JP2007070670A - High-purity aluminum alloy material - Google Patents

High-purity aluminum alloy material Download PDF

Info

Publication number
JP2007070670A
JP2007070670A JP2005257467A JP2005257467A JP2007070670A JP 2007070670 A JP2007070670 A JP 2007070670A JP 2005257467 A JP2005257467 A JP 2005257467A JP 2005257467 A JP2005257467 A JP 2005257467A JP 2007070670 A JP2007070670 A JP 2007070670A
Authority
JP
Japan
Prior art keywords
purity aluminum
aluminum alloy
mass
alloy material
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005257467A
Other languages
Japanese (ja)
Other versions
JP2007070670A5 (en
JP4839739B2 (en
Inventor
Hitoshi Yasuda
均 安田
Hiroshi Tabuchi
宏 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005257467A priority Critical patent/JP4839739B2/en
Publication of JP2007070670A publication Critical patent/JP2007070670A/en
Publication of JP2007070670A5 publication Critical patent/JP2007070670A5/ja
Application granted granted Critical
Publication of JP4839739B2 publication Critical patent/JP4839739B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-purity aluminum alloy material on which an anodic oxide film free from unevenness and a defect can be easily formed into sufficient thickness, though containing a comparatively large amount of magnesium. <P>SOLUTION: The high-purity aluminum alloy material comprises, by mass%, 2.5 to 5.5% magnesium, 0.08 to 0.5% silicon, 0.01 mass% or less titanium, 0.002 mass% or less boron, and 0.001 mass% or less unavoidable impure elements. The high-purity aluminum alloy material is a cast material or a plastic-worked material. The high-purity aluminum alloy material with the anodic oxide film free from unevenness and the defect is easily obtained by forming the anodic oxide film on the surface of the high-purity aluminum alloy material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高純度アルミニウム合金材に関する。 The present invention relates to a high purity aluminum alloy material.

高純度アルミニウム合金材は、プラズマ反応装置などを構成する材料として有用であり、例えばプラズマから保護するための陽極酸化皮膜を表面に形成して、陽極酸化高純度アルミニウム合金材として用いられている〔特許文献1:特開2004−190090号公報〕。このような高純度アルミニウム合金材としては、厚い陽極酸化皮膜を容易に形成することができ、機械的強度の高いものが求められている。
高純度アルミニウム合金材の機械的強度を高めるには、マグネシウムの含有量を増やせばよい。
The high-purity aluminum alloy material is useful as a material constituting a plasma reactor or the like, and is used as an anodized high-purity aluminum alloy material by forming, for example, an anodized film for protection from plasma on the surface [ Patent Document 1: Japanese Patent Laid-Open No. 2004-190090]. As such a high-purity aluminum alloy material, a material that can easily form a thick anodic oxide film and has high mechanical strength is required.
In order to increase the mechanical strength of the high-purity aluminum alloy material, the magnesium content may be increased.

しかし、従来のマグネシウム含有量の高い高純度アルミニウム合金材では、厚い陽極酸化皮膜を形成すると、形成された皮膜にムラや、クラックなどの欠陥が生じ易くなるという問題があった。 However, the conventional high-purity aluminum alloy material with a high magnesium content has a problem that when a thick anodic oxide film is formed, defects such as unevenness and cracks are likely to occur in the formed film.

特開2004−190090号公報Japanese Patent Laid-Open No. 2004-190090

そこで本発明者は、比較的高いマグネシウム含有量で、十分な厚みでムラや欠陥のない陽極酸化皮膜を容易に形成しうる高純度アルミニウム合金材を開発するべく鋭意検討した結果、本発明に至った。 Accordingly, the present inventors have intensively studied to develop a high-purity aluminum alloy material capable of easily forming an anodic oxide film having a relatively high magnesium content and a sufficient thickness and free from unevenness and defects, resulting in the present invention. It was.

すなわち本発明は、マグネシウム含有量が2.5質量%〜5.5質量%、シリコン含有量が0.08質量%〜0.5質量%、チタン含有量が0.01質量%以下、ホウ素含有量が0.002質量%以下であり、不可避不純元素含有量が0.01質量%以下であることを特徴とする高純度アルミニウム合金材を提供するものである。 That is, the present invention has a magnesium content of 2.5 mass% to 5.5 mass%, a silicon content of 0.08 mass% to 0.5 mass%, a titanium content of 0.01 mass% or less, and a boron content. A high-purity aluminum alloy material characterized in that the amount is 0.002% by mass or less and the inevitable impure element content is 0.01% by mass or less.

本発明の高純度アルミニウム合金材は、比較的高いマグネシウム含有量であり、十分な厚みでムラや欠陥のない陽極酸化皮膜を容易に形成しうる。また、本発明の高純度アルミニウム合金材の表面に陽極酸化皮膜を形成した陽極酸化高純度アルミニウム合金材は、十分な厚みの陽極酸化皮膜を形成しても、この陽極酸化皮膜にムラや欠陥がないので、例えばプラズマ反応装置を構成する材料として有用である。 The high-purity aluminum alloy material of the present invention has a relatively high magnesium content, and can easily form an anodized film having a sufficient thickness and free from unevenness and defects. In addition, the anodized high-purity aluminum alloy material in which the anodized film is formed on the surface of the high-purity aluminum alloy material of the present invention has unevenness and defects in the anodized film even if an anodized film having a sufficient thickness is formed. For example, it is useful as a material constituting a plasma reactor.

本発明の高純度アルミニウム合金材は、マグネシウム含有量が2.5質量%〜5.5質量%である。マグネシウム含有量が2.5質量%未満であると、穴開け加工、切削加工などの機械加工により所望の形状に加工しにくい傾向にあり、5.5質量%を超えると圧延加工などの塑性加工の際に伸びにくくなったり、割れ易くなって、所望の形状に加工しにくい傾向にある。 The high-purity aluminum alloy material of the present invention has a magnesium content of 2.5 mass% to 5.5 mass%. If the magnesium content is less than 2.5% by mass, it tends to be difficult to process into a desired shape by machining such as drilling or cutting, and if it exceeds 5.5% by mass, plastic processing such as rolling. In this case, it tends to be difficult to stretch or break, and it tends to be difficult to process into a desired shape.

シリコン含有量は0.08質量%〜0.5質量%である。シリコン含有量が0.08質量%未満であると、表面に陽極酸化皮膜を形成したときにムラのあるものとなり易く、0.5質量%を超えると、表面に陽極酸化皮膜を形成したときにクラック状の結果を生じ易くなる。 Silicon content is 0.08 mass%-0.5 mass%. When the silicon content is less than 0.08% by mass, unevenness tends to occur when an anodized film is formed on the surface, and when more than 0.5% by mass, the anodized film is formed on the surface. A crack-like result is likely to occur.

チタン含有量は0.01質量%以下であり、ホウ素含有量は0.002質量%以下である。チタン含有量が0.01質量%を超えたり、ホウ素含有量が0.02質量%を超えると、プラズマ反応装置を構成する材料として使用したときに合金材に含まれるチタン、ホウ素が不純物として飛散し易くなる。また、合金材を構成する結晶粒が微細化して、鋳造時に巣や、割れなどが生じにくくなることから、チタン含有量が0.001質量%以上であり、ホウ素含有量が0.0002質量%以上であることが好ましい。 The titanium content is 0.01% by mass or less, and the boron content is 0.002% by mass or less. When the titanium content exceeds 0.01% by mass or the boron content exceeds 0.02% by mass, titanium and boron contained in the alloy material are scattered as impurities when used as a material constituting the plasma reactor. It becomes easy to do. In addition, since the crystal grains constituting the alloy material are refined and nests and cracks are less likely to occur during casting, the titanium content is 0.001% by mass or more and the boron content is 0.0002% by mass. The above is preferable.

本発明の高純度アルミニウム合金材に含まれる不可避不純元素の含有量は、0.01質量%以下、好ましくは0.002質量%以下である。不可避不純元素含有量が0.01質量%を超えると、プラズマ反応装置を構成する材料として使用したときに合金材に含まれる不可避不純物元素が飛散し易くなる。不可避不純元素としては、例えば鉄、マンガン、銅、クロム、亜鉛、ニッケル、バナジウムなどの遷移金属元素、リチウム、ナトリウムなどのアルカリ金属元素、カルシウム、ストロンチウムなどのアルカリ土類金属元素、亜鉛、ガリウムなどの金属元素が挙げられる。 The content of inevitable impure elements contained in the high purity aluminum alloy material of the present invention is 0.01% by mass or less, preferably 0.002% by mass or less. When the content of inevitable impure elements exceeds 0.01% by mass, the inevitable impurity elements contained in the alloy material are likely to be scattered when used as a material constituting the plasma reactor. Inevitable impure elements include, for example, transition metal elements such as iron, manganese, copper, chromium, zinc, nickel and vanadium, alkali metal elements such as lithium and sodium, alkaline earth metal elements such as calcium and strontium, zinc and gallium, etc. These metal elements can be mentioned.

本発明の高純度アルミニウム合金材は鋳塊材であってもよいし、鋳塊材を塑性加工して得られる組成加工材であってもよい。 The high-purity aluminum alloy material of the present invention may be an ingot material or a composition processed material obtained by plastic processing of the ingot material.

本発明の高純度アルミニウム合金材の鋳塊材は、例えば加熱されて溶融状態にある高純度アルミニウムに、マグネシウムおよびシリコンと、必要によりチタンおよびホウ素とを添加して合金溶湯とし、得られた合金溶湯を鋳造する方法により製造することができる。 The ingot material of the high-purity aluminum alloy material of the present invention is, for example, an alloy obtained by adding magnesium and silicon and, if necessary, titanium and boron to high-purity aluminum that is heated and in a molten state to obtain a molten alloy It can manufacture by the method of casting a molten metal.

原料として用いられる高純度アルミニウムとしては、通常、純度99.99質量%以上、好ましくは99.998質量%以上で、不可避不純物元素含有量が0.01質量%以下、好ましくは0.002質量%以下の金属アルミニウムが用いられる。 The high-purity aluminum used as a raw material is usually 99.99% by mass or more, preferably 99.998% by mass or more, and the inevitable impurity element content is 0.01% by mass or less, preferably 0.002% by mass. The following metallic aluminum is used.

高純度アルミニウムは、不純元素の混入を避けるために、通常は黒鉛製坩堝、アルミナ製坩堝の中で加熱される。加熱温度は高純度アルミニウムが完全に溶融する温度であればよく、通常は700℃〜800℃程度である。 High-purity aluminum is usually heated in a graphite crucible or an alumina crucible in order to avoid contamination with impure elements. The heating temperature may be a temperature at which high-purity aluminum is completely melted, and is usually about 700 ° C to 800 ° C.

マグネシウムおよびシリコンとしては、通常、不純物元素の少ない高純度の金属マグネシウムおよび金属シリコンが使用される。 As magnesium and silicon, high-purity metallic magnesium and metallic silicon with few impurity elements are usually used.

チタンおよびホウ素は、通常、加熱されて溶融状態にある高純度アルミニウムに予めチタンおよびホウ素を添加した母合金として添加され、ここで母合金に用いられる高純度アルミニウムとしては、上記したと同様のものが使用される。 Titanium and boron are usually added as a mother alloy in which titanium and boron are added to high-purity aluminum that is heated and in a molten state. Here, the high-purity aluminum used in the mother alloy is the same as described above. Is used.

合金溶湯を鋳造するには、合金溶湯を鋳型に流し込み、冷却して固化させればよく、連続鋳造法により鋳造してもよいし、重力鋳造法により鋳造してもよい。概ね100kgを超える鋳塊材を製造する場合には通常、連続鋳造法により鋳造し、100kg未満の鋳塊材を製造する場合には通常、重力鋳造法により鋳造する。鋳型としては、不純元素の混入を避けるために、通常はアルミニウム製、黒鉛製、アルミナ製のものが用いられ、アルミニウム製の鋳型は連続鋳造法に、黒鉛製、アルミナ製の鋳型は重力鋳造法に、それぞれ用いられる。鋳型は予め100℃〜300℃程度に加熱されていることが好ましい。鋳型内に流し込まれた溶湯を冷却する際の冷却速度は、クラックなどが生じにくい点で、通常10℃/秒以下、経済性の点で通常0.5℃/秒以上である。 In order to cast the molten alloy, the molten alloy may be poured into a mold and cooled and solidified. The molten alloy may be cast by a continuous casting method or may be cast by a gravity casting method. When an ingot material exceeding approximately 100 kg is manufactured, casting is usually performed by a continuous casting method, and when an ingot material less than 100 kg is manufactured, casting is generally performed by a gravity casting method. In order to avoid contamination with impure elements, aluminum, graphite, and alumina molds are usually used as molds. Aluminum molds are used for continuous casting, and graphite and alumina molds are used for gravity casting. Respectively. The mold is preferably preheated to about 100 ° C to 300 ° C. The cooling rate when the molten metal poured into the mold is cooled is usually 10 ° C./second or less, and usually 0.5 ° C./second or more from the viewpoint of economy, in that cracks and the like are hardly generated.

本発明の高純度アルミニウム合金材の塑性加工材は、かくして得られる鋳塊材を原料として、以下のアニール工程、熱間加工工程および冷間加工工程を含む方法により製造することができる。 The plastic working material of the high purity aluminum alloy material of the present invention can be produced by a method including the following annealing step, hot working step and cold working step, using the ingot material thus obtained as a raw material.

(1)鋳塊材を520℃〜560℃にて2時間以上保持するアニール工程
(2)アニール工程後、250℃〜560℃にて加工率60%〜96%の塑性加工を行う熱間加工工程
(3)熱間加工工程後、100℃以下にて加工率10%〜45%の塑性加工を行う冷間加工工程
(1) Annealing process for holding the ingot material at 520 ° C. to 560 ° C. for 2 hours or more.
(2) Hot working process for performing plastic working at a working rate of 60% to 96% at 250 ° C. to 560 ° C. after the annealing step.
(3) Cold working process in which plastic working is performed at a processing rate of 10% to 45% at 100 ° C. or lower after the hot working process.

(1)先ず、アニール工程により、鋳塊材に含まれる化合物相粒子を固溶させて、そのサイズ、密度、アスペクト比などを小さくし、化合物相粒子の影響を小さくすることができる。化合物相粒子は、原料として用いた高純度アルミニウムやマグネシウムなどに含まれるごく僅かな不純物に起因して鋳造時に晶析する化合物の微細な粒子である。鋳塊材を保持する温度が520℃未満では、化合物相粒子を十分に固溶させることができず、560℃を超えると加熱に要するエネルギーに見合った効果が得られないばかりか、鋳塊材が溶解し始めてしまい、好ましくは530℃〜550℃にて保持する。また、保持する時間が2時間未満では、アニールの効果が十分ではなく、また24時間を超えて保持しても、これに見合った効果が得られないことから、経済性の点で、通常は24時間以下、好ましくは6時間〜12時間保持する。 (1) First, by the annealing process, the compound phase particles contained in the ingot material can be dissolved, and the size, density, aspect ratio, etc. can be reduced, and the influence of the compound phase particles can be reduced. Compound phase particles are fine particles of a compound that crystallizes during casting due to very few impurities contained in high-purity aluminum or magnesium used as a raw material. If the temperature at which the ingot material is held is less than 520 ° C., the compound phase particles cannot be sufficiently dissolved, and if it exceeds 560 ° C., the effect corresponding to the energy required for heating cannot be obtained. Starts to dissolve, and is preferably maintained at 530 ° C to 550 ° C. In addition, if the holding time is less than 2 hours, the effect of annealing is not sufficient, and even if the holding time exceeds 24 hours, an effect commensurate with this cannot be obtained. Hold for 24 hours or less, preferably 6-12 hours.

(2)次いで行われる熱間加工工程により、合金材の組成を均一化させることができる。熱間加工工程が250℃未満で行われると、均一化が不十分であり、また560℃を超える温度で行われると、部分的な溶解が始まってしまい、好ましくは280℃〜520℃で行われる。また、加工率が60%未満では組成の均一化が不十分なものとなり、また加工率が96%を超えても、これに見合った効果が得られず、経済的に不利になることから、好ましくは加工率75%〜90%の塑性加工を行う。塑性加工は、例えば高純度アルミニウム合金材を圧縮しながら引き延ばす圧延により行うことができる。 (2) The composition of the alloy material can be made uniform by the subsequent hot working step. If the hot working step is performed at a temperature lower than 250 ° C., homogenization is insufficient. If the hot working step is performed at a temperature higher than 560 ° C., partial melting starts, preferably at 280 ° C. to 520 ° C. Is called. In addition, if the processing rate is less than 60%, the composition becomes insufficiently uniform, and even if the processing rate exceeds 96%, an effect commensurate with this cannot be obtained, which is economically disadvantageous. Preferably, plastic working is performed at a working rate of 75% to 90%. The plastic working can be performed by rolling, for example, while compressing a high-purity aluminum alloy material.

(3)冷間加工工程により、熱間加工工程で形成される金属組織を均質化させることができる。冷間加工工程が100℃を超える温度で行われると、均質化させにくく、−20℃未満の温度で行っても、これに見合った効果が得にくいことから、通常は−20℃以上で行われる。また、加工率が10%未満で均質化の効果が十分ではなく、45%を超えると合金材が硬化して塑性加工が困難となり、好ましくは加工率20%〜40%で塑性加工を行う。塑性加工は、例えば上記と同様の圧延により行うことができる。 (3) The metal structure formed in the hot working process can be homogenized by the cold working process. If the cold working process is performed at a temperature exceeding 100 ° C, it is difficult to homogenize, and even if it is performed at a temperature below -20 ° C, it is difficult to obtain an effect commensurate with this. Is called. Further, when the processing rate is less than 10%, the effect of homogenization is not sufficient, and when it exceeds 45%, the alloy material is hardened and plastic processing becomes difficult, and plastic processing is preferably performed at a processing rate of 20% to 40%. The plastic working can be performed, for example, by rolling similar to the above.

本発明の高純度アルミニウム合金材の塑性加工材は、上記アニール工程、熱間加工工程および冷間加工工程に加えて、
(4-1)冷間加工後、520℃〜560℃にて2時間以上保持する再アニール工程
を含む方法により製造することもできる。
In addition to the annealing process, the hot working process and the cold working process, the plastic working material of the high purity aluminum alloy material of the present invention,
(4-1) It can also be manufactured by a method including a reannealing step of holding at 520 ° C. to 560 ° C. for 2 hours or more after cold working.

この再アニール工程により、先のアニール工程で固溶することなく残存した化合物相粒子や、先の熱間加工工程で析出した化合物相粒子を固溶させて、そのサイズ、密度、アスペクト比などを小さくし、化合物相粒子の影響を小さくすることができる。保持する温度が520℃未満では、化合物相粒子を十分に固溶させることができない。560℃を超えると加熱に要するエネルギーに見合った効果が得られないばかりか、部分的な溶解が始まってしまい、好ましくは550℃以下にて保持する。また、保持する時間が2時間未満では、アニールの効果が十分ではなく、また24時間を超えて保持しても、これに見合った効果が得られないことから、経済性の点で、通常は24時間以下、好ましくは6時間〜12時間保持する。再アニール後の高純度アルミニウム合金材は、そのまま大気中に放置することにより徐々に冷却してもよいし、例えば大量の水中に浸漬するなどして10℃/分を超える冷却速度で急冷してもよい。この再アニール工程(4-1)により、比較的軟質で加工の容易な軟質材として、本発明の高純度アルミニウム合金材の塑性加工材を得ることができる。 By this reannealing process, the compound phase particles remaining without solid solution in the previous annealing process and the compound phase particles precipitated in the previous hot working process are dissolved, and the size, density, aspect ratio, etc. are adjusted. The influence of the compound phase particles can be reduced by reducing the size. If the temperature to hold | maintain is less than 520 degreeC, compound phase particle | grains cannot fully be dissolved. When the temperature exceeds 560 ° C., not only an effect commensurate with the energy required for heating is obtained, but also partial dissolution starts, and the temperature is preferably maintained at 550 ° C. or lower. Also, if the holding time is less than 2 hours, the effect of annealing is not sufficient, and even if the holding time exceeds 24 hours, an effect commensurate with this cannot be obtained. Hold for 24 hours or less, preferably 6-12 hours. The high-purity aluminum alloy material after the re-annealing may be gradually cooled by leaving it in the air as it is, or rapidly cooled at a cooling rate exceeding 10 ° C./min, for example, by being immersed in a large amount of water. Also good. By this re-annealing step (4-1), the plastic working material of the high-purity aluminum alloy material of the present invention can be obtained as a soft material that is relatively soft and easy to process.

本発明の高純度アルミニウム合金材の塑性加工材は、上記アニール工程、熱間加工工程および冷間加工工程に加えて、
(4-2)冷間加工後、150℃〜250℃にて1時間以上保持する再アニール工程
を含む方法により製造することもできる。
In addition to the annealing process, the hot working process and the cold working process, the plastic working material of the high purity aluminum alloy material of the present invention,
(4-2) It can also be manufactured by a method including a reannealing step of holding at 150 ° C. to 250 ° C. for 1 hour or more after cold working.

この再アニール工程(4-2)により、先の熱間加工工程や冷間加工工程における塑性加工における歪みを除去することができる。保持する温度が150℃未満であると、アニールの効果が十分ではなく、好ましくは180℃以上である。また、保持する時間が1時間未満では、アニールの効果が十分ではなく、また12時間を超えて保持しても、これに見合った効果が得にくいことから、通常は12時間以下、好ましくは2時間〜8時間である。再アニール後の高純度アルミニウム合金材は、そのまま大気中に放置することにより徐々に冷却してもよいし、例えば大量の水中に浸漬するなどして10℃/分を超える冷却速度で急冷してもよい。この再アニール工程(4-2)により、比較的硬質で機械的強度の高い硬質材として、本発明の高純度アルミニウム合金材の塑性加工材を得ることができる。 By this re-annealing step (4-2), it is possible to remove distortion in the plastic working in the previous hot working step or cold working step. If the holding temperature is less than 150 ° C., the effect of annealing is not sufficient, and is preferably 180 ° C. or higher. If the holding time is less than 1 hour, the effect of annealing is not sufficient, and even if the holding time exceeds 12 hours, it is difficult to obtain an effect commensurate with this. Time to 8 hours. The high-purity aluminum alloy material after re-annealing may be gradually cooled by leaving it in the air as it is, or rapidly cooled at a cooling rate exceeding 10 ° C./min, for example, by being immersed in a large amount of water. Also good. By this re-annealing step (4-2), the plastic working material of the high-purity aluminum alloy material of the present invention can be obtained as a hard material having a relatively hard and high mechanical strength.

本発明の高純度アルミニウム合金材の表面に陽極酸化皮膜を形成することにより、陽極酸化高純度アルミニウム合金材を得ることができる。陽極酸化皮膜は、通常の陽極酸化処理により形成することができ、具体的には、例えば本発明の高純度アルミニウム合金材を陽極とし、希硫酸に浸漬しながら直流電流を流せばよい。本発明の高純度アルミニウム合金材の表面には通常、自然酸化により形成された自然酸化皮膜が形成されているが、陽極酸化処理に際して、この自然酸化皮膜は除去しておくことが好ましい。自然酸化皮膜を除去する方法は特に限定されるものではなく、高純度アルミニウム合金材の表面を切削加工してもよいし、酸、アルカリ水溶液などと接触させてエッチングしてもよい。 An anodized high purity aluminum alloy material can be obtained by forming an anodized film on the surface of the high purity aluminum alloy material of the present invention. The anodized film can be formed by ordinary anodizing treatment. Specifically, for example, a high-purity aluminum alloy material of the present invention is used as an anode, and a direct current may be passed while being immersed in dilute sulfuric acid. A natural oxide film formed by natural oxidation is usually formed on the surface of the high-purity aluminum alloy material of the present invention, but it is preferable to remove this natural oxide film during the anodizing treatment. The method for removing the natural oxide film is not particularly limited, and the surface of the high-purity aluminum alloy material may be cut, or may be etched in contact with an acid or alkaline aqueous solution.

かくして、直流電流の電荷量に見合った厚みの陽極酸化皮膜が形成されて、本発明の高純度アルミニウム合金材の表面に陽極酸化皮膜が形成されてなる陽極酸化高純度アルミニウム合金材を得ることができる。本発明の高純度アルミニウム合金材は、その表面に十分な厚みで欠陥のない陽極酸化皮膜を容易に形成しうるので、例えば厚みが50μm以上、通常250μm以下の比較的厚い陽極酸化皮膜の陽極酸化高純度アルミニウム合金材を容易に製造することができる。 Thus, it is possible to obtain an anodized high-purity aluminum alloy material in which an anodized film having a thickness commensurate with the amount of charge of direct current is formed, and an anodized film is formed on the surface of the high-purity aluminum alloy material of the present invention. it can. The high-purity aluminum alloy material of the present invention can easily form an anodic oxide film having a sufficient thickness and without defects on its surface. For example, anodization of a relatively thick anodic oxide film having a thickness of 50 μm or more and usually 250 μm or less is possible. A high-purity aluminum alloy material can be easily manufactured.

以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例により限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.

なお、
(1)原料として用いた高純度アルミニウム中の不可避不純物元素の含有量は、グロー放電質量分析法〔サーモエレクトロン社製「VG9000」〕により求めた。
(2)高純度アルミニウムの純度は、上記で求めた高純度アルミニウム中の鉄、銅およびケイ素の含有量の合計(W、質量%)から、式(1)
純度(%)=100−W・・・(1)
により求めた。
(3)塑性加工(圧延)の加工率(%)は、塑性加工前の断面積(S0)と、塑性加工後の断面積(S)とから、式(2)
加工率(%)=(S0−S)/S0 × 100・・・(2)
により求めた。
(4)高純度アルミニウム合金材の化合物相粒子のサイズは、高純度アルミニウム合金材の表面を鏡面研磨し、50℃にて、5%水酸化ナトリウム水溶液〔NaOH濃度5質量%〕に20秒間浸漬することによりエッチングを行い、水洗した後、光学顕微鏡により撮影した撮影倍率100倍の光学顕微鏡写真から、化合物相粒子の面積の数平均値として求めた。
(5)化合物相粒子の密度は、上記光学顕微鏡写真から単位面積あたりに観測される化合物相粒子の数として求めた。
(6)化合物相粒子のアスペクト比は、上記と同様にして撮影した撮影倍率500倍の光学顕微鏡写真から、数平均値として求めた。
陽極酸化高純度アルミニウム合金材の陽極酸化皮膜のムラおよび欠陥は、目視により判定し、ムラまたは欠陥の見られないものを○とし、見られたものを×として評価した。
In addition,
(1) The content of inevitable impurity elements in the high-purity aluminum used as a raw material was determined by glow discharge mass spectrometry [“VG9000” manufactured by Thermo Electron Ltd.].
(2) The purity of the high-purity aluminum is calculated from the total content (W, mass%) of iron, copper and silicon in the high-purity aluminum determined above.
Purity (%) = 100−W (1)
Determined by
(3) The processing rate (%) of plastic working (rolling) is calculated from the cross-sectional area (S 0 ) before plastic working and the cross-sectional area (S) after plastic working.
Processing rate (%) = (S 0 −S) / S 0 × 100 (2)
Determined by
(4) The size of the compound phase particles of the high-purity aluminum alloy material is that the surface of the high-purity aluminum alloy material is mirror-polished and immersed in a 5% aqueous sodium hydroxide solution (NaOH concentration 5 mass%) at 50 ° C. for 20 seconds. After performing etching and washing with water, the number average value of the area of the compound phase particles was obtained from an optical microscope photograph taken with an optical microscope at a photographing magnification of 100 times.
(5) The density of the compound phase particles was determined as the number of compound phase particles observed per unit area from the above optical micrograph.
(6) The aspect ratio of the compound phase particles was determined as a number average value from an optical micrograph having a photographing magnification of 500 times taken in the same manner as described above.
The unevenness and defects of the anodized film of the anodized high-purity aluminum alloy material were determined by visual observation, and those where no unevenness or defects were observed were evaluated as ◯, and those observed were evaluated as ×.

実施例1
〔高純度アルミニウム合金材の鋳塊材の製造〕
黒鉛製坩堝に、純度99.999質量%で、不可避不純物元素〔鉄、マンガン、銅、クロム、ニッケル、バナジウム、リチウム、ナトリウム、カルシウム、亜鉛およびガリウム〕の合計含有量が0.00055質量%の高純度アルミニウム96.8質量部を入れ、750℃に加熱して溶融させた。次いで、同温度を維持しながら、金属マグネシウム〔宇部興産(株)、「マグネシウム地金」、純度99.95質量%〕3質量部および金属シリコン〔(株)トクヤマ、「高純度シリコン」、純度99.9999質量%〕0.1質量部を加えたのち、さらに、アルミニウム−チタン−ホウ素母合金〔チタン含有量5質量%、ホウ素含有量1質量%、残部アルミニウム〕0.1質量部〔チタン0.005質量部、ホウ素0.001質量部、アルミニウム0.094質量部に相当する。〕を加えて、合金溶湯を得た。この合金溶湯を750℃に保持して溶融状態を保ちながら、予め150℃に加熱した黒鉛製鋳型〔内寸法縦38mm×横150mm×高さ200mm〕に流し込み、4℃/秒の冷却速度で室温〔約20℃〕まで冷却して鋳塊材を得た。
Example 1
[Manufacture of high-purity aluminum alloy ingots]
A graphite crucible having a purity of 99.999% by mass and a total content of inevitable impurity elements [iron, manganese, copper, chromium, nickel, vanadium, lithium, sodium, calcium, zinc and gallium] is 0.00055% by mass 96.8 parts by mass of high-purity aluminum was added and heated to 750 ° C. for melting. Next, while maintaining the same temperature, 3 parts by weight of metal magnesium [Ube Industries, Ltd., “magnesium metal”, purity 99.95% by mass] and metal silicon [Tokuyama Corporation, “high purity silicon”, purity 99.9999% by mass] After adding 0.1 part by mass, further, an aluminum-titanium-boron mother alloy [titanium content 5% by mass, boron content 1% by mass, balance aluminum] 0.1 part by mass [titanium This corresponds to 0.005 parts by mass, 0.001 parts by mass of boron, and 0.094 parts by mass of aluminum. ] To obtain a molten alloy. The molten alloy was poured into a graphite mold (inner dimensions: length 38 mm × width 150 mm × height 200 mm) preheated to 150 ° C. while maintaining the molten state at 750 ° C., and room temperature at a cooling rate of 4 ° C./second. It was cooled to [about 20 ° C.] to obtain an ingot material.

〔高純度アルミニウム合金材の塑性加工材の製造〕
上記で得た鋳塊材を幅50mm×長さ100mm×厚み34mmの板状に切り出し、530℃に加熱し、同温度にて9時間保持してアニールを行った。
[Manufacture of plastic working material of high-purity aluminum alloy material]
The ingot material obtained above was cut into a plate having a width of 50 mm, a length of 100 mm, and a thickness of 34 mm, heated to 530 ° C., and kept at that temperature for 9 hours for annealing.

次いで10mmの厚みとなるまで2mmずつ12回圧延し、さらに4mmの厚みとなるまで1mmずつ6回圧延する熱間加工を行った。最初の圧延を行ったときの温度は500℃であり、最後の圧延を行ったときの温度は300℃であった。 Next, hot working was performed by rolling 12 times 2 mm each until a thickness of 10 mm, and further rolling 6 times 1 mm each until a thickness of 4 mm was achieved. The temperature when the first rolling was performed was 500 ° C., and the temperature when the last rolling was performed was 300 ° C.

その後、室温〔約20℃〕にて、厚みが3mmとなるまで0.25mmずつ4回圧延する冷間加工を行い、幅50mm×長さ1100mm×厚み3mmの板状の合金材を得た。 Thereafter, cold working was performed by rolling 0.25 mm four times at room temperature (about 20 ° C.) until the thickness became 3 mm, to obtain a plate-like alloy material having a width of 50 mm × length of 1100 mm × thickness of 3 mm.

