコア、13 ステータ、14 ガルバノミラー、20 空隙、22 エンコーダ板、23 センサヘッド、24,124 磁石磁束、25,125 電流磁束、80 迂回路ユニット。 1,101 Galvano scanner, 2 Housing, 3 Bearing, 4,104 Rotating shaft, 5,8 Detour, 6,106 Permanent magnet, 7,107 Rotor, 8c Ring part, 9,109 Coil, 9a Center hole, 10, 10d deletion part, 10a, 10b, 10c deletion hole, 11 rotation sensor, 12, 112 stator core, 13 stator, 14 galvanometer mirror, 20 air gap, 22 encoder plate, 23 sensor head, 24, 124 magnet magnetic flux, 25, 125 current magnetic flux , 80 detour unit.

Claims (11)

  1.  周方向に異なる磁極が交互に形成された永久磁石と、前記永久磁石に対し軸方向の両側に配置される回転軸と、を有するロータと、
     ステータコアと、前記ステータコアの内径側であって、空隙を介して前記ロータの外径側に配置され、空間である中心穴を有する複数のコイルと、を有するステータと、
     前記ロータの回転軸に連結される光学部材と、
     を備え、
     前記ステータは、
     前記永久磁石の前記軸方向の少なくとも一端部に対応する位置であって、複数の前記コイルの内側であって、かつ前記ステータコアの内径側に配置される第1磁性体、
     を備える
     ことを特徴とするガルバノスキャナ。
    A rotor having a permanent magnet in which different magnetic poles are alternately formed in the circumferential direction, and a rotating shaft disposed on both sides of the permanent magnet in the axial direction;
    A stator comprising: a stator core; and a plurality of coils disposed on the inner diameter side of the stator core and on the outer diameter side of the rotor with a gap therebetween, and having a center hole that is a space;
    an optical member connected to the rotation axis of the rotor;
    Equipped with
    The stator is
    a first magnetic body disposed at a position corresponding to at least one end of the permanent magnet in the axial direction, inside the plurality of coils, and on the inner diameter side of the stator core;
    A galvano scanner comprising:
  2.  前記ステータコアにおける前記中心穴に対応する位置には、少なくとも内径側の一部が削除された第1空間が設けられている
     ことを特徴とする請求項1に記載のガルバノスキャナ。
    The galvano scanner according to claim 1, wherein a first space in which at least a portion of an inner diameter side is removed is provided at a position corresponding to the center hole in the stator core.
  3.  前記ロータは、
     前記ロータにおける前記永久磁石の前記軸方向の少なくとも一端部に対応する位置に、前記第1磁性体と対向する第2磁性体
     を備える
     ことを特徴とする請求項1または2に記載のガルバノスキャナ。
    The rotor is
    The galvano scanner according to claim 1 or 2, further comprising: a second magnetic body facing the first magnetic body at a position corresponding to at least one end in the axial direction of the permanent magnet in the rotor.
  4.  前記第1磁性体および前記第2磁性体は、
     前記永久磁石の前記軸方向の両端部に設けられる
     ことを特徴とする請求項3に記載のガルバノスキャナ。
    The first magnetic body and the second magnetic body are
    The galvano scanner according to claim 3, wherein the galvano scanner is provided at both ends of the permanent magnet in the axial direction.
  5.  前記光学部材の回転角度を検出する回転センサが前記回転軸の一方側に設けられ、
     前記第1磁性体および前記第2磁性体は、
     前記回転センサが設けられる前記回転軸の一方側に設けられる
     ことを特徴とする請求項3に記載のガルバノスキャナ。
    A rotation sensor for detecting a rotation angle of the optical member is provided on one side of the rotation axis,
    The first magnetic body and the second magnetic body are
    The galvano scanner according to claim 3, wherein the rotation sensor is provided on one side of the rotation shaft.
  6.  前記第1空間は、貫通穴である
     ことを特徴とする請求項2に記載のガルバノスキャナ。
    The galvano scanner according to claim 2, wherein the first space is a through hole.
  7.  前記第1空間は、内径側の一部が削除された溝である
     ことを特徴とする請求項2に記載のガルバノスキャナ。
    The galvano scanner according to claim 2, wherein the first space is a groove in which a portion of the inner diameter side is removed.
  8.  前記第1空間の前記軸方向の長さは、前記永久磁石の前記軸方向の長さより長い
     ことを特徴とする請求項2に記載のガルバノスキャナ。
    The galvano scanner according to claim 2, wherein the length of the first space in the axial direction is longer than the length of the permanent magnet in the axial direction.
  9.  前記第1空間は、
     前記軸方向について、複数に分割されている
     ことを特徴とする請求項2に記載のガルバノスキャナ。
    The first space is
    The galvano scanner according to claim 2, wherein the galvano scanner is divided into a plurality of parts in the axial direction.
  10.  前記第1磁性体は、リング部と、前記リング部から外径方向に突出する複数の突出部とを、有し、一部品で構成される
     ことを特徴とする請求項1に記載のガルバノスキャナ。
    The galvano scanner according to claim 1, wherein the first magnetic body has a ring portion and a plurality of protrusions protruding from the ring portion in an outer diameter direction, and is configured as one piece. .
  11.  周方向に異なる磁極が交互に形成された永久磁石と、前記永久磁石に対し軸方向の両側に配置される回転軸と、を有するロータと、
     ステータコアと、前記ステータコアの内径側であって、空隙を介して前記ロータの外径側に配置され、空間である中心穴を有する複数のコイルと、を有するステータと、
     前記ロータの回転軸に連結される光学部材と、
     を備え、
     前記ステータコアにおける前記中心穴に対応する位置には、少なくとも内径側の一部が削除された第1空間が設けられている
     ことを特徴とするガルバノスキャナ。
    A rotor having a permanent magnet in which different magnetic poles are alternately formed in the circumferential direction, and a rotating shaft disposed on both sides of the permanent magnet in the axial direction;
    A stator comprising: a stator core; and a plurality of coils disposed on the inner diameter side of the stator core and on the outer diameter side of the rotor with a gap therebetween, and having a center hole that is a space;
    an optical member connected to the rotation axis of the rotor;
    Equipped with
    A galvano scanner, wherein a first space in which at least a portion of an inner diameter side is removed is provided at a position corresponding to the center hole in the stator core.
PCT/JP2022/016998 2022-04-01 2022-04-01 Galvanometer scanner WO2023188430A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016998 WO2023188430A1 (en) 2022-04-01 2022-04-01 Galvanometer scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016998 WO2023188430A1 (en) 2022-04-01 2022-04-01 Galvanometer scanner

