JP2010256192A - Shape measuring method and shape measuring device by phase shift method, complex amplitude measuring method, and complex amplitude measuring device - Google Patents

Shape measuring method and shape measuring device by phase shift method, complex amplitude measuring method, and complex amplitude measuring device Download PDF

Info

Publication number
JP2010256192A
JP2010256192A JP2009107207A JP2009107207A JP2010256192A JP 2010256192 A JP2010256192 A JP 2010256192A JP 2009107207 A JP2009107207 A JP 2009107207A JP 2009107207 A JP2009107207 A JP 2009107207A JP 2010256192 A JP2010256192 A JP 2010256192A
Authority
JP
Japan
Prior art keywords
light
measured
phase shift
reference mirror
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009107207A
Other languages
Japanese (ja)
Other versions
JP5258052B2 (en
Inventor
Daisuke Ibarada
大輔 茨田
Toyohiko Yatagai
豊彦 谷田貝
Yuichi Kikuchi
裕一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Original Assignee
Utsunomiya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University filed Critical Utsunomiya University
Priority to JP2009107207A priority Critical patent/JP5258052B2/en
Publication of JP2010256192A publication Critical patent/JP2010256192A/en
Application granted granted Critical
Publication of JP5258052B2 publication Critical patent/JP5258052B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape measuring method and a device or the like capable of measuring the shape of a measuring object with high measurement accuracy, even when having disturbance vibration or air fluctuation. <P>SOLUTION: This shape measuring device includes: a branching device 6 for branching a coherent light flux 11 emitted from a light source 1, and irradiating a measuring object 7 and a reference mirror 8 therewith; a driving device 20 generating relative motion between the measuring object 7 and the reference mirror 8; a superimposing device 6 for forming an interference fringe by superimposing object light 12 reflected by the measuring object 7 on reference light 13 reflected by the reference mirror 8; an imaging device 10 for acquiring continuously-imaged data acquired by imaging the interference fringe continuously; and a calculation device 21 for calculating a three-dimensional shape of the measuring object 7 from the continuously imaged data. By modulating each frequency of the object light 12 and the reference light 13 by relative motion according to a Doppler effect, the calculation device 21 acquires a phase shift spectrum from a spectrum of a frequency difference between both lights, and calculates the three-dimensional shape of the measuring object 7 from the phase shift spectrum and the continuously imaged data. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、位相シフト法による形状測定方法、形状測定装置、複素振幅計測方法及び複素振幅計測装置に関する。更に詳しくは、外乱等が生じた場合であっても、被測定物の形状を良好に計測できる形状測定方法と装置、及び複素振幅計測を精度よく行うことができる方法と装置に関する。   The present invention relates to a shape measuring method, a shape measuring device, a complex amplitude measuring method, and a complex amplitude measuring device using a phase shift method. More specifically, the present invention relates to a shape measuring method and apparatus that can satisfactorily measure the shape of an object to be measured and a method and apparatus that can perform complex amplitude measurement with high accuracy even when disturbance or the like occurs.

位相シフト干渉法は、被写体(被測定物ともいう。)で反射した物体光と、参照鏡で反射した参照光とを重ね合わせ、生じた干渉縞をCCDカメラ等の撮像装置で記録し、取得したデータの解析法として位相シフト法を用い、3次元物体の形状を計測する技術である。位相シフト法は、参照光の位相を一定量ずつ変化させて3枚以上の干渉縞画像を取得し、計算により被測定物の複素振幅のみの情報を抽出する技術であり、位相差から物体の形状を算出することができる。また、参照光を位相の異なる3つ以上の領域に分割することによって、1枚の取得画像から被測定物の情報を得ることもできる。   In phase shift interferometry, object light reflected by a subject (also referred to as an object to be measured) and reference light reflected by a reference mirror are superimposed, and the resulting interference fringes are recorded and acquired by an imaging device such as a CCD camera. This is a technique for measuring the shape of a three-dimensional object using a phase shift method as an analysis method for the obtained data. The phase shift method is a technique for acquiring three or more interference fringe images by changing the phase of the reference light by a certain amount, and extracting only the complex amplitude information of the object to be measured by calculation. The shape can be calculated. Further, by dividing the reference light into three or more regions having different phases, it is also possible to obtain information on the object to be measured from one acquired image.

一方、デジタルホログラフィは、被測定物で反射した物体光と、参照鏡で反射した参照光とを重ね合わせ、生じた干渉縞をCCDカメラ等の撮像装置で記録し、コンピュータを用いて回折光をシミュレートして3次元物体形状を取得する技術である。しかしながら、シミュレートされた回折光には、1次光の他に、不要な0次光と−1次光も含まれており、それらの除去が必要である。ここで、0次光は参照光成分であり、1次光は被測定物からの物体光成分、−1次光はその共役波の成分である。   Digital holography, on the other hand, superimposes the object light reflected by the object to be measured and the reference light reflected by the reference mirror, records the generated interference fringes with an imaging device such as a CCD camera, and uses the computer to generate the diffracted light. This is a technique for obtaining a three-dimensional object shape by simulating. However, the simulated diffracted light includes unnecessary 0th-order light and −1st-order light in addition to the 1st-order light, and it is necessary to remove them. Here, the 0th order light is a reference light component, the primary light is an object light component from the object to be measured, and the −1st order light is a component of its conjugate wave.

近年、物体の変位測定や形状測定等の3次元計測技術として、デジタルホログラフィに位相シフト法を適用した位相シフトデジタルホログラフィが注目されている。従来の位相シフト干渉法及び位相シフトデジタルホログラフィは、可動ステージに搭載された参照鏡を微小移動させ、参照光の位相をπ/2ずつ変化させて、3枚以上の干渉縞画像から1枚の被写体像又はデジタルホログラムを作成する方法がとられている。なお、位相シフト干渉法とデジタルホログラフィの違いは、被写体とカメラを結像関係にするかしないかである。   In recent years, phase shift digital holography that applies a phase shift method to digital holography has attracted attention as a three-dimensional measurement technique such as object displacement measurement and shape measurement. In conventional phase shift interferometry and phase shift digital holography, a reference mirror mounted on a movable stage is moved minutely, and the phase of the reference light is changed by π / 2. A method of creating a subject image or a digital hologram is used. Note that the difference between phase shift interferometry and digital holography is whether or not the subject and the camera are in an imaging relationship.

下記非特許文献1には、位相シフト干渉法を利用して物体の形状を測定する技術が提案されている。図7は同文献に記載された実験構成図である。図7中の符号M1は、形状が平面から若干変形している被測定物を表し、符号M2は、平面形状からなる参照鏡を表している。図7に示す測定装置では、参照鏡M2の平面形状を基準として、被測定物M1の形状を測定する。図7において、レーザ(Laser)から出た光は2つのレンズL1,L2で拡大され、ビームスプリッタ(BS)で2つの光に分けられる。一方の光は、ビームスプリッタ(BS)で反射して被測定物M1を照射し、他方の光は、ビームスプリッタ(BS)を透過して参照鏡M2に入射する。   Non-Patent Document 1 below proposes a technique for measuring the shape of an object using phase shift interferometry. FIG. 7 is an experimental configuration diagram described in the same document. A symbol M1 in FIG. 7 represents a device under test whose shape is slightly deformed from a plane, and a symbol M2 represents a reference mirror having a planar shape. In the measuring apparatus shown in FIG. 7, the shape of the DUT M1 is measured based on the planar shape of the reference mirror M2. In FIG. 7, light emitted from a laser is expanded by two lenses L1 and L2, and is divided into two lights by a beam splitter (BS). One light is reflected by the beam splitter (BS) and irradiates the object to be measured M1, and the other light passes through the beam splitter (BS) and enters the reference mirror M2.

被測定物M1で反射した光(この光を「物体光」という。)は元の光路を戻り、その一部はビームスプリッタ(BS)とレンズL3を透過し、フォトディテクター(Photo Detector)に入射する。このとき、レンズL3は、被測定物M1の像をフォトディテクター(Photo Detector)上に結像する。他方、参照鏡M2で反射した光(この光を「参照光」という。)も元の光路を戻り、その一部はビームスプリッタ(BS)で反射し、上記物体光と同様にレンズL3を透過し、フォトディテクター(Photo Detector)に入射する。このとき、物体光と参照光とは重なり合い、図8に例示するような干渉縞を形成する。もし、被測定物M1も参照鏡M2と同じ平面であるならば、形成される干渉縞は、等間隔(例えばピッチP)で直線となる。しかしながら、図8に示す干渉縞は、δ(変形量)で表しているように若干変形しているのが分かる。この変形量から物体の形状誤差を算出できる。   The light reflected by the object to be measured M1 (this light is called “object light”) returns to the original optical path, a part of which passes through the beam splitter (BS) and the lens L3, and enters the photo detector. To do. At this time, the lens L3 forms an image of the object to be measured M1 on a photo detector. On the other hand, the light reflected by the reference mirror M2 (this light is referred to as “reference light”) also returns to the original optical path, a part of which is reflected by the beam splitter (BS), and passes through the lens L3 in the same manner as the object light. Then, it is incident on a photo detector. At this time, the object beam and the reference beam overlap to form an interference fringe as illustrated in FIG. If the DUT M1 is also in the same plane as the reference mirror M2, the formed interference fringes are straight lines at equal intervals (for example, pitch P). However, it can be seen that the interference fringes shown in FIG. 8 are slightly deformed as represented by δ (deformation amount). The shape error of the object can be calculated from the deformation amount.

肉眼で形状誤差を測定するときは、先ず縞を測定する。平均ピッチPと、縞の密度を表す平均空間周波数f(単位長さあたりの干渉縞の本数)との関係は下記式(a)と書ける。ここで、被測定物M1が平面からεだけ変形しているものとすると、被測定物M1で反射した物体光は、参照光に対して2εに相当する量だけ位相が変位したものとなる。そのときの物体光と参照光の位相差をφとする。干渉縞がちょうど1縞変位すると、物体光と参照光の位相差φは2πとなる。このとき、干渉縞の変形量δを用いて位相差φを表すと、下記式(b)となる。一方、レーザ光の波長をλとすると、変形量εと位相差φとの関係は、下記式(c)と書ける。つまり、干渉縞から被測定物M1の変形量δを測定し、位相差φが求まれば、変形量εが得られ、被測定物M1の形状計測を行うことができるのである。   When measuring the shape error with the naked eye, first measure the stripes. The relationship between the average pitch P and the average spatial frequency f representing the fringe density (the number of interference fringes per unit length) can be written as the following equation (a). Here, assuming that the object to be measured M1 is deformed by ε from the plane, the object light reflected by the object to be measured M1 is shifted in phase by an amount corresponding to 2ε with respect to the reference light. Let φ be the phase difference between the object beam and the reference beam. When the interference fringes are displaced by exactly one fringe, the phase difference φ between the object beam and the reference beam is 2π. At this time, when the phase difference φ is expressed using the deformation amount δ of the interference fringes, the following equation (b) is obtained. On the other hand, when the wavelength of the laser beam is λ, the relationship between the deformation amount ε and the phase difference φ can be written as the following equation (c). That is, if the deformation amount δ of the measurement object M1 is measured from the interference fringes and the phase difference φ is obtained, the deformation amount ε can be obtained, and the shape measurement of the measurement object M1 can be performed.

Figure 2010256192
Figure 2010256192

従来の形状計測では、画像処理と演算処理とによって自動的に位相差φを求めるようにしている。例えば下記非特許文献1では、干渉縞の強度分布は下記式(1’)で表すことができ、干渉縞の強度分布を下記式(2’)で示すフーリエ変換演算すると、干渉縞の空間周波数fと位相差φとを含む情報が得られるとされている。これに、下記式(5’)(6’)の演算を施すと、位相差φが求められ、これより上記式(c)を用いて変形量εが求められる。   In the conventional shape measurement, the phase difference φ is automatically obtained by image processing and arithmetic processing. For example, in the following Non-Patent Document 1, the interference fringe intensity distribution can be expressed by the following formula (1 ′), and when the Fourier transform calculation is performed on the interference fringe intensity distribution by the following formula (2 ′), the spatial frequency of the interference fringes Information including f and the phase difference φ is supposed to be obtained. When the following expressions (5 ′) and (6 ′) are calculated, the phase difference φ is obtained, and the deformation amount ε is obtained from the above expression (c).

Figure 2010256192
Figure 2010256192

なお、外部からの振動や被測定物付近の空気のじょう乱の影響を受け難いとされる耐振動型干渉計に関しては、下記特許文献1〜3等が提案されている。   The following Patent Documents 1 to 3 and the like have been proposed for vibration-resistant interferometers that are unlikely to be affected by external vibrations or air disturbances near the object to be measured.

例えば、下記特許文献1は、光干渉計を用いた測定において、外乱が測定値に与える誤差を定量的に評価するとともに、その結果に基づいて測定誤差が許容値以下となるような装置を提供するものである。具体的には、外乱の測定装置およびその測定値を用いた測定装置は、干渉光学系において、物体光と参照光との間に鋸波状に変化する位相差を与え、その結果干渉光強度が正弦波的に変化することを利用して位相差を測定し、その位相差を一定の周波数でサンプリングすることにより、外乱が測定値に与える誤差量の周波数特性を評価することを可能とするものである。この測定装置は、干渉光を2光束に分け、それぞれの光束で測定物の異なる部分に対応する位置に開口を設け、開口を通過した干渉光同士の位相差を測定することにより、外乱が測定値に与える誤差量の空間的分布を評価することを可能としている。そして、その結果に基づき、測定精度を達成するために必要な鋸波状位相差の周波数を決定している。   For example, Patent Document 1 below provides a device that quantitatively evaluates an error caused by a disturbance to a measurement value in measurement using an optical interferometer, and based on the result, provides an apparatus in which the measurement error is less than an allowable value. To do. Specifically, a disturbance measuring device and a measuring device using the measured value give a phase difference that changes in a sawtooth shape between the object light and the reference light in the interference optical system. By measuring the phase difference using a sinusoidal change and sampling the phase difference at a constant frequency, it is possible to evaluate the frequency characteristics of the amount of error caused by the disturbance to the measurement value. It is. This measuring device divides the interference light into two light beams, provides openings at positions corresponding to different parts of the measured object with each light beam, and measures the phase difference between the interference light beams that have passed through the openings, thereby measuring disturbance. It is possible to evaluate the spatial distribution of the error amount given to the value. Based on the result, the frequency of the sawtooth phase difference necessary for achieving the measurement accuracy is determined.

また、下記特許文献2は、非球面レンズの面形状や面精度の測定精度を向上させる干渉計に関するものである。具体的には、同一光源から出射された可干渉光束を参照波と被検波とに分ける手段と、上記参照波に被検物の被測定面に相当する波面を形成する波面形成手段と、上記参照波と被検波とを重畳させる重畳手段と、該重畳手段を介して形成される干渉縞を観測する撮像手段と、該撮像手段の出力データを取り込んで上記被測定面の面形状や面精度を算出する演算手段と、を備えた干渉計において、上記波面形成手段は、被測定面へ照射される参照波の位相を任意に変調可能な位相制御素子を有するとともに、上記演算手段が、上記位相制御素子による位相変調量に基づいて上記撮像手段の出力データを解析するとした干渉計が提案されている。   Patent Document 2 below relates to an interferometer that improves the measurement accuracy of the surface shape and surface accuracy of an aspheric lens. Specifically, a means for dividing a coherent light beam emitted from the same light source into a reference wave and a test wave, a wavefront forming means for forming a wavefront corresponding to the measurement surface of the test object in the reference wave, and the above Superimposing means for superimposing the reference wave and the test wave, imaging means for observing interference fringes formed via the superimposing means, and surface shape and surface accuracy of the measurement surface by taking in output data of the imaging means The wavefront forming means includes a phase control element capable of arbitrarily modulating the phase of the reference wave applied to the surface to be measured. There has been proposed an interferometer that analyzes output data of the imaging means based on a phase modulation amount by a phase control element.

また、下記特許文献3は、高精度の測定結果が要求される光学部材等の製作現場においてその表面形状の測定に好適な耐振動型干渉計に関するものである。具体的には、可干渉光を基準板上の基準面と被検体上の被検面に照射し、該基準面からの参照光と該被検面からの物体光とによる干渉縞を観察面上に形成する干渉縞形成手段と、前記観察面上の所定位置に配された、干渉縞像の局部的な光量を検出する光検出手段と、前記参照光と前記物体光との光路差を調整するように、前記干渉縞形成手段の光路中のいずれかの部材に所定の振動を付与する振動付与手段と、前記光検出手段により検出された光量の変化が小さくなるように前記振動付与手段の振動を制御する制御手段を備えてなる耐振動型干渉計が提案されている。   Patent Document 3 below relates to a vibration-resistant interferometer suitable for measuring the surface shape of an optical member or the like that requires a highly accurate measurement result. Specifically, the coherent light is irradiated to the reference surface on the reference plate and the test surface on the subject, and interference fringes due to the reference light from the reference surface and the object light from the test surface are observed on the observation surface. An interference fringe forming means formed above, a light detection means for detecting a local light quantity of the interference fringe image disposed at a predetermined position on the observation surface, and an optical path difference between the reference light and the object light. The vibration applying means for applying a predetermined vibration to any member in the optical path of the interference fringe forming means, and the vibration applying means so as to reduce the change in the amount of light detected by the light detecting means. There has been proposed a vibration-resistant interferometer provided with a control means for controlling the vibrations.

Guanming Lay and Toyohiko Yatagai, “ Use of the fast Fourie transform method for analyzing linear and equispaced Fizeau fringes”, Applied Optics, Vol.33, No.25, 5935-5940(1994)Guanming Lay and Toyohiko Yatagai, “Use of the fast Fourie transform method for analyzing linear and equispaced Fizeau fringes”, Applied Optics, Vol.33, No.25, 5935-5940 (1994)

特開2004−150965号公報JP 2004-150965 A 特開2001−174233号公報JP 2001-174233 A 特開平8−114412号公報Japanese Patent Laid-Open No. 8-114412

上記非特許文献1に記載の従来技術では、外乱振動や空気の揺らぎがあると、レーザからフォトディテクターまでの光路長が物体光と参照光との間で相対的に変化する。そうした変化によって干渉縞が変動すると、その干渉縞の変動が、形状変形に因るものであるのか外乱に因るものであるのか区別できず、測定精度が著しく低下する。そのため、高精度測定には、外乱を遮断するために、高価で大型の装置が必要となり、操作性も悪化するという問題がある。   In the prior art described in Non-Patent Document 1, when there is disturbance vibration or air fluctuation, the optical path length from the laser to the photodetector relatively changes between the object light and the reference light. When the interference fringes fluctuate due to such changes, it is impossible to distinguish whether the fluctuation of the interference fringes is due to shape deformation or disturbance, and the measurement accuracy is significantly reduced. Therefore, high-accuracy measurement has a problem that an expensive and large-sized device is required to block disturbance, and operability is deteriorated.

また、干渉縞の本数が多いほど干渉縞のピッチPを精度良く求めることができるので、フーリエ展開で求められる空間周波数fの精度が高まる。しかし、フォトディテクターで取り込まれる画像の画素数は限定されるので、1画素あたりの分解能は限られる。そのため、求められる位相差φの計算上の分解能は低下してしまう。このように、測定精度は、フォトディテクターの画素数で限定されてしまうという難点がある。   Further, since the pitch P of the interference fringes can be obtained with higher accuracy as the number of interference fringes increases, the accuracy of the spatial frequency f obtained by Fourier expansion increases. However, since the number of pixels of the image captured by the photodetector is limited, the resolution per pixel is limited. Therefore, the calculated resolution of the required phase difference φ is reduced. As described above, the measurement accuracy is limited by the number of pixels of the photodetector.

また、可動ステージを一定量ずつ移動させる従来の位相シフト法では、光学系の微小振動等の外乱により、測定精度の低下や時間遅延が発生するため、動的変化を伴う物体の測定が困難であるという問題も生じる。   Also, with the conventional phase shift method that moves the movable stage by a certain amount, it is difficult to measure objects with dynamic changes because the measurement accuracy decreases and the time delay occurs due to disturbances such as minute vibrations of the optical system. There is also the problem of being.

また、可動ステージを用いず、複数枚の画像を1枚の画像から空間的に分割して得る位相シフト法では、分割された画像の画素数が減少するため、分解能が低下する。   Further, in the phase shift method obtained by spatially dividing a plurality of images from one image without using a movable stage, the resolution is lowered because the number of pixels of the divided images is reduced.

本発明は、上記問題を解決するためになされたものであって、その目的は、外乱振動や空気の揺らぎがある場合であっても、高い測定精度で被測定物の形状測定を可能にする形状測定方法及び形状測定装置を提供することにある。また、本発明の他の目的は、ドップラー効果を利用した位相シフト法による複素振幅計測方法及び複素振幅計測装置を提供することにある。   The present invention has been made to solve the above problems, and its purpose is to enable measurement of the shape of an object to be measured with high measurement accuracy even when there are disturbance vibrations and air fluctuations. The object is to provide a shape measuring method and a shape measuring apparatus. Another object of the present invention is to provide a complex amplitude measuring method and a complex amplitude measuring apparatus by a phase shift method using the Doppler effect.

上記課題を解決するための本発明に係る形状測定方法は、同一光源から出射した可干渉光束を分岐して被測定物と参照鏡とに照射し、前記被測定物で反射した物体光と前記参照鏡で反射した参照光とを重ね合わせ、得られた干渉縞データから被測定物の形状を測定する方法であって、前記被測定物と前記参照鏡との間に相対運動を生じさせ、該相対運動によって変化した前記干渉縞の強度分布を連続的に撮像して連続撮像データを得るとともに、前記物体光と前記参照光の周波数がドップラー効果により変調することにより該物体光と該参照光の周波数差のスペクトルから位相シフト量に変換した位相シフトスペクトルを得て、該位相シフトスペクトルと前記連続撮像データとから前記被測定物の3次元形状を計測することを特徴とする。   The shape measuring method according to the present invention for solving the above-described problem is that the coherent light beam emitted from the same light source is branched to irradiate the object to be measured and the reference mirror, and the object light reflected by the object to be measured and the A method of superimposing the reference light reflected by the reference mirror and measuring the shape of the object to be measured from the obtained interference fringe data, causing a relative movement between the object to be measured and the reference mirror, Continuous imaging data is obtained by continuously imaging the intensity distribution of the interference fringes changed by the relative motion, and the object light and the reference light are modulated by modulating the frequencies of the object light and the reference light by the Doppler effect. A phase shift spectrum converted from a frequency difference spectrum into a phase shift amount is obtained, and a three-dimensional shape of the object to be measured is measured from the phase shift spectrum and the continuous imaging data.

上記本発明に係る形状測定方法において、前記被測定物と前記参照鏡との相対運動は、前記被測定物又は参照鏡を前記照射光の光軸と平行に移動させて生じさせる。   In the shape measuring method according to the present invention, the relative movement between the object to be measured and the reference mirror is generated by moving the object to be measured or the reference mirror in parallel with the optical axis of the irradiation light.

上記本発明に係る形状測定方法において、前記被測定物の3次元計測は、前記干渉縞の強度分布に対してドップラー位相シフト法を適用し、得られた一次光の複素振幅を抽出して行う。   In the shape measuring method according to the present invention, the three-dimensional measurement of the object to be measured is performed by applying a Doppler phase shift method to the intensity distribution of the interference fringes and extracting a complex amplitude of the obtained primary light. .

上記本発明に係る形状測定方法において、前記干渉縞のサンプリング周波数は、前記物体光と前記参照光の周波数差の2倍超とする。   In the shape measuring method according to the present invention, the sampling frequency of the interference fringes is more than twice the frequency difference between the object light and the reference light.

また、本発明に係る形状測定装置は、光源と、該光源から出射した可干渉光束を分岐して被測定物と参照鏡とに照射する分岐装置と、前記被測定物と前記参照鏡との間に相対運動を生じさせる駆動装置と、前記被測定物で反射した物体光と前記参照鏡で反射した参照光とを重ね合わせて干渉縞を形成する重畳装置と、前記干渉縞を撮像する撮像装置と、前記連続撮像データから前記被測定物の3次元形状を計算する計算装置とを有し、前記計算装置は、前記相対運動によって前記物体光と前記参照光の周波数がドップラー効果により変調することにより該物体光と該参照光の周波数差のスペクトルから位相シフト量に変換した位相シフトスペクトルを得て、該位相シフトスペクトルと前記連続撮像データとから前記被測定物の3次元形状を計算することを特徴とする。   The shape measuring apparatus according to the present invention includes a light source, a branching device that divides a coherent light beam emitted from the light source and irradiates the object to be measured and the reference mirror, and the object to be measured and the reference mirror. A driving device that causes relative movement between the driving device, a superimposing device that forms an interference fringe by superimposing the object light reflected by the object to be measured and the reference light reflected by the reference mirror, and imaging for imaging the interference fringe And a calculation device that calculates a three-dimensional shape of the object to be measured from the continuous imaging data, and the calculation device modulates the frequencies of the object light and the reference light by the Doppler effect by the relative motion. Thus, a phase shift spectrum obtained by converting the spectrum of the frequency difference between the object beam and the reference beam into a phase shift amount is obtained, and the three-dimensional shape of the object to be measured is calculated from the phase shift spectrum and the continuous imaging data. Characterized in that it.

上記本発明に係る形状測定装置において、前記駆動装置は、前記被測定物又は参照鏡を前記照射光の光軸と平行に移動させて相対運動を生じさせる。   In the shape measuring apparatus according to the present invention, the drive device causes the object to be measured or the reference mirror to move in parallel with the optical axis of the irradiation light to cause relative movement.

上記本発明に係る形状測定装置において、前記計算装置は、前記干渉縞の強度分布に対してドップラー位相シフト法を適用し、得られた一次光の複素振幅を抽出して前記被測定物の3次元形状を計算する。   In the shape measurement apparatus according to the present invention, the calculation apparatus applies a Doppler phase shift method to the intensity distribution of the interference fringes, extracts a complex amplitude of the obtained primary light, and extracts 3 of the object to be measured. Calculate the dimensional shape.

上記本発明に係る形状測定装置において、前記撮像装置は、前記干渉縞のサンプリング周波数を前記物体光と前記参照光の周波数差の2倍超とする。   In the shape measuring apparatus according to the present invention, the imaging apparatus sets the sampling frequency of the interference fringes to more than twice the frequency difference between the object light and the reference light.

また、本発明に係る複素振幅計測方法は、同一光源から出射した可干渉光束を分岐して被測定物と参照鏡とに照射し、前記被測定物で反射した物体光と前記参照鏡で反射した参照光とを重ね合わせ、得られた干渉縞データから前記物体光の複素振幅を計測する方法であって、前記被測定物と前記参照鏡との間に相対運動を生じさせ、該相対運動によって変化した前記干渉縞の強度分布を連続的に撮像して連続撮像データを得るとともに、前記物体光と前記参照光の周波数がドップラー効果により変調することにより該物体光と該参照光の周波数差のスペクトルから位相シフト量に変換した位相シフトスペクトルを得て、該位相シフトスペクトルと前記連続撮像データとから前記物体光の複素振幅を計測することを特徴とする。   The complex amplitude measurement method according to the present invention divides a coherent light beam emitted from the same light source, irradiates the object to be measured and the reference mirror, and reflects the object light reflected by the object to be measured and the reference mirror. A method of measuring the complex amplitude of the object light from the obtained interference fringe data, wherein a relative motion is generated between the object to be measured and the reference mirror, and the relative motion The intensity distribution of the interference fringes changed by the above is continuously imaged to obtain continuous imaging data, and the frequency difference between the object light and the reference light is modulated by modulating the frequency of the object light and the reference light by the Doppler effect. A phase shift spectrum converted into a phase shift amount from the spectrum is obtained, and a complex amplitude of the object light is measured from the phase shift spectrum and the continuous imaging data.

また、本発明に係る複素振幅計測装置は、光源と、該光源から出射した可干渉光束を分岐して被測定物と参照鏡に照射する分岐装置と、前記被測定物と前記参照鏡との間に相対運動を生じさせる駆動装置と、前記被測定物で反射した物体光と前記参照鏡で反射した参照光とを重ね合わせて干渉縞を形成する重畳装置と、前記干渉縞を連続的に撮像して連続撮像データを得る撮像装置と、前記連続撮像データから前記物体光の複素振幅を計算する計算装置とを有し、前記計算装置は、前記相対運動によって前記物体光と前記参照光の周波数がドップラー効果により変調することにより該物体光と該参照光の周波数差のスペクトルから位相シフト量に変換した位相シフトスペクトルを得て、該位相シフトスペクトルと前記連続撮像データとから前記物体光の複素振幅を計算することを特徴とする。   A complex amplitude measuring apparatus according to the present invention includes a light source, a branching device that divides a coherent light beam emitted from the light source and irradiates the measured object and the reference mirror, and the measured object and the reference mirror. A driving device that causes relative movement between the driving device, a superimposing device that forms interference fringes by superimposing the object light reflected by the object to be measured and the reference light reflected by the reference mirror, and the interference fringes continuously. An imaging device that obtains continuous imaging data by imaging, and a calculation device that calculates a complex amplitude of the object light from the continuous imaging data, wherein the calculation device calculates the object light and the reference light by the relative motion; A frequency shift is modulated by the Doppler effect to obtain a phase shift spectrum converted from a spectrum of a frequency difference between the object light and the reference light into a phase shift amount, and from the phase shift spectrum and the continuous imaging data, And calculating a complex amplitude of the object light.

本発明によれば、被測定物と参照鏡との間に相対運動を生じさせる駆動装置により、その相対運動によって変化した干渉縞の強度分布を連続的に撮像して連続撮像データを得るとともに、物体光と参照光の周波数がドップラー効果により変調することにより該物体光と該参照光の周波数差のスペクトルから位相シフト量に変換した位相シフトスペクトルを得る。この位相シフトスペクトルは、ある位相シフト量で位相シフト法を行った場合に対するそれぞれの信号強度を示し、外乱の影響を受けない位相シフト量が存在する。その結果、その位相シフトスペクトルと、得られた連続撮像データとから、被測定物の3次元形状や物体光の複素振幅を計測することができる。こうした計測手段によれば、外乱振動や空気の揺らぎがある場合であっても、高い測定精度での計測が可能になる。   According to the present invention, the drive device that generates relative motion between the object to be measured and the reference mirror continuously captures the intensity distribution of the interference fringes changed by the relative motion to obtain continuous imaging data, By modulating the frequency of the object light and the reference light by the Doppler effect, a phase shift spectrum obtained by converting the spectrum of the frequency difference between the object light and the reference light into a phase shift amount is obtained. This phase shift spectrum shows the respective signal strengths when the phase shift method is performed with a certain phase shift amount, and there is a phase shift amount that is not affected by disturbance. As a result, the three-dimensional shape of the object to be measured and the complex amplitude of the object light can be measured from the phase shift spectrum and the obtained continuous imaging data. According to such a measurement means, measurement with high measurement accuracy is possible even when there is disturbance vibration or air fluctuation.

特に本発明では、被測定物と参照鏡とを相対運動させることにより、物体光及び/又は参照光の角周波数をドップラー効果により変調させることで位相シフトを発生させ、物体光と該参照光の周波数差のスペクトルから位相シフト量に変換した位相シフトスペクトルから1次光のみの情報を抽出する位相シフト法を適用している。すなわち、物体光及び/又は参照光の位相を変化させて得た干渉縞の連続撮像データから1次光の複素振幅のみを抽出できるので、シミュレートされた回折光に従来含まれていた0次光や−1次光を除去し、外部振動が再生像に及ぼす影響を極力なくすことができる。具体的には、例えば参照鏡を移動させて位相シフトを発生させた場合には、0次光と−1次光とを除去した再生像を得ることができ、光学系への振動により位相シフトが発生した場合には、−1次光と1次光の両成分が足し合わされた再生像となる。こうした本発明に係る位相シフト法を被測定物の3次元計測に用いれば、外乱振動や空気の揺らぎがある場合であっても、測定精度を著しく向上させることができ、また、高価な大型装置も不要となり、操作性の悪化という問題も生じない。   In particular, in the present invention, a phase shift is generated by modulating the angular frequency of the object light and / or the reference light by the Doppler effect by relatively moving the object to be measured and the reference mirror, and the object light and the reference light A phase shift method for extracting information of only the primary light from a phase shift spectrum converted from a frequency difference spectrum into a phase shift amount is applied. That is, since only the complex amplitude of the primary light can be extracted from the continuous imaging data of the interference fringes obtained by changing the phase of the object light and / or the reference light, the 0th order conventionally included in the simulated diffracted light. It is possible to remove light and minus first-order light and to minimize the influence of external vibrations on the reproduced image. Specifically, for example, when a phase shift is generated by moving the reference mirror, a reconstructed image from which the 0th-order light and the −1st-order light are removed can be obtained, and the phase shift is caused by vibration of the optical system. Is generated, a reproduced image is obtained by adding both the −1st order light component and the primary light component. If such a phase shift method according to the present invention is used for three-dimensional measurement of an object to be measured, measurement accuracy can be remarkably improved even when there is disturbance vibration or air fluctuation, and an expensive large-sized apparatus. Is also unnecessary, and the problem of poor operability does not occur.

本発明に係る光学系を示す概略図である。It is the schematic which shows the optical system which concerns on this invention. 干渉縞の強度分布から位相シフトスペクトルを得るまでの説明図である。It is explanatory drawing until a phase shift spectrum is obtained from the intensity distribution of interference fringes. 参照鏡を一定速度で移動させたときの位相シフトスペクトルである。It is a phase shift spectrum when the reference mirror is moved at a constant speed. 光学系を振動させたときの位相シフトスペクトルである。It is a phase shift spectrum when an optical system is vibrated. 図3で得られた再生画像である。It is the reproduction | regeneration image obtained in FIG. 図4で得られた再生画像である。It is the reproduction | regeneration image obtained in FIG. 非特許文献1に記載された実験構成図である。It is an experiment block diagram described in the nonpatent literature 1. 図7の実験系で得られた干渉縞の例である。It is an example of the interference fringe obtained by the experimental system of FIG.

以下、本発明に係る形状測定方法及び装置、並びに複素振幅計測方法及び装置について、図面を参照しつつ詳しく説明する。   Hereinafter, a shape measuring method and apparatus, and a complex amplitude measuring method and apparatus according to the present invention will be described in detail with reference to the drawings.

[形状測定方法及び形状測定装置]
本発明に係る形状測定方法は、図1に示すように、同一光源1から出射した可干渉光束11を分岐して被測定物7と参照鏡8とに照射し、被測定物7で反射した物体光12と参照鏡8で反射した参照光13とを重ね合わせ、得られた干渉縞データから被測定物7の形状を測定する方法であって、被測定物7と参照鏡8との間に相対運動を生じさせ、その相対運動によって変化した前記干渉縞の強度分布を連続的に撮像して連続撮像データを得るとともに、物体光12と参照光13の周波数がドップラー効果により変調することにより物体光12と参照光13の周波数差のスペクトルから位相シフト量に変換した位相シフトスペクトルを得て、その位相シフトスペクトルと前記連続撮像データとから被測定物7の3次元形状を計測する。
[Shape measuring method and shape measuring apparatus]
In the shape measuring method according to the present invention, as shown in FIG. 1, the coherent light beam 11 emitted from the same light source 1 is branched, irradiated to the measured object 7 and the reference mirror 8, and reflected by the measured object 7. A method of superimposing the object light 12 and the reference light 13 reflected by the reference mirror 8 and measuring the shape of the object 7 to be measured from the obtained interference fringe data, between the object 7 and the reference mirror 8. The relative motion of the interference fringes changed by the relative motion is continuously imaged to obtain continuous imaging data, and the frequencies of the object beam 12 and the reference beam 13 are modulated by the Doppler effect. A phase shift spectrum converted into a phase shift amount from the spectrum of the frequency difference between the object beam 12 and the reference beam 13 is obtained, and the three-dimensional shape of the DUT 7 is measured from the phase shift spectrum and the continuous imaging data.

また、本発明に係る形状測定装置1は、図1に示すように、光源1と、光源1から出射した可干渉光束11を分岐して被測定物7と参照鏡8とに照射する分岐装置6と、被測定物7と参照鏡8との間に相対運動を生じさせる駆動装置20と、被測定物7で反射した物体光12と参照鏡8で反射した参照光13とを重ね合わせて干渉縞を形成する重畳装置6と、前記干渉縞を連続的に撮像して連続撮像データを得る撮像装置10と、前記連続撮像データから被測定物7の3次元形状を計算する計算装置21とを有する。そして、計算装置21は、相対運動によって物体光12と参照光13の周波数がドップラー効果により変調することにより該物体光12と参照光13の周波数差のスペクトルから位相シフト量に変換した位相シフトスペクトルを得て、その位相シフトスペクトルと前記連続撮像データとから被測定物7の3次元形状を計算する。   Further, as shown in FIG. 1, the shape measuring apparatus 1 according to the present invention branches a light source 1 and a coherent light beam 11 emitted from the light source 1 and irradiates the measured object 7 and the reference mirror 8. 6, a driving device 20 that causes relative movement between the DUT 7 and the reference mirror 8, and the object light 12 reflected by the DUT 7 and the reference light 13 reflected by the reference mirror 8 are overlapped. A superimposing device 6 that forms interference fringes; an imaging device 10 that continuously images the interference fringes to obtain continuous imaging data; and a calculation device 21 that calculates a three-dimensional shape of the object 7 to be measured from the continuous imaging data; Have The calculation device 21 then converts the frequency difference between the object light 12 and the reference light 13 into a phase shift spectrum from the spectrum of the frequency difference between the object light 12 and the reference light 13 by modulating the frequency of the object light 12 and the reference light 13 by the Doppler effect. And the three-dimensional shape of the DUT 7 is calculated from the phase shift spectrum and the continuous imaging data.

(形状測定)
図1に示す形状測定装置30を用いて、形状測定に係る本発明の方法と装置について詳しく説明する。
(Shape measurement)
The method and apparatus of the present invention relating to shape measurement will be described in detail using the shape measuring apparatus 30 shown in FIG.

光源1の種類は特に限定されないが、例えば波長632.8nmのHe−Neレーザ等が用いられる。レーザ光源1を出射した可干渉光束11は、減光(Neutral Density, ND)フィルター2を透過した後、レンズ3、空間フィルター4及びレンズ5で構成されたコリメータを経て、拡大された平行光となる。この平行光は、ビームスプリッタ6(分岐装置6ともいう。)によって2つの光に分光される。   The type of the light source 1 is not particularly limited. For example, a He-Ne laser having a wavelength of 632.8 nm is used. The coherent light beam 11 emitted from the laser light source 1 passes through a neutral density (ND) filter 2, passes through a collimator including a lens 3, a spatial filter 4, and a lens 5, and is expanded into parallel light. Become. The parallel light is split into two lights by a beam splitter 6 (also referred to as a branching device 6).

分光された一方の光は紙面の上方向に90°反射して被測定物7に向かい、他方の光はそのまま透過して参照鏡8に向かう。被測定物7に向かった光はその表面で反射して物体光12となる。一方、参照鏡8に向かった光もその表面で反射して参照光13となる。物体光12と参照光13は再びビームスプリッタ6に戻って重なり合う。重なり合った物体光12と参照光13は、干渉縞を形成し、紙面の下方向に向かい、連続撮像カメラ10(撮像装置ともいう。)で撮像される。   One of the divided light beams is reflected 90 ° upward on the paper surface and travels toward the object 7 to be measured, while the other light is transmitted as it is and travels toward the reference mirror 8. The light traveling toward the object to be measured 7 is reflected by the surface thereof to become object light 12. On the other hand, the light directed to the reference mirror 8 is also reflected on the surface thereof to become the reference light 13. The object beam 12 and the reference beam 13 return to the beam splitter 6 again and overlap. The overlapping object beam 12 and reference beam 13 form an interference fringe, go downward in the drawing, and are imaged by a continuous imaging camera 10 (also referred to as an imaging device).

この形状測定装置30において、光源1の種類はHe−Neレーザに限定されず、可干渉性の高いガスレーザや半導体レーザであってもよい。減光フィルター2や空間フィルター4はいずれも必要に応じて任意に設けられる。なお、空間フィルター4は、ゴースト光や反射光等の不要な光をカットするものである。物体光12と参照光13が重なり合うビームスプリッタ6は、分岐装置として機能するが、上記においては重畳装置としても機能する。   In the shape measuring apparatus 30, the type of the light source 1 is not limited to the He—Ne laser, and may be a gas laser or a semiconductor laser with high coherence. Both the neutral density filter 2 and the spatial filter 4 are arbitrarily provided as necessary. The spatial filter 4 cuts unnecessary light such as ghost light and reflected light. The beam splitter 6 in which the object light 12 and the reference light 13 overlap functions as a branching device, but also functions as a superimposing device in the above.

図1の例では、駆動装置20を参照鏡8に設けているので、参照鏡8を被測定物7に対して相対的に移動させることで、ドップラー効果により参照光13の角周波数を変調している。なお、図1の例では、参照鏡8を移動させているが、被測定物7を移動させてもよい。駆動装置20としては、例えばDCモータを駆動源とする駆動装置、ピエゾ素子を駆動源とする駆動装置、ステッピングモータを駆動源とする駆動装置等を挙げることができる。   In the example of FIG. 1, since the drive device 20 is provided in the reference mirror 8, the angular frequency of the reference light 13 is modulated by the Doppler effect by moving the reference mirror 8 relative to the object 7 to be measured. ing. In the example of FIG. 1, the reference mirror 8 is moved, but the DUT 7 may be moved. Examples of the drive device 20 include a drive device using a DC motor as a drive source, a drive device using a piezo element as a drive source, and a drive device using a stepping motor as a drive source.

この場合の相対運動は、被測定物7と参照鏡8のいずれか一方に駆動装置20を設けて移動させてもよいし、両方に駆動装置20を設けて両者を任意に移動させてもよい。また、その移動は、光軸と平行方向に移動させるものであれば、一定速度であっても、一定ではない不規則(不均一、ランダム)な速度であってもよい。被測定物7と参照鏡8を両方移動させる場合には、それぞれの速度を異なるようにすることが好ましい。こうした相対運動は、被測定物7や参照鏡8に取り付けられる駆動装置20で行われるが、前記の一定ではない不規則な速度は、その駆動装置20に由来する不規則性能であってもよい。   The relative motion in this case may be moved by providing the driving device 20 on one of the measured object 7 and the reference mirror 8 or may be moved arbitrarily by providing the driving device 20 on both. . Further, the movement may be a constant speed or a non-constant irregular (non-uniform, random) speed as long as the movement is performed in a direction parallel to the optical axis. When both the DUT 7 and the reference mirror 8 are moved, it is preferable that the respective speeds are different. Such relative movement is performed by the driving device 20 attached to the DUT 7 or the reference mirror 8, but the irregular speed may be irregular performance derived from the driving device 20. .

形状計測の対象物である被測定物7は特に限定されないが、例えば平面鏡、凹面鏡、回折光学素子等を挙げることができる。好ましく適用できる被測定物7の形状や大きさとしては、例えば数ミリメートル角〜数センチメートル角程度の大きさで、照明レーザ光の波長程度の凹凸表面を有するものが好ましい。なお、後述の実施例では、試験的に5百円硬貨を計測している。また、異なる波長をもつ複数のレーザ光で照明する多波長法などを組み合わせることにより、凹凸の測定範囲を調整することができる。   The object 7 to be measured, which is an object for shape measurement, is not particularly limited, and examples thereof include a plane mirror, a concave mirror, and a diffractive optical element. The shape and size of the DUT 7 that can be preferably applied is preferably, for example, a size of about several millimeters square to several centimeters square and having an uneven surface having a wavelength of the illumination laser beam. In the examples described later, five hundred yen coins are measured experimentally. In addition, the measurement range of unevenness can be adjusted by combining a multi-wavelength method of illuminating with a plurality of laser beams having different wavelengths.

参照鏡8は、その表面粗さが測定対象である被測定物7の表面凹凸よりも十分に小さな平面鏡を用いることが好ましい。   As the reference mirror 8, it is preferable to use a plane mirror whose surface roughness is sufficiently smaller than the surface unevenness of the object 7 to be measured.

連続撮像カメラ10(撮像装置10)は、コンピュータ21(計算装置21)に接続され、撮像された干渉縞データ(画像データ)を演算処理する。連続撮像カメラ10としては、高速撮像可能なCMOSカメラが好ましく用いられるが、それ以外のカメラであってもよく、特に限定されない。なお、連続撮像カメラ10の撮像速度については後述する。   The continuous imaging camera 10 (imaging device 10) is connected to a computer 21 (calculation device 21) and performs arithmetic processing on the captured interference fringe data (image data). As the continuous imaging camera 10, a CMOS camera capable of high-speed imaging is preferably used, but other cameras may be used and are not particularly limited. The imaging speed of the continuous imaging camera 10 will be described later.

本発明では、被測定物7と参照鏡8との間に相対運動を生じさせる駆動装置20により、その相対運動によって変化した干渉縞の強度分布を連続的に撮像して連続撮像データを得るとともに、物体光12と参照光13の周波数がドップラー効果により変調することにより該物体光12と該参照光13の周波数差のスペクトルから位相シフト量に変換した位相シフトスペクトルを得る。この位相シフトスペクトルは、ある位相シフト量で位相シフト法を行った場合に対するそれぞれの信号強度を示し、外乱の影響を受けない位相シフト量が存在する。その結果、その位相シフトスペクトルと、得られた連続撮像データとから、被測定物7の3次元形状を計測することができる。また、同様にして、物体光12の複素振幅も計測することができる。こうした計測手段によれば、外乱振動や空気の揺らぎがある場合であっても、高い測定精度での計測が可能になる。   In the present invention, the drive device 20 that generates relative motion between the DUT 7 and the reference mirror 8 continuously captures the intensity distribution of the interference fringes changed by the relative motion to obtain continuous image data. The frequency of the object light 12 and the reference light 13 is modulated by the Doppler effect, thereby obtaining a phase shift spectrum converted from the frequency difference spectrum of the object light 12 and the reference light 13 into the phase shift amount. This phase shift spectrum shows the respective signal strengths when the phase shift method is performed with a certain phase shift amount, and there is a phase shift amount that is not affected by disturbance. As a result, the three-dimensional shape of the DUT 7 can be measured from the phase shift spectrum and the continuous imaging data obtained. Similarly, the complex amplitude of the object light 12 can be measured. According to such a measurement means, measurement with high measurement accuracy is possible even when there is disturbance vibration or air fluctuation.

(ドップラー位相シフト法)
次に、ドップラー位相シフト法について説明する。
(Doppler phase shift method)
Next, the Doppler phase shift method will be described.

図1に示すように、被測定物7と参照鏡8に平面波を照射したとき、連続撮像カメラ10の撮像面上での物体光12の複素振幅Uと参照光13の複素振幅Uは、下式(1)(2)のようになる。 As shown in FIG. 1, when irradiated with plane wave to the reference mirror 8 and the object 7 to be measured, the complex amplitude U R of the complex amplitude U O and reference light 13 of the object beam 12 on the imaging surface of the continuous imaging camera 10 The following equations (1) and (2) are obtained.

Figure 2010256192
Figure 2010256192

ここで、A、φ、ω、A、φ、ωは、それぞれ、物体光12の振幅、位相、角周波数と、参照光13の振幅、位相、角周波数である。被測定物7が速度v=(vO,x,vO,y,vO,z)で動いている場合、ドップラー効果により周波数変調を受ける。そのとき、周波数は平面波の進む方向により異なると考えられる。物体光12の角周波数は、ドップラー効果により式(3)のように表せる。 Here, A O , φ O , ω O , A R , φ R , and ω R are the amplitude, phase, and angular frequency of the object beam 12 and the amplitude, phase, and angular frequency of the reference beam 13, respectively. If the object 7 to be measured is moving at a speed v O = (v O, x , v O, y, v O, z), subjected to frequency modulation by the Doppler effect. At that time, the frequency is considered to vary depending on the traveling direction of the plane wave. The angular frequency of the object beam 12 can be expressed as in Expression (3) by the Doppler effect.

Figure 2010256192
Figure 2010256192

ここで、ω、c、v、kは、それぞれ、入射光の角周波数、光速、vの大きさ、kの大きさである。被測定物7の移動速度が光速に比べて十分小さい場合は式(4)となる。 Here, ω O , c, v O , and k are the angular frequency of incident light, the speed of light, the magnitude of v O , and the magnitude of k, respectively. When the moving speed of the DUT 7 is sufficiently smaller than the speed of light, the equation (4) is obtained.

Figure 2010256192
Figure 2010256192

同様に、参照光13の角周波数は式(5)になる。   Similarly, the angular frequency of the reference beam 13 is expressed by Equation (5).

Figure 2010256192
Figure 2010256192

ここで、v=(vR,x,vR,y,vR,z)は、移動させた参照鏡8の移動速度ベクトルである。この物体光12と参照光13の干渉縞を連続撮像カメラ10で連続記録すると、時間依存のデジタルホログラムは式(6)となる。 Here, v R = (v R, x , v R, y , v R, z ) is a moving velocity vector of the moved reference mirror 8. When the interference fringes of the object beam 12 and the reference beam 13 are continuously recorded by the continuous imaging camera 10, the time-dependent digital hologram is expressed by Equation (6).

Figure 2010256192
Figure 2010256192

これを時間フーリエ変換すると式(7)となる。式(8)はドップラー効果による位相シフトを含まない物体光12と参照光13の位相差、すなわち物体光12の波面の位相である。   When this is subjected to time Fourier transform, Equation (7) is obtained. Equation (8) is the phase difference between the object light 12 and the reference light 13 that does not include a phase shift due to the Doppler effect, that is, the phase of the wavefront of the object light 12.

Figure 2010256192
Figure 2010256192

ここで、aとbはωに対する任意の関数であり、式(9)の関係がある。式(10)はドップラー効果による物体光12と参照光13の角周波数差である。   Here, a and b are arbitrary functions with respect to ω, and have a relationship of Expression (9). Equation (10) is the angular frequency difference between the object beam 12 and the reference beam 13 due to the Doppler effect.

Figure 2010256192
Figure 2010256192

ここで、物体光12と参照光13の周波数差Δω/2πが 連続撮像カメラ10のサンプリング周波数の1/2より小さいとき、ナイキストの定理より、上記式(7)の第二項は、第一項と第三項と分離できる。ここで、ω=ωのとき、第二項以外が0となるとすると、式(7)は式(11)となる。 Here, when the frequency difference Δω / 2π between the object beam 12 and the reference beam 13 is smaller than ½ of the sampling frequency of the continuous imaging camera 10, the second term of the above equation (7) is The term and the third term can be separated. Here, when ω = ω 1 and other than the second term is 0, equation (7) becomes equation (11).

Figure 2010256192
Figure 2010256192

ここで、Aa(ω)とb(ω)−φは空間的に一定であるため、上記式(11)によって物体光12の複素振幅を抽出できる。 Here, since A R a (ω) and b (ω) −φ R are spatially constant, the complex amplitude of the object light 12 can be extracted by the above equation (11).

このように、本発明で提案するドップラー位相シフト法によれば、参照光13の位相が任意に変化する場合においても適用可能である。外乱による物体光12と参照光13の結果的な位相差は、光のドップラー効果を考慮した位相シフトとしてみなされる。連続撮像カメラ10を用いると、振動の様子をとらえることによって、その中から一定量の位相シフト量成分である物体光12の複素振幅を抽出することができる。それゆえに、本発明で提案するドップラー位相シフト法によれば、振動に強い干渉計測の光学系に応用することができ、本発明に係る形状測定方法、装置及び位相計測方法、装置とすることができる。   As described above, the Doppler phase shift method proposed in the present invention can be applied even when the phase of the reference beam 13 is arbitrarily changed. The resulting phase difference between the object beam 12 and the reference beam 13 due to disturbance is regarded as a phase shift that takes into account the Doppler effect of light. When the continuous imaging camera 10 is used, the complex amplitude of the object light 12 that is a constant phase shift amount component can be extracted from the state of vibration by capturing the state of vibration. Therefore, according to the Doppler phase shift method proposed in the present invention, it can be applied to an optical system for interference measurement that is resistant to vibration, and a shape measuring method, apparatus, and phase measuring method and apparatus according to the present invention can be obtained. it can.

次に、位相シフトスペクトルを得るまでと、得られた位相シフトスペクトルから再生画像を得るまでのアルゴリズムを説明する。   Next, algorithms for obtaining a phase shift spectrum and for obtaining a reproduced image from the obtained phase shift spectrum will be described.

図2は、連続撮像カメラで撮像した干渉縞の強度分布から位相シフトスペクトルを得るまでの説明図である。図2(A)は、図1の装置を構成する連続撮像カメラ10で連続して高速撮影した干渉縞をコンピュータ21で解析し、得られた干渉縞強度の時間変化を表した図である。図2(A)で得られた干渉縞のある位置における強度を時間フーリエ変換すると、図2(B)に示す周波数スペクトルとして表すことができる。図2(B)で得られた周波数スペクトルを、「位相シフト量=−ドップラー効果による角周波数差Δω/サンプリング周波数」により位相シフト量に変換し、図2(C)に示す位相シフトスペクトルが得られる。   FIG. 2 is an explanatory diagram for obtaining a phase shift spectrum from the intensity distribution of interference fringes imaged by a continuous imaging camera. FIG. 2A is a diagram showing the time variation of the obtained interference fringe intensity obtained by analyzing the interference fringes continuously captured at high speed by the continuous imaging camera 10 constituting the apparatus of FIG. When the intensity at a position where there is an interference fringe obtained in FIG. 2A is subjected to time Fourier transform, it can be expressed as a frequency spectrum shown in FIG. The frequency spectrum obtained in FIG. 2B is converted into a phase shift amount by “phase shift amount = −angular frequency difference Δω due to Doppler effect / sampling frequency” to obtain the phase shift spectrum shown in FIG. It is done.

