JP2010255023A - Method for manufacturing strengthened alloy - Google Patents

Method for manufacturing strengthened alloy Download PDF

Info

Publication number
JP2010255023A
JP2010255023A JP2009103733A JP2009103733A JP2010255023A JP 2010255023 A JP2010255023 A JP 2010255023A JP 2009103733 A JP2009103733 A JP 2009103733A JP 2009103733 A JP2009103733 A JP 2009103733A JP 2010255023 A JP2010255023 A JP 2010255023A
Authority
JP
Japan
Prior art keywords
alloy material
temperature
aging
solution
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009103733A
Other languages
Japanese (ja)
Inventor
Susumu Ninomiya
進 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON THERMOTECH KK
Original Assignee
NIPPON THERMOTECH KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON THERMOTECH KK filed Critical NIPPON THERMOTECH KK
Priority to JP2009103733A priority Critical patent/JP2010255023A/en
Priority to US12/765,085 priority patent/US20100276040A1/en
Publication of JP2010255023A publication Critical patent/JP2010255023A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/004Heat treatment in fluid bed
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a strengthened alloy, by which a strengthened alloy having an enhanced tensile strength can be obtained while reducing the time required for an aging treatment. <P>SOLUTION: The method for manufacturing the strengthened alloy includes: a solution treatment step S1 where an alloy material is immersed in molten lithium held at a solution treatment temperature higher than the solution temperature of a solute metal of the alloy material; a solution treatment halting step S2 where the alloy material is immersed in molten lithium held at a cooling temperature lower than the solution treatment temperature, after the solution treatment step S1; an aging treatment step S3 where the alloy material is immersed in molten lithium held at an aging treatment temperature which is lower than the solution temperature, after the solution treatment halting step S2; and an aging halting step S4 where the alloy material is immersed in molten lithium held at an aging halting temperature lower than the aging treatment temperature, after the aging treatment step S3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、強化合金の製造方法に関する。   The present invention relates to a method for producing a reinforced alloy.

炭素鋼やその他の合金に対して、焼入れ等の溶体化処理を行った後、焼戻し等の時効処理を行って所望の機械的性質を得ることが古くから行われている。   It has long been practiced that carbon steel and other alloys are subjected to solution treatment such as quenching and then subjected to aging treatment such as tempering to obtain desired mechanical properties.

その中でもチタン合金は、軽くて強度が高く、しかも耐高温性及び耐腐食性が高い合金であるため、近年急速にその用途を広げている。金属チタンの基本的な結晶構造は、室温で稠密六方晶(α相)であるが、β変態点(純粋なチタンで約885℃)より高い温度に加熱すると体心立方晶(β相)が形成され、さらに冷却すると再びα相が形成される。金属チタンにアルミニウム(Al)やバナジウム(V)等の合金元素を含有させたチタン合金では、その成分割合や加熱温度、加熱速度、冷却速度を変化させることで様々な金属組織が形成され、加熱した後のチタン合金の特性も種々のものがある。   Among them, titanium alloys are light, high in strength, and high temperature resistance and corrosion resistance, so that their applications are rapidly expanding in recent years. The basic crystal structure of metallic titanium is a dense hexagonal crystal (α phase) at room temperature, but when heated to a temperature higher than the β transformation point (about 885 ° C for pure titanium), body-centered cubic crystals (β phase) are formed. The α phase is formed again upon cooling. Titanium alloys in which alloy elements such as aluminum (Al) and vanadium (V) are incorporated into titanium metal, various metal structures are formed by changing the component ratio, heating temperature, heating rate, and cooling rate. There are various characteristics of the titanium alloy after this.

チタン合金のうち、常温でα相とβ相とが共存するα+β型合金に対して、合金元素が溶質金属に拡散して固溶体を形成する温度(溶体化温度)より高い温度に加熱して溶体化処理を行うと、金属組織にβ相が形成され、その後に急冷すると、β相の内部にα’マルテンサイト相が形成される。さらに、溶体化処理された合金を溶体化温度より低い温度で加熱(時効処理)すると、β相の内部に微細なα相が形成される。このとき、金属組織に形成される各相の構成割合や各相の結晶の大きさが変化するため、熱処理前とは強度や伸びの異なった合金が形成される。   Among α + β type alloys in which α and β phases coexist at room temperature, the solution is heated to a temperature higher than the temperature at which the alloy element diffuses into the solute metal to form a solid solution (solution temperature). When the crystallization treatment is performed, a β phase is formed in the metal structure, and after that, when rapidly cooled, an α ′ martensite phase is formed inside the β phase. Furthermore, when the solution-treated alloy is heated at a temperature lower than the solution treatment temperature (aging treatment), a fine α-phase is formed inside the β-phase. At this time, since the composition ratio of each phase formed in the metal structure and the size of the crystal of each phase change, an alloy having different strength and elongation from that before the heat treatment is formed.

ここで、溶体化処理されたチタン合金を高周波加熱装置で所定温度まで加熱し、チタン合金の温度を所定時間に亘り保持して時効処理を行った後で空冷する手段が知られている(非特許文献1及び2参照)。また、溶体化処理されたチタン合金を所定温度の溶融リチウムに浸漬して時効処理を行った後で自然冷却する手段が知られている(特許文献1参照)。   Here, a means is known in which a solution-treated titanium alloy is heated to a predetermined temperature with a high-frequency heating device, and the temperature of the titanium alloy is maintained for a predetermined time and subjected to an aging treatment, and then air-cooled (non-native). (See Patent Documents 1 and 2). Further, there is known a means for natural cooling after immersing the solution-treated titanium alloy in molten lithium at a predetermined temperature (see Patent Document 1).

特開2006−016691号公報JP 2006-016691 A

森田辰郎、外3名、「短時間2段階高周波熱処理によるTi−6Al−4V合金の高強度化」、日本金属学会誌、社団法人日本金属学会、平成14年10月、第68巻、第10号、p.862−867Goro Morita and three others, “Strengthening of Ti-6Al-4V alloy by short-time two-step high-frequency heat treatment”, Journal of the Japan Institute of Metals, The Japan Institute of Metals, October 2002, Vol. 68, No. 10 No., p. 862-867 森田辰郎、外3名、「Ti−6Al−4V合金の疲労強度に及ぼす短時間2段階熱処理の影響」、材料、日本材料学会、平成19年4月、第56巻、第4号、p.345−351Goro Morita and 3 others, “Effect of short-time two-step heat treatment on fatigue strength of Ti-6Al-4V alloy”, Materials, Japan Society for Materials Science, April, 2007, Vol. 56, No. 4, p. 345-351

しかしながら、非特許文献1のように高周波加熱装置でチタン合金を急激に(例えば8sで)所定温度まで加熱して時効処理を行う場合、高周波によって加熱されたチタン合金は、表面温度が均一になり難く、加熱装置のオーバーシュートによって所定温度よりも高温まで加熱され易い。そのため、後に刊行された非特許文献2では、高周波加熱装置で時効処理を行う場合には長い時間をかけて(例えば360sで)所定温度まで加熱するように改良がなされているが、この場合は時効処理に長い時間を要する。また、非特許文献1及び非特許文献2の手段によって得られた合金は、0.2%耐力及び引張強度は向上しているものの、強度の向上とともに延性が低下する傾向にあった。   However, when the aging treatment is performed by rapidly heating the titanium alloy to a predetermined temperature (for example, at 8 s) with a high-frequency heating device as in Non-Patent Document 1, the surface temperature of the titanium alloy heated by the high frequency becomes uniform. It is difficult to heat to a temperature higher than a predetermined temperature due to overshoot of the heating device. Therefore, in the non-patent document 2 published later, when performing an aging treatment with a high-frequency heating device, it has been improved to heat to a predetermined temperature over a long time (for example, at 360 s). Aging takes a long time. Moreover, although the alloy obtained by the means of nonpatent literature 1 and nonpatent literature 2 improved 0.2% proof stress and tensile strength, there was a tendency for ductility to fall with improvement in strength.

別の手段として、特許文献1のように溶体化処理されたチタン合金を溶融リチウムに浸漬して時効処理を行い、その後に自然冷却する手段が挙げられる。本発明者がこの手段を用いてチタン合金を処理したところ、合金の0.2%耐力、引張強度及び延性はいずれも高められていたものの、これら0.2%耐力、引張強度及び延性をより高めることが望まれていた。   As another means, there is a means for immersing a solution-treated titanium alloy in molten lithium as in Patent Document 1 and performing an aging treatment, followed by natural cooling. When the present inventor processed the titanium alloy using this means, the 0.2% proof stress, tensile strength and ductility of the alloy were all increased, but the 0.2% proof stress, tensile strength and ductility were further increased. It was desired to increase.

従って、本発明は、時効処理に要する時間を短縮しつつ、0.2%耐力、引張強度及び延性がより高められた強化合金を得ることが可能な強化合金の製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for producing a reinforced alloy capable of obtaining a reinforced alloy having a 0.2% proof stress, a tensile strength and a ductility higher while shortening the time required for aging treatment. And

本発明者らは、溶体化処理された後の合金材料を、時効処理温度に保持した溶融リチウムに浸漬して時効処理工程を行った後で、時効処理温度より低い時効停止温度に保持した溶融リチウムに浸漬して時効停止工程を行うことにより、引張強度が大きいα相の過剰な成長が抑制されつつ、α相の間に形成された延性の高いβ相のα相への変態が抑制されることを見出し、本発明を完成するに至った。   The present inventors performed the aging treatment step by immersing the alloy material after the solution treatment in molten lithium held at the aging treatment temperature, and then melting the alloy material at the aging stop temperature lower than the aging treatment temperature. By immersing in lithium and performing an aging stop step, excessive growth of the α phase having a high tensile strength is suppressed, while transformation of the highly ductile β phase formed between the α phases into the α phase is suppressed. As a result, the present invention has been completed.

(1) 合金材料の溶質金属の溶体化温度より高い溶体化処理温度に保持された溶融リチウムに前記合金材料を浸漬する溶体化処理工程と、前記溶体化処理工程の後に、前記溶体化処理温度より低い冷却温度に保持された溶融リチウムに前記合金材料を浸漬する溶体化停止工程と、前記溶体化停止工程の後に、溶体化温度より低い時効処理温度に保持された溶融リチウムに前記合金材料を浸漬する時効処理工程と、前記時効処理工程の後に、前記時効処理温度より低い時効停止温度に保持された溶融リチウムに前記合金材料を浸漬する時効停止工程と、を有する強化合金の製造方法。   (1) A solution treatment step of immersing the alloy material in molten lithium held at a solution treatment temperature higher than the solution treatment temperature of the solute metal of the alloy material, and the solution treatment temperature after the solution treatment step. A solution stop step of immersing the alloy material in molten lithium held at a lower cooling temperature, and after the solution stop step, the alloy material is added to the molten lithium held at an aging treatment temperature lower than the solution treatment temperature. A method for producing a reinforced alloy comprising: an aging treatment step of immersing; and an aging stop step of immersing the alloy material in molten lithium held at an aging stop temperature lower than the aging treatment temperature after the aging treatment step.

(2) 前記時効停止工程では、前記合金材料を350℃以下の溶融リチウムに浸漬する(1)記載の製造方法。   (2) The manufacturing method according to (1), wherein in the aging stop step, the alloy material is immersed in molten lithium at 350 ° C. or lower.

(3) 前記合金材料としてチタン合金を用いる(1)又は(2)記載の製造方法。   (3) The manufacturing method according to (1) or (2), wherein a titanium alloy is used as the alloy material.

本発明によれば、溶体化処理された後の合金材料を、時効処理温度に保持した溶融リチウムに浸漬して時効処理工程を行った後で、時効処理温度より低い時効停止温度に保持した溶融リチウムに浸漬して時効停止工程を行うことにより、時効停止温度までの冷却時間が短縮されつつ、引張強度が大きいα相の過剰な成長が抑制され、α相の間に形成された延性の高いβ相のα相への変態が抑制される。そのため、0.2%耐力、引張強度及び延性のより高められた強化合金が得られる製造方法を提供することができる。   According to the present invention, after the solution treatment, the alloy material is immersed in molten lithium held at the aging treatment temperature and subjected to the aging treatment step, and then the molten material held at the aging stop temperature lower than the aging treatment temperature. By carrying out the aging stop process by immersing in lithium, the excessive growth of the α phase having a large tensile strength is suppressed while the cooling time to the aging stop temperature is shortened, and the ductility formed between the α phases is high. Transformation of β phase to α phase is suppressed. Therefore, it is possible to provide a production method in which a reinforced alloy having 0.2% proof stress, tensile strength and ductility is obtained.

本発明の強化合金の製造方法における実施態様を示すフローチャートである。It is a flowchart which shows the embodiment in the manufacturing method of the reinforced alloy of this invention. 本発明の強化合金の製造方法による合金材料の表面温度の変化を示すグラフである。It is a graph which shows the change of the surface temperature of the alloy material by the manufacturing method of the reinforced alloy of this invention. 本発明の強化合金の製造方法で好ましく用いられる製造装置を示す断面図である。It is sectional drawing which shows the manufacturing apparatus preferably used with the manufacturing method of the reinforced alloy of this invention.

次に、本発明の強化合金の製造方法における実施態様について図面を参照しながら説明する。図1は、本発明の強化合金の製造方法における実施態様を示すフローチャートである。図2は、本発明の強化合金の製造方法による合金材料の表面温度の変化を示すグラフである。図3は、本発明の強化合金の製造方法で好ましく用いられる製造装置を示す断面図である。   Next, embodiments of the method for producing a strengthened alloy according to the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing an embodiment of a method for producing a reinforced alloy according to the present invention. FIG. 2 is a graph showing changes in the surface temperature of the alloy material by the method for producing a strengthened alloy of the present invention. FIG. 3 is a cross-sectional view showing a production apparatus preferably used in the method for producing a reinforced alloy according to the present invention.

図1に示すように、本実施態様の強化合金の製造方法は、溶体化処理工程S1と、溶体化停止工程S2と、時効処理工程S3と、時効停止工程S4とを備える。   As shown in FIG. 1, the manufacturing method of the strengthened alloy of this embodiment is equipped with solution treatment process S1, solution treatment stop process S2, aging treatment process S3, and aging stop process S4.

(合金材料)
この製造方法に用いられる合金材料50は、α相の引張強度がβ相よりも大きく、且つβ相の破断伸びがα相よりも大きい材料のうち、溶体化温度が溶融リチウムの融点(181℃)よりも高く且つ溶融リチウムの沸点(1342℃)よりも低い合金を用いる。これらの要件を満たす合金材料50として、例えばチタン合金が挙げられる。より具体的には、Ti−6Al−4V合金が挙げられる。Ti−6Al−4V合金を用いた場合、合金材料の表面温度を850℃より高い溶体化処理温度に急速に加熱する溶体化処理工程S1によって、その金属組織の一部が稠密六方晶であるα相から体心立方晶であり高い破断伸びを有するβ相に相転移する。
(Alloy material)
The alloy material 50 used in this manufacturing method has a solution temperature of the melting lithium (181 ° C.) among the materials having an α-phase tensile strength greater than the β-phase and a β-phase elongation at break larger than the α-phase. ) And lower than the boiling point of molten lithium (1342 ° C.). An example of the alloy material 50 that satisfies these requirements is a titanium alloy. More specifically, Ti-6Al-4V alloy is mentioned. When a Ti-6Al-4V alloy is used, a part of the metal structure is a dense hexagonal crystal by the solution treatment step S1 in which the surface temperature of the alloy material is rapidly heated to a solution treatment temperature higher than 850 ° C. The phase transitions from the phase to the β phase which is body-centered cubic and has a high elongation at break.

合金材料50は、熱処理前に予め圧延や切削加工を行って成形加工しておいてもよい。これにより、合金材料50の内部に加工歪が蓄積されるため、合金材料50に対して加熱及び冷却を行う際に結晶核を形成し易くして、熱処理後の金属組織をより微細にできる。   The alloy material 50 may be formed by rolling or cutting in advance before the heat treatment. Thereby, since processing strain accumulates inside the alloy material 50, it is easy to form crystal nuclei when the alloy material 50 is heated and cooled, and the metal structure after the heat treatment can be made finer.

(熱処理装置)
この製造方法に用いられる熱処理装置は、例えば図3に示すような、熱処理室11の内部に溶体化処理槽12、溶体化停止槽13、時効加熱槽14及び時効停止槽15を備えた熱処理装置1が挙げられる。この熱処理装置1は移動機構27を備え、合金材料50を溶体化処理槽12、溶体化停止槽13、時効加熱槽14及び時効停止槽15に収容された溶融リチウムL1〜L4に順次移動して浸漬する。
(Heat treatment equipment)
A heat treatment apparatus used in this manufacturing method includes, for example, a solution treatment tank 12, a solution stop tank 13, an aging heating tank 14 and an aging stop tank 15 in a heat treatment chamber 11 as shown in FIG. 1 is mentioned. This heat treatment apparatus 1 includes a moving mechanism 27, and moves the alloy material 50 sequentially to the molten lithium L <b> 1 to L <b> 4 accommodated in the solution treatment tank 12, solution treatment stop tank 13, aging heating tank 14 and aging stop tank 15. Immerse.

ここで、熱処理装置1は、熱処理室11の一方の側に密閉可能な入口室30を設け、他方の側に密閉可能な出口室40を設けてもよい。このとき、入口室30には、入口室30の内部と外気を隔てる扉31と、入口室30の内部と熱処理室11の内部を隔てる扉32と、を設ける。一方、出口室40には、出口室36の内部と熱処理室11の内部を隔てる扉41と、出口室36の内部と外気とを隔てる扉42と、を設ける。熱処理室11に入口室30及び出口室36を設け、熱処理室11の内部に溶融リチウムL1〜L4と反応しない不活性ガス(例えばアルゴンガス)を充填することにより、不活性ガスが熱処理室11の外部に漏洩し難くなるため、溶融リチウムと空気や水蒸気との反応を抑えることができる。   Here, the heat treatment apparatus 1 may be provided with the sealable inlet chamber 30 on one side of the heat treatment chamber 11 and with the sealable outlet chamber 40 on the other side. At this time, the entrance chamber 30 is provided with a door 31 that separates the inside of the entrance chamber 30 from the outside air, and a door 32 that separates the interior of the entrance chamber 30 and the inside of the heat treatment chamber 11. On the other hand, the exit chamber 40 is provided with a door 41 that separates the interior of the exit chamber 36 from the interior of the heat treatment chamber 11 and a door 42 that separates the interior of the exit chamber 36 from the outside air. An inlet chamber 30 and an outlet chamber 36 are provided in the heat treatment chamber 11 and the inside of the heat treatment chamber 11 is filled with an inert gas (for example, argon gas) that does not react with the molten lithium L1 to L4. Since it becomes difficult to leak outside, the reaction between molten lithium and air or water vapor can be suppressed.

(S1)溶体化処理工程
合金材料50を加熱し、合金材料50を溶体化温度より高い溶体化処理温度T1で、合金材料50の表面温度を保持する。これにより、合金材料50の合金成分の一部が溶質金属に拡散して溶質金属のβ相の固溶体が形成される。
(S1) Solution Treatment Step The alloy material 50 is heated, and the surface temperature of the alloy material 50 is maintained at a solution treatment temperature T1 that is higher than the solution treatment temperature. Thereby, a part of the alloy component of the alloy material 50 is diffused into the solute metal to form a β-phase solid solution of the solute metal.

合金材料50を加熱する手段は、溶体化処理温度T1に加熱された溶融リチウムL1に合金材料50を浸漬する手段が用いられる。これにより、合金材料50の温度のオーバーシュートが起こり難くなる。このため、合金材料50への異常加熱による合金材料50の引張強度、破断伸び及び0.2%耐力の低下を抑制できる。また、熱伝導率が高い溶融リチウムによって、熱が合金材料50に速やかに伝えられるため、より迅速に合金材料50を加熱でき、溶質金属のβ相の固溶体を短時間で形成できる。そのため、金属組織に含まれる結晶の成長による肥大化を避けつつ、合金材料50が溶体化する際に水素や酸素が金属組織内に取り込まれることを低減でき、結晶の肥大化や金属組織への空隙の形成による引張強度、破断伸び及び0.2%耐力の低下を抑制できる。   As means for heating the alloy material 50, means for immersing the alloy material 50 in the molten lithium L1 heated to the solution treatment temperature T1 is used. Thereby, the overshoot of the temperature of the alloy material 50 becomes difficult to occur. For this reason, the tensile strength of the alloy material 50 by the abnormal heating to the alloy material 50, breaking elongation, and the fall of 0.2% yield strength can be suppressed. In addition, since the heat is quickly transferred to the alloy material 50 by the molten lithium having a high thermal conductivity, the alloy material 50 can be heated more quickly, and a solid solution of β phase of the solute metal can be formed in a short time. Therefore, while avoiding enlargement due to the growth of crystals contained in the metal structure, it is possible to reduce the incorporation of hydrogen and oxygen into the metal structure when the alloy material 50 is in solution, Decrease in tensile strength, breaking elongation and 0.2% proof stress due to the formation of voids can be suppressed.

この加熱手段の具体例は、図3に示すように、溶体化処理温度T1に加熱された溶融リチウムL1を溶体化処理槽12に収容し、熱処理装置1の入口室30から熱処理室11に搬入された合金材料50を溶融リチウムL1に浸漬する手段が挙げられる。ここで、溶体化処理槽12に収容された溶融リチウムL1の温度を調節するために、例えば溶融リチウムL1を加熱するヒータ21が用いられる。   As shown in FIG. 3, a specific example of this heating means is that molten lithium L1 heated to the solution treatment temperature T1 is accommodated in the solution treatment tank 12, and is carried into the heat treatment chamber 11 from the inlet chamber 30 of the heat treatment apparatus 1. A means for immersing the alloy material 50 thus obtained in the molten lithium L1 can be mentioned. Here, in order to adjust the temperature of the molten lithium L1 accommodated in the solution treatment tank 12, for example, a heater 21 for heating the molten lithium L1 is used.

溶体化処理工程S1での溶体化処理温度T1は、合金材料50の溶体化温度より高い温度にする。ここで、合金材料50の溶体化温度は、合金材料50の組成等によって変動するが、例えば700℃以上1100℃以下の範囲にあることが多い。より具体的には、Ti−6Al−4V合金の場合、溶体化温度は850℃〜1000℃の範囲内にある。   The solution treatment temperature T1 in the solution treatment step S1 is set to a temperature higher than the solution treatment temperature of the alloy material 50. Here, the solution temperature of the alloy material 50 varies depending on the composition of the alloy material 50 and the like, but is often in the range of 700 ° C. to 1100 ° C., for example. More specifically, in the case of a Ti-6Al-4V alloy, the solution temperature is in the range of 850 ° C to 1000 ° C.

溶体化処理工程S1で加熱された合金材料50の表面温度を溶体化処理温度T1に保持する溶体化時間は、合金材料50が加熱された温度、合金材料50の厚さ及び強化合金の用途によって適宜設定されるが、例えば10秒以上300秒以下とすることができる。特に、溶体化時間を10秒以上とすることにより、溶体化時間の経過後に合金材料50の内部まで温度が十分に高められるため、合金材料50の内部まで溶質金属のβ相と合金成分との固溶体を形成できる。一方で、溶体化時間を300秒以下とすることにより、加熱により形成されたβ結晶が成長して大型化することが抑制されるため、合金材料50の金属組織の微細化を促進できる。ここで、合金材料50の表面温度を保持する手段としては、例えば合金材料50を浸漬している溶融リチウムL1の温度をヒータ21で調整して溶体化処理温度T1に保持することが挙げられる。   The solution time for maintaining the surface temperature of the alloy material 50 heated in the solution treatment step S1 at the solution treatment temperature T1 depends on the temperature at which the alloy material 50 is heated, the thickness of the alloy material 50, and the use of the reinforced alloy. Although it sets suitably, it can be 10 seconds or more and 300 seconds or less, for example. In particular, by setting the solution time to 10 seconds or more, the temperature is sufficiently increased to the inside of the alloy material 50 after the solution time has elapsed, so that the β phase of the solute metal and the alloy component are brought to the inside of the alloy material 50. A solid solution can be formed. On the other hand, by setting the solution time to 300 seconds or less, the β crystal formed by heating is prevented from growing and increasing in size, and therefore, the refinement of the metal structure of the alloy material 50 can be promoted. Here, as a means for maintaining the surface temperature of the alloy material 50, for example, the temperature of the molten lithium L1 in which the alloy material 50 is immersed is adjusted by the heater 21 and maintained at the solution treatment temperature T1.

(S2)溶体化停止工程
溶体化処理工程S1を行った後の合金材料50を、溶体化温度より低い溶体化停止温度T2まで冷却する(図2の工程S21)。合金材料50を溶体化停止温度T2まで冷却することにより、β相からα相への相変化が抑制され、β相の一部が合金成分を固溶した状態で金属組織中に残留する。このとき、合金材料50を急速に冷却することにより、合金材料50の金属組織にα’マルテンサイト相が形成される。従って、溶体化停止温度T2まで急速に冷却することで、α’マルテンサイト相と残留β相とからなる合金元素が固溶した微細構造を合金材料50に形成できる。溶体化停止温度T2は、合金材料50の組成によって適宜選択されるが、例えば合金材料50としてTi−6Al−4V合金を用いた場合、500℃より低いことが好ましく、300℃より低いことがより好ましい。
(S2) Solution Treatment Stopping Step The alloy material 50 after the solution treatment step S1 is cooled to a solution treatment stop temperature T2 lower than the solution treatment temperature (step S21 in FIG. 2). By cooling the alloy material 50 to the solution stop temperature T2, the phase change from the β phase to the α phase is suppressed, and a part of the β phase remains in the metal structure in a state where the alloy components are dissolved. At this time, by rapidly cooling the alloy material 50, an α ′ martensite phase is formed in the metal structure of the alloy material 50. Therefore, by rapidly cooling to the solution stop temperature T2, a fine structure in which the alloy element composed of the α ′ martensite phase and the residual β phase is dissolved can be formed in the alloy material 50. The solution stop temperature T2 is appropriately selected depending on the composition of the alloy material 50. For example, when a Ti-6Al-4V alloy is used as the alloy material 50, it is preferably lower than 500 ° C, more preferably lower than 300 ° C. preferable.

合金材料50を溶体化停止温度T2まで急速に冷却する手段として、溶体化停止温度T2に調節された溶融リチウムL2に合金材料50を浸漬する手段が用いられる。これにより、熱伝導率が高い溶融リチウムL2によって合金材料50から速やかに熱が奪われるため、より迅速に合金材料50を冷却することができる。   As means for rapidly cooling the alloy material 50 to the solution stop temperature T2, means for immersing the alloy material 50 in molten lithium L2 adjusted to the solution stop temperature T2 is used. Thereby, since heat is quickly taken away from the alloy material 50 by the molten lithium L2 having high thermal conductivity, the alloy material 50 can be cooled more rapidly.

この冷却手段の具体例は、図3に示すように、熱処理装置1の熱処理室11内で、溶体化停止槽13に収容された冷却温度の溶融リチウムL2に合金材料50を浸漬する手段が挙げられる。ここで、溶体化停止槽13に収容された溶融リチウムL2の温度を調節するために、例えば溶融リチウムL2を加熱するヒータ22と、溶融リチウムL2を冷却するファン23とが用いられる。   A specific example of this cooling means is a means for immersing the alloy material 50 in molten lithium L2 at a cooling temperature stored in the solution stop tank 13 in the heat treatment chamber 11 of the heat treatment apparatus 1 as shown in FIG. It is done. Here, in order to adjust the temperature of the molten lithium L2 accommodated in the solution stop tank 13, for example, a heater 22 for heating the molten lithium L2 and a fan 23 for cooling the molten lithium L2 are used.

合金材料50を溶体化停止槽13の溶融リチウムL2に浸漬して冷却した後、合金材料50をリチウムの融点(181℃)よりも低い温度、より具体的には室温(常温)までさらに冷却してもよい(図2の工程S22)。これにより、合金材料50の内部でのα相の析出がより低減されるため、α’マルテンサイト相及び残留β相の時間経過による減少を抑えることができる。なお、溶体化停止槽13から取り出された後の合金材料50に対する冷却手段は、例えば図3に示すような、熱処理装置1の熱処理室11の内部で不活性ガスの雰囲気に晒す自然放冷が挙げられる。   After the alloy material 50 is cooled by immersing it in the molten lithium L2 in the solution stop tank 13, the alloy material 50 is further cooled to a temperature lower than the melting point (181 ° C.) of lithium, more specifically to room temperature (room temperature). (Step S22 in FIG. 2). Thereby, since precipitation of the α phase inside the alloy material 50 is further reduced, it is possible to suppress the decrease of the α ′ martensite phase and the residual β phase over time. The cooling means for the alloy material 50 after being taken out from the solution stop tank 13 is, for example, natural cooling that is exposed to an inert gas atmosphere inside the heat treatment chamber 11 of the heat treatment apparatus 1 as shown in FIG. Can be mentioned.

ここで、溶体化停止工程S2を行った後の合金材料50に対して、圧延等の機械加工を行ってもよい。これにより、合金材料50の内部組織に加工歪が多数形成される。そのため、これを再度加熱したときに、これら多数の歪から同時に内部組織の再結晶化を進めることができ、再度加熱したときに形成される結晶の微細化を図ることができる。   Here, you may perform machining, such as rolling, with respect to the alloy material 50 after performing solution-solution stop process S2. As a result, many processing strains are formed in the internal structure of the alloy material 50. Therefore, when this is heated again, recrystallization of the internal structure can proceed simultaneously from these many strains, and the crystal formed when heated again can be refined.

(S3)時効処理工程
合金材料50に対して、時効処理温度T3まで加熱する。このとき、合金材料50は、α相、α’マルテンサイト相及びβ相の溶質金属に合金元素が溶解した固溶体を含有している。このような合金材料50を時効処理温度T3まで加熱することで、合金元素を含んだβ相が、微細なα相と合金元素を含んだ化合物とに分解され易くなる。そのため、合金材料50を時効処理した後に得られる強化合金について、α相結晶の比率を高め、合金材料50の引張強度や0.2%耐力を高めることができる。
(S3) Aging treatment step The alloy material 50 is heated to an aging treatment temperature T3. At this time, the alloy material 50 contains a solid solution in which an alloy element is dissolved in a solute metal of an α phase, an α ′ martensite phase, and a β phase. By heating such an alloy material 50 to the aging treatment temperature T3, the β phase containing the alloy element is easily decomposed into a fine α phase and a compound containing the alloy element. Therefore, with respect to the reinforced alloy obtained after aging treatment of the alloy material 50, the ratio of α-phase crystals can be increased, and the tensile strength and 0.2% proof stress of the alloy material 50 can be increased.

ここで、時効処理工程S3を行う際の時効処理温度T3は、溶質金属がβ相に変態するβ変態温度(Ti−6Al−4V合金の場合は885℃)より低い温度、好ましくは400℃以上650℃以下の範囲内にする。特に、合金材料50としてTi−6Al−4V合金を用いた場合、時効処理工程S3を行う際の合金材料50の表面温度は600℃以下に維持されることがより好ましい。合金材料50の温度が必要以上に高温になった場合、合金材料50に形成されたα相が引張強度の低いβ相に変態し易くなるため、その部分の引張強度や0.2%耐力が急激に低下するからである。   Here, the aging treatment temperature T3 when performing the aging treatment step S3 is lower than the β transformation temperature (885 ° C. in the case of Ti-6Al-4V alloy) at which the solute metal transforms into the β phase, preferably 400 ° C. or more. The temperature is within the range of 650 ° C or lower. In particular, when a Ti-6Al-4V alloy is used as the alloy material 50, the surface temperature of the alloy material 50 when performing the aging treatment step S3 is more preferably maintained at 600 ° C. or lower. When the temperature of the alloy material 50 becomes higher than necessary, the α phase formed in the alloy material 50 is likely to be transformed into a β phase having a low tensile strength. This is because it drops rapidly.

時効処理工程S3における合金材料50の時効処理温度T3への加熱は、短時間で行われるようにする。これにより、溶質金属のβ相の一部が分解して、引張強度が大きく粒径の小さいα相の結晶が生成する一方で、溶質金属と合金元素との化合物が生成され、これらの生成物の間に延性の高いβ相が残留する。そのため、時効処理工程S3を行った後の強化合金について、引張強度や0.2%耐力を高めつつ、破断伸びを高めることができる。従って、硬さと頑丈さとを併せ持った強化合金を得ることができる。   The heating of the alloy material 50 to the aging treatment temperature T3 in the aging treatment step S3 is performed in a short time. As a result, a part of the β phase of the solute metal is decomposed to produce an α phase crystal having a large tensile strength and a small particle size, while a compound of the solute metal and the alloy element is generated, and these products During this period, a highly ductile β phase remains. Therefore, about the reinforced alloy after performing aging treatment process S3, elongation at break can be raised, raising tensile strength and 0.2% yield strength. Therefore, a reinforced alloy having both hardness and robustness can be obtained.

合金材料50を時効処理温度T3に短時間で加熱する手段としては、例えば時効処理温度T3に加熱された溶融状態のリチウムに、合金材料50を浸漬する手段が挙げられる。これにより、空気(2.41×10−2W/mK)よりも熱伝導率の高い溶融リチウム(41.4W/mK)によって熱が合金材料50に速やかに伝えられる。そのため、溶質金属のβ相からα相の結晶核を短時間で多数析出させ、これらの結晶核に溶質金属のα相の微細な組織を形成できる。従って、強化合金に含まれるα相の結晶の粒径を小さくでき、β相の結晶をα相の結晶の間に入り易くして破断伸びを高めることができる。このとき、溶融リチウムに合金材料50を浸漬してから1〜2秒ほどで、合金材料50の表面温度は、溶融リチウムの温度とほぼ等しくなる。 Examples of means for heating the alloy material 50 to the aging treatment temperature T3 in a short time include a means for immersing the alloy material 50 in molten lithium heated to the aging treatment temperature T3. Thereby, heat is quickly transferred to the alloy material 50 by molten lithium (41.4 W / mK) having a higher thermal conductivity than air (2.41 × 10 −2 W / mK). Therefore, a large number of α-phase crystal nuclei can be precipitated in a short time from the β phase of the solute metal, and a fine structure of the α phase of the solute metal can be formed in these crystal nuclei. Therefore, the grain size of the α phase crystals contained in the strengthened alloy can be reduced, and the β phase crystals can easily enter between the α phase crystals, thereby increasing the breaking elongation. At this time, the surface temperature of the alloy material 50 becomes substantially equal to the temperature of the molten lithium in about 1 to 2 seconds after the alloy material 50 is immersed in the molten lithium.

この加熱手段の具体例は、図3に示す熱処理装置1の熱処理室11で、時効処理温度T3に加熱された溶融リチウムの入れられた時効加熱槽14に合金材料50を浸漬する手段が挙げられる。この時効加熱槽14の内部で溶融リチウムの温度を調節するために、例えば液体リチウムを加熱するヒータ24が用いられる。   A specific example of this heating means is a means for immersing the alloy material 50 in an aging heating tank 14 containing molten lithium heated to an aging treatment temperature T3 in the heat treatment chamber 11 of the heat treatment apparatus 1 shown in FIG. . In order to adjust the temperature of the molten lithium inside the aging heating tank 14, for example, a heater 24 for heating liquid lithium is used.

時効処理工程S3において、時効処理温度T3に加熱された溶融リチウムL3に合金材料50を浸漬する時効処理時間は、合金材料50の厚さや形状によって適宜選択されるが、例えば30秒以上30分以下にすることが好ましい。特に、時効処理時間を30秒以上にすることで、合金材料50の内部まで時効処理温度T3に加熱され易くなるため、合金材料50の引張強度や0.2%耐力をより高めることができる。一方、時効処理時間を30分以下にすることで、合金材料50に溶質金属のα相が必要以上に成長して大型化し難くなるため、溶質金属のβ相の減少による破断伸びの低下を抑制することができる。   In the aging treatment step S3, the aging treatment time for immersing the alloy material 50 in the molten lithium L3 heated to the aging treatment temperature T3 is appropriately selected depending on the thickness and shape of the alloy material 50, for example, 30 seconds or more and 30 minutes or less. It is preferable to make it. In particular, by setting the aging treatment time to 30 seconds or more, the alloy material 50 is easily heated to the aging treatment temperature T3, so that the tensile strength and 0.2% proof stress of the alloy material 50 can be further increased. On the other hand, when the aging treatment time is set to 30 minutes or less, the α phase of the solute metal grows more than necessary in the alloy material 50 and is difficult to increase in size, thereby suppressing the decrease in breaking elongation due to the decrease in the β phase of the solute metal. can do.

(S4)時効停止工程
時効処理工程S3を行った後の合金材料50を、表面温度が時効停止温度T4になるまで短時間で冷却する(図2の工程S41)。これにより、少なくとも合金材料50の表面で、時効処理工程S3によって形成された溶質金属のα相の結晶がさらに成長することが抑制され、且つ合金材料50に残留していたβ相からα相への変態が抑制される。また、α相の過剰な形成により合金金属が溶質金属の中で過飽和になり難くなって合金金属の化合物が生成され難くなる。そのため、時効停止後における強化合金のα相の平均粒子径を小さくでき、且つα相の結晶と残留β相とからなる微細な金属組織を保持して、得られる強化合金の破断伸びを大きくすることができる。このように、時効処理工程S3を行った後の冷却によって、強化合金の0.2%耐力、引張強度及び延性が高められることは、従来は知られていなかった事である。
(S4) Aging stop step The alloy material 50 after the aging treatment step S3 is cooled in a short time until the surface temperature reaches the aging stop temperature T4 (step S41 in FIG. 2). Thus, further growth of the α-phase crystals of the solute metal formed by the aging treatment step S3 is suppressed at least on the surface of the alloy material 50, and the β phase remaining in the alloy material 50 is changed to the α phase. The transformation of is suppressed. In addition, the formation of excess α phase makes it difficult for the alloy metal to become supersaturated in the solute metal, and it is difficult to produce a compound of the alloy metal. Therefore, the average particle diameter of the α phase of the strengthened alloy after the aging stop can be reduced, and the fine metal structure composed of the α phase crystals and the residual β phase is maintained, and the fracture elongation of the obtained strengthened alloy is increased. be able to. Thus, it has not been known in the past that the 0.2% proof stress, tensile strength, and ductility of the reinforced alloy are increased by cooling after performing the aging treatment step S3.

合金材料50を短時間で冷却する手段としては、時効停止温度T4に調整された溶融リチウムL4に、合金材料50を浸漬する手段が用いられる。これにより、空気(2.41×10−2W/mK)よりも熱伝導率の高い溶融リチウム(41.4W/mK)によって熱が合金材料50から速やかに奪われる。そのため、合金材料50を迅速に冷却できる。ここで、時効停止温度T4は、リチウムの融点(181℃)より高く、且つ時効処理温度T3より低い温度範囲から適宜設定されるが、例えば350℃以下、より好ましくは300℃以下の範囲にすることで、溶質元素のα相の成長を抑えることができる。なお、時効停止温度T4は、溶体化停止工程S2における溶体化停止温度T2と同じ温度であってもよい。 As means for cooling the alloy material 50 in a short time, means for immersing the alloy material 50 in molten lithium L4 adjusted to the aging stop temperature T4 is used. As a result, heat is rapidly taken away from the alloy material 50 by molten lithium (41.4 W / mK) having a higher thermal conductivity than air (2.41 × 10 −2 W / mK). Therefore, the alloy material 50 can be rapidly cooled. Here, the aging stop temperature T4 is appropriately set from a temperature range higher than the melting point (181 ° C.) of lithium and lower than the aging treatment temperature T3. For example, it is 350 ° C. or lower, more preferably 300 ° C. or lower. Thus, the growth of the α phase of the solute element can be suppressed. The aging stop temperature T4 may be the same temperature as the solution stop temperature T2 in the solution stop step S2.

この冷却手段の具体例は、図3に示すように、熱処理装置1の熱処理室11で、溶融リチウムL4の入れられた時効停止槽15に合金材料50を浸漬する手段が挙げられる。ここで、時効停止槽15に収容された溶融リチウムL4の温度を調節するために、例えば溶融リチウムL4を加熱するヒータ25と、溶融リチウムL4を冷却するファン26とが用いられる。このとき、溶融リチウムに浸漬された合金材料50の表面温度は、1〜2秒ほどで時効停止温度T4まで冷却される。   Specific examples of the cooling means include means for immersing the alloy material 50 in the aging stop tank 15 containing molten lithium L4 in the heat treatment chamber 11 of the heat treatment apparatus 1 as shown in FIG. Here, in order to adjust the temperature of the molten lithium L4 accommodated in the aging stop tank 15, for example, a heater 25 for heating the molten lithium L4 and a fan 26 for cooling the molten lithium L4 are used. At this time, the surface temperature of the alloy material 50 immersed in the molten lithium is cooled to the aging stop temperature T4 in about 1 to 2 seconds.

時効停止工程S4において、時効停止温度T4に調整された溶融リチウムL4に合金材料50を浸漬する時間は、合金材料50の厚さや形状によって適宜選択されるが、例えば10秒以上にすることが好ましい。特に、浸漬時間を10秒以上にすることで、合金材料50の内部におけるα相の結晶の成長が抑えられるため、合金材料50の引張強度や0.2%耐力をより高めることができる。   In the aging stop step S4, the time for immersing the alloy material 50 in the molten lithium L4 adjusted to the aging stop temperature T4 is appropriately selected depending on the thickness and shape of the alloy material 50, and is preferably set to, for example, 10 seconds or more. . In particular, by setting the immersion time to 10 seconds or longer, the growth of α-phase crystals inside the alloy material 50 can be suppressed, so that the tensile strength and 0.2% yield strength of the alloy material 50 can be further increased.

合金材料50を時効停止槽15の溶融リチウムL4に浸漬して冷却した後、合金材料50をリチウムの融点(181℃)よりも低い温度、より具体的には室温(常温)までさらに冷却する(図2の工程S42)。なお、時効停止槽15から取り出された合金材料50の冷却手段は、例えば図3に示すような、熱処理装置1の熱処理室11の内部で不活性ガスの雰囲気に晒す自然放冷が挙げられる。
時効停止工程S4を経て得られた強化合金は、図示しない洗浄手段を用いて表面に付着したリチウムを除去する。これにより、リチウムと空気や水との接触による発熱等を低減できる。強化合金の洗浄手段は、例えば大量の水に浸漬して超音波洗浄する手段が挙げられる。
After the alloy material 50 is immersed in molten lithium L4 in the aging stop tank 15 and cooled, the alloy material 50 is further cooled to a temperature lower than the melting point of lithium (181 ° C.), more specifically to room temperature (room temperature) ( Step S42 in FIG. In addition, as a cooling means of the alloy material 50 taken out from the aging stop tank 15, natural cooling which exposes to the atmosphere of inert gas inside the heat processing chamber 11 of the heat processing apparatus 1 as shown, for example in FIG. 3 is mentioned.
The strengthened alloy obtained through the aging stop step S4 removes lithium adhering to the surface using a cleaning means (not shown). Thereby, the heat_generation | fever etc. by contact with lithium, air, and water can be reduced. Examples of the means for cleaning the reinforced alloy include a means for ultrasonic cleaning by immersing in a large amount of water.

以上、本発明の強化合金の製造方法の一実施態様について説明したが、本発明は、前述した実施態様に制限されるものではない。
例えば、熱処理装置1は、この態様に限定されず、例えば溶体化停止槽13と時効停止槽15とを同一の溶融リチウム槽から構成してもよく、溶体化処理槽12と時効加熱槽14とを同一の溶融リチウム槽から構成してもよい。これにより、強化合金の製造に用いられる溶融リチウム槽の数が低減されるため、熱処理装置1を簡略化しつつ、熱処理装置1に用いられる溶融リチウムの量を低減することができる。但し、溶体化処理槽12と時効加熱槽14とを同一の溶融リチウム槽から構成する場合は、ヒータ21(24)の出力を適宜調節して、溶体化処理槽12として用いられる場合は溶融リチウムの温度を溶体化処理温度T1に設定し、時効加熱槽14として用いられる場合は溶融リチウムの温度を時効処理温度T3に設定する。
As mentioned above, although one embodiment of the manufacturing method of the reinforced alloy of this invention was demonstrated, this invention is not restrict | limited to the embodiment mentioned above.
For example, the heat treatment apparatus 1 is not limited to this mode. For example, the solution stop tank 13 and the aging stop tank 15 may be formed of the same molten lithium tank, and the solution treatment tank 12 and the aging heating tank 14 May be composed of the same molten lithium bath. Thereby, since the number of the molten lithium tanks used for manufacture of a reinforced alloy is reduced, the quantity of the molten lithium used for the heat processing apparatus 1 can be reduced, simplifying the heat processing apparatus 1. FIG. However, when the solution treatment tank 12 and the aging heating tank 14 are composed of the same molten lithium tank, the output of the heater 21 (24) is adjusted as appropriate, and when used as the solution treatment tank 12, molten lithium. Is set to the solution treatment temperature T1, and when used as the aging heating tank 14, the temperature of the molten lithium is set to the aging treatment temperature T3.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.

〔実施例1〕
合金材料としてTi−6Al−4V合金(β変態温度:885℃)を用いた。この合金材料の表面には、表面温度を測定するために熱電対を貼り付けた。
[Example 1]
A Ti-6Al-4V alloy (β transformation temperature: 885 ° C.) was used as the alloy material. A thermocouple was attached to the surface of the alloy material in order to measure the surface temperature.

この合金材料を加熱及び冷却するために、内部にアルゴンガスが充填された密閉された熱処理室を有する熱処理装置を用いた。このうち、熱処理室の一方の側には扉によって密閉可能な入口室を設け、他方の側には扉によって密閉可能な出口室を設けた。そして、熱処理室の内部には、各々溶融リチウムが収容された溶体化処理槽、溶体化停止槽、時効加熱槽及び時効停止槽を設けた。   In order to heat and cool the alloy material, a heat treatment apparatus having a sealed heat treatment chamber filled with argon gas was used. Among these, an inlet chamber that can be sealed by a door is provided on one side of the heat treatment chamber, and an outlet chamber that can be sealed by a door is provided on the other side. And in the inside of the heat treatment chamber, a solution treatment tank, a solution stop tank, an aging heating tank and an aging stop tank each containing molten lithium were provided.

このうち溶体化処理槽に収容された溶融リチウムの温度を、ヒータを用いて溶体化処理温度である980℃に調節し、熱処理装置の入口室から熱処理室に搬入された合金材料を溶体化処理槽の溶融リチウムに浸漬した。その後、60秒間の溶体化時間に亘って、合金材料が浸漬された溶融リチウムの温度を保持した。   Among these, the temperature of the molten lithium accommodated in the solution treatment tank is adjusted to 980 ° C. which is a solution treatment temperature using a heater, and the alloy material carried into the heat treatment chamber from the inlet chamber of the heat treatment apparatus is subjected to the solution treatment. It was immersed in the molten lithium of the tank. Thereafter, the temperature of the molten lithium in which the alloy material was immersed was maintained for a solution time of 60 seconds.

次いで、合金材料を溶体化停止槽に移し、合金材料を急冷した。合金材料を溶体化停止槽に浸漬する際、溶体化停止槽に収容された溶融リチウムの温度は、溶融リチウムを加熱するヒータと、溶融リチウムを冷却するファンと、を用いて溶体化停止温度である200℃に調節した。溶体化停止槽の溶融リチウムに浸漬した後、合金材料はさらに熱処理室内で不活性ガスの雰囲気に晒して常温まで冷却した。   Next, the alloy material was transferred to a solution stop tank, and the alloy material was rapidly cooled. When immersing the alloy material in the solution stop tank, the temperature of the molten lithium contained in the solution stop tank is a solution stop temperature using a heater that heats the molten lithium and a fan that cools the molten lithium. The temperature was adjusted to 200 ° C. After being immersed in molten lithium in a solution stop tank, the alloy material was further exposed to an inert gas atmosphere in a heat treatment chamber and cooled to room temperature.

次いで、合金材料を時効加熱槽に浸漬した。ここで、合金材料を時効加熱槽に浸漬する際、時効加熱槽に収容された溶融リチウムの温度は、ヒータを用いて時効処理温度である550℃に調節した。合金材料を時効加熱槽に浸漬した後、10分間の時効処理時間に亘って合金材料が浸漬された溶融リチウムの温度を保持し、合金材料の表面温度が時効処理温度に保持されるようにした。   Next, the alloy material was immersed in an aging heating tank. Here, when the alloy material was immersed in an aging heating tank, the temperature of the molten lithium accommodated in the aging heating tank was adjusted to 550 ° C., which is an aging treatment temperature, using a heater. After immersing the alloy material in the aging heating tank, the temperature of the molten lithium in which the alloy material was immersed was maintained for 10 minutes, and the surface temperature of the alloy material was maintained at the aging temperature. .

次いで、合金材料を時効停止槽に移し、合金材料を急冷した。合金材料を時効停止槽に浸漬する際、時効停止槽に収容された溶融リチウムの温度は、溶融リチウムを加熱するヒータと、溶融リチウムを冷却するファンと、を用いて時効停止温度である200℃に調節した。このとき、合金材料の表面温度は、溶融リチウムに浸漬してから2秒後に時効処理温度まで下がった。時効停止槽の溶融リチウムに浸漬した後、合金材料はさらに熱処理室内で不活性ガスの雰囲気に晒して常温まで冷却した。   Next, the alloy material was transferred to an aging stop tank, and the alloy material was rapidly cooled. When the alloy material is immersed in the aging stop tank, the temperature of the molten lithium accommodated in the aging stop tank is 200 ° C., which is an aging stop temperature using a heater that heats the molten lithium and a fan that cools the molten lithium. Adjusted. At this time, the surface temperature of the alloy material decreased to the aging treatment temperature 2 seconds after being immersed in molten lithium. After being immersed in molten lithium in an aging stop tank, the alloy material was further exposed to an inert gas atmosphere in a heat treatment chamber and cooled to room temperature.

合金材料を時効処理することで得られた強化合金は、大量の水の中で超音波洗浄を行って表面に付着したリチウムを除去した後、JIS Z 2241に準じた引張試験を行い、0.2%耐力、引張強度及び破断伸びの測定を行った。   The reinforced alloy obtained by aging the alloy material was subjected to ultrasonic cleaning in a large amount of water to remove lithium adhering to the surface, and then subjected to a tensile test according to JIS Z 2241. 2% yield strength, tensile strength and elongation at break were measured.

〔比較例1〕
実施例1に比して、時効停止工程S4で合金材料を時効停止槽の溶融リチウムに浸漬せずに冷却した。すなわち、実施例1と同様に時効処理槽から取り出された合金材料は、時効停止槽に浸漬せずに、熱処理室内で不活性ガスの雰囲気に晒し、常温まで冷却した。このとき、合金材料の表面温度が時効停止温度と同じ200℃を下回ったのは、合金材料が溶融リチウムから引き上げられてから1時間後であった。それ以外は実施例1と同様である。
[Comparative Example 1]
Compared to Example 1, the alloy material was cooled in the aging stop step S4 without being immersed in the molten lithium in the aging stop tank. That is, the alloy material taken out from the aging tank as in Example 1 was exposed to an inert gas atmosphere in the heat treatment chamber without being immersed in the aging stop tank, and cooled to room temperature. At this time, the surface temperature of the alloy material fell below 200 ° C., the same as the aging stop temperature, one hour after the alloy material was pulled out of the molten lithium. The rest is the same as in the first embodiment.

〔比較例2〕
実施例1に比して、時効処理工程S3における時効処理時間を長くし、時効停止工程S4で合金材料を時効停止槽の溶融リチウムに浸漬せずに冷却した。すなわち、実施例1と同様に溶体化処理槽から取り出されて常温まで冷却された合金材料は、時効加熱槽に浸漬せずに、ヒータを用いて時効処理温度である550℃に加熱した。このとき、合金材料は約2秒かけて時効処理温度まで加熱された。合金材料の表面温度が時効処理温度に達した後、2時間に亘って合金材料の表面温度を時効処理温度に保持した。
[Comparative Example 2]
Compared to Example 1, the aging treatment time in the aging treatment step S3 was lengthened, and the alloy material was cooled in the aging suspension step S4 without being immersed in the molten lithium in the aging suspension tank. That is, the alloy material taken out from the solution treatment tank and cooled to room temperature in the same manner as in Example 1 was heated to 550 ° C., which is an aging treatment temperature, using a heater without being immersed in the aging heating tank. At this time, the alloy material was heated to the aging temperature for about 2 seconds. After the surface temperature of the alloy material reached the aging treatment temperature, the surface temperature of the alloy material was maintained at the aging treatment temperature for 2 hours.

次いで、ヒータによる合金材料の加熱を止めて、合金材料を熱処理室内で不活性ガスの雰囲気に晒し、常温まで冷却した。このとき、合金材料の表面温度が時効停止温度と同じ200℃を下回ったのは、合金材料が溶融リチウムから引き上げられてから1時間後であった。それ以外は実施例1と同様である。   Next, the heating of the alloy material by the heater was stopped, and the alloy material was exposed to an inert gas atmosphere in the heat treatment chamber and cooled to room temperature. At this time, the surface temperature of the alloy material fell below 200 ° C., the same as the aging stop temperature, one hour after the alloy material was pulled out of the molten lithium. The rest is the same as in the first embodiment.

実施例1、比較例1及び比較例2についての、溶体化処理工程S1を行う前(試験前)の合金材料と、時効停止工程S4を行った後(試験後)の強化合金に対する、JIS Z 2241に準じた引張試験による機械的強度の測定値を下記〔表1〕に示す。   JIS Z for Example 1, Comparative Example 1 and Comparative Example 2 with respect to the alloy material before the solution treatment step S1 (before the test) and the strengthened alloy after the aging stop step S4 (after the test) The measured values of the mechanical strength by the tensile test according to 2241 are shown in the following [Table 1].

Figure 2010255023
Figure 2010255023

前記実施例及び比較例の結果から、例えば以下のことがわかる。
合金材料を時効停止温度の溶融リチウムに浸漬しなかった比較例1及び2に比して、合金材料を時効停止温度の溶融リチウムに浸漬した実施例1は、時効停止温度までの冷却時間が短縮されつつ、時効強化合金の0.2%耐力、引張強度及び破断伸びがいずれも高められることがわかる。
From the results of the examples and comparative examples, for example, the following can be understood.
Compared with Comparative Examples 1 and 2 in which the alloy material was not immersed in molten lithium at the aging stop temperature, Example 1 in which the alloy material was immersed in molten lithium at the aging stop temperature shortened the cooling time to the aging stop temperature. It can be seen that the 0.2% proof stress, tensile strength and elongation at break of the aging strengthened alloy are all increased.

1 熱処理装置
11 熱処理室
12 溶体化処理槽
13 溶体化停止槽
14 時効加熱槽
15 時効停止槽
21、22、24、25 ヒータ
23、26 ファン
30 入口室
40 出口室
31、32、41、42 扉
27 移動機構
50 合金材料
L1〜L4 溶融リチウム
DESCRIPTION OF SYMBOLS 1 Heat processing apparatus 11 Heat processing chamber 12 Solution treatment tank 13 Solution stop tank 14 Aging heating tank 15 Aging stop tank 21, 22, 24, 25 Heater 23, 26 Fan 30 Inlet chamber 40 Outlet chamber 31, 32, 41, 42 Door 27 Moving mechanism 50 Alloy material L1-L4 Molten lithium

Claims (3)

合金材料の溶質金属の溶体化温度より高い溶体化処理温度に保持された溶融リチウムに前記合金材料を浸漬する溶体化処理工程と、
前記溶体化処理工程の後に、前記溶体化処理温度より低い冷却温度に保持された溶融リチウムに前記合金材料を浸漬する溶体化停止工程と、
前記溶体化停止工程の後に、溶体化温度より低い時効処理温度に保持された溶融リチウムに前記合金材料を浸漬する時効処理工程と、
前記時効処理工程の後に、前記時効処理温度より低い時効停止温度に保持された溶融リチウムに前記合金材料を浸漬する時効停止工程と、を有する強化合金の製造方法。
A solution treatment step of immersing the alloy material in molten lithium held at a solution treatment temperature higher than the solution treatment temperature of the solute metal of the alloy material;
After the solution treatment step, a solution stop step of immersing the alloy material in molten lithium held at a cooling temperature lower than the solution treatment temperature;
After the solution stopping step, an aging treatment step of immersing the alloy material in molten lithium held at an aging treatment temperature lower than the solution treatment temperature;
An aging stop step of immersing the alloy material in molten lithium held at an aging stop temperature lower than the aging treatment temperature after the aging treatment step.
前記時効停止工程では、前記合金材料を350℃以下の溶融リチウムに浸漬する請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein in the aging stop step, the alloy material is immersed in molten lithium at 350 ° C. or lower. 前記合金材料としてチタン合金を用いる請求項1又は2のいずれか記載の製造方法。   The manufacturing method according to claim 1, wherein a titanium alloy is used as the alloy material.
JP2009103733A 2009-04-22 2009-04-22 Method for manufacturing strengthened alloy Pending JP2010255023A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009103733A JP2010255023A (en) 2009-04-22 2009-04-22 Method for manufacturing strengthened alloy
US12/765,085 US20100276040A1 (en) 2009-04-22 2010-04-22 Method of producing strengthened alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009103733A JP2010255023A (en) 2009-04-22 2009-04-22 Method for manufacturing strengthened alloy

Publications (1)

Publication Number Publication Date
JP2010255023A true JP2010255023A (en) 2010-11-11

Family

ID=43029521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009103733A Pending JP2010255023A (en) 2009-04-22 2009-04-22 Method for manufacturing strengthened alloy

Country Status (2)

Country Link
US (1) US20100276040A1 (en)
JP (1) JP2010255023A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111255A1 (en) * 2012-01-23 2013-08-01 キヤノン株式会社 Radiation target and method of manufacturing same
WO2019049979A1 (en) * 2017-09-11 2019-03-14 Ntn株式会社 Machine part and method for producing machine part
JP2020045519A (en) * 2018-09-19 2020-03-26 Ntn株式会社 Machine component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111255A1 (en) * 2012-01-23 2013-08-01 キヤノン株式会社 Radiation target and method of manufacturing same
JPWO2013111255A1 (en) * 2012-01-23 2015-05-11 キヤノン株式会社 Radiation target and manufacturing method thereof
WO2019049979A1 (en) * 2017-09-11 2019-03-14 Ntn株式会社 Machine part and method for producing machine part
JP2020045519A (en) * 2018-09-19 2020-03-26 Ntn株式会社 Machine component
JP7154080B2 (en) 2018-09-19 2022-10-17 Ntn株式会社 machine parts

Also Published As

Publication number Publication date
US20100276040A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
TWI607093B (en) Metal alloy composite material and method for making the same
RU2544976C2 (en) Titanium material
JP4168066B2 (en) Aluminum alloy for anodizing treatment used in plasma processing apparatus and manufacturing method thereof, aluminum alloy member having anodized film, and plasma processing apparatus
JP2005527699A (en) Method for treating beta-type titanium alloy
JP2009114514A (en) Al-Zn-Mg-Cu ALLOY EXTRUDED MATERIAL WITH EXCELLENT WARM WORKABILITY, ITS MANUFACTURING METHOD, AND WARM WORKED MATERIAL USING THE EXTRUDED MATERIAL
JP6176425B1 (en) α + β type titanium alloy extrusion
Lopes et al. Microstructure, mechanical properties, and electrochemical behavior of Ti-Nb-Fe alloys applied as biomaterials
JP2012503098A (en) Method of manufacturing titanium parts by initial β forging
Mehrabi et al. Influence of chemical composition and manufacturing conditions on properties of NiTi shape memory alloys
RU2402626C2 (en) Procedure for production of items out of titanium alloy
JP2010255023A (en) Method for manufacturing strengthened alloy
Mohamad et al. Effect of ageing temperatures on pseudoelasticity of Ni-rich NiTi shape memory alloy
JP2014152355A (en) High temperature shape memory alloy, superelastic alloy and methods of producing them
JP2005200702A (en) Method of heat treating aluminum die-cast product
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
CN113046680B (en) In-situ oxidation modification method for surface of nickel-titanium alloy material
CN108893655A (en) A kind of high-strength corrosion-resistant erosion titanium alloy and preparation method thereof
Asgarinia et al. Heat treatment of NiTi alloys
JP4302930B2 (en) High corrosion resistance, high strength, high toughness Nitrided Mo alloy processed material and its manufacturing method
JP2004052008A (en) Titanium-copper alloy and manufacturing method therefor
JP5382518B2 (en) Titanium material
CN113512668A (en) Boron-containing shape memory alloy and preparation method thereof
JP2019060001A (en) Heat treatment method
JP4265697B2 (en) Method for purifying metal silicon and method for producing silicon lump
JP2007070670A (en) High-purity aluminum alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20130618