JP2004222350A - Permanent magnet type rotating electric machine - Google Patents

Permanent magnet type rotating electric machine Download PDF

Info

Publication number
JP2004222350A
JP2004222350A JP2003003384A JP2003003384A JP2004222350A JP 2004222350 A JP2004222350 A JP 2004222350A JP 2003003384 A JP2003003384 A JP 2003003384A JP 2003003384 A JP2003003384 A JP 2003003384A JP 2004222350 A JP2004222350 A JP 2004222350A
Authority
JP
Japan
Prior art keywords
rotor
magnetic
permanent magnet
electric machine
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003003384A
Other languages
Japanese (ja)
Inventor
Masao Yabumoto
政男 籔本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003003384A priority Critical patent/JP2004222350A/en
Publication of JP2004222350A publication Critical patent/JP2004222350A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/12Structural association with clutches, brakes, gears, pulleys or mechanical starters with auxiliary limited movement of stators, rotors or core parts, e.g. rotors axially movable for the purpose of clutching or braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet type rotating electric machine capable of obtaining a high torque in a low speed range, performing efficient operation even during a high speed, and reducing slide and drag loss at the time of idle rotation. <P>SOLUTION: The permanent magnets for forming a field flux are buried in a rotor, and a cavity portion is provided toward the axial center side from the permanent magnet. Movable magnetic substances are provided in the cavity to control the field flux crossing an armature winding by mechanically adjusting the position of the magnetic material. When the rotor is at a low speed, each of the magnetic substances is positioned at a portion with low magnetic resistance in the cavity, and the field flux of the rotor surface increases to obtain high torque. When the rotor is at a high speed, the magnetic substance moves to a portion with high magnetic resistance, and the field flux of the rotor surface is decreased to decrease a counter electromotive voltage generated at the armature winding. At the time of idle rotation, the magnetic substance is positioned at the portion with high magnetic resistance in the cavity, and the flux density of the stator is decreased together with the field flux, thus reducing the slide and drag loss. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術の分野】
本発明は、永久磁石を界磁に用いる永久磁石型回転電機に係り、特に弱め界磁制御を行う回転子構造に関する。
【0002】
【従来の技術】
従来の永久磁石型回転電機は、ステータの円周に沿って複数配置された電機子巻線に供給する電流を制御することにより発生する回転磁界と、ロータの円周に沿って複数配置された永久磁石が発生する界磁磁束との相互作用により所望の回転数でロータを回転させている。ところで、ロータ側の界磁形成に永久磁石を用いた場合、永久磁石によって形成される磁界磁束が一定であり、前記電機子巻線に鎖交する磁束が一定であるため、ロータの回転数に比例して電機子巻線に発生する逆起電圧が高くなる。ここで、電機子巻線に回転磁界を発生させる電源電圧に対して逆起電圧がある程度高くなると、電機子巻線に供給される電流が減少するためトルクが低下し、最高回転数が低く抑えられてしまう。従って、一般に永久磁石型回転電機の駆動最高回転数は電源電圧により制限されている。
【0003】
電気自動車やハイブリッド自動車等の駆動用途に永久磁石型回転電機を使用する場合、高効率であることともに、前記電源電圧の制限下で高トルクかつ高速回転数での運転が要求される。
従来、このような基底回転数以上の高速回転を得るために、電流ベクトル制御によりd軸電流を電機子巻線に流して、界磁に逆向きの磁界を印加し界磁の磁束量を低減させる、いわゆる弱め界磁制御が行われている。この弱め界磁を行うことにより前記電機子巻線と鎖交する界磁束を減らすことで、電機子巻線で発生する逆起電圧を低減することが可能になり、前記電源電圧の制限下で電機子巻線に回転磁界を発生するための電流を流し続けることが可能になる。その結果、高速域までロータを回転させることができる。
【0004】
電機子巻線に弱め界磁電流を通電することなく弱め界磁制御を行う方法がいくつか開示されている。特許文献1、特許文献2、特許文献3、特許文献4および特許文献5は、ロータの磁石装着部近くのスリットに、移動可能な磁気短絡部を形成して、回転子構造の変化により弱め界磁効果を得る永久磁石型電動機を開示している。この方法によると前記磁気短絡部の移動により永久磁石を通る磁束をロータ内部に閉じ込め、電機子巻線と鎖交する界磁束を減少させることができる。
【0005】
特許文献6は、永久磁石を有した円筒形のロータの内周面に対面する外周面を有して回転自在に配設されて、前記径外側ロータに対する相対角度位置により界磁界調整を行う磁気突極型の径内側ロータを備えた永久磁石型回転電機を開示している。この径内側ロータは界磁束の経路をなし、径外側ロータに対する相対角度位置を調整することにより、電機子巻線と鎖交する界磁束を減少させることができる。
また、特許文献7は、ステータを通過する磁束の経路上の磁気抵抗調整用の開口部に内挿された回転可能な透磁率異方性を有する調整プラグを内挿して、ステータ構造の変化により弱め界磁効果を得る永久磁石型電動機を開示している。この調整プラグの角度を調整することにより、電機子巻線と鎖交する界磁束を減少させることができる。
【0006】
【特許文献1】
特開平9−93846号公報
【特許文献2】
特開平11−275787号公報
【特許文献3】
特開平11−275788号公報
【特許文献4】
特開平11−275789号公報
【特許文献5】
特開平11−355988号公報
【特許文献6】
特開2002−58223号公報
【特許文献7】
特開平9−233887号公報
【0007】
【発明が解決しようとする課題】
従来の弱め界磁電流を流して弱め界磁を行う技術では、電機子巻線に弱め界磁電流分の銅損が発生してしまう。この銅損は、電機子巻線の抵抗値に比例し、また弱め界磁電流値の2乗に比例して大きくなるため、回転電機のエネルギ効率が低下するという問題があった。
【0008】
電機子巻線に弱め界磁電流を通電することなく弱め界磁制御を行う従来の方法についても問題があった。上記の磁気短絡部を用いる技術では、磁気短絡状態と非短絡状態の磁気短絡部を流れる磁束の変化が大きく、磁気短絡状態から非短絡状態に変化させるためには、磁気短絡部の移動に大きな駆動力が必要であり、ロータが速度変動あるいは急加減速しながら回転するときには磁束量が変動又は振動してしまい、ハンチングを起こしやすいという問題があった。
【0009】
また、上記の径内側ロータを用いる技術では、磁気突極型を有する径内側ロータと径外側ロータの間の磁気抵抗が両ロータの相対角度に対して線形な関係にないために、弱め界磁制御が複雑となりロータが速度変動あるいは急加減速しながら回転するときには磁束量が変動又は振動してしまい、ハンチングを起こしやすいという問題があった。
【0010】
また、上記の調整プラグを用いる技術では、プラグに用いる透磁率異方性を有する材料の角度による透磁率差よりも、ロータとステータ間の空隙部の磁気抵抗が非常に大きいために、プラグの角度調整によるロータの永久磁石からステータを流れる磁束の磁気回路の磁気抵抗の変動が小さく、十分な弱め界磁を行うことができないという課題があった。
【0011】
本発明は、上記課題を解決するためになされたものであり、動作信頼性に優れ、弱め界磁電流を電機子巻線に流すことなく弱め界磁制御が可能な永久磁石型回転電機を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、複数の電機子巻線が巻装され回転磁界を形成するステータと、前記電機子巻線と鎖交する界磁束を形成する複数極の永久磁石を有して前記ステータの内周面と対面しつつ回転するロータとを備える永久磁石型回転電機において、前記ロータの永久磁石より軸芯側で隣り合う極の永久磁石の間に設けた空隙部を有し、前記空隙内でラジアル方向に移動可能な磁性材を具備することを特徴とする。
この構成によれば、N極の永久磁石により出た界磁束は電機子巻線およびステータコアを通過し、S極の永久磁石から、前記空隙部および空隙内の磁性体を経てN極の永久磁石に還流する磁気回路を形成する。空隙内の磁性体の位置を移動させて、空隙部および磁性体がなす磁気抵抗を調整することにより、前記磁気回路の磁気抵抗を変化させて、電機子巻線と鎖交する界磁束を調整することができる。
【0013】
また、請求項2記載の構成によれば請求項1記載の永久磁石型回転電機において更に、前記空隙部のロータ軸芯に直交する平面での断面形状が、軸芯側に開口したテーパ形状を含むことができる。
この構成によれば、空隙内の当該テーパ面に接するように配設した磁性体を軸芯側に移動させることにより、テーパ面と磁性体との間の空気層の厚みを容易に増加させることができ、磁性体の移動距離に線形に磁気抵抗を調整できる。
【0014】
また、請求項3記載の構成によれば請求項1〜2記載の永久磁石型回転電機において更に、前記ロータの各極の永久磁石が、一対の平板状の永久磁石をV字型に組み合わせたものであり、そのV字型の頂点をロータの軸芯側に向けて配設することができる。
この構成によれば、ロータの1極当りの表面積に対して永久磁石の表面積を増加させることにより界磁束を増加できるとともに、高速回転時には空隙内の磁性体の位置を調整して界磁束を電機子巻線に弱め界磁電流を流すことなく低減させることができ、電機自動車やハイブリッド自動車の駆動用途等に要求される回転電機の体格小型化および高トルク化が実現可能である。
【0015】
また、請求項4記載の構成によれば請求項1〜3記載のいずれかの永久磁石型回転電機において更に、前記磁性体の前記空隙内での位置を機械的に調整する機構を備えることができる。
この構成によれば、回転電機の電源装置等の制御に従い、運転モードに合わせて空隙内の磁性体の位置を機械的に移動して、空隙部および磁性体がなす磁気抵抗を調整し、電機子巻線と鎖交する界磁束を調整することができる。例えば、回転電機を基底回転数以上の高速回転数に加速する場合には、磁気抵抗が増加する方向に空隙内の磁性体の位置を移動させ界磁束を減少させることで、電機子巻線で発生する逆起電圧を低減し、電源電圧の制限下で電機子巻線に回転磁界を発生するための電流を流し続けることが可能になり、高速域までロータを回転させることができる。逆に、回転電機を高速回転数から減速する場合には、磁気抵抗が減少する方向に空隙内の磁性体の位置を移動させ界磁束を増加させることで、同じ回転数に対するトルクを増加させることができる。
【0016】
また、ハイブリッド自動車の駆動用途に応用した場合のエンジン駆動時等において、電機子巻線に回転電流を流さない状態で空転する時の引き摺り損失が問題となる場合には、界磁束を減少させる方向に空隙内の磁性体の位置を移動させ、ステータの磁束密度を低下させることによりステータに発生する鉄損を低減できる。
【0017】
【発明の実施の形態】
本発明の永久磁石型回転電機の実施形態について、図面を参照して以下に説明する。
本発明の第1の実施形態である永久磁石型回転電機の構造を、図1の軸方向断面の模式説明図を参照して以下に示す。なお、永久磁石回転電機を運転するためには、電気配線、回転位置検出器、電源装置、制御装置等が必要であるが、図1では省略している。
【0018】
まず構成について説明する。1はステータ、2はロータ、3はハウジング、4は軸受け、5はシャフト、16は磁性体移動機構である。
ステータ1は、電磁鋼板を打抜き積層したステータコア6に電機子巻線7を巻装してなり、ハウジング3に対して固定されている。
ロータ2は、電磁鋼板を打抜き積層したロータコア8と、ロータコア8の内部に埋設された永久磁石9とにより構成されており、中間支持シリンダ15およびロータ支持シリンダ14を介してシャフト5に嵌合、固定されている。シャフト5は軸受け4を介してハウジング3に支持されている。ロータ2の軸方向両端には、非磁性材からなるロータエンドリング13が装着されている。ロータ2の断面模式説明図を図2に示す。
【0019】
ロータコア8の外周部には、ロータの径方向に着磁された8個の永久磁石9が、ロータ表面に沿って極性交互に並ぶように埋設されている。隣接する永久磁石9の間には、磁束の漏れを制限するフラックスバリア12の穴が軸方向に貫設されている。
永久磁石9より軸芯側で、隣り合う極の永久磁石9の間に空隙部10が軸方向に貫設されており、空隙部10の中に移動磁性体11が配設されている。移動磁性体11は、磁性体移動機構16の一部をなすアーム19により中間支持シリンダ14に支持されており、アーム19の動きにより空隙部10の内部を移動できる。磁性体移動機構16を、図1で説明する。
【0020】
磁性体移動機構16は、移動磁性体11と中間支持シリンダ14とを回転自在に結合するアームc19とアームb18、移動磁性体11と中間支持シリンダ14およびシャフト5に沿って軸方向に移動可能なスライダ22とを回転自在に結合するアームa17、スライダ22にボールベアリングを介して接しハウジング3に軸方向に移動可能に支持された駆動ピン20、駆動ピン20とアクチュエータ24を回転自在に結合する駆動アーム21、およびアクチュエータ24からなる。スライダ22は、ロ−タ2およびシャフト5とともに回転するが、駆動アーム20はハウジング3に支持されて回転しない。
【0021】
次に基本動作について説明する。図1に記載されていない制御装置からの信号により、アクチュエータ24が信号に指示された距離だけ駆動アーム21を押圧すると、駆動ピン20がスライダ22を軸方向に変位させ、アームa17により移動磁性体11を軸芯方向に移動させる。移動磁性体11はアームa17、アームb18およびアームc19の作用により、パンタグラフの原理で軸方向に並行な状態で移動可能である。
【0022】
ロータ2の表面に隣接して埋設された異極の永久磁石9の発生する界磁により、移動磁性体11はロータ2の外周側に引き寄せられ、さらに遠心力により移動磁性体は外周側に引き寄せられるため、移動磁性体11を軸芯側に移動させるためには強い牽引力が必要である。この強い牽引力をえるために、アームa17および駆動アーム21には梃子の原理による増力構造を組み込んでいる。移動磁性体11がロータ2の外周側に引き寄せられる結果、スライダ22は常に駆動ピン20に押圧力を作用させるため、スライダ22を押圧しているバネ23の力は強力でなくとも良い。
【0023】
アクチュエータ24が押圧力を発生していない時、移動磁性体11は空隙部10内で上記した界磁および遠心力により外周側に押し付けられ、ロータコア8との間の空気層は最小となる。隣接する異極の永久磁石9をつなぐ軸芯側の磁束の通り道(磁路)には、ロータコア8と移動磁性体11との間の空隙が最小となっていることから、磁気抵抗が低い状態となり、界磁束は増加する。
【0024】
一方、アクチュエータ24が押圧力を発生した時、移動磁性体11はアクチュエータの移動量に比例した距離を軸心側に引き寄せられ、隣接する異極の永久磁石9をつなぐ軸芯側の磁路には、ロータコア8との間に移動距離に応じた厚みの空気層が形成される。空気層の磁気抵抗はロータコア8を形成する電磁鋼板に比べて数千倍から数万倍高く、上記移動量に応じて磁気抵抗が増加し、界磁束は低減する。
このように、空隙部10の中に配置した移動磁性材11の位置を磁性体移動機構16により調整することにより界磁束を調整することが可能である。
【0025】
次に本発明の第2の実施形態を図3に示す。構成は図1と同様であるが、ロータ2の永久磁石9の埋設状態が異なるものである。
ロータコア8の外周部には、平板状の同じ方向に着磁された永久磁石9aと9bをV字型に組み合わせてV字型の頂点をロータ2の軸芯側に向け、ロータ表面に沿って極性交互に並ぶように埋設されている。空隙部10を間に挟み、実施例1と同様の8極の界磁を形成する。各永久磁石9aと9bの間には、磁束の漏洩を制限するためのフラックスバリアの穴が軸方向に貫設されている。他の構成は第1の実施形態と同じである。
【0026】
第2の実施形態の永久磁石9aと9bを組み合わせた構成によれば、ロータ2の1極当りの表面積に対して永久磁石9の合計表面積を増加させることにより界磁束を増加でき、本発明による電機子巻線に弱め磁界電流を流すことなく弱め磁界制御が可能であることを活用して、同じトルクでは永久磁石式回転電機の小型化が可能であり、同じ回転電機体格では高トルク化が可能である。
【0027】
【発明の効果】
本発明によれば、ロータに界磁束を形成する永久磁石を埋設するとともに、永久磁石より軸芯側に空隙部を有し、この空隙部の中に移動可能な磁性材を備え、この磁性材の位置を機械的に調整して電機子巻線と鎖交する界磁束を制御できる。従って、電機子巻線に弱め磁界電流を流すことなく弱め磁界制御が行われ、回転電機の基底回転数以上の高速回転時における銅損低減によるエネルギ効率向上が可能となる。
また、本発明によれば、電機子巻線に電流を流さない空転時においても弱め磁界制御が可能であり、引き摺り損失の低減が可能となる。
また、本発明によれば、弱め磁界電流によりエネルギ効率を劣化させることなく界磁束を増加することが可能となるため、回転電機の小型化あるいは高トルク化が可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態である永久磁石型回転電機の軸方向断面模式説明図。
【図2】第1の実施形態である永久磁石方回転電機のロータ断面模式説明図。
【図3】第2の実施形態である永久磁石方回転電機のロータ断面模式説明図。
【符号の説明】
1:ステータ、2:ロータ:、3:ハウジング、4:軸受け、5:シャフト、6:ステータコア、7:電機子巻線、8:ロータコア、9:永久磁石、10:空隙部、11:移動磁性体、12:フラックスバリア、13:ロータエンドリング、14:ロータ支持シリンダ、15:中間支持シリンダ、16:磁性体移動機構、17:アームa、18:アームb、19:アームc、20:駆動ピン、21:駆動アーム、22:スライダ、23:バネ、24:アクチュエータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a permanent magnet type rotating electric machine using a permanent magnet for a field, and more particularly to a rotor structure for performing field weakening control.
[0002]
[Prior art]
A conventional permanent magnet type rotating electric machine has a rotating magnetic field generated by controlling a current supplied to armature windings arranged along the circumference of the stator and a plurality of rotating magnetic fields arranged along the circumference of the rotor. The rotor is rotated at a desired rotation speed by interaction with the field magnetic flux generated by the permanent magnet. By the way, when a permanent magnet is used for field formation on the rotor side, the magnetic field magnetic flux formed by the permanent magnet is constant, and the magnetic flux linked to the armature winding is constant. The back electromotive voltage generated in the armature winding increases in proportion. Here, when the back electromotive voltage becomes somewhat higher than the power supply voltage that generates a rotating magnetic field in the armature winding, the current supplied to the armature winding decreases, so that the torque decreases, and the maximum rotation speed is suppressed. Will be done. Therefore, the maximum driving speed of the permanent magnet type rotating electric machine is generally limited by the power supply voltage.
[0003]
When a permanent magnet type rotating electric machine is used for driving an electric vehicle, a hybrid vehicle, or the like, it is required to have high efficiency and to operate at a high torque and a high speed under the limitation of the power supply voltage.
Conventionally, in order to obtain such high-speed rotation at or above the base rotation speed, the d-axis current is applied to the armature winding by current vector control, and a magnetic field in the opposite direction is applied to the field to reduce the amount of magnetic flux of the field. That is, field weakening control is performed. By performing the field weakening to reduce the field magnetic flux interlinking with the armature winding, it becomes possible to reduce the back electromotive voltage generated in the armature winding, and under the limitation of the power supply voltage. It is possible to continue to supply a current for generating a rotating magnetic field to the armature winding. As a result, the rotor can be rotated up to the high speed range.
[0004]
Several methods have been disclosed for performing field-weakening control without passing field-weakening current through the armature winding. Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, and Patent Literature 5 disclose that a movable magnetic short-circuit portion is formed in a slit near a magnet mounting portion of a rotor, and a weakening field is caused by a change in a rotor structure. A permanent magnet type electric motor for obtaining a magnetic effect is disclosed. According to this method, the magnetic flux passing through the permanent magnet is confined inside the rotor by the movement of the magnetic short-circuit portion, and the field magnetic flux linked to the armature winding can be reduced.
[0005]
Patent Literature 6 discloses a magnet that is rotatably disposed with an outer peripheral surface facing an inner peripheral surface of a cylindrical rotor having a permanent magnet, and adjusts a field magnetic field by adjusting a relative angle position with respect to the radially outer rotor. A permanent magnet type rotating electric machine provided with a salient pole type radial inner rotor is disclosed. The radially inner rotor forms a path of the field magnetic flux, and by adjusting the relative angular position with respect to the radially outer rotor, the field magnetic flux linked to the armature winding can be reduced.
Patent Document 7 discloses that a rotatable adjustment plug having magnetic permeability anisotropy is inserted into an opening for adjusting magnetic resistance on a path of magnetic flux passing through a stator, and the stator structure is changed. A permanent magnet type electric motor that obtains a field weakening effect is disclosed. By adjusting the angle of the adjusting plug, the field magnetic flux interlinking with the armature winding can be reduced.
[0006]
[Patent Document 1]
JP-A-9-93846 [Patent Document 2]
JP-A-11-275787 [Patent Document 3]
JP-A-11-275788 [Patent Document 4]
JP-A-11-275789 [Patent Document 5]
JP-A-11-355988 [Patent Document 6]
JP 2002-58223 A [Patent Document 7]
JP-A-9-233887
[Problems to be solved by the invention]
In the conventional technique of performing the field weakening by flowing the field weakening current, copper loss corresponding to the field weakening current occurs in the armature winding. Since the copper loss increases in proportion to the resistance value of the armature winding and increases in proportion to the square of the field weakening current value, there is a problem that the energy efficiency of the rotating electrical machine is reduced.
[0008]
There was also a problem with the conventional method of performing field-weakening control without passing field-weakening current through the armature winding. In the technique using the magnetic short-circuit portion, the magnetic flux flowing through the magnetic short-circuit portion in the magnetic short-circuit state and the non-short-circuit state greatly changes. When a driving force is required and the rotor rotates while changing the speed or rapidly accelerating or decelerating, the amount of magnetic flux fluctuates or vibrates, and there is a problem that hunting is liable to occur.
[0009]
Further, in the technique using the radial inner rotor, since the magnetic resistance between the radial inner rotor having the magnetic salient pole type and the radial outer rotor is not linearly related to the relative angle between the two rotors, the field weakening control is performed. When the rotor is rotated while changing the speed or rapidly accelerating or decelerating, the amount of magnetic flux fluctuates or vibrates, and there is a problem that hunting is likely to occur.
[0010]
In the technique using the adjusting plug, the magnetic resistance of the gap between the rotor and the stator is much larger than the magnetic permeability difference due to the angle of the material having magnetic permeability anisotropy used for the plug. There has been a problem that the fluctuation of the magnetic resistance of the magnetic circuit of the magnetic flux flowing from the permanent magnet of the rotor to the stator due to the angle adjustment is small, so that sufficient field weakening cannot be performed.
[0011]
The present invention has been made in order to solve the above problems, and provides a permanent magnet type rotating electric machine having excellent operation reliability and capable of performing field weakening control without flowing field weakening current to an armature winding. It is in.
[0012]
[Means for Solving the Problems]
The present invention provides a stator in which a plurality of armature windings are wound to form a rotating magnetic field, and a plurality of permanent magnets forming a field magnetic flux interlinking with the armature windings, the inner periphery of the stator. A permanent magnet type rotating electric machine comprising: a rotor rotating while facing a surface, wherein the rotor has a gap provided between permanent magnets of poles adjacent to each other on the axis side with respect to the permanent magnet of the rotor, and radially extends within the gap. It is characterized by comprising a magnetic material movable in the direction.
According to this configuration, the field magnetic flux generated by the N-pole permanent magnet passes through the armature winding and the stator core, and is transferred from the S-pole permanent magnet to the N-pole permanent magnet through the gap and the magnetic material in the gap. To form a magnetic circuit that returns. By moving the position of the magnetic body in the air gap and adjusting the magnetic resistance formed by the air gap and the magnetic body, the magnetic resistance of the magnetic circuit is changed to adjust the field magnetic flux linked to the armature winding. can do.
[0013]
According to a second aspect of the present invention, in the permanent magnet type rotating electric machine according to the first aspect, the cross-sectional shape of the gap in a plane orthogonal to the rotor axis is a tapered shape opened toward the axis. Can be included.
According to this configuration, the thickness of the air layer between the tapered surface and the magnetic body can be easily increased by moving the magnetic body disposed in contact with the tapered surface in the gap toward the axis. The magnetic resistance can be adjusted linearly with the moving distance of the magnetic body.
[0014]
According to a third aspect of the present invention, in the permanent magnet type rotating electric machine of the first and second aspects, the permanent magnet of each pole of the rotor is formed by combining a pair of flat permanent magnets into a V shape. The V-shaped apex can be disposed toward the axis of the rotor.
According to this configuration, the field flux can be increased by increasing the surface area of the permanent magnet with respect to the surface area per pole of the rotor, and at the time of high-speed rotation, the position of the magnetic body in the air gap is adjusted to reduce the field flux. It is possible to reduce the field current without flowing the weakening field current through the slave winding, and it is possible to realize a small size and high torque of the rotating electric machine required for driving applications of electric vehicles and hybrid vehicles.
[0015]
According to the configuration of claim 4, the permanent magnet type rotating electric machine of any of claims 1 to 3, further comprising a mechanism for mechanically adjusting a position of the magnetic body in the gap. it can.
According to this configuration, the position of the magnetic body in the gap is mechanically moved in accordance with the operation mode according to the control of the power supply device or the like of the rotating electric machine, and the magnetic resistance formed by the gap and the magnetic body is adjusted. The field magnetic flux interlinking with the slave winding can be adjusted. For example, when the rotating electric machine is accelerated to a high speed higher than or equal to the base speed, the position of the magnetic material in the air gap is moved in a direction in which the magnetic resistance is increased to reduce the field magnetic flux, so that the armature winding is used. The generated back electromotive voltage can be reduced, and a current for generating a rotating magnetic field can be continuously supplied to the armature winding under the limitation of the power supply voltage, so that the rotor can be rotated up to a high speed range. Conversely, when the rotating electric machine is decelerated from the high speed, the torque for the same speed must be increased by moving the position of the magnetic substance in the air gap in the direction in which the magnetic resistance decreases to increase the field magnetic flux. Can be.
[0016]
In addition, in the case of driving an engine when applied to a drive application of a hybrid vehicle, when dragging loss when idling without flowing a rotating current to the armature winding becomes a problem, the field flux is reduced. By moving the position of the magnetic body in the air gap to lower the magnetic flux density of the stator, the iron loss generated in the stator can be reduced.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a permanent magnet type rotating electric machine according to the present invention will be described below with reference to the drawings.
A structure of a permanent magnet type rotating electric machine according to a first embodiment of the present invention will be described below with reference to a schematic cross-sectional diagram in FIG. In addition, in order to operate the permanent magnet rotating electric machine, electrical wiring, a rotational position detector, a power supply device, a control device, and the like are required, but are omitted in FIG.
[0018]
First, the configuration will be described. 1 is a stator, 2 is a rotor, 3 is a housing, 4 is a bearing, 5 is a shaft, and 16 is a magnetic body moving mechanism.
The stator 1 is formed by winding an armature winding 7 around a stator core 6 formed by stamping and laminating an electromagnetic steel sheet, and is fixed to the housing 3.
The rotor 2 includes a rotor core 8 formed by stamping and laminating electromagnetic steel sheets, and a permanent magnet 9 buried inside the rotor core 8, and is fitted to the shaft 5 via an intermediate support cylinder 15 and a rotor support cylinder 14. Fixed. The shaft 5 is supported by the housing 3 via the bearing 4. At both ends in the axial direction of the rotor 2, rotor end rings 13 made of a non-magnetic material are mounted. FIG. 2 shows a schematic cross-sectional explanatory view of the rotor 2.
[0019]
Eight permanent magnets 9 magnetized in the radial direction of the rotor are embedded in the outer peripheral portion of the rotor core 8 so as to be alternately arranged in polarity along the rotor surface. Between the adjacent permanent magnets 9, holes of the flux barrier 12 for limiting the leakage of magnetic flux are provided in the axial direction.
An air gap 10 is provided in the axial direction between the permanent magnets 9 of the adjacent poles on the axial center side of the permanent magnet 9, and a moving magnetic body 11 is disposed in the air gap 10. The movable magnetic body 11 is supported by the intermediate support cylinder 14 by an arm 19 forming a part of a magnetic body moving mechanism 16, and can move inside the gap 10 by the movement of the arm 19. The magnetic body moving mechanism 16 will be described with reference to FIG.
[0020]
The magnetic body moving mechanism 16 is axially movable along the arm c19 and the arm b18 that rotatably couple the moving magnetic body 11 and the intermediate support cylinder 14, and the movable magnetic body 11, the intermediate support cylinder 14, and the shaft 5. An arm a17 for rotatably connecting the slider 22 to the slider 22, a drive pin 20 in contact with the slider 22 via a ball bearing and supported in the housing 3 so as to be movable in the axial direction, and a drive for rotatably connecting the drive pin 20 and the actuator 24 It comprises an arm 21 and an actuator 24. The slider 22 rotates together with the rotor 2 and the shaft 5, but the drive arm 20 is supported by the housing 3 and does not rotate.
[0021]
Next, the basic operation will be described. When the actuator 24 presses the drive arm 21 by the distance indicated by the signal in response to a signal from a control device not shown in FIG. 1, the drive pin 20 displaces the slider 22 in the axial direction, and the moving magnetic material is moved by the arm a17. 11 is moved in the axial direction. The movable magnetic body 11 can move in a state of being parallel in the axial direction by the action of the arm a17, the arm b18, and the arm c19 according to the principle of the pantograph.
[0022]
The moving magnetic body 11 is attracted to the outer peripheral side of the rotor 2 by the field generated by the different-polarity permanent magnets 9 buried adjacent to the surface of the rotor 2, and the moving magnetic body is further attracted to the outer peripheral side by centrifugal force. Therefore, a strong traction force is required to move the movable magnetic body 11 toward the axis. In order to obtain this strong traction force, the arm a17 and the drive arm 21 incorporate a booster structure based on the principle of leverage. As a result of the movable magnetic body 11 being drawn to the outer peripheral side of the rotor 2, the slider 22 always applies a pressing force to the drive pin 20, so that the force of the spring 23 pressing the slider 22 may not be strong.
[0023]
When the actuator 24 does not generate the pressing force, the moving magnetic body 11 is pressed to the outer peripheral side by the above-described field and centrifugal force in the gap 10, and the air layer between the moving magnetic body 11 and the rotor core 8 is minimized. In the path (magnetic path) of the magnetic flux on the shaft core connecting the adjacent permanent magnets 9 of different polarities, the air gap between the rotor core 8 and the moving magnetic body 11 is minimized, so that the magnetic resistance is low. And the field flux increases.
[0024]
On the other hand, when the actuator 24 generates the pressing force, the moving magnetic body 11 is drawn toward the axis side by a distance proportional to the amount of movement of the actuator, and moves to the magnetic path on the axis side connecting the adjacent different-magnet permanent magnets 9. An air layer having a thickness corresponding to the moving distance is formed with the rotor core 8. The magnetic resistance of the air layer is thousands to tens of thousands times higher than that of the electromagnetic steel sheet forming the rotor core 8, and the magnetic resistance increases according to the amount of movement, and the field flux decreases.
As described above, the field magnetic flux can be adjusted by adjusting the position of the moving magnetic material 11 disposed in the gap 10 by the magnetic body moving mechanism 16.
[0025]
Next, a second embodiment of the present invention is shown in FIG. The configuration is the same as that of FIG. 1 except that the embedded state of the permanent magnet 9 of the rotor 2 is different.
On the outer peripheral portion of the rotor core 8, flat permanent magnets 9 a and 9 b magnetized in the same direction in a V-shape are combined in a V-shape so that the V-shape apex is directed toward the axis of the rotor 2 and along the rotor surface. It is buried so that it alternates in polarity. An eight-pole field similar to that of the first embodiment is formed with the gap 10 interposed therebetween. Between the permanent magnets 9a and 9b, a hole of a flux barrier for limiting leakage of magnetic flux is provided in an axial direction. Other configurations are the same as those of the first embodiment.
[0026]
According to the configuration in which the permanent magnets 9a and 9b of the second embodiment are combined, the field magnetic flux can be increased by increasing the total surface area of the permanent magnets 9 with respect to the surface area per pole of the rotor 2, and according to the present invention. Taking advantage of the fact that weak magnetic field control is possible without passing weak magnetic field current through the armature windings, it is possible to reduce the size of a permanent magnet type rotating electric machine with the same torque, and to increase the torque with the same rotating electric machine body. It is possible.
[0027]
【The invention's effect】
According to the present invention, a permanent magnet for forming a field magnetic flux is embedded in a rotor, a gap is provided on the axial center side of the permanent magnet, and a magnetic material movable in the gap is provided. Can be adjusted mechanically to control the field magnetic flux linked to the armature winding. Therefore, the weak magnetic field control is performed without passing the weak magnetic field current through the armature winding, and the energy efficiency can be improved by reducing the copper loss at the time of high-speed rotation of the rotating electric machine at or above the base rotation speed.
Further, according to the present invention, the weak magnetic field control can be performed even in the idling state in which no current flows through the armature winding, and the drag loss can be reduced.
According to the present invention, the field magnetic flux can be increased without deteriorating the energy efficiency due to the weak magnetic field current, so that the rotating electric machine can be reduced in size or increased in torque.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory cross-sectional view in the axial direction of a permanent magnet type rotating electric machine according to a first embodiment of the present invention.
FIG. 2 is a schematic cross-sectional explanatory diagram of a rotor of the permanent magnet rotary electric machine according to the first embodiment;
FIG. 3 is a schematic cross-sectional explanatory view of a rotor of a permanent magnet type rotating electric machine according to a second embodiment.
[Explanation of symbols]
1: stator: 2: rotor: 3: housing, 4: bearing, 5: shaft, 6: stator core, 7: armature winding, 8: rotor core, 9: permanent magnet, 10: gap, 11: moving magnetism Body, 12: flux barrier, 13: rotor end ring, 14: rotor support cylinder, 15: intermediate support cylinder, 16: magnetic body moving mechanism, 17: arm a, 18: arm b, 19: arm c, 20: drive Pin, 21: drive arm, 22: slider, 23: spring, 24: actuator

Claims (4)

複数の電機子巻線が巻装され回転磁界を形成するステータと、前記電機子巻線と鎖交する界磁束を形成する複数極の永久磁石を有して前記ステータの内周面と対面しつつ回転するロータとを備える永久磁石型回転電機において、前記ロータの永久磁石より軸芯側で隣り合う極の永久磁石の間に空隙部を有し、前記空隙内でラジアル方向に移動可能な磁性材を具備することを特徴とする永久磁石型回転電機。A stator having a plurality of armature windings wound thereon to form a rotating magnetic field, and a plurality of pole permanent magnets forming a field magnetic flux interlinking with the armature windings, facing the inner peripheral surface of the stator; And a rotor that rotates while rotating, wherein a gap is provided between the permanent magnets of the poles adjacent to each other on the axial center side of the permanent magnet of the rotor, and the magnet is movable in the radial direction in the gap. A permanent magnet type rotating electric machine comprising a material. 前記空隙部のロータ軸芯に直交する平面での断面形状が、軸芯側に開口したテーパ形状を含むことを特徴とした請求項1記載の永久磁石型回転電機。2. The permanent magnet type rotating electric machine according to claim 1, wherein a cross-sectional shape of the gap in a plane orthogonal to the rotor axis includes a tapered shape opened toward the axis. 前記ロータの各極の永久磁石が、一対の平板状の永久磁石をV字型に組み合わせたものであり、そのV字型の頂点をロータの軸芯側に向けて配設することを特徴とする請求項1または請求項2記載の永久磁石型回転電機。The permanent magnet of each pole of the rotor is a combination of a pair of flat permanent magnets in a V-shape, and the V-shape apex is disposed toward the axis of the rotor. The permanent magnet type rotating electric machine according to claim 1 or 2, wherein 前記磁性体の前記空隙内での位置を機械的に調整する機構を備えることを特徴とする請求項1〜3いずれかに記載の永久磁石型回転電機。The permanent magnet type rotating electric machine according to any one of claims 1 to 3, further comprising a mechanism for mechanically adjusting a position of the magnetic body in the gap.
JP2003003384A 2003-01-09 2003-01-09 Permanent magnet type rotating electric machine Withdrawn JP2004222350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003384A JP2004222350A (en) 2003-01-09 2003-01-09 Permanent magnet type rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003384A JP2004222350A (en) 2003-01-09 2003-01-09 Permanent magnet type rotating electric machine

Publications (1)

Publication Number Publication Date
JP2004222350A true JP2004222350A (en) 2004-08-05

Family

ID=32894665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003384A Withdrawn JP2004222350A (en) 2003-01-09 2003-01-09 Permanent magnet type rotating electric machine

Country Status (1)

Country Link
JP (1) JP2004222350A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089291A (en) * 2005-09-21 2007-04-05 Toyota Motor Corp Permanent magnet type rotating electric machine
JP2007259531A (en) * 2006-03-20 2007-10-04 Yaskawa Electric Corp Dynamo-electric machine
JP2007325422A (en) * 2006-06-01 2007-12-13 Honda Motor Co Ltd Control device of motor
JP2008043135A (en) * 2006-08-09 2008-02-21 Honda Motor Co Ltd Controller of motor for vehicle
US7567006B2 (en) 2007-07-26 2009-07-28 Kura Laboratory Corporation Field controllable rotating electric machine system with flux shunt control
US7999432B2 (en) 2007-08-17 2011-08-16 Kura Laboratory Corporation Field controllable rotating electric machine system with magnetic excitation part
US8058767B2 (en) 2006-03-13 2011-11-15 Toyota Jidosha Kabushiki Kaisha Rotor and method of manufacturing the same and electric vehicle
JP2013046519A (en) * 2011-08-25 2013-03-04 Denso Corp Rotating electric machine
JP2014054097A (en) * 2012-09-07 2014-03-20 Toyota Motor Corp Rotary electric machine system
ITUD20120213A1 (en) * 2012-12-07 2014-06-08 Univ Degli Studi Trieste ROTOR FOR A PERMANENT MAGNET ELECTRIC MOTOR
CN105119404A (en) * 2015-09-28 2015-12-02 哈尔滨工业大学 Built-in permanent magnet synchronous motor rotor with flux weakening function
CN106655680A (en) * 2017-02-25 2017-05-10 兰州交通大学 Adjustable-magnetic rotation motor
WO2018177457A1 (en) * 2017-03-30 2018-10-04 Schaeffler Technologies AG & Co. KG Electric motor with switchover elements in the magnetic circuit
CN110729867A (en) * 2019-10-23 2020-01-24 六安正辉优产机电科技有限公司 Generator flux adjustment assembly
CN112072809A (en) * 2020-08-24 2020-12-11 清华大学 Permanent magnet rotating armature motor capable of adjusting magnetic field in mechanical mode
DE102021127658A1 (en) 2021-10-25 2023-04-27 Bayerische Motoren Werke Aktiengesellschaft Electrical machine for a motor vehicle
CN117691778A (en) * 2024-02-04 2024-03-12 深圳市鑫昌泰科技有限公司 Novel rotor core, rotor and new energy motor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089291A (en) * 2005-09-21 2007-04-05 Toyota Motor Corp Permanent magnet type rotating electric machine
US8058767B2 (en) 2006-03-13 2011-11-15 Toyota Jidosha Kabushiki Kaisha Rotor and method of manufacturing the same and electric vehicle
JP2007259531A (en) * 2006-03-20 2007-10-04 Yaskawa Electric Corp Dynamo-electric machine
JP2007325422A (en) * 2006-06-01 2007-12-13 Honda Motor Co Ltd Control device of motor
JP4749936B2 (en) * 2006-06-01 2011-08-17 本田技研工業株式会社 Electric motor control device
JP2008043135A (en) * 2006-08-09 2008-02-21 Honda Motor Co Ltd Controller of motor for vehicle
US7567006B2 (en) 2007-07-26 2009-07-28 Kura Laboratory Corporation Field controllable rotating electric machine system with flux shunt control
US7999432B2 (en) 2007-08-17 2011-08-16 Kura Laboratory Corporation Field controllable rotating electric machine system with magnetic excitation part
JP2013046519A (en) * 2011-08-25 2013-03-04 Denso Corp Rotating electric machine
JP2014054097A (en) * 2012-09-07 2014-03-20 Toyota Motor Corp Rotary electric machine system
ITUD20120213A1 (en) * 2012-12-07 2014-06-08 Univ Degli Studi Trieste ROTOR FOR A PERMANENT MAGNET ELECTRIC MOTOR
CN105119404A (en) * 2015-09-28 2015-12-02 哈尔滨工业大学 Built-in permanent magnet synchronous motor rotor with flux weakening function
CN106655680A (en) * 2017-02-25 2017-05-10 兰州交通大学 Adjustable-magnetic rotation motor
CN106655680B (en) * 2017-02-25 2023-09-05 兰州交通大学 Adjustable magnetic rotating motor
WO2018177457A1 (en) * 2017-03-30 2018-10-04 Schaeffler Technologies AG & Co. KG Electric motor with switchover elements in the magnetic circuit
CN110431727A (en) * 2017-03-30 2019-11-08 舍弗勒技术股份两合公司 Motor with the conversion element in magnetic loop
US11218039B2 (en) * 2017-03-30 2022-01-04 Schaeffler Technologies AG & Co. KG Electric motor with switchover elements in the magnetic circuit
CN110729867A (en) * 2019-10-23 2020-01-24 六安正辉优产机电科技有限公司 Generator flux adjustment assembly
CN110729867B (en) * 2019-10-23 2021-02-09 江苏兴华昌发电设备有限公司 Generator flux adjustment assembly
CN112072809A (en) * 2020-08-24 2020-12-11 清华大学 Permanent magnet rotating armature motor capable of adjusting magnetic field in mechanical mode
CN112072809B (en) * 2020-08-24 2022-09-27 清华大学 Permanent magnet rotating armature motor capable of adjusting magnetic field in mechanical mode
DE102021127658A1 (en) 2021-10-25 2023-04-27 Bayerische Motoren Werke Aktiengesellschaft Electrical machine for a motor vehicle
CN117691778A (en) * 2024-02-04 2024-03-12 深圳市鑫昌泰科技有限公司 Novel rotor core, rotor and new energy motor
CN117691778B (en) * 2024-02-04 2024-04-05 深圳市鑫昌泰科技有限公司 Novel rotor core, rotor and new energy motor

Similar Documents

Publication Publication Date Title
JP2004222350A (en) Permanent magnet type rotating electric machine
JP3833254B2 (en) Self-starting brushless electric motor
US9502951B2 (en) Electrical machine
EP2690754B1 (en) Electric motor
JP2009539336A (en) Electrical synchronous machine
KR20050004286A (en) Rotary electric motor having a plurality of skewed stator poles and/or rotor poles
JP3290392B2 (en) Permanent magnet type reluctance type rotating electric machine
JP2005528878A (en) Rotating permanent magnet motor with stator pole pieces of varying dimensions
JP6539004B1 (en) Rotor and rotating electric machine
JP2008512977A (en) Magnetic rotating device
JP2009136046A (en) Toroidally-wound dynamo-electric machine
JP2015070765A (en) Rotary electric machine
US9515524B2 (en) Electric motor
JP2006246662A (en) Permanent magnet rotary machine
JP4732930B2 (en) Synchronous machine
JP2000333407A (en) Wheel motor
JP2006081377A (en) Rotor of rotary electric machine
WO2013073416A1 (en) Dynamo-electric machine
JPH1146471A (en) Magnet excited brushless motor
JP3683455B2 (en) Permanent magnet motor
JPH1127913A (en) Reluctance rotary electric machine
GB2317997A (en) Relatively adjustaable rotor in a brushless machine
JP7284503B2 (en) Variable magnetic force motor
JP2009232505A (en) Rotating field type synchronous machine
KR20170058627A (en) Electric motor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404