Publications (1)

Publication Number Publication Date
WO2023188430A1 true WO2023188430A1 (en) 2023-10-05

Family

ID=88200554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016998 WO2023188430A1 (en) 2022-04-01 2022-04-01 Galvanometer scanner

Country Status (1)

Country Link
WO (1) WO2023188430A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119182U (en) * 1985-09-07 1987-07-29
JP2011175009A (en) * 2010-02-23 2011-09-08 Mitsubishi Electric Corp Galvano scanner
JP2015070786A (en) * 2013-09-26 2015-04-13 エスカエフ・マニュティック・メシャトロニク Permanent magnet rotor shaft assembly and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119182U (en) * 1985-09-07 1987-07-29
JP2011175009A (en) * 2010-02-23 2011-09-08 Mitsubishi Electric Corp Galvano scanner
JP2015070786A (en) * 2013-09-26 2015-04-13 エスカエフ・マニュティック・メシャトロニク Permanent magnet rotor shaft assembly and method

Similar Documents

Publication Publication Date Title
US6841908B2 (en) Stator core for a magnetic bearing and the method of manufacturing it
US9030061B2 (en) Galvanoscanner and laser processing machine
US20090212644A1 (en) Combination drive with a hybrid reluctance motor
CN101123372A (en) Rocking actuator and laser machining apparatus
JP2009201269A (en) Embedded magnet motor and manufacturing method therefor
JP3470689B2 (en) Linear actuator
JP2004222350A (en) Permanent magnet type rotating electric machine
JP3850195B2 (en) Magnetic levitation motor
JP5153806B2 (en) Galvano scanner
WO2023188430A1 (en) Galvanometer scanner
WO2009157252A1 (en) Magnetic bearing apparatus
JP2017212780A (en) Rotary electric machine
JP2008148516A (en) Rotary electric machine
CN112104121B (en) Rotor and rotating electrical machine
KR20030046763A (en) Stepping motor
JPH0332338A (en) Magnetic bearing formed integrally with motor
JP5875546B2 (en) Galvano scanner
JP2006230142A (en) Small motor
JP6414094B2 (en) Galvano scanner
KR102537520B1 (en) Electrical rotory Actuator
WO2022070445A1 (en) Electric motor
JP2022042699A (en) Cooling structure of rotary electric machine
JP2023162878A (en) Rotary electric machine
JP5691994B2 (en) Axial gap type rotating electrical machine
JP2002174237A (en) Core structure for magnetic bearing and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935565

Country of ref document: EP

Kind code of ref document: A1