こうして得られた位相シフトスペクトルに現れるピーク位置を検出し、連続撮影された画像の各ピクセルに対して下式(12)を適用することにより、位相シフトスペクトルのピーク位置が示す位相シフト量における1次光の複素振幅U’を抽出することができる。下式(12)において、Nはサンプリング数、Δtはサンプリング周期、φsはピーク位置が示す位相シフト量である。また、干渉縞強度を空間フーリエ変換することで得られる空間周波数パターンもドップラー効果で時間変化するので、空間周波数パターンにおける位相シフトスペクトルを求めてもよい。 By detecting the peak position appearing in the phase shift spectrum thus obtained and applying the following equation (12) to each pixel of the continuously photographed image, 1 in the phase shift amount indicated by the peak position of the phase shift spectrum. The complex amplitude U O ′ of the next light can be extracted. In the following equation (12), N is the number of samplings, Δt is the sampling period, and φ s is the phase shift amount indicated by the peak position. Further, since the spatial frequency pattern obtained by performing spatial Fourier transform on the interference fringe intensity also changes with time due to the Doppler effect, the phase shift spectrum in the spatial frequency pattern may be obtained.

Figure 2010256192
Figure 2010256192

物体光12と参照光13との重ね合わせで生じる干渉縞は、イメージセンサである連続撮像カメラ10の撮像面上にデジタルホログラムとして記録される。記録されたデジタルホログラムの強度と位相パターンは、デジタルホログラムの複雑な回折パターンを計算することによって再生することができる。しかしながら、そのデジタルホログラムの回折パターンには、被測定物7の像の他に、0次光と共役像(−1次光)が含まれる。   Interference fringes generated by superimposing the object beam 12 and the reference beam 13 are recorded as a digital hologram on the imaging surface of the continuous imaging camera 10 that is an image sensor. The intensity and phase pattern of the recorded digital hologram can be reproduced by calculating the complex diffraction pattern of the digital hologram. However, the diffraction pattern of the digital hologram includes 0th-order light and conjugate image (−1st-order light) in addition to the image of the object 7 to be measured.

従来型の通常の位相シフトアルゴリズムでは、駆動装置20で参照鏡8を移動し、時間ごとに参照光13の位相を一定量ずつシフトさせ、得られる3枚以上の撮像データを用いて不必要な成分を除去している。既述の非特許文献1では、任意の位相シフト量における位相シフトアルゴリズムが提案されている。同文献で提案する方法では、光学系の振動や空気の流れなどの外乱によって位相シフト量が時間ごとに変化すると、誤差の原因になる。   In the conventional normal phase shift algorithm, the reference mirror 8 is moved by the driving device 20, the phase of the reference light 13 is shifted by a certain amount every time, and unnecessary using three or more obtained image data. Ingredients are removed. In the aforementioned Non-Patent Document 1, a phase shift algorithm for an arbitrary phase shift amount is proposed. In the method proposed in this document, if the phase shift amount changes with time due to disturbances such as vibration of the optical system and air flow, an error is caused.

これに対し、本発明の方式では、駆動装置20によって被測定物7と参照鏡8とを相対的に移動させ(後述の実施例1では参照鏡8を移動している。)、光のドップラー効果を用いた位相シフトアルゴリズムによって不必要な成分を除去する。そのため、外乱に因る物体光12と参照光13の結果的な位相差は、光のドップラー効果を考慮した位相シフトとしてみなし、撮像装置10として高速連続撮像カメラを用いることにより、振動の様子を多くのデータに基づいてとらえることができる。その結果、位相シフトスペクトルから1次光の複素振幅のみを抽出することができ、0次光や−1次光等の外乱に起因した誤差データを除去したデータを抽出することができる。それゆえに、振動に強い干渉計測の光学系とすることができ、形状測定方法・装置として好適に利用できる。   On the other hand, in the method of the present invention, the device to be measured 7 and the reference mirror 8 are relatively moved by the driving device 20 (the reference mirror 8 is moved in Example 1 described later), and the light Doppler is moved. Unnecessary components are removed by the phase shift algorithm using the effect. Therefore, the resultant phase difference between the object light 12 and the reference light 13 due to disturbance is regarded as a phase shift that takes into account the Doppler effect of light, and the state of vibration is determined by using a high-speed continuous imaging camera as the imaging device 10. It can be captured based on a lot of data. As a result, only the complex amplitude of the first-order light can be extracted from the phase shift spectrum, and data from which error data due to disturbances such as zero-order light and −1st-order light is removed can be extracted. Therefore, the optical system of interference measurement resistant to vibration can be obtained, and can be suitably used as a shape measuring method / apparatus.

光学系への意図しない振動が加わることにより位相シフトが発生した場合には、−1次光と1次光の両成分が足し合わされた再生像となる。本発明に係る位相シフト法を被測定物の3次元計測に用いれば、外乱振動や空気の揺らぎがある場合であっても、測定精度を著しく向上させることができ、また、高価な大型装置も不要となり、操作性の悪化という問題も生じない。   When a phase shift occurs due to unintentional vibration applied to the optical system, a reproduced image is obtained by adding both components of the −1st order light and the 1st order light. If the phase shift method according to the present invention is used for three-dimensional measurement of an object to be measured, the measurement accuracy can be remarkably improved even when there are disturbance vibrations and air fluctuations. It becomes unnecessary and the problem of deterioration in operability does not occur.

具体的には、例えば参照鏡8を相対運動させると、参照光13の光路長が時間とともに変化する。それに従い、参照光13と物体光12との位相差も変化する。干渉縞の強度を表す式は二次元画像のx,yばかりではなく、時間tの関数になる。このとき、参照鏡8がわずかに移動するたびに連続撮像カメラ10(フォトディテクター10)で干渉縞画像を撮影し、計算装置10(コンピュータ10)に取り込むようにすると、被測定物7上の各点からの物体光12の強度の周期的変化がコンピュータに入力される。   Specifically, for example, when the reference mirror 8 is relatively moved, the optical path length of the reference light 13 changes with time. Accordingly, the phase difference between the reference beam 13 and the object beam 12 also changes. The expression representing the intensity of the interference fringes is a function of time t as well as x and y of the two-dimensional image. At this time, each time the reference mirror 8 moves slightly, an interference fringe image is taken with the continuous imaging camera 10 (photodetector 10) and is taken into the calculation device 10 (computer 10). A periodic change in the intensity of the object beam 12 from the point is input to the computer.

被測定物7が平面ではなく、各点が変形している場合、被測定物7の中央部と周辺部それぞれで反射した物体光12がフォトディテクター10に届く時間は異なる。そのため、光の位相が異なる。このとき、各点の干渉強度の周期的変動を上記式(7)で表すような時間フーリエ変換をコンピュータ10で行い、さらにその結果を回折積分演算すると、元の物体光12の強度分布と位相が求められる。つまり、ホログラムによる画像再生と同様の機能を得ることになる。   When the object to be measured 7 is not a flat surface and each point is deformed, the time for the object light 12 reflected at the center and the periphery of the object to be measured 7 to reach the photodetector 10 is different. Therefore, the phase of light is different. At this time, when the computer 10 performs a time Fourier transform such that the periodic fluctuation of the interference intensity at each point is expressed by the above equation (7) and further calculates the result of diffraction integration, the intensity distribution and phase of the original object light 12 are calculated. Is required. That is, the same function as the image reproduction by the hologram is obtained.

次に、外乱の周波数成分と連続撮像装置のフレームレート(サンプリング周波数)との関係について説明する。   Next, the relationship between the disturbance frequency component and the frame rate (sampling frequency) of the continuous imaging apparatus will be described.

外乱がなく、参照鏡8を相対運動させる可動ステージも一定速度を維持できる場合には、フレームレート(単位時間に取得できる画像枚数:サンプリング周波数)は制限がなく、任意のカメラを使用できる。そのため、フレームレートが大きいカメラ10を用いれば、短い時間で測定ができる。しかし、相対運動に不均一性が生じたり、意図しない外部振動が加わると、カメラ10のフレームレートは高いことが好ましい。   If there is no disturbance and the movable stage that relatively moves the reference mirror 8 can maintain a constant speed, the frame rate (the number of images that can be acquired per unit time: sampling frequency) is not limited, and an arbitrary camera can be used. Therefore, if the camera 10 having a large frame rate is used, measurement can be performed in a short time. However, it is preferable that the frame rate of the camera 10 is high when non-uniformity occurs in relative motion or unintended external vibration is applied.

例えば、ある時間波形はフーリエ変換によって周波数成分で分解することができるが、ドップラー効果により干渉縞の時間変化は、物体光12と参照光13との周波数差に関係して起こる。このとき、周波数差が一定なら、時間波形を周波数成分で分解したときに、一つの周波数成分しか存在しない。そして、その周波数成分の複素振幅に、物体光12の振幅と位相の情報が含まれている。実際には、画像はある時間ステップ毎に取得され、コンピュータで離散フーリエ変換するが、周波数が正確に分解できるかどうかは、ナイキストの定理により、サンプリング周波数が時間波形に含まれる最大周波数成分の周波数の2倍より大きい必要がある。物体光12と参照光13の周波数差が一定の場合に、もし、その周波数差がサンプリング周波数の1/2以上なら、別の周波数として認識されるおそれがある。しかしながら、振幅と位相の情報は、その異なる周波数成分として維持されている。よって、物体光12と参照光13の周波数差が一定の場合には、ナイキスト限界は、誤差の原因にはならないことになる。なお、サンプリング時間は、必要な周波数の逆数(周期)以上でなければなりません。一方、ナイキストの定理を満たしていない場合は、実際の周波数と異なる周波数として認識されるが、その周期に合わせたサンプリング時間が必要となる。また、サンプリング周波数の1/2未満の周波数成分は、1周期あたりのサンプリング点は、「含まれる周波数成分数×2」点より多いことが望ましい。   For example, a certain time waveform can be decomposed into frequency components by Fourier transformation, but due to the Doppler effect, the time variation of the interference fringes occurs in relation to the frequency difference between the object beam 12 and the reference beam 13. At this time, if the frequency difference is constant, there is only one frequency component when the time waveform is decomposed by the frequency component. The complex amplitude of the frequency component includes the amplitude and phase information of the object beam 12. Actually, an image is acquired at every time step and discrete Fourier transform is performed by a computer. Whether the frequency can be accurately decomposed is determined by the Nyquist theorem, the sampling frequency is the frequency of the maximum frequency component included in the time waveform. Must be greater than twice. When the frequency difference between the object light 12 and the reference light 13 is constant, if the frequency difference is ½ or more of the sampling frequency, it may be recognized as another frequency. However, amplitude and phase information is maintained as the different frequency components. Therefore, when the frequency difference between the object beam 12 and the reference beam 13 is constant, the Nyquist limit does not cause an error. Note that the sampling time must be greater than the reciprocal (period) of the required frequency. On the other hand, when the Nyquist theorem is not satisfied, it is recognized as a frequency different from the actual frequency, but a sampling time corresponding to the cycle is required. In addition, it is desirable that the number of sampling points per cycle of the frequency component less than ½ of the sampling frequency is greater than “the number of included frequency components × 2”.

ここで、誤差の原因となるのは、物体光12と参照光13の周波数差の符号が一定でない場合が想定される。周波数差符号は、被測定体7と参照鏡8との相対速度の符号で決まり、並進運動(光軸に平行な一方向に運動する場合)の場合は符号は一定であるが、振動運動(光軸に平行な二方向に運動する場合)の場合は符号が入れ替わる。位相シフトスペクトルの+側と−側は、+(−)1次光成分と−(+)1次光成分の関係になり、+1次光成分と−1次光成分がそれぞれ位相シフトスペクトルのどちら側に現れるかは、周波数差の符号で決まることになる。符号の入れ替わりがあると、+1次光成分と−1次光成分が同じ側に重なって出てくるが、振動と同時に並進相対運動を起こしておけば、その並進相対運動に対応する周波数成分では、符号の入れ替わりを防ぐことができる。これにより、少なくともナイキストの定理を満たしている周波数成分と並進運動による周波数成分とを分離することができる。なお、ナイキストの定理を満たさない周波数成分は、他の周波数成分に分散するので、並進運動の周波数成分と重なってしまうことがある。よって、サンプリング周波数が高いほど、外乱による周波数成分をより正確に取り込むことができ、並進運動に対応する周波数成分との重なりを減らすことができるのである。   Here, it is assumed that the error is caused by the case where the sign of the frequency difference between the object beam 12 and the reference beam 13 is not constant. The frequency difference code is determined by the sign of the relative velocity between the object 7 to be measured and the reference mirror 8. In the case of translational movement (when moving in one direction parallel to the optical axis), the sign is constant, but the vibration motion ( In the case of movement in two directions parallel to the optical axis), the signs are switched. The + side and − side of the phase shift spectrum are in the relationship between the + (−) primary light component and the − (+) primary light component, and the + 1st order light component and the −1st order light component are respectively in the phase shift spectrum. Whether it appears on the side is determined by the sign of the frequency difference. If the signs are switched, the + 1st order light component and the −1st order light component come out on the same side, but if the translational relative motion is caused simultaneously with the vibration, the frequency component corresponding to the translational relative motion is not obtained. It is possible to prevent the code from being changed. Thereby, a frequency component satisfying at least the Nyquist theorem and a frequency component due to translational motion can be separated. Note that frequency components that do not satisfy Nyquist's theorem are dispersed in other frequency components, and may overlap with frequency components of translational motion. Therefore, the higher the sampling frequency, the more accurately the frequency component due to the disturbance can be taken in, and the overlap with the frequency component corresponding to the translational motion can be reduced.

以下、本発明を実施例により更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

[実施例1]
図3は、図1の装置30を用い、参照鏡8を一定速度(1×10−5m/s)で移動させたときの位相シフトスペクトルである。一方、図4は、図1に示す装置30を用い、参照鏡8を一定速度(1×10−5m/s)で移動させるとともに、装置30に対して故意に振動を加えて光学系を振動させたときの位相シフトスペクトルである。図5は、図3で得られた再生画像の例であり、図6は図4で得られた再生画像の例である。
[Example 1]
FIG. 3 is a phase shift spectrum when the reference mirror 8 is moved at a constant speed (1 × 10 −5 m / s) using the apparatus 30 of FIG. On the other hand, FIG. 4, using the device 30 shown in FIG. 1, along with moving the reference mirror 8 at a constant rate (1 × 10 -5 m / s ), an optical system applying vibration deliberately to the device 30 It is a phase shift spectrum when it is vibrated. 5 is an example of the reproduced image obtained in FIG. 3, and FIG. 6 is an example of the reproduced image obtained in FIG.

この実施例1において、レーザ光源1の波長は632.8nm、連続撮像カメラ10のフレームレートは500fps(サンプリング周波数500Hzと同じ意味である。)、駆動装置20としてDCモータによる可動ステージを用い、その可動ステージの設定速度は1×10−5m/sである。実際には、可動ステージがビームスプリッタ6側に向かって動くとき、参照鏡8から反射してきた参照光13から見ると、2倍の速度で動いているように見えるので、速度は2×10−5m/sとなる。このときの周波数差は「速度/波長」であるので、31.6Hzとなる。これを位相差(位相シフト量)に変換すると、「角周波数差/サンプリング周波数」であるので、0.40radとなる。よって、図3では0.40radあたりにスペクトルピークを持ち、図4も0.40radあたりにスペクトル信号を持つ。 In Example 1, the wavelength of the laser light source 1 is 632.8 nm, the frame rate of the continuous imaging camera 10 is 500 fps (which means the same as the sampling frequency 500 Hz), and a movable stage using a DC motor is used as the driving device 20. The set speed of the movable stage is 1 × 10 −5 m / s. Actually, when the movable stage moves toward the beam splitter 6 side, when viewed from the reference light 13 reflected from the reference mirror 8, it seems to move at a double speed, so the speed is 2 × 10 −. 5 m / s. Since the frequency difference at this time is “speed / wavelength”, it is 31.6 Hz. If this is converted into a phase difference (phase shift amount), it is “angular frequency difference / sampling frequency”, so that it becomes 0.40 rad. Therefore, FIG. 3 has a spectrum peak around 0.40 rad, and FIG. 4 also has a spectrum signal around 0.40 rad.

図4は装置30に振動を故意に与えた結果であるが、図3にはないスペクトル成分がグラフの端から端まで現れている。そのため、得られた再生画像では、図5に比べ、図6の方がノイズが多い態様になっている。こうしたノイズは、ここで用いたフレームレート500fpsの連続撮像カメラ10よりも高速撮像可能なカメラを用いることにより解決できる。なお、図4に示すように、端までスペクトル成分が出ている場合は、ナイキスト限界以上の周波数成分がスペクトル全体に分散しており、ノイズ成分がやや多い状態になっている。   FIG. 4 shows the result of intentionally applying vibration to the device 30, but spectral components not shown in FIG. 3 appear from end to end of the graph. Therefore, in the obtained reproduced image, FIG. 6 is more noisy than FIG. Such noise can be solved by using a camera that can capture images at a higher speed than the continuous imaging camera 10 having a frame rate of 500 fps used here. In addition, as shown in FIG. 4, when the spectrum component has come out to the end, the frequency component more than the Nyquist limit is disperse | distributed to the whole spectrum, and it has a state with a little more noise component.

この実施例ではフレームレート500fpsの連続撮像カメラ10を用いているが、仮にフレームレートが小さい(例えば数十fps)の連続撮像カメラを用いると、変換後の位相スペクトルは図4に示すような雑音に埋もれてしまって、実証実験で被測定体7の複素振幅を再生できているかを判断するのが難しくなる。したがって、外乱振動の周波数よりも速い連続撮像データを得ることができるフォトディテクターを用いることが好ましい。   In this embodiment, the continuous imaging camera 10 with a frame rate of 500 fps is used. However, if a continuous imaging camera with a small frame rate (for example, several tens of fps) is used, the phase spectrum after conversion has noise as shown in FIG. It becomes difficult to judge whether or not the complex amplitude of the measured object 7 can be reproduced in the demonstration experiment. Therefore, it is preferable to use a photodetector that can obtain continuous imaging data faster than the frequency of disturbance vibration.

このように、外乱振動や空気の揺らぎが加わった場合であっても、時間フーリエ変換により外乱振動によるノイズと本来の周期信号とを分離することができ、外乱の影響を受けにくい精度の高い形状計測を行うことができる。   In this way, even when disturbance vibrations or air fluctuations are applied, noise due to disturbance vibrations and the original periodic signal can be separated by time Fourier transform, and a highly accurate shape that is not easily affected by disturbances Measurement can be performed.

1 光源(レーザ)
2 減光フィルター
3 レンズ
4 空間フィルター
5 レンズ
6 ビームスプリッタ(分岐装置、重畳装置)
7 被測定物
8 参照鏡
9 減光フィルター
10 連続撮像カメラ(撮像装置)
11 可干渉光束
12 物体光
13 参照光
20 駆動装置
21 コンピュータ(計算装置)
30 形状測定装置
1 Light source (laser)
2 Neutral filter 3 Lens 4 Spatial filter 5 Lens 6 Beam splitter (branching device, superimposing device)
7 Object to be measured 8 Reference mirror 9 Neutral density filter 10 Continuous imaging camera (imaging device)
DESCRIPTION OF SYMBOLS 11 Coherent light beam 12 Object light 13 Reference light 20 Drive apparatus 21 Computer (calculation apparatus)
30 Shape measuring device

Claims (10)

同一光源から出射した可干渉光束を分岐して被測定物と参照鏡とに照射し、前記被測定物で反射した物体光と前記参照鏡で反射した参照光とを重ね合わせ、得られた干渉縞データから被測定物の形状を測定する方法であって、
前記被測定物と前記参照鏡との間に相対運動を生じさせ、該相対運動によって変化した前記干渉縞の強度分布を連続的に撮像して連続撮像データを得るとともに、前記物体光と前記参照光の周波数がドップラー効果により変調することにより該物体光と該参照光の周波数差のスペクトルから位相シフト量に変換した位相シフトスペクトルを得て、該位相シフトスペクトルと前記連続撮像データとから前記被測定物の3次元形状を計測することを特徴とする形状測定方法。
Interference obtained by diverging coherent light beams emitted from the same light source and irradiating the object to be measured and the reference mirror, superimposing the object light reflected by the object to be measured and the reference light reflected by the reference mirror A method for measuring the shape of an object to be measured from fringe data,
A relative motion is generated between the object to be measured and the reference mirror, and the intensity distribution of the interference fringes changed by the relative motion is continuously imaged to obtain continuous imaging data, and the object light and the reference By modulating the frequency of light by the Doppler effect, a phase shift spectrum converted from the spectrum of the frequency difference between the object beam and the reference beam into a phase shift amount is obtained, and the phase shift spectrum and the continuous imaging data are used to obtain the phase shift spectrum. A shape measuring method, comprising measuring a three-dimensional shape of a measurement object.
前記被測定物と前記参照鏡との相対運動は、前記被測定物又は参照鏡を前記照射光の光軸と平行に移動させて生じさせる、請求項1に記載の形状測定方法。   The shape measurement method according to claim 1, wherein the relative movement between the object to be measured and the reference mirror is generated by moving the object to be measured or the reference mirror in parallel with the optical axis of the irradiation light. 前記被測定物の3次元計測は、前記干渉縞の強度分布に対してドップラー位相シフト法を適用し、得られた一次光の複素振幅を抽出して行う、請求項1又は2に記載の形状測定方法。   The shape according to claim 1 or 2, wherein the three-dimensional measurement of the object to be measured is performed by applying a Doppler phase shift method to the intensity distribution of the interference fringes and extracting a complex amplitude of the obtained primary light. Measuring method. 前記干渉縞のサンプリング周波数は、前記物体光と前記参照光の周波数差の2倍超とする、請求項1〜3のいずれか1項に記載の形状測定方法。   The shape measuring method according to claim 1, wherein a sampling frequency of the interference fringes is more than twice a frequency difference between the object light and the reference light. 光源と、該光源から出射した可干渉光束を分岐して被測定物と参照鏡とに照射する分岐装置と、前記被測定物と前記参照鏡との間に相対運動を生じさせる駆動装置と、前記被測定物で反射した物体光と前記参照鏡で反射した参照光とを重ね合わせて干渉縞を形成する重畳装置と、前記干渉縞を連続的に撮像して連続撮像データを得る撮像装置と、前記連続撮像データから前記被測定物の3次元形状を計算する計算装置とを有し、
前記計算装置は、前記相対運動によって前記物体光と前記参照光の周波数がドップラー効果により変調することにより該物体光と該参照光の周波数差のスペクトルから位相シフト量に変換した位相シフトスペクトルを得て、該位相シフトスペクトルと前記連続撮像データとから前記被測定物の3次元形状を計算することを特徴とする形状測定装置。
A light source, a branching device that divides the coherent light beam emitted from the light source and irradiates the object to be measured and the reference mirror, and a driving device that causes relative movement between the object to be measured and the reference mirror; A superimposing device that forms interference fringes by superimposing the object light reflected by the object to be measured and the reference light reflected by the reference mirror; and an imaging device that continuously captures the interference fringes to obtain continuous imaging data. A calculation device for calculating a three-dimensional shape of the object to be measured from the continuous imaging data,
The calculation device obtains a phase shift spectrum converted from a spectrum of a frequency difference between the object light and the reference light into a phase shift amount by modulating the frequency of the object light and the reference light by the Doppler effect by the relative motion. Then, a shape measuring apparatus for calculating a three-dimensional shape of the object to be measured from the phase shift spectrum and the continuous imaging data.
前記駆動装置は、前記被測定物又は参照鏡を前記照射光の光軸と平行に移動させて相対運動を生じさせる、請求項5に記載の形状測定装置。   The shape measuring apparatus according to claim 5, wherein the driving device causes the object to be measured or the reference mirror to move in parallel with the optical axis of the irradiation light to cause relative movement. 前記計算装置は、前記干渉縞の強度分布に対してドップラー位相シフト法を適用し、得られた一次光の複素振幅を抽出して前記被測定物の3次元形状を計算する、請求項5又は6に記載の形状測定装置。   The calculation device applies a Doppler phase shift method to the intensity distribution of the interference fringes, extracts a complex amplitude of the obtained primary light, and calculates a three-dimensional shape of the object to be measured. 6. The shape measuring apparatus according to 6. 前記撮像装置は、前記干渉縞のサンプリング周波数を前記物体光と前記参照光の周波数差の2倍超とする、請求項5〜7のいずれか1項に記載の形状測定装置。   The shape measuring apparatus according to claim 5, wherein the imaging apparatus sets a sampling frequency of the interference fringes to more than twice a frequency difference between the object light and the reference light. 同一光源から出射した可干渉光束を分岐して被測定物と参照鏡とに照射し、前記被測定物で反射した物体光と前記参照鏡で反射した参照光とを重ね合わせ、得られた干渉縞データから前記物体光の複素振幅を計測する方法であって、
前記被測定物と前記参照鏡との間に相対運動を生じさせ、該相対運動によって変化した前記干渉縞の強度分布を連続的に撮像して連続撮像データを得るとともに、前記物体光と前記参照光の周波数がドップラー効果により変調することにより該物体光と該参照光の周波数差のスペクトルから位相シフト量に変換した位相シフトスペクトルを得て、該位相シフトスペクトルと前記連続撮像データとから前記物体光の複素振幅を計測することを特徴とする複素振幅計測方法。
Interference obtained by diverging coherent light beams emitted from the same light source and irradiating the object to be measured and the reference mirror, superimposing the object light reflected by the object to be measured and the reference light reflected by the reference mirror A method of measuring a complex amplitude of the object light from fringe data,
A relative motion is generated between the object to be measured and the reference mirror, and the intensity distribution of the interference fringes changed by the relative motion is continuously imaged to obtain continuous imaging data, and the object light and the reference A phase shift spectrum obtained by converting a spectrum of a frequency difference between the object light and the reference light into a phase shift amount by modulating a frequency of light by a Doppler effect is obtained, and the object is obtained from the phase shift spectrum and the continuous imaging data. A method for measuring a complex amplitude, comprising measuring a complex amplitude of light.
光源と、該光源から出射した可干渉光束を分岐して被測定物と参照鏡に照射する分岐装置と、前記被測定物と前記参照鏡との間に相対運動を生じさせる駆動装置と、前記被測定物で反射した物体光と前記参照鏡で反射した参照光とを重ね合わせて干渉縞を形成する重畳装置と、前記干渉縞を連続的に撮像して連続撮像データを得る撮像装置と、前記連続撮像データから前記物体光の複素振幅を計算する計算装置とを有し、
前記計算装置は、前記相対運動によって前記物体光と前記参照光の周波数がドップラー効果により変調することにより該物体光と該参照光の周波数差のスペクトルから位相シフト量に変換した位相シフトスペクトルを得て、該位相シフトスペクトルと前記連続撮像データとから前記物体光の複素振幅を計算することを特徴とする複素振幅計測装置。
A light source, a branching device that divides a coherent light beam emitted from the light source and irradiates the object to be measured and a reference mirror, a drive device that causes relative movement between the object to be measured and the reference mirror, and A superimposing device that forms interference fringes by superimposing the object light reflected by the object to be measured and the reference light reflected by the reference mirror; an imaging device that continuously images the interference fringes to obtain continuous imaging data; A calculation device for calculating a complex amplitude of the object light from the continuous imaging data;
The calculation device obtains a phase shift spectrum converted from a spectrum of a frequency difference between the object light and the reference light into a phase shift amount by modulating the frequency of the object light and the reference light by the Doppler effect by the relative motion. And calculating a complex amplitude of the object light from the phase shift spectrum and the continuous imaging data.
JP2009107207A 2009-04-25 2009-04-25 Shape measuring method and shape measuring device by phase shift method, complex amplitude measuring method and complex amplitude measuring device Expired - Fee Related JP5258052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107207A JP5258052B2 (en) 2009-04-25 2009-04-25 Shape measuring method and shape measuring device by phase shift method, complex amplitude measuring method and complex amplitude measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107207A JP5258052B2 (en) 2009-04-25 2009-04-25 Shape measuring method and shape measuring device by phase shift method, complex amplitude measuring method and complex amplitude measuring device

Publications (2)

Publication Number Publication Date
JP2010256192A true JP2010256192A (en) 2010-11-11
JP5258052B2 JP5258052B2 (en) 2013-08-07

Family

ID=43317272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107207A Expired - Fee Related JP5258052B2 (en) 2009-04-25 2009-04-25 Shape measuring method and shape measuring device by phase shift method, complex amplitude measuring method and complex amplitude measuring device

Country Status (1)

Country Link
JP (1) JP5258052B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103075978A (en) * 2012-12-28 2013-05-01 杭州士兰明芯科技有限公司 Detection system and detection method
CN107144235A (en) * 2017-05-03 2017-09-08 佛山科学技术学院 A kind of article surface Shape measure method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002516A (en) * 1998-05-15 2000-01-07 Carl Zeiss:Fa Optical coherence tomography using new interferometer
JP2002503134A (en) * 1997-06-02 2002-01-29 イザット,ジョーゼフ,エイ. Imaging of Doppler flow using optical coherence tomography
JP2003527577A (en) * 1999-11-19 2003-09-16 ザイゴ コーポレーション System and method for quantifying nonlinearity in an interferometric measurement system
JP2005345246A (en) * 2004-06-02 2005-12-15 Nikon Corp Interference fringe analysis method, interference fringe analysis program and interference measuring device
JP2006116028A (en) * 2004-10-20 2006-05-11 Univ Of Tsukuba Line focusing type fourier domain interference profile measuring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503134A (en) * 1997-06-02 2002-01-29 イザット,ジョーゼフ,エイ. Imaging of Doppler flow using optical coherence tomography
JP2000002516A (en) * 1998-05-15 2000-01-07 Carl Zeiss:Fa Optical coherence tomography using new interferometer
JP2003527577A (en) * 1999-11-19 2003-09-16 ザイゴ コーポレーション System and method for quantifying nonlinearity in an interferometric measurement system
JP2005345246A (en) * 2004-06-02 2005-12-15 Nikon Corp Interference fringe analysis method, interference fringe analysis program and interference measuring device
JP2006116028A (en) * 2004-10-20 2006-05-11 Univ Of Tsukuba Line focusing type fourier domain interference profile measuring apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013014691; Yuichi Kikuchi, Daisuke Barada, Tomohiro Kiire, Toyohiko Yatagai: '"Doppler phase-shifting digital holography and its application to surface shape measurement"' OPTICS LETTERS Vol.35, No.10, 20100515, pages 1548-1550 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103075978A (en) * 2012-12-28 2013-05-01 杭州士兰明芯科技有限公司 Detection system and detection method
CN107144235A (en) * 2017-05-03 2017-09-08 佛山科学技术学院 A kind of article surface Shape measure method and device

Also Published As

Publication number Publication date
JP5258052B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5364203B2 (en) Observation device
JP5592763B2 (en) Method and apparatus for determining height map of object surface
KR102426103B1 (en) An Improved Holographic Reconstruction Apparatus and Method
JP5743419B2 (en) Shape measuring method and apparatus and strain measuring method and apparatus
JP7231946B2 (en) SURFACE PROFILE MEASURING DEVICE AND SURFACE PROFILE MEASURING METHOD
Tiziani et al. From speckle pattern photography to digital holographic interferometry
US11029611B2 (en) Device and method for detecting projection objective wave-front aberration
JP5428538B2 (en) Interfering device
JP5258052B2 (en) Shape measuring method and shape measuring device by phase shift method, complex amplitude measuring method and complex amplitude measuring device
JP6014449B2 (en) Laser scanning microscope equipment
JP5808014B2 (en) 3D shape measuring device
JP4069204B2 (en) Displacement distribution measurement method using digital holography
JP4025878B2 (en) Apparatus for obtaining reproduced image of object, phase shift digital holographic displacement distribution measuring apparatus, and parameter identifying method
Bavigadda et al. Vibration phase mapping using holographic optical element-based electronic speckle pattern interferometry
JP5544679B2 (en) Step surface shape measuring method and measuring device
Agour et al. Spatial multiplexing digital holography for speckle noise reduction in single-shot holographic two-wavelength contouring
US10638062B1 (en) Spectrally-resolved three-dimensional shape measurement device and spectrally-resolved three-dimensional shape measurement method
Li et al. Measurement of diameter of metal cylinders using a sinusoidally vibrating interference pattern
JP5518187B2 (en) Deformation measurement method
JP2013221770A (en) Interference fringe analysis method, interference fringe analysis device, projection exposure device and device manufacturing method
JP7162337B2 (en) Phase shift digital holography device
JP2003294412A (en) Holography apparatus
JP6501307B2 (en) Heterodyne interference device
JP2009079933A (en) Interferometer device for measuring large-sized sample
JP2007071589A (en) Displacement distribution measuring method and object image reproducing method using digital holography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees