JP2010255797A - Method of manufacturing base isolation plug, and base isolation plug - Google Patents

Method of manufacturing base isolation plug, and base isolation plug Download PDF

Info

Publication number
JP2010255797A
JP2010255797A JP2009108520A JP2009108520A JP2010255797A JP 2010255797 A JP2010255797 A JP 2010255797A JP 2009108520 A JP2009108520 A JP 2009108520A JP 2009108520 A JP2009108520 A JP 2009108520A JP 2010255797 A JP2010255797 A JP 2010255797A
Authority
JP
Japan
Prior art keywords
seismic isolation
plug
isolation plug
base isolation
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009108520A
Other languages
Japanese (ja)
Other versions
JP5390252B2 (en
Inventor
Yuichiro Wakana
裕一郎 若菜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009108520A priority Critical patent/JP5390252B2/en
Publication of JP2010255797A publication Critical patent/JP2010255797A/en
Application granted granted Critical
Publication of JP5390252B2 publication Critical patent/JP5390252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a base isolation plug which has reduced porosity without using lead for improving the damping performance of a base isolation device. <P>SOLUTION: The columnar base isolation plug 5 inserted into the base isolation device is manufactured in processes of preforming powder and grain materials to form a massive plug raw material 15 and press-molding the massive plug raw material 15 to form the columnar base isolation plug 5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、特に、鉛代替の免震プラグとして免震装置の、優れた減衰性能の発揮を担保する免震プラグの製造方法および、その方法によって製造される免震プラグに関するものである。   In particular, the present invention relates to a method for manufacturing a seismic isolation plug that ensures the excellent damping performance of a seismic isolation device as a seismic isolation plug for lead, and a seismic isolation plug manufactured by the method.

建築物とその基礎との間に設置して地震の衝撃や振動を吸収することにより建築物を保護する免震装置は、ゴム等の粘弾性を有する弾性板と鋼板等の剛性板とを交互に積層した積層体と、この積層体の中心の中空部に挿入した免震プラグとを具えてなる。   Seismic isolation devices that are installed between a building and its foundation to protect the building by absorbing the impact and vibrations of earthquakes are composed of alternating elastic plates such as rubber and rigid plates such as steel plates. And a seismic isolation plug inserted into the hollow portion at the center of the laminate.

この種の免震装置の積層体は、ゴム等の、剪断弾性率の低さと、大きな変形能力の下で、水平方向に大きく変形して、建築物への振動の直接伝達を防止するべく機能する。
また、免震プラグは、全体が鉛からなるものが使用されることが多く、地震の発生に伴って積層体が剪断変形する際に、この免震プラグが塑性変形することで振動のエネルギーを吸収するべく機能する。
ところが、鉛は、環境負荷が大きく、また、廃却時等に要するコストが大きいため、優れた減衰性能等を発揮できる鉛代替の免震プラグの開発が試みられている。
Laminated bodies of this type of seismic isolation device function to prevent the direct transmission of vibration to the building by deforming greatly in the horizontal direction under low shear modulus and large deformation capacity such as rubber. To do.
In addition, seismic isolation plugs are often made of lead as a whole, and when the laminate undergoes shear deformation due to the occurrence of an earthquake, the seismic isolation plug plastically deforms to generate vibration energy. It functions to absorb.
However, since lead has a large environmental load and a large cost for disposal, etc., attempts have been made to develop a seismic isolation plug for lead that can exhibit excellent damping performance and the like.

例えば、特許文献1には、鉛免震プラグに代えて、積層体の中空部に、塑性流動材及び硬質充填材からなり、硬質充填材の隙間を塑性流動材で充填するようにしたプラグを封入し、長期の使用に際しても、鉛免震プラグと同様、その減衰性能を安定的に確保できる技術が提案されている。   For example, in Patent Document 1, instead of a lead seismic isolation plug, a plug made of a plastic fluid material and a hard filler in a hollow portion of a laminated body and filling a gap between the hard fillers with a plastic fluid material is provided. A technology that can stably secure the damping performance has been proposed in the same way as a lead seismic isolation plug when sealed and used for a long time.

しかるに、特許文献1に記載の免震プラグは、金型内に充填された粉粒状物を、所定の面圧にて柱状にプレス成形することで製造するため、特に金型の下方側や外周側で、金型の壁面とプラグ素材との摩擦や粉粒状体の流動性不足等により、粉粒状物が十分に圧縮されずに空隙が生じ、この空隙により、免震プラグの密度が低下し、振動減衰性能が低下するおそれがあった。   However, since the seismic isolation plug described in Patent Document 1 is manufactured by press-molding a granular material filled in a mold into a columnar shape at a predetermined surface pressure, particularly the lower side or outer periphery of the mold. On the other hand, due to friction between the mold wall and the plug material, lack of fluidity of the granular material, etc., the granular material is not compressed enough to create a void, which reduces the density of the seismic isolation plug. The vibration damping performance may be reduced.

これがため、例えば特許文献2,3に開示されているように、金型を回転、振動させたり、特許文献4,5に開示されているに、金型または粉粒状物を加熱することで、成型体の密度を均一化する技術が提案されている。   For this reason, for example, as disclosed in Patent Documents 2 and 3, the mold is rotated and vibrated, or as disclosed in Patent Documents 4 and 5, by heating the mold or the granular material, Techniques for making the density of the molded body uniform have been proposed.

しかしながら、これらの従来技術にあっては、免震プラグの空隙率(空気残存率)を小さくすることができるものの、粉粒状物を高圧で成形することから、また免震プラグは硬く締まった状態になるため、特定の個所での局部的な破壊が起きても、全体にわたる均等な崩壊が生じないことで、地震振動に対して、常に一定個所でのみ変形することになって、地震等の外力に対するエネルギー吸収能が低下するが加わっても免震プラグは崩れ難く、減衰性能が低下するおそれがあった。
その上、粉粒状物に対する高圧成形の故に、成形エネルギーの無駄が発生するという問題があった。
However, in these conventional technologies, the porosity (air residual ratio) of the seismic isolation plug can be reduced, but since the powder and granular materials are molded at a high pressure, the seismic isolation plug is tightly tightened. Therefore, even if a local failure occurs at a specific location, even if there is no uniform collapse throughout, the earthquake vibration will always be deformed only at a certain location. Although the energy absorption capability against external force is reduced, the seismic isolation plug is difficult to collapse even if added, and the damping performance may be reduced.
In addition, there is a problem that waste of molding energy occurs due to high pressure molding of the powder and granular materials.

特開2006−316990号公報JP 2006-316990 A 特開平5−132351号公報JP-A-5-132351 特開平6−23596号公報JP-A-6-23596 特開平11−140502号公報JP-A-11-140502 特開平10−193191号公報JP-A-10-193191

本発明の目的は、鉛を使用することなしに、免震プラグの空隙率を減少させてなお、免震装置の減衰性能を向上させることができる免震プラグの製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the seismic isolation plug which can improve the damping performance of a seismic isolation apparatus, reducing the porosity of a seismic isolation plug, without using lead. .

この発明の免震プラグの製造方法は、粉粒状物の予備成形を経て、塊状プラグ素材を形成し、この塊状プラグ素材をプレス成形して柱状免震プラグとすることを特徴とする。   The manufacturing method of the seismic isolation plug according to the present invention is characterized in that a bulk plug material is formed through preforming of a granular material, and the bulk plug material is press-molded to form a columnar seismic isolation plug.

ここで、免震プラグとは、弾性変形の最大基準の降伏点までは剪断応力と剪断歪とが比例するが、この降伏点を超えると、剪断応力がほぼ一定になるような挙動を示す材料をいうものとし、少なくとも塑性流動材及び硬質充填材を含有するものとする。
粉粒状物の予備成形体は、板状のみならず、帯状、線状、紐状、柱状または球状の形態とすることもできる。
Here, the seismic isolation plug is a material in which shear stress and shear strain are proportional to the maximum yield point of elastic deformation, but when this yield point is exceeded, the behavior is such that the shear stress becomes almost constant. It shall contain at least a plastic fluidizing material and a hard filler.
The preform of the granular material can be not only plate-shaped but also strip-shaped, linear, string-shaped, columnar or spherical.

このような免震プラグの製造方法においてより好ましくは、予備成形体を解砕し、塊状プラグ素材とする。   More preferably, in such a method of manufacturing a seismic isolation plug, the preform is crushed into a massive plug material.

本発明に係る免震プラグは、上述したいずれかの免震プラグの製造方法を用いて製造してなるものである。   The seismic isolation plug according to the present invention is manufactured by using any one of the above-described methods for manufacturing a seismic isolation plug.

本発明の免震プラグの製造方法は、粉粒状物の予備成形を経て、塊状プラグ素材を形成し、この塊状プラグ素材をプレス成形することで、粉粒状物をそのままプレス成形するものに比べ、空隙率が小さい塊状プラグ素材を形成した後に、その塊状プラグ素材をプレス成形することになり、免震プラグ全体の空隙率が減少するとともに、塊状プラグ素材の界面が免震プラグ内に残存し、そこからプラグを全体にわたって均等に崩壊させることができるので、エネルギー吸収能を高めることができる。その結果、免震装置の減衰性を向上させることができる。   The manufacturing method of the seismic isolation plug according to the present invention is to form a lump plug material through preforming of the granular material, and press-molding this lump plug material, compared with the one that press-molds the granular material as it is, After forming the massive plug material with a small porosity, the massive plug material will be press-molded, the porosity of the entire seismic isolation plug will decrease, and the interface of the massive plug material will remain in the seismic isolation plug, Since the plug can be uniformly collapsed from there, the energy absorption ability can be enhanced. As a result, the damping property of the seismic isolation device can be improved.

また、粉粒状物の予備成形を経ることにより、予備成形体で空隙率を小さくした後に、免震プラグのプレス工程にて、従来のプレス成形に比べ低い加圧で免震プラグを成形することができるとともに、低い圧力でプラグ全体を均等に崩壊することができる。   In addition, after the porosity of the preform is reduced by preforming the powder and granular material, the seismic isolation plug is molded at a lower pressure than conventional press molding in the seismic isolation plug pressing process. And the entire plug can be evenly collapsed with low pressure.

(a)は、本発明の製造方法で製造された免震プラグを圧入した免震装置について示す上面図であり、(b)は、その免震装置の中心軸線を含む縦断面図である。(A) is a top view which shows about the seismic isolation apparatus which press-fit the seismic isolation plug manufactured with the manufacturing method of this invention, (b) is a longitudinal cross-sectional view containing the center axis line of the seismic isolation apparatus. 本発明に従う免震プラグの製造方法の工程を示した図である。It is the figure which showed the process of the manufacturing method of the seismic isolation plug according to this invention. 実施例により空隙率を測定した結果を示す図である。It is a figure which shows the result of having measured the porosity by the Example.

以下に、図面を参照しながら本発明の免震プラグを詳細に説明する。
図1は、(a)は、本発明の製造方法で製造された免震プラグを圧入した免震装置について示す上面図であり、(b)は、その免震装置の中心軸線を含む縦断面図である。
Hereinafter, the seismic isolation plug of the present invention will be described in detail with reference to the drawings.
1A is a top view showing a seismic isolation device in which a seismic isolation plug manufactured by the manufacturing method of the present invention is press-fitted, and FIG. 1B is a longitudinal section including the central axis of the seismic isolation device FIG.

図示の免震装置1は、複数枚の円盤状の剛性板2および、複数枚の円盤状の弾性板3が交互に積層してなり、上下方向に延びる、中空部を中心に有する円筒状の積層体4と、この積層体4の中空部に圧入された免震プラグ5と、積層体4および免震プラグ5の上端及び下端に固定された積層体4よりも側方に迫り出した、それぞれの取付面板6とを具える。
取付面板6は、積層体4および免震プラグ5の上端及び下端に固定または固着することで、それらを密閉することができる。
The illustrated seismic isolation device 1 includes a plurality of disk-shaped rigid plates 2 and a plurality of disk-shaped elastic plates 3 that are alternately stacked, and have a cylindrical shape centering on a hollow portion that extends in the vertical direction. The laminated body 4, the seismic isolation plug 5 press-fitted into the hollow portion of the laminated body 4, and the laminated body 4 and the laminated body 4 fixed to the upper and lower ends of the seismic isolation plug 5 squeezed to the side. Each mounting face plate 6 is provided.
The mounting face plate 6 can be sealed by fixing or fixing to the upper end and the lower end of the laminated body 4 and the seismic isolation plug 5.

ここで、積層体4は、剛性板2と、例えば未加硫ゴム組成物のような部材とを積層した後に、例えば加硫接着により強固に張り合わせて、それらが不用意に分離したり位置ズレないようにする。   Here, the laminated body 4 is formed by laminating the rigid plate 2 and a member such as an unvulcanized rubber composition, and then firmly adhering them by, for example, vulcanization adhesion. Do not.

積層体4は、図に示すように外周面を被覆する被覆材7で覆うことで、積層体4の内部へ外部から雨や光が届かなくなり、酸素やオゾン、紫外線等による積層体4の劣化を防止できる。   As shown in the drawing, the laminate 4 is covered with a covering material 7 that covers the outer peripheral surface, so that rain and light do not reach the inside of the laminate 4 from the outside, and deterioration of the laminate 4 due to oxygen, ozone, ultraviolet rays, or the like. Can be prevented.

また、剛性板2としては、鋼板等の金属板、セラミックス板、繊維強化プラスチック等の強化プラスチックス板等を用いることができ、弾性板3としては、未加硫ゴムの加硫物等を用いることができる。   The rigid plate 2 may be a metal plate such as a steel plate, a ceramic plate, a reinforced plastic plate such as a fiber reinforced plastic, or the like. The elastic plate 3 may be a vulcanized product of unvulcanized rubber. be able to.

そして、免震装置1は、取付面部6に形成された図示しないボルト孔にボルトを挿通して、建築物等に取り付けられ、建築物等は免震装置1を介して支持される。   The seismic isolation device 1 is attached to a building or the like by inserting a bolt through a bolt hole (not shown) formed in the mounting surface portion 6, and the building or the like is supported via the seismic isolation device 1.

このような免震装置1は、振動により水平方向の剪断力を受けた際には、積層体4が全体として弾性的に剪断変形して、振動のエネルギーを効果的に吸収して、減衰性能等を有することで、振動を速やかに減衰することができる。
また、剛性板2と弾性板3とを交互に積層したことで、上下方向に荷重が作用しても、積層体4の圧縮が抑制されて、弾性板3が十分に剪断変形してエネルギーを吸収するとともに、復元力を発揮することができる。その結果、積層体4は剪断変形量の抑制および、上下ばねの増加する効果を発揮できる。
When such a seismic isolation device 1 receives a shearing force in the horizontal direction due to vibration, the laminate 4 elastically shears and deforms as a whole, effectively absorbing vibration energy, and damping performance. Etc., it is possible to quickly attenuate the vibration.
Further, by alternately laminating the rigid plate 2 and the elastic plate 3, even when a load is applied in the vertical direction, the compression of the laminated body 4 is suppressed, and the elastic plate 3 is sufficiently sheared and deformed to save energy. Absorbs and can exert a restoring force. As a result, the laminate 4 can exhibit the effect of suppressing the amount of shear deformation and increasing the upper and lower springs.

図2は、本発明に従う免震プラグの製造方法の工程を示した図である。
まず最初に、図2(a)に示すように、少なくとも塑性流動材及び硬質充填材を含有する粉粒状物を、例えばプレス成形装置、圧延成形装置に投入して、それらを予備成形して塊状プラグ素材を形成する。
この予備成形により、粉粒状物をより空隙率の小さい塊状プラグ素材15として形成することができる。
FIG. 2 is a diagram showing the steps of a method for manufacturing a seismic isolation plug according to the present invention.
First, as shown in FIG. 2 (a), at least a powdered granular material containing a plastic fluidizing material and a hard filler is put into, for example, a press molding apparatus and a rolling molding apparatus, and they are preformed to form a lump. Form plug material.
By this preforming, the granular material can be formed as a massive plug material 15 having a smaller porosity.

次いで、図2(b)に示すように、金型11内に塊状プラグ素材15を充填して、上下のスタンパ12により、金型11内に押し込むように上下方向に移動させてプレス成形することで、図2(c)に示すような、免震プラグ5を得ることができる。   Next, as shown in FIG. 2 (b), the bulk plug material 15 is filled into the mold 11, and the upper and lower stampers 12 are moved in the vertical direction so as to be pushed into the mold 11 and press-molded. Thus, the seismic isolation plug 5 as shown in FIG. 2C can be obtained.

ここで、好ましくは、塊状プラグ素材15の粒径を、1mm〜2cmの範囲とする。
この範囲とすることで、塊状プラグ素材15自身の空隙率を小さくし、その塊状プラグ素材15に適度な面積を有する界面を形成することができる。
Here, preferably, the particle diameter of the massive plug material 15 is in the range of 1 mm to 2 cm.
By setting it as this range, the porosity of the massive plug material 15 itself can be reduced, and an interface having an appropriate area can be formed in the massive plug material 15.

また好ましくは、塊状プラグ素材15の空隙率を約0〜5%の範囲とし、この範囲とすることで、プレス成形後の免震プラグ全体の空隙率を減少させるとともに、従来のプレス成形に比べ低い圧力で、免震プラグ5を成形することができる。
粉粒状物から、塊状プラグ素材15を形成する線圧を2451.66〜98066.5N/cm(250〜10000kgf/cm)の範囲で成形することが好ましい。
Preferably, the porosity of the bulk plug material 15 is in the range of about 0 to 5%, and by setting this range, the porosity of the entire seismic isolation plug after press molding is reduced and compared with conventional press molding. The seismic isolation plug 5 can be formed with a low pressure.
It is preferable that the linear pressure for forming the massive plug material 15 is formed from the powder and granular material in the range of 2451.66 to 98066.5 N / cm (250 to 10000 kgf / cm).

そしてまた好ましくは、免震プラグ5の空隙率を約0〜7%の範囲とし、その圧力は49.03〜127.49MPa(500〜1300kgf/cm)であることが好ましい。
また、このプレス成形は、塊状プラグ素材15の加圧に対して、塊状プラグ素材15の体積が小さくすると、界面が適度に残るため、免震プラグ5全体が変形するのに有利となる。
And preferably, the porosity of the seismic isolation plug 5 is in the range of about 0 to 7%, and the pressure is preferably 49.03 to 127.49 MPa (500 to 1300 kgf / cm 2 ).
Further, in this press molding, when the volume of the massive plug material 15 is reduced with respect to the pressure of the massive plug material 15, the interface remains moderately, which is advantageous for deformation of the seismic isolation plug 5 as a whole.

この製造方法により、免震プラグ5をプレス成形する前に、粉粒状物の隙間を十分に小さくした最密配置の状態で塊状プラグ素材15を形成し、この塊状プラグ素材15をプレス成形して免震プラグ5を製造することができる。   By this manufacturing method, before the seismic isolation plug 5 is press-molded, the lump plug material 15 is formed in a close-packed arrangement with a sufficiently small gap between the granular materials, and the lump plug material 15 is press-molded. The seismic isolation plug 5 can be manufactured.

この免震プラグの製造方法において好ましくは、予備成形体を解砕した後に、塊状プラグ素材15を形成し、それをプレス成形する。
例えば、予備成形体を圧延成形装置で、プレート状に形成した後に、それを解砕して塊状プラグ素材とする。
予備成形体を解砕するに際し、その予備成形体の形状に異方性があると界面が均一にならず、プラグがきれいに崩れにくくなるため、その形状を球状に近い形にするのが望ましい。
In this seismic isolation plug manufacturing method, preferably, after the preform is crushed, the massive plug material 15 is formed and press-molded.
For example, after forming a preform into a plate shape with a rolling forming apparatus, the preform is crushed into a massive plug material.
When the preform is crushed, if the preform has anisotropy in shape, the interface is not uniform and the plug is not easily collapsed. Therefore, it is desirable to make the shape nearly spherical.

粉粒状物の塑性流動材としては、粘弾性体で若干の弾性は示すものの塑性が大きく、大変形にも追従でき、振動後、原点に戻ったときには再び同じ状態に再凝集できる、例えば、天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン−ブタジエンゴム(SBR)、クロロプレンゴム(CR)、エチレン−プロピレンゴム、ニトリルゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリルゴム、ポリウレタン、シリコーンゴム、フッ化ゴム、多硫化ゴム、ハイパロン、エチレン酢酸ビニルゴム、エピクロルヒドリンゴム、エチレン−メチルアクリレート共重合体、スチレン系エラストマー、ウレタン系エラストマー、ポリオレフィン系エラストマー等が挙げられる。これらの成分は、一種単独で用いてもよいし、二種以上をブレンドして用いてもよい。   As a plastic fluidized material of granular material, although it is a viscoelastic body and exhibits some elasticity, it has great plasticity, can follow large deformations, and can re-aggregate in the same state again when it returns to the origin after vibration. Rubber (NR), polyisoprene rubber (IR), polybutadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), ethylene-propylene rubber, nitrile rubber, butyl rubber, halogenated butyl rubber, acrylic rubber, polyurethane , Silicone rubber, fluorinated rubber, polysulfide rubber, hyperon, ethylene vinyl acetate rubber, epichlorohydrin rubber, ethylene-methyl acrylate copolymer, styrene elastomer, urethane elastomer, polyolefin elastomer and the like. These components may be used alone or in a blend of two or more.

粉粒状物の硬質充填材は、免震プラグ5の減衰性能を主として担う材料であり、具体的には、粉体同士の摩擦及び粉体と塑性流動材との摩擦により振動を減衰させる、例えば、鉄粉、ステンレス粉、ジルコニウム粉、タングステン粉、青銅(CuSn)粉、アルミニウム粉、金粉、銀粉、錫粉、炭化タングステン粉、タンタル粉、チタン粉、銅粉、ニッケル粉、ニオブ粉、鉄−ニッケル合金粉、亜鉛粉、モリブデン粉等が挙げられ、これら金属粉は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
これら硬質充填材の中でも、鉄粉が特に好ましく、鉄粉は、安価である上、他の金属粉と対比して破壊強度が高く、また、鉄粉を主成分とする免震プラグ5は、固すぎることも脆すぎることもないため、優れた減衰性能を長期に渡って発揮することができる。なお、鉄粉としては、還元鉄粉、電解鉄粉、噴霧鉄粉、純鉄粉、鋳鉄粉等が挙げられるが、これらの中でも、還元鉄粉が好ましい。
The hard filler of the granular material is a material mainly responsible for the damping performance of the seismic isolation plug 5, and specifically, attenuates vibrations by friction between powders and friction between powders and plastic fluidized material, for example, , Iron powder, stainless steel powder, zirconium powder, tungsten powder, bronze (CuSn) powder, aluminum powder, gold powder, silver powder, tin powder, tungsten carbide powder, tantalum powder, titanium powder, copper powder, nickel powder, niobium powder, iron- Nickel alloy powder, zinc powder, molybdenum powder, etc. are mentioned, and these metal powders may be used alone or in combination of two or more.
Among these hard fillers, iron powder is particularly preferable, and iron powder is inexpensive and has a high breaking strength as compared with other metal powders, and the seismic isolation plug 5 mainly composed of iron powder is: Since it is neither too hard nor too brittle, excellent damping performance can be demonstrated over a long period of time. Examples of the iron powder include reduced iron powder, electrolytic iron powder, sprayed iron powder, pure iron powder, and cast iron powder. Among these, reduced iron powder is preferable.

粉粒状物には、その他に、老化防止剤、ワックス、可塑剤、軟化剤等の一般に添加される添加剤も配合できる。
なお、塑性流動材と硬質充填材のそれぞれについて選定される材料の組成、含有率、組み合わせ等は、免震プラグ5に所望される性能に応じて適宜変更することができる。
In addition to the particulates, generally added additives such as anti-aging agents, waxes, plasticizers, softeners and the like can be blended.
In addition, the composition of the material selected about each of a plastic fluid material and a hard filler, a content rate, a combination, etc. can be suitably changed according to the performance desired for the seismic isolation plug 5.

そして、上述した製造方法を用いて免震プラグ5を形成することで、免震プラグ5の空気含有率が小さくなり、この免震プラグ5を圧入した免震装置は、減衰性能が向上することができるとともに、免震プラグの所望の空気含有率とすることに要する時間が短縮されるため、免震プラグ5の生産性および貯蔵性を向上させることができる。   And by forming the seismic isolation plug 5 using the manufacturing method mentioned above, the air content rate of the seismic isolation plug 5 becomes small, and the seismic isolation device press-fitted with this seismic isolation plug 5 has improved damping performance. In addition, since the time required to obtain the desired air content of the seismic isolation plug is shortened, the productivity and storability of the seismic isolation plug 5 can be improved.

次に、図1に示すような構造を有する免震装置に挿入される、実施例免震プラグ1〜3および、比較例プラグ免震1〜3のそれぞれを試作し、免震プラグの空隙率(空気残存率)を評価した。
なお、空隙率(空気残存率)は、(1−免震プラグの比重/粉体材料の計算比重)×100(粉体材料の計算比重:重量/(塑性流動材の比重×体積比+硬質充填材の比重×体積比))で算出した。
Next, each of the example base isolation plugs 1 to 3 and the comparative example plug isolations 1 to 3 to be inserted into the base isolation device having the structure shown in FIG. (Air residual ratio) was evaluated.
The void ratio (residual ratio of air) is (1-specific gravity of the base isolation plug / calculated specific gravity of the powder material) × 100 (calculated specific gravity of the powder material: weight / (specific gravity of the plastic fluid material × volume ratio + hard). The specific gravity of the filler × volume ratio)).

実施例免震プラグ1〜3は、以下に説明する方法により製造した。
まずはじめに、図2(b)に示すように、計算比重が5.536g/cmであり、表1に示す塑性流動材及び硬質充填材からなる予備成形体400gを、表2に示すように、それぞれの諸元を変化させて形成後、クラッシャーにより解砕し、その解砕物を容積が160cmの円筒状の金型内に充填する。次いで、その解砕物を、スタンパにより、プレス成形し、内径45.0mm、高さ55mmである実施例免震プラグ1〜3を製造した。その結果を図3に示す。
なお、実施例3は粉粒状物をクラッシャーにより解砕した。
Example seismic isolation plugs 1 to 3 were manufactured by the method described below.
First, as shown in FIG. 2 (b), the calculated specific gravity is 5.536 g / cm 3 , and 400 g of the preform formed of the plastic fluid material and the hard filler shown in Table 1 is shown in Table 2. Then, after forming by changing each specification, it is crushed by a crusher, and the crushed material is filled in a cylindrical mold having a volume of 160 cm 3 . Subsequently, the crushed material was press-molded with a stamper, and Example seismic isolation plugs 1 to 3 having an inner diameter of 45.0 mm and a height of 55 mm were manufactured. The result is shown in FIG.
In Example 3, the granular material was crushed with a crusher.

比較例免震プラグ1〜3は、以下に説明する方法により製造した。
まずはじめに、計算比重が5.536g/cmであり、表1,2からなる粉粒状物400gを、容積が160cmの円筒状の金型内に充填する。次いで、この粉粒状物を、スタンパにより、プレス成形し、内径45.0mm、高さ55mmである比較例免震プラグ1〜3を製造した。その結果を図3に示す。
なお、比較例免震プラグ3は粉粒状物をクラッシャーにより解砕した。
Comparative example seismic isolation plugs 1 to 3 were manufactured by the method described below.
First, 400 g of the granular material having a calculated specific gravity of 5.536 g / cm 3 and Tables 1 and 2 is filled into a cylindrical mold having a volume of 160 cm 3 . Subsequently, this powdery granular material was press-molded with a stamper to produce comparative example seismic isolation plugs 1 to 3 having an inner diameter of 45.0 mm and a height of 55 mm. The result is shown in FIG.
In addition, the comparative example seismic isolation plug 3 pulverized the granular material with a crusher.

Figure 2010255797
Figure 2010255797

*1 (天然ゴム)
未加硫、RSS#4
*2 (ブタジエンゴム(低シス構造))
未加硫、旭化成製「ジエンNF35R」
*3 カーボンブラック
ISAF、東海カーボン製「シースト6P」
*4 樹脂
日本ゼオン製「ゼオファイン」、新日本石油化学製「日石ネオポリマー140」、丸善石油化学製「マルカレッツM−890A」、「ゼオファイン」:「日石ネオポリマー140」:「マルカレッツM−890A」=40:40:20(質量比)
*5 可塑剤
ジオクチルアジペート(DOA)
*6 その他の配合剤
亜鉛華、ステアリン酸、老化防止剤[住友化学製「アンステージ6C」、ワックス[新日本石油製「プロトワックス1」]、亜鉛華:ステアリン酸:老化防止剤:ワックス=4:5:3:1(質量比)
* 1 (natural rubber)
Unvulcanized, RSS # 4
* 2 (Butadiene rubber (low cis structure))
Unvulcanized, Asahi Kasei "Diene NF35R"
* 3 Carbon Black ISAF, Tokai Carbon "Seast 6P"
* 4 Resins “Zeofine” manufactured by Nippon Zeon, “Nisseki Neopolymer 140” manufactured by Nippon Petrochemical, “Marcaretz M-890A” manufactured by Maruzen Petrochemical, “Zeofine”: “Nisseki Neopolymer 140”: “Marcaretz M-” 890A "= 40: 40: 20 (mass ratio)
* 5 Plasticizer Dioctyl adipate (DOA)
* 6 Other compounding agents Zinc white, stearic acid, anti-aging agent [“Anstage 6C” manufactured by Sumitomo Chemical, wax [“Proto Wax 1” manufactured by Nippon Oil Corporation], zinc white: stearic acid: anti-aging agent: wax = 4: 5: 3: 1 (mass ratio)

(減衰性能評価)
上記免震プラグが圧入される、それぞれの免震装置に対し、動的試験機を用いて鉛直方向に基準面圧をかけた状態で水平方向に加振して規定変位の剪断変形を生じさせた。
なお、加振変位は、積層体の総厚さを100%として、歪50〜250%とし、加振周波数は0.33Hzとし、垂直面圧は10MPaとした。
ここでは、簡便のため、水平方向の変形変位(d)と免震装置の水平方向荷重(Q)との関係のヒステリシス曲線で囲まれた領域の面積△Wが広くなるほど、振動のエネルギーを多く吸収できることとし、歪150%における切片荷重Qd(変位0における水平荷重値)で免震プラグの減衰性能を評価した。
なお、切片荷重Qdは、ヒステリシス曲線が縦軸と交差する点での荷重Qd、Qdを用いて、式:Qd=(Qd十Qd)/2から計算した。また、Qdを免震プラグの断面積Aで割ってtdを計算した。ここで、これらの計算値は、Qdまたはtdが大きくなる程、ヒステリシス曲線で囲まれた領域の面積が広くなり、減衰性能が優れることを示す。
(Attenuation performance evaluation)
For each seismic isolation device into which the above-mentioned seismic isolation plug is press-fitted, a dynamic test machine is used to vibrate in the horizontal direction while applying a reference surface pressure in the vertical direction to cause shear deformation of the specified displacement. It was.
The vibration displacement was set such that the total thickness of the laminate was 100%, the strain was 50 to 250%, the vibration frequency was 0.33 Hz, and the vertical surface pressure was 10 MPa.
Here, for the sake of simplicity, as the area ΔW of the region surrounded by the hysteresis curve of the relationship between the horizontal deformation displacement (d) and the horizontal load (Q) of the seismic isolation device increases, the vibration energy increases. The damping performance of the seismic isolation plug was evaluated based on the intercept load Qd (horizontal load value at zero displacement) at a strain of 150%.
The intercept load Qd was calculated from the formula: Qd = (Qd 1 + Qd 2 ) / 2 using loads Qd 1 and Qd 2 at the point where the hysteresis curve intersects the vertical axis. Also, td was calculated by dividing Qd by the cross-sectional area A of the seismic isolation plug. Here, these calculated values indicate that as Qd or td increases, the area of the region surrounded by the hysteresis curve increases and the attenuation performance is excellent.

そして、上記測定、並びにQおよびtの計算を、それぞれの免震装置(実施例毎に100個)に対して行った。その結果に対し、歪150%におけるtdの値が、td150%=85kgf/cmと比較して80%以下のt(t150%=68kgf/cm以下)となった免震装置(80%未達免震構造体)の個数をカウントした。結果を表2に示す。 And the said measurement and calculation of Q and t were performed with respect to each seismic isolation apparatus (100 pieces for every Example). As a result to the value of td in the distortion 150% is non td150% = 85kgf / cm 2 as compared to 80% or less of the t (t150% = 68kgf / cm 2 or less) it became isolator (80% The number of seismic isolation structures was counted. The results are shown in Table 2.

Figure 2010255797
Figure 2010255797

表2、図3の結果から、実施例免震プラグ1〜3は、比較例免震プラグ1〜3に対して、良好な減衰性能が得られた。   From the results of Table 2 and FIG. 3, the example seismic isolation plugs 1 to 3 had better damping performance than the comparative example seismic isolation plugs 1 to 3.

1 免震装置
2 剛性板
3 弾性板
4 積層体
5 免震プラグ
6 取付面板
7 被覆材
11 金型
12 スタンパ
15 塊状プラグ素材
DESCRIPTION OF SYMBOLS 1 Seismic isolation device 2 Rigid board 3 Elastic board 4 Laminated body 5 Seismic isolation plug 6 Mounting face plate 7 Coating material 11 Mold 12 Stamper 15 Mass plug material

Claims (3)

免震装置に挿入する柱状免震プラグを製造するに当たり、
粉粒状物の予備成形を経て、塊状プラグ素材を形成し、この塊状プラグ素材をプレス成形して柱状免震プラグとすることを特徴とする免震プラグの製造方法。
In manufacturing columnar seismic isolation plugs to be inserted into seismic isolation devices,
A method of manufacturing a seismic isolation plug, comprising: forming a bulk plug material after preforming a powder and granular material; and pressing the bulk plug material to form a columnar seismic isolation plug.
予備成形体を解砕し、塊状プラグ素材とする請求項1に記載の免震プラグの製造方法。   The method for producing a seismic isolation plug according to claim 1, wherein the preform is crushed to form a massive plug material. 請求項1または2に記載の製造方法で製造された免震プラグ。   The seismic isolation plug manufactured with the manufacturing method of Claim 1 or 2.
JP2009108520A 2009-04-27 2009-04-27 Seismic isolation plug manufacturing method and isolation plug Active JP5390252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009108520A JP5390252B2 (en) 2009-04-27 2009-04-27 Seismic isolation plug manufacturing method and isolation plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009108520A JP5390252B2 (en) 2009-04-27 2009-04-27 Seismic isolation plug manufacturing method and isolation plug

Publications (2)

Publication Number Publication Date
JP2010255797A true JP2010255797A (en) 2010-11-11
JP5390252B2 JP5390252B2 (en) 2014-01-15

Family

ID=43316931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009108520A Active JP5390252B2 (en) 2009-04-27 2009-04-27 Seismic isolation plug manufacturing method and isolation plug

Country Status (1)

Country Link
JP (1) JP5390252B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315485A (en) * 2002-04-11 2003-11-06 Korea Atom Energ Res Inst Method for measuring lanthanoids content contained in uranium oxide
JP2008200889A (en) * 2007-02-16 2008-09-04 Bridgestone Corp Degassing method, degassing apparatus, core manufacturing method and laminated support

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315485A (en) * 2002-04-11 2003-11-06 Korea Atom Energ Res Inst Method for measuring lanthanoids content contained in uranium oxide
JP2008200889A (en) * 2007-02-16 2008-09-04 Bridgestone Corp Degassing method, degassing apparatus, core manufacturing method and laminated support

Also Published As

Publication number Publication date
JP5390252B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
US8668968B2 (en) Composition for plug in base-isolated structure, plug for base-isolated structure and base-isolated structure
JP5436026B2 (en) Seismic isolation device plug and method of manufacturing the same
JP6891305B2 (en) Seismic isolation device
JPH03163231A (en) Peripheral restraint type earthquakeproof support
KR20180124086A (en) Isolation device
JP6178029B1 (en) Seismic isolation device for structures
JP5390252B2 (en) Seismic isolation plug manufacturing method and isolation plug
JP5404161B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP2010253848A (en) Method of manufacturing base isolation plug for base isolation device, and device therefor
JP2008121822A (en) Vibration-isolation structure and its manufacturing method
JP2011149476A (en) Vibration control damper
JP5091083B2 (en) Seismic isolation structure plug and seismic isolation structure
JP2010025233A (en) Plug for base isolation structure and base isolation structure using the same
JP5415691B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure
KR102399782B1 (en) Seismic isolation apparatus
JP5164783B2 (en) Seismic isolation structure
JP5436027B2 (en) Seismic isolation structure plug and seismic isolation structure
JP5174443B2 (en) Seismic isolation structure
JP2010255776A (en) Base isolation structure
JP5350773B2 (en) Manufacturing method of seismic isolation structure plug
JP5539642B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure
JP5869860B2 (en) Method for manufacturing composition for plug of base isolation structure and method for manufacturing plug for base isolation structure
JP5745564B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug, seismic isolation structure, and method of manufacturing seismic isolation structure plug
JP5241210B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure
JP5366639B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131010

R150 Certificate of patent or registration of utility model

Ref document number: 5390252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250