次いで530℃に加熱し、同温度を9時間保持して再びアニールしたのち、大量の水中に浸漬することにより10℃/分を超える速度で急冷して、塑性加工材を得た。この塑性加工材の評価結果を第1表に示す。 Subsequently, the sample was heated to 530 ° C., annealed again while maintaining the same temperature for 9 hours, and then rapidly cooled at a rate exceeding 10 ° C./min by being immersed in a large amount of water to obtain a plastic work material. The evaluation results of this plastic working material are shown in Table 1.

〔陽極酸化皮膜の形成〕
上記で得た塑性加工材の表面を0.2mm面削加工し、50℃の10%水酸化ナトリウム水溶液〔NaOH濃度10質量%〕に3分間浸漬した後、水洗し、さらに室温で10%硝酸水溶液〔HNO3濃度10質量%〕に1分間浸漬して、自然酸化皮膜を除去した。次いで0℃±2℃を維持しながら15%硫酸水溶液〔H2SO4濃度15質量%〕に浸漬し、塑性加工材を陽極として0.03A/cm2の電流密度で直流電流を流すことにより陽極酸化を行って陽極酸化高純度アルミニウム合金材を得た。通電時間は100分であった。この陽極酸化高純度アルミニウム合金材の表面に形成されている陽極酸化皮膜の厚みは100μmであり、ムラおよび欠陥は見られなかった。評価結果を第1表に示す。
[Formation of anodized film]
The surface of the plastic working material obtained above is 0.2 mm face-cut, immersed in a 10% aqueous sodium hydroxide solution (NaOH concentration 10 mass%) at 50 ° C. for 3 minutes, washed with water, and further 10% nitric acid at room temperature. The natural oxide film was removed by immersing in an aqueous solution [HNO 3 concentration 10 mass%] for 1 minute. Next, it is immersed in a 15% aqueous sulfuric acid solution (H 2 SO 4 concentration: 15% by mass) while maintaining 0 ° C. ± 2 ° C., and a direct current is applied at a current density of 0.03 A / cm 2 using the plastic working material as an anode. Anodization was performed to obtain an anodized high-purity aluminum alloy material. The energization time was 100 minutes. The thickness of the anodized film formed on the surface of the anodized high-purity aluminum alloy material was 100 μm, and no unevenness and defects were observed. The evaluation results are shown in Table 1.

比較例1
金属シリコンの使用量を0.04質量部とした以外は実施例1と同様に操作して、鋳塊材を得、塑性加工材を得、陽極酸化高純度アルミニウム合金を得た。評価結果を第1表に示す。
Comparative Example 1
Except that the amount of metal silicon used was 0.04 parts by mass, the same operation as in Example 1 was performed to obtain an ingot material, a plastic work material, and an anodized high-purity aluminum alloy. The evaluation results are shown in Table 1.

比較例2
金属シリコンの使用量を0.8質量部とした以外は実施例1と同様に操作して鋳塊材を得、塑性加工材を得、陽極酸化高純度アルミニウム合金を得た。評価結果を第1表に示す。
Comparative Example 2
An ingot material was obtained in the same manner as in Example 1 except that the amount of metal silicon used was 0.8 parts by mass, a plastic work material was obtained, and an anodized high-purity aluminum alloy was obtained. The evaluation results are shown in Table 1.

第 1 表
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
実施例1 比較例1 比較例2
────────────────────────────
組成〔質量%〕
Mg 3 ← ←
Si 0.1 0.04 0.8
Ti 0.005 ← ←
B 0.001 ← ←
化合物相粒子
サイズ〔μm2〕 7.4 45.1 8.4
密度〔個/mm2〕 156 70 2811
アスペクト比〔平均値〕 1.60 1.45 2.02
陽極酸化皮膜
厚み 100 100 80
ムラ ○ × ○
欠陥 ○ ○ ×
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Table 1
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Example 1 Comparative Example 1 Comparative Example 2
────────────────────────────
Composition (mass%)
Mg 3 ← ←
Si 0.1 0.04 0.8
Ti 0.005 ← ←
B 0.001 ← ←
Compound phase particle size [μm 2 ] 7.4 45.1 8.4
Density [pieces / mm 2 ] 156 70 2811
Aspect ratio (average) 1.60 1.45 2.02
Anodized film thickness 100 100 80
Uneven ○ ○ ○
Defect ○ ○ ×
━━━━━━━━━━━━━━━━━━━━━━━━━━━━

実施例2
実施例1と同様にして冷間加工まで行ったのち、200℃に加熱し、同温度を8時間維持して再びアニールした後、大気中で室温まで自然放冷させて、塑性加工材を得た。この塑性加工材の評価結果を第2表に示す。
Example 2
After performing cold working in the same manner as in Example 1, it was heated to 200 ° C., annealed again while maintaining the same temperature for 8 hours, and then naturally cooled to room temperature in the atmosphere to obtain a plastic work material. It was. The evaluation results of this plastic working material are shown in Table 2.

実施例1で得た塑性加工材に代えて上記で得た塑性加工材を用いた以外は実施例1と同様に操作して陽極酸化高純度アルミニウム合金材を得た。評価結果を第2表に示す。 Anodized high-purity aluminum alloy material was obtained in the same manner as in Example 1 except that the plastic processed material obtained above was used instead of the plastic processed material obtained in Example 1. The evaluation results are shown in Table 2.

比較例3
金属シリコンの使用量を0.8質量部とした以外は実施例2と同様に操作して鋳塊材を得、塑性加工材を得、通電時間を70分として陽極酸化高純度アルミニウム合金を得た。評価結果を第2表に示す。
Comparative Example 3
An ingot material was obtained by operating in the same manner as in Example 2 except that the amount of metal silicon used was 0.8 part by mass, a plastic working material was obtained, and an anodized high-purity aluminum alloy was obtained with an energization time of 70 minutes. It was. The evaluation results are shown in Table 2.

第 2 表
━━━━━━━━━━━━━━━━━━━━━━━
実施例2 比較例3
───────────────────────
組成〔質量%〕
Mg 3 ←
Si 0.1 0.8
Ti 0.005 ←
B 0.001 ←
化合物相粒子
サイズ〔μm2〕 13.5 9.3
密度〔個/mm2〕 183 2142
アスペクト比〔平均値〕 1.85 2.23
陽極酸化皮膜
厚み 100 70
ムラ ○ ○
欠陥 ○ ×
━━━━━━━━━━━━━━━━━━━━━━━
Table 2
━━━━━━━━━━━━━━━━━━━━━━━
Example 2 Comparative Example 3
───────────────────────
Composition (mass%)
Mg 3 ←
Si 0.1 0.8
Ti 0.005 ←
B 0.001 ←
Compound phase particle size [μm 2 ] 13.5 9.3
Density [pieces / mm 2 ] 183 2142
Aspect ratio (average value) 1.85 2.23
Anodized film thickness 100 70
Uneven ○ ○
Defect ○ ×
━━━━━━━━━━━━━━━━━━━━━━━

実施例3
アルミニウム−チタン−ホウ素母合金を加えなかった以外は実施例1と同様に操作して、鋳塊材を得、塑性加工材を得、陽極酸化高純度アルミニウム合金を得た。評価結果を第3表に示す。
Example 3
Except that the aluminum-titanium-boron mother alloy was not added, the same operation as in Example 1 was performed to obtain an ingot material, a plastic work material, and an anodized high-purity aluminum alloy. The evaluation results are shown in Table 3.

比較例4
金属シリコンの使用量を0.8質量部とした以外は実施例3と同様に操作して、鋳塊材を得、塑性加工材を得、陽極酸化高純度アルミニウム合金を得た。評価結果を第3表に示す。
Comparative Example 4
Except that the amount of metal silicon used was 0.8 parts by mass, the same operation as in Example 3 was performed to obtain an ingot material, a plastic work material, and an anodized high-purity aluminum alloy. The evaluation results are shown in Table 3.

第 3 表
━━━━━━━━━━━━━━━━━━━━━━━
実施例3 比較例4
───────────────────────
組成〔質量%〕
Mg 3 ←
Si 0.1 0.8
Ti 0.00001 ←
B 0.00001 ←
化合物相粒子
サイズ〔μm2〕 10.3 6.3
密度〔個/mm2〕 151 2831
アスペクト比〔平均値〕 1.60 1.80
陽極酸化皮膜
厚み 100 100
ムラ ○ ○
欠陥 ○ ×
━━━━━━━━━━━━━━━━━━━━━━━
Table 3
━━━━━━━━━━━━━━━━━━━━━━━
Example 3 Comparative Example 4
───────────────────────
Composition (mass%)
Mg 3 ←
Si 0.1 0.8
Ti 0.00001 ←
B 0.00001 ←
Compound phase particle size [μm 2 ] 10.3 6.3
Density [pieces / mm 2 ] 151 2831
Aspect ratio (average value) 1.60 1.80
Anodized film thickness 100 100
Uneven ○ ○
Defect ○ ×
━━━━━━━━━━━━━━━━━━━━━━━

実施例4
アルミニウム−チタン−ホウ素母合金を加えなかった以外は実施例2と同様に操作して、鋳塊材を得、塑性加工材を得、陽極酸化高純度アルミニウム合金を得た。評価結果を第4表に示す。
Example 4
Except that the aluminum-titanium-boron mother alloy was not added, the same operation as in Example 2 was performed to obtain an ingot material, a plastic work material, and an anodized high-purity aluminum alloy. The evaluation results are shown in Table 4.

比較例5
金属シリコンの使用量を0.04質量部とした以外は実施例4と同様に操作して、鋳塊材を得、塑性加工材を得、陽極酸化高純度アルミニウム合金を得た。評価結果を第4表に示す。
Comparative Example 5
Except that the amount of metal silicon used was 0.04 parts by mass, the same operation as in Example 4 was performed to obtain an ingot material, a plastic work material, and an anodized high-purity aluminum alloy. The evaluation results are shown in Table 4.

比較例6
金属シリコンの使用量を0.8質量部とした以外は実施例4と同様に操作して、鋳塊材を得、塑性加工材を得、陽極酸化高純度アルミニウム合金を得た。評価結果を第4表に示す。
Comparative Example 6
Except that the amount of metal silicon used was 0.8 parts by mass, the same operation as in Example 4 was performed to obtain an ingot material, a plastic work material, and an anodized high-purity aluminum alloy. The evaluation results are shown in Table 4.

第 4 表
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
実施例4 比較例5 比較例6
────────────────────────────
組成〔質量%〕
Mg 3 ← ←
Si 0.1 0.04 0.8
Ti 0.00001 ← ←
B 0.00001 ← ←
化合物相粒子
サイズ〔μm2〕 9.6 18.1 6.3
密度〔個/mm2〕 149 39 5270
アスペクト比〔平均値〕 1.54 1.63 2.20
陽極酸化皮膜
厚み 100 100 100
ムラ ○ × ○
欠陥 ○ ○ ×
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Table 4
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Example 4 Comparative Example 5 Comparative Example 6
────────────────────────────
Composition (mass%)
Mg 3 ← ←
Si 0.1 0.04 0.8
Ti 0.00001 ← ←
B 0.00001 ← ←
Compound phase particle size [μm 2 ] 9.6 18.1 6.3
Density [pieces / mm 2 ] 149 39 5270
Aspect ratio (average) 1.54 1.63 2.20
Anodized film thickness 100 100 100
Uneven ○ ○ ○
Defect ○ ○ ×
━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Claims (10)

マグネシウム含有量が2.5質量%〜5.5質量%、シリコン含有量が0.08質量%〜0.5質量%、チタン含有量が0.01質量%以下、ホウ素含有量が0.002質量%以下であり、不可避不純元素含有量が0.01質量%以下であることを特徴とする高純度アルミニウム合金材。 Magnesium content is 2.5 mass% to 5.5 mass%, silicon content is 0.08 mass% to 0.5 mass%, titanium content is 0.01 mass% or less, and boron content is 0.002. A high-purity aluminum alloy material having a mass% or less and an inevitable impurity element content of 0.01 mass% or less. チタン含有量が0.001質量%以上、ホウ素含有量が0.0002質量%以上である請求項1に記載の高純度アルミニウム合金材。 The high-purity aluminum alloy material according to claim 1, wherein the titanium content is 0.001 mass% or more and the boron content is 0.0002 mass% or more. 鋳塊材である請求項1または請求項2に記載の高純度アルミニウム合金材。 The high-purity aluminum alloy material according to claim 1 or 2, which is an ingot material. 塑性加工材である請求項1または請求項2に記載の高純度アルミニウム合金材。 The high-purity aluminum alloy material according to claim 1 or 2, which is a plastic work material. 加熱されて溶融状態にある高純度アルミニウムに、マグネシウムおよびシリコンを添加して合金溶湯を得、得られた合金溶湯を鋳造することを特徴とする請求項3に記載の高純度アルミニウム合金材の製造方法。 The high-purity aluminum alloy material according to claim 3, wherein magnesium and silicon are added to high-purity aluminum that is heated and in a molten state to obtain a molten alloy, and the obtained molten alloy is cast. Method. 以下のアニール工程、熱間加工工程および冷間加工工程を含むことを特徴とする請求項4に記載の高純度アルミニウム合金材の製造方法。
(1)請求項3に記載の高純度アルミニウム合金材を520℃〜560℃にて2時間以上保持するアニール工程
(2)アニール工程後、250℃〜560℃にて加工率60%〜96%の塑性加工を行う熱間加工工程
(3)熱間加工工程後、100℃以下にて加工率10%〜45%の塑性加工を行う冷間加工工程
The method for producing a high-purity aluminum alloy material according to claim 4, comprising the following annealing step, hot working step and cold working step.
(1) An annealing process for holding the high-purity aluminum alloy material according to claim 3 at 520 ° C. to 560 ° C. for 2 hours or more.
(2) Hot working process for performing plastic working at a working rate of 60% to 96% at 250 ° C. to 560 ° C. after the annealing step.
(3) Cold working process in which plastic working is performed at a processing rate of 10% to 45% at 100 ° C. or lower after the hot working process.
(4-1)冷間加工後、520℃〜560℃にて2時間以上保持する再アニール工程
を含む請求項6に記載の製造方法。
(4-1) The manufacturing method of Claim 6 including the reannealing process hold | maintained at 520 degreeC-560 degreeC for 2 hours or more after cold processing.
(4-2)冷間加工後、150℃〜250℃にて1時間以上保持する再アニール工程
を含む請求項6に記載の製造方法。
(4-2) The manufacturing method according to claim 6, further comprising a reannealing step of holding at 150 ° C. to 250 ° C. for 1 hour or more after cold working.
請求項1〜請求項4のいずれかに記載の高純度アルミニウム合金材の表面に陽極酸化皮膜が形成されてなる陽極酸化高純度アルミニウム合金材。 An anodized high-purity aluminum alloy material obtained by forming an anodized film on the surface of the high-purity aluminum alloy material according to any one of claims 1 to 4. 陽極酸化皮膜の厚みが50μm以上である請求項9に記載の陽極酸化高純度アルミニウム合金材。 The anodized high-purity aluminum alloy material according to claim 9, wherein the anodized film has a thickness of 50 μm or more.
JP2005257467A 2005-09-06 2005-09-06 High purity aluminum alloy material Expired - Fee Related JP4839739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005257467A JP4839739B2 (en) 2005-09-06 2005-09-06 High purity aluminum alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005257467A JP4839739B2 (en) 2005-09-06 2005-09-06 High purity aluminum alloy material

Publications (3)

Publication Number Publication Date
JP2007070670A true JP2007070670A (en) 2007-03-22
JP2007070670A5 JP2007070670A5 (en) 2008-10-16
JP4839739B2 JP4839739B2 (en) 2011-12-21

Family

ID=37932388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005257467A Expired - Fee Related JP4839739B2 (en) 2005-09-06 2005-09-06 High purity aluminum alloy material

Country Status (1)

Country Link
JP (1) JP4839739B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196695A (en) * 2015-04-06 2016-11-24 住友化学株式会社 High purity aluminum grain material and manufacturing method therefor
CN113695538A (en) * 2021-09-03 2021-11-26 中铝河南洛阳铝加工有限公司 Preparation method of mirror-surface aluminum plate strip with high formability and mirror-surface aluminum plate strip
CN115838884A (en) * 2022-12-12 2023-03-24 宁波锦越新材料有限公司 High-purity aluminum-nickel alloy material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306251A (en) * 1990-01-29 1990-12-19 Canon Inc Photoconducting member
JP2002256488A (en) * 2001-02-28 2002-09-11 Showa Denko Kk Aluminium alloy for anodizing and aluminium alloy material superior in gas corrosion resistance
JP2004225113A (en) * 2003-01-23 2004-08-12 Kobe Steel Ltd Al alloy member excellent in corrosion resistance and plasma resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306251A (en) * 1990-01-29 1990-12-19 Canon Inc Photoconducting member
JP2002256488A (en) * 2001-02-28 2002-09-11 Showa Denko Kk Aluminium alloy for anodizing and aluminium alloy material superior in gas corrosion resistance
JP2004225113A (en) * 2003-01-23 2004-08-12 Kobe Steel Ltd Al alloy member excellent in corrosion resistance and plasma resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196695A (en) * 2015-04-06 2016-11-24 住友化学株式会社 High purity aluminum grain material and manufacturing method therefor
CN113695538A (en) * 2021-09-03 2021-11-26 中铝河南洛阳铝加工有限公司 Preparation method of mirror-surface aluminum plate strip with high formability and mirror-surface aluminum plate strip
CN115838884A (en) * 2022-12-12 2023-03-24 宁波锦越新材料有限公司 High-purity aluminum-nickel alloy material and preparation method thereof

Also Published As

Publication number Publication date
JP4839739B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4174524B2 (en) Aluminum alloy plate manufacturing method and aluminum alloy plate
BRPI0206417B1 (en) Tantalum and niobium billets and production methods
TWI651426B (en) Sputum sputtering target and manufacturing method thereof
JP5913259B2 (en) Lanthanum target for sputtering
JP3782353B2 (en) Titanium target for sputtering
JP5847207B2 (en) Titanium ingot, method for producing titanium ingot, and method for producing titanium sputtering target
TWI395821B (en) Process for casting a titanium alloy
JP2001240949A (en) Method of manufacturing for worked billet of high- purity copper having fine crystal grain
JP2008255371A (en) Method for manufacturing aluminum alloy thick plate, and aluminum alloy thick plate
JP4174526B2 (en) Aluminum alloy plate manufacturing method and aluminum alloy plate
JP4839739B2 (en) High purity aluminum alloy material
JP5144576B2 (en) Titanium target for sputtering
EP2692883B1 (en) Mg-al-ca-based master alloy for mg alloys, and a production method therefor
JPS581046A (en) Aluminum alloy foil for electrolytic capacitor and its rroduction
KR100596287B1 (en) Room-temperature- formable magnesium alloy with excellent corrosion resistance
JP2006299305A (en) Heat resistant aluminum alloy wire, and method for producing the same
JP2008255372A (en) Method for producing aluminum alloy thick plate, and aluminum alloy thick plate
JP4835399B2 (en) High purity aluminum alloy material
JP6237885B2 (en) Surface-treated aluminum material and zinc-added aluminum alloy
JP2004190090A (en) High purity aluminum alloy material
JP2007308769A (en) Method for manufacturing aluminum alloy thick plate, and aluminum alloy thick plate
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
LU502448B1 (en) Ipse homogenization smelting method
JP2021195607A (en) Al-Si BASED ALLOY CASTING AND PRODUCTION METHOD THEREOF
JP2007113098A (en) Aluminum alloy foil for cathode in electrolytic capacitor and producing method therefor

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R151 Written notification of patent or utility model registration

Ref document number: 4839739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees