JP2010251666A - Light emitting device and method of manufacturing the same - Google Patents

Light emitting device and method of manufacturing the same Download PDF

Info

Publication number
JP2010251666A
JP2010251666A JP2009102328A JP2009102328A JP2010251666A JP 2010251666 A JP2010251666 A JP 2010251666A JP 2009102328 A JP2009102328 A JP 2009102328A JP 2009102328 A JP2009102328 A JP 2009102328A JP 2010251666 A JP2010251666 A JP 2010251666A
Authority
JP
Japan
Prior art keywords
light emitting
mounting substrate
sealing member
emitting element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009102328A
Other languages
Japanese (ja)
Other versions
JP5347681B2 (en
JP2010251666A5 (en
Inventor
Daisuke Sanga
大輔 三賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2009102328A priority Critical patent/JP5347681B2/en
Publication of JP2010251666A publication Critical patent/JP2010251666A/en
Publication of JP2010251666A5 publication Critical patent/JP2010251666A5/ja
Application granted granted Critical
Publication of JP5347681B2 publication Critical patent/JP5347681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which has good light extraction efficiency by preventing a light leak to below a mounting substrate while reducing the cost of the light emitting device by downsizing the mounting substrate. <P>SOLUTION: The light emitting device 1 reflects light emitted downward from a light emitting element 10 by a flat portion 30c of a bottom surface 30a of a sealing member 30 provided to be positioned below an upper surface 20a of the mounting substrate 20. Further, the light emitting device 1 is configured to make the light emitted by the light emitting element 10 not incident on a droop portion 30b by positioning the bottom surface 30a of the sealing member 30 below the upper surface 20a of the mounting substrate 20 so that the droop pertion 30b is behind the mounting substrate 20 when the bottom surface 30a of the sealing member 30 includes the droop portion 30b drooping continuously from the flat portion 30c to below the flat portion 30c along a side face 20b of the mounting substrate 20. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発光素子を実装した実装基板に封止部材を一体成形した発光装置及びその製造方法に関する。   The present invention relates to a light emitting device in which a sealing member is integrally formed on a mounting substrate on which a light emitting element is mounted, and a method for manufacturing the same.

従来、発光素子(LED)からの光取り出し効率を高め、また光の出射方向に所望の指向性を与えるために、実装基板上に、レンズとして機能する封止部材を一体成形した発光装置が創案されている。このような発光装置においては、更なる光取り出しの高効率化や放熱性の確保に加え、低価格化も重要な課題の一つであり、構成部材の小型化が検討されている。   Conventionally, a light-emitting device in which a sealing member that functions as a lens is integrally formed on a mounting substrate has been invented in order to increase the light extraction efficiency from a light-emitting element (LED) and to give a desired directivity in the light emission direction. Has been. In such a light emitting device, in addition to further increasing the efficiency of light extraction and ensuring heat dissipation, cost reduction is one of the important issues, and miniaturization of components is being studied.

例えば、特許文献1(段落0014〜段落0020、図1参照)には、半導体チップを中間基板に実装し、半導体チップ及び中間基板の上面を封止部で封止した発光ダイオードが記載されている。
また、特許文献2(段落0025、図2)には、LEDチップを基板に実装し、LEDチップ及び基板の上面から基板の縁の一部までを光学素子で封止したLEDモジュールが記載されている。
更にまた、特許文献3(段落0021〜段落0028、図1)には、LEDチップを実装したリードフレームを、モールド樹脂で封止したLEDが記載されている。
For example, Patent Document 1 (see paragraphs 0014 to 0020 and FIG. 1) describes a light emitting diode in which a semiconductor chip is mounted on an intermediate substrate, and the upper surface of the semiconductor chip and the intermediate substrate is sealed with a sealing portion. .
Patent Document 2 (paragraph 0025, FIG. 2) describes an LED module in which an LED chip is mounted on a substrate, and the LED chip and the upper surface of the substrate to a part of the edge of the substrate are sealed with optical elements. Yes.
Furthermore, Patent Document 3 (paragraphs 0021 to 0028, FIG. 1) describes an LED in which a lead frame on which an LED chip is mounted is sealed with a mold resin.

特開2007−273764号公報JP 2007-273964 A 特表2008−504711号公報JP 2008-504711 A 特開2006−165410号公報JP 2006-165410 A

前記したように封止部材の大きさよりも小さな実装基板やリードフレーム等の実装基体を用いた従来の発光装置では以下の問題が存在し、更に、前記した特許文献1〜3についても以下に示すような問題点が存在していた。
発光素子以外の部分において、装置全体を小型化することで低価格化が可能であるが、発光素子の大きさと封止部材の大きさとが相対的に近づくと、発光素子から出射した光の内で、封止部材の内面における全反射の臨界角を超える成分が増加し、外部へ取り出される光が減少することとなる。
一方、封止部材の大きさをそのままとして、実装基体のみを小さくすることで、発光素子よりも十分に大きな封止部材を形成すれば、前記した問題の一部を解決することはできる。しかし、実装基体の下方(裏面)側への光漏れを生じるため、発光素子から出射した光を有効に利用することができないという問題がある。
また、発光素子から直接に、又は封止部材の内面での反射を経て実装基体面に入射した光の一部は、実装基体の構成部材によって吸収されるため、光取り出しの効率が低下する。
As described above, the conventional light emitting device using a mounting substrate such as a mounting substrate or a lead frame smaller than the size of the sealing member has the following problems, and the above-described Patent Documents 1 to 3 are also shown below. There was a problem like this.
It is possible to reduce the price by reducing the size of the entire device in parts other than the light emitting element. However, if the size of the light emitting element and the size of the sealing member are relatively close to each other, Thus, the component exceeding the critical angle of total reflection on the inner surface of the sealing member increases, and the light extracted to the outside decreases.
On the other hand, if the sealing member that is sufficiently larger than the light emitting element is formed by reducing the size of only the mounting substrate while keeping the size of the sealing member as it is, a part of the above problems can be solved. However, there is a problem in that light emitted from the light emitting element cannot be used effectively because light leaks downward (back side) of the mounting substrate.
In addition, a part of the light incident on the mounting substrate surface directly from the light emitting element or through reflection on the inner surface of the sealing member is absorbed by the constituent member of the mounting substrate, so that the light extraction efficiency decreases.

また、前記したような実装基体よりも大きな封止部材で当該実装基体を封止する構成においては、封止部材の成形方法によっては、封止部材と実装基体との接合部に、封止部材の垂れ下がりによる下垂部を生じる場合がある。
封止部材の底面にこのような下垂部が形成されると、発光素子から出射して下垂部に入射した光は下垂部から漏出し、発光装置としての光の利用効率を低下させることとなる。
Moreover, in the structure which seals the said mounting base | substrate with a sealing member larger than the above mounting base | substrates, depending on the molding method of a sealing member, a sealing member may be in a junction part of a sealing member and a mounting base | substrate. There may be a drooping part due to the sagging of.
When such a hanging part is formed on the bottom surface of the sealing member, the light emitted from the light emitting element and incident on the hanging part leaks from the hanging part, and the use efficiency of light as a light emitting device is reduced. .

特許文献1に記載の発光ダイオードは、封止部の底面において中間基板の側面近傍に、前記した下垂部が生じた場合には、半導体チップから出射した光の内で、当該下垂部に入射した光は、下方に漏出し、発光ダイオードからの光の利用効率を低下させることになる。
また、特許文献1の発光ダイオードのように、封止部を母型へのキャスティング(流し込み)によって成形する場合は、封止部の底面は平坦性が低くなる。そのため、封止部の底面に入射した光は、見かけ上は全反射の臨界角を超える入射角であっても、封止部の底面から下方に漏出する成分が少なくない。
In the light emitting diode described in Patent Document 1, when the above-described drooping portion occurs in the vicinity of the side surface of the intermediate substrate at the bottom surface of the sealing portion, the light enters the drooping portion of the light emitted from the semiconductor chip. The light leaks downward and reduces the light use efficiency from the light emitting diode.
Moreover, when the sealing part is formed by casting (pouring) into a mother die as in the light emitting diode of Patent Document 1, the bottom surface of the sealing part has low flatness. Therefore, even if the light incident on the bottom surface of the sealing portion has an apparent incident angle that exceeds the critical angle of total reflection, there are many components that leak downward from the bottom surface of the sealing portion.

特許文献2に記載のLEDモジュールは、光学素子が基板の縁まで延在している構成ではあるが、これはLEDチップからの側光が、封止/接着層の固定点から漏出することを防止するものであって、LEDチップから出射した光を光学素子の延在した底面で反射させる構成ではない。このため、LEDチップから下方に出射した光は、基板面、基板面上に設けられた金属パターン層及び誘電層からなる実装基板面に入射する。実装基板面に入射した光は、一部は上方に反射されるが、実装基板に吸収される成分も多く、LEDモジュールからの光取り出し効率を低下させることとなる。   The LED module described in Patent Document 2 has a configuration in which the optical element extends to the edge of the substrate, but this means that side light from the LED chip leaks from the fixing point of the sealing / adhesive layer. This is to prevent the light emitted from the LED chip from being reflected by the bottom surface of the optical element. For this reason, the light emitted downward from the LED chip is incident on the mounting substrate surface composed of the substrate surface, the metal pattern layer provided on the substrate surface, and the dielectric layer. Although a part of the light incident on the mounting substrate surface is reflected upward, many components are absorbed by the mounting substrate, and the light extraction efficiency from the LED module is lowered.

特許文献3に記載のLEDは、砲弾型のLEDであり、封止部材であるレンズ部の底面はリードフレームの下方に延びる2本の端子部に結合しており、LEDチップを搭載した面から大きく離れた下方にある。このため、リードフレームのLEDチップ実装面よりも下方に進行した光は、レンズ部の底面で反射されて有効に上方に取り出されるものではない。従って、フィレットの有無に関わらず、下方に進行した光成分は、LEDからの光の利用効率を低下させることとなる。   The LED described in Patent Document 3 is a bullet-type LED, and the bottom surface of the lens portion which is a sealing member is coupled to two terminal portions extending below the lead frame, and from the surface on which the LED chip is mounted. It is far below. For this reason, the light that has traveled below the LED chip mounting surface of the lead frame is reflected off the bottom surface of the lens portion and is not effectively extracted upward. Therefore, regardless of the presence or absence of the fillet, the light component that has traveled downward reduces the light use efficiency from the LED.

本発明はかかる課題に鑑みてなされたものであり、本発明の目的は、実装基板の小型化によって発光装置のコスト低減を図りながら、実装基板の下方への光漏れを防止して光取り出し効率のよい発光装置を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to reduce the cost of the light-emitting device by downsizing the mounting substrate, and prevent light leakage downward from the mounting substrate, thereby reducing the light extraction efficiency. It is providing the light-emitting device of good.

前記した目的を達成するために、請求項1に記載の発光装置は、上面と、当該上面から連続する側面とを有する実装基板と、実装基板の上面の一部に設けられた発光素子と、発光素子を内包し、実装基板の外側に延在する底面を有する封止部材と、を備え、封止部材の底面は、実装基板の上面より下側に位置し、かつ、発光素子から出射される光を反射させる平坦部と、当該平坦部から連続して実装基板の側面に沿って平坦部よりも下側に垂れる下垂部と、を有する構成とした。   In order to achieve the above object, a light emitting device according to claim 1, a mounting substrate having an upper surface and a side surface continuous from the upper surface, a light emitting element provided on a part of the upper surface of the mounting substrate, A sealing member including a light emitting element and having a bottom surface extending outside the mounting substrate, the bottom surface of the sealing member being located below the top surface of the mounting substrate and emitted from the light emitting element. A flat portion that reflects the light to be reflected, and a hanging portion that hangs downward from the flat portion along the side surface of the mounting substrate continuously from the flat portion.

かかる構成によれば、発光装置は、実装基板の上面より下側に位置するように設けられた封止部材の底面の平坦部によって、発光素子から下方に出射される光を反射する。また、発光装置は、封止部材の底面において、平坦部から連続して実装基板の側面に沿って有する平坦部よりも下側に垂れた下垂部を有する。ここで、発光装置は、封止部材の底面の位置を実装基板の上面よりも下側に位置し、下垂部が実装基板の陰になるため、発光素子から出射される光が下垂部に入射し難いようにしている。
これによって、発光装置は、発光素子から下方に出射された光を、下垂部からの漏出を防止しつつ、上方に偏向して外部に取り出す。
According to such a configuration, the light emitting device reflects light emitted downward from the light emitting element by the flat portion of the bottom surface of the sealing member provided so as to be positioned below the upper surface of the mounting substrate. In addition, the light emitting device has a hanging portion that hangs downward from the flat portion that is provided along the side surface of the mounting substrate continuously from the flat portion on the bottom surface of the sealing member. Here, in the light emitting device, the bottom surface of the sealing member is positioned below the top surface of the mounting substrate, and the hanging portion is behind the mounting substrate, so that light emitted from the light emitting element is incident on the hanging portion. It is difficult to do.
Thereby, the light emitting device deflects the light emitted downward from the light emitting element upward and prevents the light from leaking out from the hanging portion, and takes it out to the outside.

請求項2に記載の発光装置は、請求項1に記載の発光装置において、発光素子は、上面と、当該上面から連続する側面とを有し、実装基板の上面からの封止部材の底面の平坦部の深さをHOFF、実装基板の上面からの発光素子の上面の最大高さをHEM、実装基板の側面から発光素子の側面までの最小水平距離をa、実装基板の側面から封止部材の底面の平坦部までの水平距離をbとしたとき、
OFF≧(b/a)×HEM
を満たす構成とした。
The light emitting device according to claim 2 is the light emitting device according to claim 1, wherein the light emitting element has a top surface and a side surface continuous from the top surface, and the bottom surface of the sealing member from the top surface of the mounting substrate. The depth of the flat portion is H OFF , the maximum height of the top surface of the light emitting element from the top surface of the mounting substrate is H EM , the minimum horizontal distance from the side surface of the mounting substrate to the side surface of the light emitting device is a, and the side surface of the mounting substrate is sealed When the horizontal distance to the flat portion of the bottom surface of the stop member is b,
H OFF ≧ (b / a) × H EM
It was set as the structure which satisfy | fills.

かかる構成によれば、発光素子から見て、封止部材の底面の下垂部全体が実装基板の陰になるため、発光素子から下方に出射された光が直接下垂部に入射することがない。
これによって、発光装置は、下垂部からの光の漏出を防止する。
According to such a configuration, since the entire bottom hanging part of the bottom surface of the sealing member is behind the mounting substrate when viewed from the light emitting element, light emitted downward from the light emitting element does not directly enter the hanging part.
Thus, the light emitting device prevents light leakage from the hanging part.

請求項3に記載の発光装置は、請求項2に記載の発光装置において、封止部材の屈折率をnとしたとき、
a≧HEM×tan{(sin−1(1/n))}
を満たす構成とした。
The light emitting device according to claim 3 is the light emitting device according to claim 2, wherein the refractive index of the sealing member is n.
a ≧ H EM × tan {(sin −1 (1 / n))}
It was set as the structure which satisfy | fills.

かかる構成によれば、発光素子から下方に出射されて封止部材の底面に直接入射する光の入射角は、全反射の臨界角以上となる。このため、発光装置は、封止部材の底面によって、発光素子から下方に出射されて封止部材の底面に直接入射する光を全反射して上方に偏向する。
これによって、発光装置は、発光素子から下方に出射された光を効率的に上方に偏向して外部に取り出す。
According to such a configuration, the incident angle of light emitted downward from the light emitting element and directly incident on the bottom surface of the sealing member is equal to or greater than the critical angle of total reflection. For this reason, the light emitting device totally reflects and deflects the light emitted downward from the light emitting element and directly incident on the bottom surface of the sealing member by the bottom surface of the sealing member.
Thereby, the light emitting device efficiently deflects the light emitted downward from the light emitting element upward and takes it out.

請求項4に記載の発光装置は、請求項1乃至請求項3の何れか一項に記載の発光装置において、封止部材の底面に対向する面を半球面に構成した。   A light-emitting device according to a fourth aspect is the light-emitting device according to any one of the first to third aspects, wherein the surface facing the bottom surface of the sealing member is a hemispherical surface.

かかる構成によれば、発光装置は、底面に対向する光取り出し面が半球面に構成された封止部材によって、発光素子から上方に出射された光及び封止部材の底面などで上方に反射された光を、半球面の内面における全反射を低減しつつ、外部に取り出す。   According to such a configuration, the light emitting device is reflected upward by the light emitted upward from the light emitting element and the bottom surface of the sealing member, etc., by the sealing member in which the light extraction surface facing the bottom surface is configured as a hemispherical surface. Light is extracted outside while reducing the total reflection on the inner surface of the hemispherical surface.

請求項5に記載の発光装置は、請求項1乃至請求項4の何れか一項に記載の発光装置において、実装基板の上面は、一方向に長い矩形状であって、実装基板は、長手方向の少なくとも一方の端部の上面が、封止部材から露出する露出部を有する構成とした。   The light-emitting device according to claim 5 is the light-emitting device according to any one of claims 1 to 4, wherein the top surface of the mounting substrate is a rectangular shape that is long in one direction, and the mounting substrate is The upper surface of at least one end in the direction has an exposed portion exposed from the sealing member.

かかる構成によれば、発光装置は、実装基板を一方向に延伸させることにより、それと垂直方向の幅を最小限に抑えて、反射面となる封止部材底面の平坦部の面積を減らすことなく、実装基板の放熱性を向上する。   According to such a configuration, the light emitting device extends the mounting substrate in one direction, minimizes the width in the direction perpendicular to the mounting substrate, and does not reduce the area of the flat portion on the bottom surface of the sealing member serving as the reflecting surface. , Improve the heat dissipation of the mounting board.

請求項6に記載の発光装置は、請求項5に記載の発光装置において、実装基板の上面に、発光素子と電気的に接続された金属膜を備え、金属膜は、実装基板の上面の露出部に、一対の外部接続用電極端子を有する構成とした。   The light-emitting device according to claim 6 is the light-emitting device according to claim 5, further comprising a metal film electrically connected to the light-emitting element on the upper surface of the mounting substrate, the metal film being exposed on the upper surface of the mounting substrate. The portion has a pair of external connection electrode terminals.

かかる構成によれば、発光装置は、実装基板の上面に設けた金属膜によって、発光素子と露出部に設けられた外部接続用電極端子とを電気的に接続するとともに、当該金属膜によって、発光素子から出射した光を反射して上方に偏向して外部に取り出す。   According to such a configuration, the light emitting device electrically connects the light emitting element and the external connection electrode terminal provided on the exposed portion by the metal film provided on the upper surface of the mounting substrate, and emits light by the metal film. The light emitted from the element is reflected, deflected upward, and taken out to the outside.

請求項7に記載の発光装置は、請求項6に記載の発光装置において、露出部は、実装基板の長手方向の両方の端部に設けられ、両方の端部の露出部で一対の外部接続用電極端子を設ける構成とした。   The light-emitting device according to claim 7 is the light-emitting device according to claim 6, wherein the exposed portions are provided at both ends in the longitudinal direction of the mounting substrate, and a pair of external connections are provided at the exposed portions at both ends. An electrode terminal is provided.

かかる構成によれば、発光装置は、実装基板の長手方向に離間した両方の端部に設けられたそれぞれ正極用及び負極用の外部接続用電極端子によって、駆動回路などの外部電源供給手段と電気的に接続する。   According to such a configuration, the light-emitting device is electrically connected to the external power supply means such as the drive circuit by the positive and negative external connection electrode terminals provided at both ends of the mounting substrate that are separated in the longitudinal direction. Connect.

請求項8に記載の製造方法は、発光素子実装工程と、封止部材成形工程とを含み、封止部材成形工程において、実装基板の側面が平滑な上面を有する治具で挟まれ、かつ当該治具の上面が実装基板の上面より下側に位置するように実装基板と治具とを配置して封止部材を圧縮成形することにより、封止部材の底面を治具の上面で成形することとした。   The manufacturing method according to claim 8 includes a light emitting element mounting step and a sealing member molding step, and in the sealing member molding step, the side surface of the mounting substrate is sandwiched between jigs having a smooth upper surface, and The mounting substrate and the jig are arranged so that the upper surface of the jig is positioned below the upper surface of the mounting substrate, and the sealing member is compression-molded, thereby forming the bottom surface of the sealing member on the upper surface of the jig. It was decided.

かかる手順によれば、発光素子実装工程において、上面と、当該上面から連続する側面とを有する実装基板の上面に、発光素子を実装する。そして、発光素子実装工程の後、発光素子を内包する封止部材を圧縮成形する。この圧縮成形において、実装基板の側面が平滑な上面を有する治具で挟まれ、かつ当該治具の上面が実装基板の上面より下側に位置するように実装基板と治具とを配置して、封止部材を圧縮成形する。これによって、封止部材の底面を治具の上面で成形する。
このため、例えば、キャスティング法に比べて、光の反射性が優れた封止部材の底面の平坦部が形成される。また、封止部材の底面の平坦部が実装基板の上面よりも下側に形成されるため、発光素子から出射された光が、下垂部に直接入射することを抑制する発光装置が製造される。
According to this procedure, in the light emitting element mounting step, the light emitting element is mounted on the upper surface of the mounting substrate having the upper surface and the side surface continuous from the upper surface. Then, after the light emitting element mounting step, the sealing member including the light emitting element is compression-molded. In this compression molding, the mounting substrate and the jig are arranged so that the side surface of the mounting substrate is sandwiched between jigs having a smooth upper surface, and the upper surface of the jig is positioned below the upper surface of the mounting substrate. Then, the sealing member is compression molded. Thus, the bottom surface of the sealing member is formed on the upper surface of the jig.
For this reason, the flat part of the bottom face of the sealing member which was excellent in the light reflectivity compared with the casting method, for example is formed. In addition, since the flat portion of the bottom surface of the sealing member is formed below the upper surface of the mounting substrate, a light emitting device that suppresses light emitted from the light emitting element from directly entering the hanging portion is manufactured. .

請求項1に記載の発明によれば、封止部材の底面で、発光素子から下方に出射された光を効率的に反射するため、実装基板の小型化とともに、外部への光取り出し効率の向上を図ることができる。
請求項2に記載の発明によれば、封止部材の底面に形成された下垂部からの光の漏出や下垂部が接合する実装基板の側面への光の吸収を防止できるため、発光装置の外部への光取り出し効率を更に向上することができる。
請求項3に記載の発明によれば、発光素子から出射して封止部材の底面に直接入射した光は、封止部材の底面で全反射して効率よく上方に偏向されるため、発光装置の外部への取り出し効率が更に向上する。
請求項4に記載の発明によれば、発光装置の光取り出し面を半球面としたため、光取り出し面の内面に入射する光の入射角を小さくできる。このため、光取り出し面の内面での光の全反射が低減され、発光装置の外部への光取り出し効率を向上することができる。
請求項5に記載の発明によれば、発光素子から出射した光の封止部材の底面による反射面積を減らすことなく、実装基板の放熱性を向上することができる。このため、発光装置の外部への光取り出し効率を低減することなく、安定した発光をすることができる。
請求項6に記載の発明によれば、実装基板の上面に入射した光は、配線パターンを兼ねた金属膜によって反射されるため、実装基板の上面の反射率を向上させることができる。また、外部の駆動回路と電気的接続を行う外部接続用電極端子を実装基板の上面に設けたため、実装基板の裏面側の全面を熱的な接続面として用いることができ、放熱性の向上を容易に図ることができる。
請求項7に記載の発明によれば、正負の外部接続用電極端子の間隔を離すことができるため、実装基板を小型化しつつ、外部の駆動回路との電気的接続に際して、短絡などの不良の発生を防止し、良好な電気的接続を容易に行うことができる。
請求項8に記載の発明によれば、封止部材の底面を、平坦で実装基板の上面よりも下側に位置するように形成できるため、外部への光取り出し効率のよい発光装置を製造することができる。
According to the first aspect of the present invention, the light emitted downward from the light emitting element is efficiently reflected at the bottom surface of the sealing member, so that the mounting substrate is downsized and the light extraction efficiency to the outside is improved. Can be achieved.
According to the second aspect of the present invention, light leakage from the hanging part formed on the bottom surface of the sealing member and absorption of light to the side surface of the mounting substrate to which the hanging part is bonded can be prevented. The light extraction efficiency to the outside can be further improved.
According to the third aspect of the present invention, the light emitted from the light emitting element and directly incident on the bottom surface of the sealing member is totally reflected on the bottom surface of the sealing member and efficiently deflected upward. The efficiency of taking out to the outside is further improved.
According to the fourth aspect of the present invention, since the light extraction surface of the light emitting device is a hemispherical surface, the incident angle of light incident on the inner surface of the light extraction surface can be reduced. For this reason, total reflection of light on the inner surface of the light extraction surface is reduced, and the light extraction efficiency to the outside of the light emitting device can be improved.
According to the fifth aspect of the present invention, the heat dissipation of the mounting substrate can be improved without reducing the reflection area of the light emitted from the light emitting element by the bottom surface of the sealing member. For this reason, it is possible to emit light stably without reducing the light extraction efficiency to the outside of the light emitting device.
According to the sixth aspect of the present invention, the light incident on the upper surface of the mounting substrate is reflected by the metal film that also serves as the wiring pattern, so that the reflectance of the upper surface of the mounting substrate can be improved. In addition, since the external connection electrode terminal for electrical connection with the external drive circuit is provided on the top surface of the mounting substrate, the entire back surface of the mounting substrate can be used as a thermal connection surface, improving heat dissipation. It can be easily achieved.
According to the seventh aspect of the present invention, since the interval between the positive and negative external connection electrode terminals can be separated, the mounting substrate can be reduced in size, and in the electrical connection with the external drive circuit, a defect such as a short circuit can be prevented. Generation | occurrence | production can be prevented and a favorable electrical connection can be performed easily.
According to the invention described in claim 8, since the bottom surface of the sealing member can be formed so as to be flat and located below the top surface of the mounting substrate, a light emitting device with high light extraction efficiency is manufactured. be able to.

本発明に係る実施形態における発光装置の断面図である。It is sectional drawing of the light-emitting device in embodiment which concerns on this invention. 本発明に係る実施形態における発光装置を上側から見た平面図である。It is the top view which looked at the light-emitting device in embodiment which concerns on this invention from the upper side. 本発明に係る実施形態における実装基板の構成を示す模式図であり、(a)は上から見た平面図であり、(b)は(a)の線B−Bにおける断面図である。It is a schematic diagram which shows the structure of the mounting substrate in embodiment which concerns on this invention, (a) is the top view seen from the top, (b) is sectional drawing in line BB of (a). 本発明に係る実施形態における発光素子の他の構成例の断面図である。It is sectional drawing of the other structural example of the light emitting element in embodiment which concerns on this invention. 本発明に係る実施形態の変形例における発光装置の断面図である。It is sectional drawing of the light-emitting device in the modification of embodiment which concerns on this invention. 本発明に係る実施形態の変形例における発光装置を上側から見た平面図である。It is the top view which looked at the light-emitting device in the modification of embodiment which concerns on this invention from the upper side. 本発明に係る実施形態における発光装置の一部を示す拡大断面図である。It is an expanded sectional view showing some light emitting devices in an embodiment concerning the present invention. 本発明に係る実施形態における発光装置の一部を示す拡大断面図である。It is an expanded sectional view showing some light emitting devices in an embodiment concerning the present invention. 本発明に係る実施形態における発光装置を構成する部材の位置関係を説明するための模式的断面図である。It is typical sectional drawing for demonstrating the positional relationship of the member which comprises the light-emitting device in embodiment which concerns on this invention. 本発明に係る実施形態における発光装置の製造工程において、発光素子を実装基板に実装する工程を示す平面図である。It is a top view which shows the process of mounting a light emitting element in a mounting substrate in the manufacturing process of the light-emitting device in embodiment which concerns on this invention. 本発明に係る実施形態における発光装置の製造工程において、封止樹脂の形成工程を示す平面図である。It is a top view which shows the formation process of sealing resin in the manufacturing process of the light-emitting device in embodiment which concerns on this invention. 本発明に係る実施形態における発光装置の製造工程において、図5Bの工程を示す断面図である。FIG. 5B is a cross-sectional view showing the step of FIG. 5B in the manufacturing process of the light emitting device according to the embodiment of the present invention. 本発明に係る実施形態における発光装置の製造工程において、図5Bの次の工程を示す断面図である。FIG. 5B is a cross-sectional view showing a step subsequent to FIG. 5B in the manufacturing process of the light emitting device according to the embodiment of the present invention. 本発明に係る実施形態における発光装置の製造工程において、図5Dの次の工程を示す断面図である。FIG. 5D is a cross-sectional view showing a step subsequent to FIG. 5D in the manufacturing process of the light emitting device according to the embodiment of the present invention. 本発明に係る実施形態における発光装置の製造工程において、図5Eの次の工程を示す断面図である。FIG. 5E is a cross-sectional view showing the next process of FIG. 5E in the manufacturing process of the light emitting device according to the embodiment of the present invention. 比較例の発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device of a comparative example. 比較例の発光装置を上側から見た平面図である。It is the top view which looked at the light-emitting device of the comparative example from the upper side.

以下、本発明の実施形態について、適宜図面を参照して説明する。
<構成>
図1A乃至図4を参照して、本発明の実施形態の発光装置1の構成について説明する。なお、図1Aは、図1Bにおける線A−Aにおける断面図である。
図1A乃至図1Cに示すように、実施形態の発光装置1は、上面20aが平坦な実装基板20上に、発光素子10が実装され、発光素子10、実装基板20の上面20a及び実装基板20の側面20bの一部が、半球状の封止部材30で覆われている。
Embodiments of the present invention will be described below with reference to the drawings as appropriate.
<Configuration>
With reference to FIG. 1A thru | or FIG. 4, the structure of the light-emitting device 1 of embodiment of this invention is demonstrated. 1A is a cross-sectional view taken along line AA in FIG. 1B.
As shown in FIGS. 1A to 1C, in the light emitting device 1 according to the embodiment, the light emitting element 10 is mounted on a mounting substrate 20 having a flat upper surface 20a, and the light emitting element 10, the upper surface 20a of the mounting substrate 20, and the mounting substrate 20 are mounted. A part of the side surface 20 b is covered with a hemispherical sealing member 30.

発光素子10は、実装基板20の上面20aに設けられた実装部22b上にフリップチップ実装されるLEDチップである。発光素子10は、少なくとも発光層を有し、より好適には基板上に第1導電型半導体、発光層及び第2導電型半導体がこの順に形成される半導体積層構造を備え、この半導体積層構造に電流を供給する電極が設けられた半導体発光素子構造を有している。半導体発光素子構造の具体的な例として、基板側から順に、n型半導体層、発光層及びp型半導体層が積層された構成を有する。例えば窒化物半導体であるGaN系化合物半導体を用い、サファイア基板上に、バッファ層、マスク層、中間層等の下地層を介して、1〜2μm程度の厚さのn型半導体層、50〜150nm程度の厚さの発光層、100〜300nm程度の厚さのp型半導体層を形成する。
なお、発光素子10は、これらの構成に限定されるものではなく、他の半導体材料を用いて構成するようにしてもよく、適宜保護層や反射層などを備えるように構成してもよい。
The light emitting element 10 is an LED chip that is flip-chip mounted on a mounting portion 22 b provided on the upper surface 20 a of the mounting substrate 20. The light emitting element 10 includes at least a light emitting layer, and more preferably includes a semiconductor stacked structure in which a first conductive semiconductor, a light emitting layer, and a second conductive semiconductor are formed in this order on a substrate. It has a semiconductor light emitting element structure provided with an electrode for supplying current. As a specific example of the semiconductor light-emitting element structure, an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer are stacked in this order from the substrate side. For example, a GaN-based compound semiconductor which is a nitride semiconductor is used, and an n-type semiconductor layer having a thickness of about 1 to 2 μm, 50 to 150 nm on a sapphire substrate through a base layer such as a buffer layer, a mask layer, and an intermediate layer. A light emitting layer having a thickness of about 100 nm and a p-type semiconductor layer having a thickness of about 100 to 300 nm are formed.
Note that the light-emitting element 10 is not limited to these configurations, and may be configured using other semiconductor materials, or may be configured to include a protective layer, a reflective layer, and the like as appropriate.

また、発光素子10は、例えば白色発光素子の場合には、図2Aに示すように、青色発光する半導体発光素子構造11の外側を、蛍光体若しくは蛍光体を含む樹脂等からなる蛍光体層12で覆う構成としてもよい。例えば、青色発光する半導体発光素子構造11には、黄色発光する、セリウムで賦活されたYAG(イットリウム・アルミニウム・ガーネット)系蛍光体、又は(Sr,Ba)SiO:Eu等のシリケート系蛍光体と組み合わせて白色発光の発光素子10とすることができる。
更に、発光素子10は、複数の半導体発光素子構造11を互いに離間して、例えば2×2個のマトリクス状に配置し、これらの複数の半導体発光素子構造11を、蛍光体層12で覆うように構成してもよい。
このように、半導体発光素子構造11を蛍光体層12により被覆する構成であれば、半導体発光素子構造11の近傍で白色光に変換することにより、蛍光体による散乱に起因した封止部材30内面での反射を抑制して、高い光取り出し効率を実現することができる。なお、このほか蛍光体を封止部材30内に混合させて設けることもできる。
For example, when the light emitting element 10 is a white light emitting element, as shown in FIG. 2A, a phosphor layer 12 made of phosphor or a resin containing phosphor is disposed outside the semiconductor light emitting element structure 11 that emits blue light. It is good also as a structure covered with. For example, the semiconductor light-emitting element structure 11 that emits blue light has a cerium-activated YAG (yttrium, aluminum, garnet) -based phosphor that emits yellow light, or a silicate-based fluorescence such as (Sr, Ba) 2 SiO 4 : Eu. It can be set as the white light emitting element 10 combining with a body.
Further, in the light emitting element 10, a plurality of semiconductor light emitting element structures 11 are spaced apart from each other, for example, arranged in a matrix of 2 × 2, and the plurality of semiconductor light emitting element structures 11 are covered with a phosphor layer 12. You may comprise.
Thus, if it is the structure which coat | covers the semiconductor light-emitting element structure 11 with the fluorescent substance layer 12, it will convert into white light in the vicinity of the semiconductor light-emitting element structure 11, and the sealing member 30 inner surface resulting from the scattering by a fluorescent substance Therefore, high light extraction efficiency can be realized. In addition, phosphors can be mixed in the sealing member 30 and provided.

実装基板20は、矩形の平面形状をした基板21上に、金属膜22と絶縁保護膜23とを積層して構成されている。実装基板20は、その上面20aに発光素子10を実装するための実装部22bと、外部の駆動回路と電気的に接続するための外部接続用電極端子22aとを有し、配線パターンである互いに電気的に絶縁された2枚の金属膜22を介して発光素子10に電力を供給する。また、実装基板20の上面20aは、外部接続用電極端子22a及び実装部22bを絶縁保護膜23の開口部として、この開口部を除いて、ほぼ全面が絶縁保護膜23によって覆われている。
また、実装基板20は、上面20aに実装された発光素子10とともに上面20aが封止部材30によって覆われ、実装基板20の短手方向の側面(長辺を構成する側面)20bの一部まで封止部材30が延在している。そして、封止部材30の底面30aは、実装基板20の上面20aよりも低い位置に設けられている。
発光素子10と、実装基板20と、封止部材30との間の詳細な位置関係については後記する。
The mounting substrate 20 is configured by laminating a metal film 22 and an insulating protective film 23 on a substrate 21 having a rectangular planar shape. The mounting substrate 20 has a mounting portion 22b for mounting the light emitting element 10 on the upper surface 20a and an external connection electrode terminal 22a for electrical connection with an external drive circuit, and is a wiring pattern. Electric power is supplied to the light emitting element 10 via the two electrically insulated metal films 22. Further, the upper surface 20 a of the mounting substrate 20 is covered with the insulating protective film 23 except for the opening, with the external connection electrode terminal 22 a and the mounting portion 22 b being the opening of the insulating protective film 23.
In addition, the mounting substrate 20 is covered with the light emitting element 10 mounted on the upper surface 20a and the upper surface 20a by the sealing member 30, and up to a part of the lateral side surface (side surface constituting the long side) 20b of the mounting substrate 20. The sealing member 30 extends. The bottom surface 30 a of the sealing member 30 is provided at a position lower than the top surface 20 a of the mounting substrate 20.
A detailed positional relationship among the light emitting element 10, the mounting substrate 20, and the sealing member 30 will be described later.

基板21は、実装基板20のベースであり、例えば、窒化アルミニウムセラミックスなどのセラミックス、金属、樹脂などを用いることができる。   The substrate 21 is a base of the mounting substrate 20, and for example, ceramics such as aluminum nitride ceramics, metal, resin, or the like can be used.

金属膜22は、絶縁保護膜23から露出した外部接続用電極端子22aと実装部22bとを有し、外部の駆動回路と発光素子10とを電気的に接続する配線パターンである。また、金属膜22は、発光素子10から下方に出射される光を反射する反射膜としても機能する。
金属膜22としては、導電性がよく、発光素子10が発光する波長の光の反射率が高い材料が好ましい。例えば、導電性を確保するためにTi/Pt/Auなどを用いて配線パターンを形成し、反射率を向上させるために、更に表層にAg、Al、Rhなどを有する、単層膜又は多層膜を設けるようにしてもよい。
The metal film 22 has an external connection electrode terminal 22 a exposed from the insulating protective film 23 and a mounting portion 22 b, and is a wiring pattern that electrically connects an external drive circuit and the light emitting element 10. The metal film 22 also functions as a reflective film that reflects light emitted downward from the light emitting element 10.
The metal film 22 is preferably made of a material having good conductivity and high reflectance of light having a wavelength emitted from the light emitting element 10. For example, a wiring layer is formed using Ti / Pt / Au or the like in order to ensure conductivity, and a single layer film or a multilayer film further including Ag, Al, Rh, etc. on the surface layer in order to improve reflectivity May be provided.

外部接続用電極端子22aは、発光素子10に外部から電力を供給するために、外部の駆動回路などの外部電源からの配線を接続するための電極パッドである。また、実装部22bは、実装される発光素子10の電極に合わせて設けられた電極パターンである。
一対の外部接続用電極端子22aは、それぞれ実装基板20の長手方向(長辺に沿う方向)の両端部において、封止部材30から露出した上面20aの露出部20c上に設けられている。一対の外部接続用電極端子22aは、配線パターンである金属膜22を介して、それぞれ実装部22bにおいて発光素子10の正電極及び負電極と電気的に接続されている。
このように、正電極及び負電極からなる一対の外部接続用電極端子22aを、実装基板20の長手方向の両端部に間を離して設けることにより、発光装置1を外部の駆動回路に接続する際に、実装基板20の小型化に関わらず、短絡などの不良の発生を防止し、良好な電気的接続を容易に行うことができる。また、後記する図2B及び図2Cに示すように、実装基板20の長手方向の片方の端部に一対の外部接続用電極20aを設ける場合に比べ、一対の配線パターン同士が隣接する領域が少なく、配線パターン同士が短絡することを防止することができる。
The external connection electrode terminal 22a is an electrode pad for connecting a wiring from an external power source such as an external drive circuit in order to supply power to the light emitting element 10 from the outside. Moreover, the mounting part 22b is an electrode pattern provided according to the electrode of the light emitting element 10 mounted.
The pair of external connection electrode terminals 22 a are provided on the exposed portions 20 c of the upper surface 20 a exposed from the sealing member 30 at both ends in the longitudinal direction (the direction along the long side) of the mounting substrate 20. The pair of external connection electrode terminals 22a are electrically connected to the positive electrode and the negative electrode of the light emitting element 10 in the mounting portion 22b through the metal film 22 as a wiring pattern, respectively.
Thus, by providing the pair of external connection electrode terminals 22a composed of the positive electrode and the negative electrode at both ends in the longitudinal direction of the mounting substrate 20, the light emitting device 1 is connected to an external drive circuit. At this time, regardless of the downsizing of the mounting substrate 20, it is possible to prevent the occurrence of defects such as a short circuit and easily perform a good electrical connection. In addition, as shown in FIGS. 2B and 2C, which will be described later, compared to the case where a pair of external connection electrodes 20a is provided at one end in the longitudinal direction of the mounting substrate 20, there is less area where the pair of wiring patterns are adjacent to each other. It is possible to prevent the wiring patterns from being short-circuited.

絶縁保護膜23は、外部接続用電極端子22a及び実装部22bを除いて、配線パターンである金属膜22の上面を被覆する保護膜である。また、絶縁保護膜23は、発光素子10から下方に出射された光を反射する反射膜としても機能する。そのため、前記した金属膜22の上面を含めて、実装基板20の上面20aのほぼ全面を被覆している。
絶縁保護膜23としては、SiO/Nbなどの透光性誘電体からなる誘電体多層膜などからなる絶縁性の反射膜を用いることができる。
The insulating protective film 23 is a protective film that covers the upper surface of the metal film 22 that is a wiring pattern, excluding the external connection electrode terminal 22a and the mounting portion 22b. The insulating protective film 23 also functions as a reflective film that reflects light emitted downward from the light emitting element 10. Therefore, almost the entire upper surface 20a of the mounting substrate 20 is covered, including the upper surface of the metal film 22 described above.
As the insulating protective film 23, an insulating reflective film made of a dielectric multilayer film made of a translucent dielectric such as SiO 2 / Nb 2 O 5 can be used.

なお、絶縁保護膜23に替えて、又は絶縁保護膜23の下層に、反射率の高い金属からなる反射膜を積層するようにしてもよい。この場合は、配線パターンである2つの金属膜22の間は電気的に接続しないように、2つの金属膜22の間には当該反射膜は積層しないようにする。このような金属の反射膜としては、前記した金属膜22の表層用の材料と同様に、Ag、Al、Rhなどを有する単層膜又は多層膜を用いることができる。例えば、配線パターンである金属膜22をTi/Pt/Auなどを用いて形成し、その上に反射膜をTi/Alなどを用いて形成することができる。   Note that a reflective film made of a metal having a high reflectance may be laminated instead of the insulating protective film 23 or under the insulating protective film 23. In this case, the reflective film is not laminated between the two metal films 22 so as not to be electrically connected between the two metal films 22 which are wiring patterns. As such a metal reflection film, a single-layer film or a multilayer film containing Ag, Al, Rh, or the like can be used as in the surface layer material of the metal film 22 described above. For example, the metal film 22 which is a wiring pattern can be formed using Ti / Pt / Au or the like, and the reflective film can be formed thereon using Ti / Al or the like.

また、実装基板20は、図1Bに示したように、長手方向の上面20aの両端が封止部材30から露出する構成に限定されない。図2B及び図2Cを参照して、実装基板20の変形例について説明する。なお、図2Bは、図2Cの線C−Cにおける断面図である。   Further, the mounting substrate 20 is not limited to a configuration in which both ends of the upper surface 20a in the longitudinal direction are exposed from the sealing member 30 as illustrated in FIG. 1B. A modification of the mounting substrate 20 will be described with reference to FIGS. 2B and 2C. 2B is a cross-sectional view taken along line CC in FIG. 2C.

図2B及び図2Cに示すように、実装基板20の長手方向の一方の端部の上面20aを封止部材30から露出させた露出部20cを設け、上面20aの露出部20c上に正電極及び負電極からなる一対の外部接続用電極端子22aを設けるようにしてもよい。この場合は、実装基板20の他方の端部の上面20aは、露出する必要がなく、実装基板20の長さを短くすることができる。これによって、実装基板20を小型化できるとともに、発光素子10から下方に出射される光を反射する封止部材30の底面30aの平坦部30cの面積を増大させることができるため、発光装置1としての光取り出し効率を向上することができる。   As shown in FIG. 2B and FIG. 2C, an exposed portion 20c in which the upper surface 20a at one end in the longitudinal direction of the mounting substrate 20 is exposed from the sealing member 30 is provided, and a positive electrode and a positive electrode are formed on the exposed portion 20c of the upper surface 20a. A pair of external connection electrode terminals 22a made of a negative electrode may be provided. In this case, the upper surface 20a of the other end of the mounting substrate 20 does not need to be exposed, and the length of the mounting substrate 20 can be shortened. As a result, the mounting substrate 20 can be reduced in size, and the area of the flat portion 30c of the bottom surface 30a of the sealing member 30 that reflects light emitted downward from the light emitting element 10 can be increased. The light extraction efficiency can be improved.

このように実装基板20の、長手方向の一方の端部が封止部材30によって被覆される場合は、実装基板20の短手方向の端部の側面20bに加えて、封止部材30によって被覆される長手方向の端部の側面20bにおいても、封止部材30の底面30aに下垂部30bが形成される。
本発明の発光装置1は、このような実装基板20の長手方向の端部の側面20bに形成される下垂部30bに対しても、発光素子10から出射される光が入射しないように、発光素子10と実装基板20と封止部材30の底面30aとの位置関係が決められる。
Such a mounting substrate 20, if one end of the longitudinal direction are covered by the sealing member 30, in addition to the side surface 20b 1 of the end portion in the transverse direction of the mounting substrate 20, a sealing member 30 Also on the side surface 20 b 2 at the end portion in the longitudinal direction to be covered, the hanging portion 30 b is formed on the bottom surface 30 a of the sealing member 30.
The light emitting device 1 of the present invention, even for hanging portion 30b which is formed on the side surface 20b 2 in the longitudinal direction of the end portion of such a mounting substrate 20, so that light emitted from the light emitting element 10 is not incident, The positional relationship among the light emitting element 10, the mounting substrate 20, and the bottom surface 30a of the sealing member 30 is determined.

更にまた、実装基板20の長手方向の両端部も、封止部材30によって被覆されるようにしてもよい。この場合、実装基板20の全側面の上部が封止部材30によって被覆されることになる。このような実装基板20のすべての側面20b及び20bに形成される下垂部30bに対しても、発光素子10から出射される光が入射しないように、発光素子10と実装基板20と封止部材30の底面30aとの位置関係が決められる。 Furthermore, both end portions in the longitudinal direction of the mounting substrate 20 may be covered with the sealing member 30. In this case, the upper portions of all side surfaces of the mounting substrate 20 are covered with the sealing member 30. The light emitting element 10, the mounting board 20, and the sealing member 20 are sealed so that the light emitted from the light emitting element 10 does not enter the hanging portions 30 b formed on all the side surfaces 20 b 1 and 20 b 2 of the mounting board 20. The positional relationship with the bottom surface 30a of the stop member 30 is determined.

これによって、実装基板20を更に小型化できるとともに、発光素子10から下方に出射される光を反射する封止部材30の底面30aの平坦部30cの面積を更に増大させることができるため、発光装置1としての光取り出し効率を一層向上することができる。
なお、このような構成の場合は、外部接続用電極端子22aは、実装基板20の裏面側に設け、発光素子10の実装部22bとは、例えばビアを介して電気的に接続するようにすることができる。
As a result, the mounting substrate 20 can be further reduced in size, and the area of the flat portion 30c of the bottom surface 30a of the sealing member 30 that reflects light emitted downward from the light emitting element 10 can be further increased. The light extraction efficiency as 1 can be further improved.
In the case of such a configuration, the external connection electrode terminal 22a is provided on the back surface side of the mounting substrate 20, and is electrically connected to the mounting portion 22b of the light emitting element 10 through, for example, a via. be able to.

封止部材30は、平坦面を備える底面30aを有し、発光素子10から下方に出射される光を反射して上方に偏向する。また封止部材30は、発光素子10の全体及び実装基板20の上部(上面20a及び側面20bの一部)を封止するとともに、発光装置1の光取り出し方向である上面20a側(底面30aに対向する側)に光取り出し面30eを有する。これによって、封止部材30は、発光素子10の外気による劣化を防止する。また平面視において、封止部材30の(外形の)ほぼ中心に発光素子10を配置することで、光取り出し面30eに対して発光素子10から光を均一に照射することができる。更に、封止部材30における光取り出し面30eを半球面とし、平面視でこの半球面のほぼ中心に発光素子10を配置することで、半球面に入射する光の入射角が、全反射の臨界角以上となることを抑制することができる。これによって、光取り出し面30eであるこの半球面の内面で全反射する入射光成分を低減し、効率的に外部に光を取り出すことができる。また断面視では、光取り出し面30eの平面視中心軸上において発光素子10が配置されていればよい。例えば光取り出し面30eを半球面とし、その曲率中心が発光素子10の中心から所定の高さ(例えばHOFF)下方に位置していてもよい。好ましくは、光取り出し面30eが発光素子10をほぼ中心とする球面により形成されることで、良好な光取り出し効率が得られる。この場合、光取り出し面30eは、発光素子10をほぼ中心とする半球面に加え、実装基板20の上面20aより下方に当該半球面及び底面30aに連続する球面の一部を有するものとなる。
なお、このほか封止部材30の光取り出し面30eは、半球面、球面から扁形された凸曲面、砲弾型、凹曲面などの所望の形状とし、光を集光、拡散させるレンズとして機能させることもできる。以下、本明細書において、封止部材30をレンズとして記載する場合がある。
封止部材30は、透明な樹脂、ガラスなどからなる。樹脂としては、例えば、硬質シリコーン樹脂、エポキシ樹脂などを用いることができる。
The sealing member 30 has a bottom surface 30a having a flat surface, reflects light emitted downward from the light emitting element 10 and deflects it upward. The sealing member 30 seals the entire light emitting element 10 and the upper part of the mounting substrate 20 (a part of the upper surface 20a and the side surface 20b), and the upper surface 20a side (on the bottom surface 30a) that is the light extraction direction of the light emitting device 1. A light extraction surface 30e is provided on the opposite side. Accordingly, the sealing member 30 prevents the light emitting element 10 from being deteriorated by the outside air. Further, when the light emitting element 10 is arranged at substantially the center (outer shape) of the sealing member 30 in a plan view, light can be uniformly irradiated from the light emitting element 10 to the light extraction surface 30e. Further, the light extraction surface 30e of the sealing member 30 is a hemispherical surface, and the light emitting element 10 is arranged at the substantially center of the hemispherical surface in a plan view, so that the incident angle of light incident on the hemispherical surface is the critical point of total reflection. It can suppress becoming a corner or more. Thus, the incident light component totally reflected by the inner surface of the hemispheric surface that is the light extraction surface 30e can be reduced, and light can be efficiently extracted to the outside. Moreover, in the cross-sectional view, the light emitting element 10 should just be arrange | positioned on the planar view central axis of the light extraction surface 30e. For example, the light extraction surface 30e may be a hemispherical surface, and the center of curvature thereof may be located below a predetermined height (for example, H OFF ) from the center of the light emitting element 10. Preferably, the light extraction surface 30e is formed of a spherical surface having the light emitting element 10 as the center, so that good light extraction efficiency can be obtained. In this case, the light extraction surface 30e has a part of a spherical surface continuous to the hemispherical surface and the bottom surface 30a below the upper surface 20a of the mounting substrate 20 in addition to the hemispherical surface having the light emitting element 10 as the center.
In addition, the light extraction surface 30e of the sealing member 30 has a desired shape such as a hemispherical surface, a convex curved surface flattened from a spherical surface, a shell shape, or a concave curved surface, and functions as a lens that collects and diffuses light. You can also. Hereinafter, in this specification, the sealing member 30 may be described as a lens.
The sealing member 30 is made of transparent resin, glass, or the like. As the resin, for example, a hard silicone resin or an epoxy resin can be used.

また、封止部材30は、実装基板20の幅(短手方向の長さ)よりも大きな径を有し、封止部材30の一部は、実装基板20の短手方向の外側まで延在する。また、封止部材30の底面30aは、実装基板20の実装面である上面20aよりも下側に位置(オフセット)されている。言い換えれば、封止部材30が底面側に凹部を有し、実装基板20は、その上面20aが封止部材30の凹部の底面に一致し、実装基板20の下面が凹部外に突出して設けられている。   The sealing member 30 has a diameter larger than the width (length in the short direction) of the mounting substrate 20, and a part of the sealing member 30 extends to the outside in the short direction of the mounting substrate 20. To do. Further, the bottom surface 30 a of the sealing member 30 is positioned (offset) below the upper surface 20 a that is the mounting surface of the mounting substrate 20. In other words, the sealing member 30 has a recess on the bottom surface side, and the mounting substrate 20 is provided such that its upper surface 20a coincides with the bottom surface of the recess of the sealing member 30, and the lower surface of the mounting substrate 20 protrudes outside the recess. ing.

封止部材30の底面30aは、実装基板20の側面20bとの接合部において、下垂部30bが形成される。この下垂部30bは、封止部材30を成形する工程上生じるものである。
下垂部30bは、実装基板20の側面20bと封止部材30との接合部において、例えば、図3Aに示すような樹脂の垂れ(這い上がり)や、図3Bに示すような樹脂の層などのフィレットとして形成されている。
The bottom surface 30 a of the sealing member 30 is formed with a drooping portion 30 b at a joint portion with the side surface 20 b of the mounting substrate 20. The drooping portion 30 b is generated in the process of molding the sealing member 30.
The drooping portion 30b is, for example, a resin dripping (climbing) as shown in FIG. 3A or a resin layer as shown in FIG. 3B at the joint between the side surface 20b of the mounting substrate 20 and the sealing member 30. It is formed as a fillet.

封止部材30の底面30aの実装基板20を被覆しない領域は、下垂部30bを除いては平面からなる平坦部30cである。
図3A及び図3Bに示した下垂部30bの幅をbとすると、幅bは、実装基板20の側面20bから封止部材30の底面30aにおける平坦部30cの端部30dまでの水平方向の距離である。本発明では、発光素子10から下方に出射される光が、この幅bの下垂部30bに入射しないように、発光素子10と実装基板20と封止部材30の底面30aとの位置関係が定められている。
A region of the bottom surface 30a of the sealing member 30 that does not cover the mounting substrate 20 is a flat portion 30c that is a flat surface except for the hanging portion 30b.
If the width of the hanging part 30b shown in FIGS. 3A and 3B is b, the width b is the horizontal distance from the side face 20b of the mounting substrate 20 to the end part 30d of the flat part 30c on the bottom face 30a of the sealing member 30. It is. In the present invention, the positional relationship between the light emitting element 10, the mounting substrate 20, and the bottom surface 30 a of the sealing member 30 is determined so that light emitted downward from the light emitting element 10 does not enter the hanging part 30 b of the width b. It has been.

次に、図4を参照して、下垂部30bに発光素子10から出射される光が入射しないための発光素子10と、実装基板20と、実装基板20の外側に延在する封止部材30の底面30aとの位置関係について説明する。
図4に示すように、実装基板20の上面20aの位置から、発光素子10の上面10aの位置までの高さをHEMとする。また、上面20aの位置から封止部材30の底面30aの平坦部の位置までの深さをHOFFとする。
前記したように下垂部30bの幅をbとし、発光素子10の上面10aの端部の点P1から実装基板20の上面20aの端部の点P2までの水平方向の距離をaとする。また、点P1から出射した光が点P2を通り、封止部材30の底面30aの平坦部30cに入射する位置を点P3としたときに、点P3の実装基板20の側面20bからの水平方向の距離をcとする。
Next, referring to FIG. 4, the light emitting element 10 for preventing the light emitted from the light emitting element 10 from entering the hanging part 30 b, the mounting substrate 20, and the sealing member 30 extending to the outside of the mounting substrate 20. The positional relationship with the bottom surface 30a will be described.
As shown in FIG. 4, the position of the upper surface 20a of the mounting substrate 20, the position to the height of the upper surface 10a of the light emitting element 10 and H EM. Further, the depth from the position of the upper surface 20a to the position of the flat portion of the bottom surface 30a of the sealing member 30 is H OFF .
As described above, the width of the hanging part 30b is b, and the horizontal distance from the point P1 at the end of the upper surface 10a of the light emitting element 10 to the point P2 at the end of the upper surface 20a of the mounting substrate 20 is a. Further, when the position where the light emitted from the point P1 passes through the point P2 and enters the flat portion 30c of the bottom surface 30a of the sealing member 30 is the point P3, the horizontal direction from the side surface 20b of the mounting substrate 20 at the point P3. Let c be the distance.

このとき、発光素子10から下方に出射され、封止部材30の底面30aに直接入射する光の内で、実装基板20の側面20bに最も近い距離がcである。
ここで、cは式(1)のように表すことができる。
c = (HOFF/HEM)×a …(1)
At this time, the distance closest to the side surface 20b of the mounting substrate 20 among the light emitted downward from the light emitting element 10 and directly incident on the bottom surface 30a of the sealing member 30 is c.
Here, c can be expressed as in equation (1).
c = (H OFF / H EM ) × a (1)

発光素子10から出射される光が下垂部30bに入射しないための条件は、式(2)を満足することである。
c ≧ b …(2)
The condition for preventing the light emitted from the light emitting element 10 from entering the hanging portion 30b is to satisfy the expression (2).
c ≧ b (2)

式(2)に式(1)を代入すると、式(3)が得られる。
OFF ≧ (b/a)×HEM …(3)
Substituting equation (1) into equation (2) yields equation (3).
H OFF ≧ (b / a) × H EM (3)

形成が見込まれる下垂部30bの幅bに対して、式(3)を満足するように、HOFF、HEM及びaを定めることにより、発光素子10から出射される光の下垂部30bへの入射を防止することができる。これによって、下垂部30bからの光の漏出や下垂部30bが形成される実装基板20の側面20bにおける光の吸収を防ぎ、発光装置1からの光取り出し効率の低下を防止することができる。 By defining H OFF , HEM and a so as to satisfy the expression (3) with respect to the width b of the hanging part 30b expected to be formed, the light emitted from the light emitting element 10 to the hanging part 30b Incident can be prevented. Accordingly, light leakage from the hanging part 30b and light absorption on the side surface 20b of the mounting substrate 20 on which the hanging part 30b is formed can be prevented, and a decrease in light extraction efficiency from the light emitting device 1 can be prevented.

また、本発明においては、実装基板20の外側に延在する封止部材30の底面30aは、発光素子10から下方に出射される光を全反射し、光取り出し方向である上方に偏向する。
引き続き図4を参照して、発光素子10から下方に出射され、封止部材30の底面30aに直接入射する光が、底面30a(平坦部30c)で全反射する条件について説明する。
In the present invention, the bottom surface 30a of the sealing member 30 extending to the outside of the mounting substrate 20 totally reflects the light emitted downward from the light emitting element 10 and deflects it upward in the light extraction direction.
With reference to FIG. 4, the conditions under which the light emitted downward from the light emitting element 10 and directly incident on the bottom surface 30a of the sealing member 30 is totally reflected by the bottom surface 30a (flat portion 30c) will be described.

発光素子10の上面10aにおける端部の点P1から封止部材30の底面30aに直接入射する光の入射方向と、封止部材30の底面30aの法線となす角を入射角θとする。このとき、点P1から出射された光が、実装基板20の上面20aの端部の点P2を通り、封止部材30の底面30aの点P3に入射するときに、入射角θが最も小さくなる。   An incident angle θ is an angle between the incident direction of light directly incident on the bottom surface 30a of the sealing member 30 from the end point P1 on the upper surface 10a of the light emitting element 10 and the normal line of the bottom surface 30a of the sealing member 30. At this time, when the light emitted from the point P1 passes through the point P2 at the end of the top surface 20a of the mounting substrate 20 and enters the point P3 on the bottom surface 30a of the sealing member 30, the incident angle θ is the smallest. .

封止部材30の屈折率をnとし、封止部材30の外部を空気(屈折率=1)とすると、封止部材30の底面30aにおける全反射の臨界角θは、式(4)のように表される。
θ = sin−1(1/n) …(4)
When the refractive index of the sealing member 30 is n and the outside of the sealing member 30 is air (refractive index = 1), the critical angle θ m of total reflection at the bottom surface 30a of the sealing member 30 is expressed by the equation (4). It is expressed as follows.
θ m = sin −1 (1 / n) (4)

また、点P3における入射角θは、式(5)のように表される。
θ = tan−1(a/HEM) …(5)
Further, the incident angle θ at the point P3 is expressed as in Expression (5).
θ = tan −1 (a / H EM ) (5)

発光素子10から出射されて封止部材30の底面30aに入射するすべての光を全反射するための条件は、式(6)を満足することである。
θ ≧ θ …(6)
The condition for totally reflecting all the light emitted from the light emitting element 10 and incident on the bottom surface 30a of the sealing member 30 is to satisfy Expression (6).
θ ≧ θ m (6)

式(6)に、式(4)及び式(5)を代入すると、式(7)が得られる。
a ≧ HEM×tan{sin−1(1/n)} …(7)
When Expression (4) and Expression (5) are substituted into Expression (6), Expression (7) is obtained.
a ≧ H EM × tan {sin −1 (1 / n)} (7)

式(7)を満足するようにHEM及びaを定めることにより、封止部材30の底面30aを、発光素子10から出射された光を全反射する反射面として機能させることができる。 By defining HEM and a so as to satisfy Expression (7), the bottom surface 30a of the sealing member 30 can function as a reflection surface that totally reflects the light emitted from the light emitting element 10.

ここで、実装基板20の設計例について説明する。
発光素子10の外形寸法を1.1mm×1.1mm、高さ(HEM)を0.5mmとし、封止部材30の屈折率(n)を1.5とした場合には、式(7)より、a≧0.45mmである。すなわち発光素子10の端部から実装基板20の端部までの距離を0.45mm以上設けることによって、封止部材30の底面30aに入射する光を全反射することができる。従って、実装基板20の幅は、0.45+1.1+0.45=2.0mm以上に設計することが望ましい。
Here, a design example of the mounting substrate 20 will be described.
When the outer dimensions of the light emitting element 10 are 1.1 mm × 1.1 mm, the height (H EM ) is 0.5 mm, and the refractive index (n) of the sealing member 30 is 1.5, the formula (7 ), A ≧ 0.45 mm. That is, the light incident on the bottom surface 30 a of the sealing member 30 can be totally reflected by providing a distance from the end of the light emitting element 10 to the end of the mounting substrate 20 of 0.45 mm or more. Accordingly, it is desirable that the width of the mounting substrate 20 is designed to be 0.45 + 1.1 + 0.45 = 2.0 mm or more.

また、下垂部30bの幅(厚み)bを、例えば、0.1mm以下に抑えることができるなら、前記した設計値の発光素子10及び実装基板20を用いた場合には、実装基板20の上面20aからの封止部材30の底面30aの平坦部30cの深さ(HOFF)は、式(3)より、HOFF≧0.11mmである。すなわち、封止部材30の底面30aの平坦部30cを、実装基板20の上面20aよりも0.11mm以上下側に設ければ、発光素子10から下垂部30bへの光の入射を避けることができる。このため、余裕を見て、例えばHOFFを0.2mmとしておけば、良好な光取り出し効率を得ることができる。 Further, if the width (thickness) b of the hanging part 30b can be suppressed to 0.1 mm or less, for example, when the light emitting element 10 and the mounting board 20 having the above-described design values are used, the upper surface of the mounting board 20 is used. The depth (H OFF ) of the flat portion 30c of the bottom surface 30a of the sealing member 30 from 20a is H OFF ≧ 0.11 mm from Equation (3). That is, if the flat portion 30c of the bottom surface 30a of the sealing member 30 is provided 0.11 mm or more below the upper surface 20a of the mounting substrate 20, it is possible to avoid the incidence of light from the light emitting element 10 to the hanging portion 30b. it can. For this reason, if the H OFF is set to 0.2 mm with a margin, for example, good light extraction efficiency can be obtained.

そこで、実装基板20の厚さは、発光装置1が当該発光装置1を利用する機器などに搭載されるときに、実装基板20の上面20aより下側に位置した封止部材30の底面30aが反射面として良好に機能することと、発光装置1の放熱性の観点とから定めることができ、例えば、0.4〜2.0mmとすることができる。   Therefore, the thickness of the mounting substrate 20 is such that the bottom surface 30a of the sealing member 30 positioned below the upper surface 20a of the mounting substrate 20 when the light emitting device 1 is mounted on a device that uses the light emitting device 1 or the like. It can be determined from the viewpoint of functioning favorably as the reflecting surface and the heat dissipation property of the light emitting device 1, for example, 0.4 to 2.0 mm.

なお、以上の説明では、発光素子10の断面が矩形の場合について説明したが、これに限定されない。例えば、図4に破線で示す発光素子10Aのように、断面が矩形でなく、例えば丸みを帯びたような形状の場合は、発光素子10Aにおける基準点P1の属性であるa及びHEMは、発光素子10Aが実装基板20の上面20aから最も離れた点までの高さ(最大高さ)をHEMとし、実装基板20の側面20bから最も近い点までの水平方向の距離(最小距離)をaとして、前記した式(3)及び式(7)に適用することができる。 In addition, although the above description demonstrated the case where the cross section of the light emitting element 10 was a rectangle, it is not limited to this. For example, when the cross section is not rectangular like the light emitting element 10A shown by a broken line in FIG. 4, for example, the shape is rounded, a and H EM that are the attributes of the reference point P1 in the light emitting element 10A are: The height (maximum height) of the light emitting element 10A from the upper surface 20a of the mounting substrate 20 to the farthest point is HEM, and the horizontal distance (minimum distance) from the side surface 20b of the mounting substrate 20 to the closest point is defined as HEM. As a, it can apply to above-mentioned Formula (3) and Formula (7).

<動作>
次に、図1A乃至図1Cを参照して、本発明に係る実施形態における発光装置1の動作について説明する。
発光装置1は、外部接続用電極端子22aにおいて外部の駆動回路(不図示)に接続し、実装基板20の上面20a側に配設された配線パターンである金属膜22を介して実装部22bで電気的に接続された発光素子10に電力を供給する。発光素子10は電力の供給を受けて発光し、発光素子10の外部に光を出射する。
なお、発光素子10が、図2Aに示したように蛍光体層12を有する場合は、半導体発光素子構造11から出射した光の全部又は一部は、蛍光体層12によってその波長が変換され、発光素子10の外部に出射される。
<Operation>
Next, with reference to FIG. 1A thru | or FIG. 1C, operation | movement of the light-emitting device 1 in embodiment which concerns on this invention is demonstrated.
The light emitting device 1 is connected to an external drive circuit (not shown) at the external connection electrode terminal 22a, and is mounted on the mounting portion 22b via the metal film 22 that is a wiring pattern disposed on the upper surface 20a side of the mounting substrate 20. Power is supplied to the electrically connected light emitting elements 10. The light emitting element 10 emits light upon receiving power supply, and emits light to the outside of the light emitting element 10.
In addition, when the light emitting element 10 has the phosphor layer 12 as illustrated in FIG. 2A, the wavelength of all or part of the light emitted from the semiconductor light emitting element structure 11 is converted by the phosphor layer 12, The light is emitted to the outside of the light emitting element 10.

発光素子10から上方に出射された光は、半球状に形成された封止部材30の光取り出し面30eから好適に発光装置1の外部に取り出される。
発光素子10から下方に出射された光は、一部は実装基板20の上面20a側に設けられた絶縁保護膜23及び金属膜22で反射され、上方に偏向される。
発光素子10から下方に出射され、封止部材30の底面30aに入射した光は、封止部材30の底面30aで全反射され、上方に偏向される。このとき、発光素子10から下方に出射された光は、封止部材30の下垂部30bには入射しない。
実装基板20の上面20a又は封止部材30の底面30aで反射されて上方に偏向した光は、封止部材30の光取り出し面30eから発光装置1の外部に取り出される。
The light emitted upward from the light emitting element 10 is preferably extracted outside the light emitting device 1 from the light extraction surface 30e of the sealing member 30 formed in a hemispherical shape.
A part of the light emitted downward from the light emitting element 10 is reflected by the insulating protective film 23 and the metal film 22 provided on the upper surface 20a side of the mounting substrate 20, and is deflected upward.
The light emitted downward from the light emitting element 10 and incident on the bottom surface 30a of the sealing member 30 is totally reflected by the bottom surface 30a of the sealing member 30 and deflected upward. At this time, the light emitted downward from the light emitting element 10 does not enter the hanging portion 30 b of the sealing member 30.
The light reflected by the upper surface 20 a of the mounting substrate 20 or the bottom surface 30 a of the sealing member 30 and deflected upward is extracted from the light extraction surface 30 e of the sealing member 30 to the outside of the light emitting device 1.

<製造方法>
次に、図5A乃至図5Fを参照(適宜図1A、図1C及び図2A参照)して、本発明に係る実施形態における発光装置1の製造方法について説明する。
本実施形態における発光装置1の製造方法には、実装基板20に発光素子10を実装する発光素子実装工程と、発光素子10を実装した実装基板20上に封止部材30を圧縮成形法によって成形する封止部材成形工程とが含まれる。
<Manufacturing method>
Next, with reference to FIGS. 5A to 5F (refer to FIGS. 1A, 1C, and 2A as appropriate), a method for manufacturing the light-emitting device 1 in the embodiment according to the present invention will be described.
In the method for manufacturing the light emitting device 1 according to the present embodiment, a light emitting element mounting step for mounting the light emitting element 10 on the mounting substrate 20 and a sealing member 30 on the mounting substrate 20 on which the light emitting element 10 is mounted are formed by a compression molding method. And a sealing member forming step.

(発光素子実装工程)
発光素子実装工程は、実装基板20に発光素子10を実装する工程であって、半導体発光素子構造のダイボンディング工程と、蛍光体層の形成工程と、実装基板の分割工程と、を含む。
なお、本発明における発光素子実装工程は、少なくとも個片化された実装基板20に、蛍光体層12の有無に関わらず発光素子10をダイボンドする工程を含めばよい。以下に説明する蛍光体層の形成工程と実装基板の分割工程とを更に含む工程は、発光素子実装工程の好ましい工程例の一つを示したものである。
(Light emitting element mounting process)
The light emitting element mounting process is a process of mounting the light emitting element 10 on the mounting substrate 20 and includes a die bonding process of a semiconductor light emitting element structure, a phosphor layer forming process, and a mounting substrate dividing process.
In addition, the light emitting element mounting process in this invention should just include the process of die-bonding the light emitting element 10 to the mounting board | substrate 20 separated at least regardless of the presence or absence of the fluorescent substance layer 12. FIG. The step further including the phosphor layer forming step and the mounting substrate dividing step described below shows one of preferable steps of the light emitting element mounting step.

(半導体発光素子構造のダイボンディング工程)
図5Aに示すように、蛍光体層12の形成までは、複数の実装基板20が集積した集積基板60を用いることとする。
この集積基板60は、大面積のシート状の実装基板61上に半導体発光素子構造(LEDチップ)11の実装部22bがマトリクス状に配置されている。また、各半導体発光素子構造11の実装部22bには、半導体発光素子構造11の電極の構成パターンに一致するように、負電極と正電極とからなる電極パターンが設けられている。そして、例えば、共晶接合を用いたフリップチップ実装によって電気的及び機械的に半導体発光素子構造11と実装基板20とが接合されている。実装基板20は、例えば、厚さが0.4〜2.0mmの窒化アルミニウムセラミックスからなり、上面20a側に半導体発光素子構造11との接合部である実装部22bへの電気的な配線パターンと、高反射率の金属又は誘電体多層膜などからなる反射層とが設けられている。
(Die bonding process of semiconductor light emitting device structure)
As shown in FIG. 5A, an integrated substrate 60 in which a plurality of mounting substrates 20 are integrated is used until the phosphor layer 12 is formed.
In the integrated substrate 60, the mounting portions 22b of the semiconductor light emitting element structure (LED chip) 11 are arranged in a matrix on a sheet-shaped mounting substrate 61 having a large area. In addition, the mounting portion 22b of each semiconductor light emitting element structure 11 is provided with an electrode pattern composed of a negative electrode and a positive electrode so as to match the electrode configuration pattern of the semiconductor light emitting element structure 11. For example, the semiconductor light emitting element structure 11 and the mounting substrate 20 are joined electrically and mechanically by flip chip mounting using eutectic bonding. The mounting substrate 20 is made of, for example, aluminum nitride ceramics having a thickness of 0.4 to 2.0 mm, and an electrical wiring pattern to the mounting portion 22b that is a joint portion with the semiconductor light emitting element structure 11 on the upper surface 20a side. And a reflective layer made of a highly reflective metal or dielectric multilayer film.

(蛍光体層の形成工程)
集積基板60上に実装された各半導体発光素子構造11の表面に、蛍光体層12を形成する。例えば、スクリーン印刷法を用いる場合には、所望の厚みの蛍光体層12が得られるように設計したスクリーン印刷用のマスクを用いて、熱硬化性のシリコーン樹脂などをバインダとして蛍光体と均一に混練したものを、半導体発光素子構造11の表面に適量塗布し、スキージによって半導体発光素子構造11を覆うように形成する。このとき、半導体発光素子構造11の上面及び側面を覆う蛍光体層12の厚みは同じであることが望ましい。
(Phosphor layer formation process)
A phosphor layer 12 is formed on the surface of each semiconductor light emitting element structure 11 mounted on the integrated substrate 60. For example, when the screen printing method is used, a mask for screen printing designed to obtain a phosphor layer 12 having a desired thickness is used, and a thermosetting silicone resin or the like is used as a binder to be uniform with the phosphor. An appropriate amount of the kneaded material is applied to the surface of the semiconductor light emitting element structure 11 and formed so as to cover the semiconductor light emitting element structure 11 with a squeegee. At this time, it is desirable that the phosphor layers 12 covering the upper surface and the side surface of the semiconductor light emitting element structure 11 have the same thickness.

その後、必要な温度にて蛍光体層12を加熱硬化し、蛍光体層付きの発光素子10がアレイ状に並んだ集積基板60を得る。
なお、蛍光体層12は、蛍光体を含有したセラミックス板(板状焼結体)を所望の大きさに切り出し、シリコーン樹脂などの熱硬化樹脂を用いて半導体発光素子構造11の表面に貼付し、その後必要な温度にて熱硬化樹脂を加熱硬化して接着することによって形成するようにしてもよい。
Thereafter, the phosphor layer 12 is heated and cured at a necessary temperature to obtain an integrated substrate 60 in which the light emitting elements 10 with the phosphor layer are arranged in an array.
The phosphor layer 12 is obtained by cutting a ceramic plate (plate-like sintered body) containing a phosphor into a desired size and pasting it on the surface of the semiconductor light emitting element structure 11 using a thermosetting resin such as a silicone resin. Then, the thermosetting resin may be heated and cured at a necessary temperature and then bonded.

(実装基板の分割工程)
次に、集積基板60を、実装基板20の長手方向の分割予定線(ダイシングライン)62aに沿ってダイシングして、バー状の集積基板60を切り出す。その後、切り出された各バー状の集積基板60を、更に、実装基板20の短手方向の分割予定線62bに沿ってダイシングして、個々の実装基板20を切り出す。
(Mounting board dividing process)
Next, the integrated substrate 60 is diced along a predetermined division line (dicing line) 62a in the longitudinal direction of the mounting substrate 20, and the bar-shaped integrated substrate 60 is cut out. Thereafter, each bar-shaped integrated substrate 60 cut out is further diced along a dividing line 62b in the short direction of the mounting substrate 20 to cut out the individual mounting substrates 20.

なお、実装基板20の短手方向の分割予定線62bは切断せず、複数の実装基板20が長手方向に連なったバー状の状態で、各実装基板20に対応する封止部材30の圧縮成形を同時に行うようにしてもよい。そして、実装基板20の短長手方向の分割予定線62bに沿って切り出すことで、個々の封止部材30が成形済みの実装基板20、すなわち発光装置1を得ることができる。   In addition, the dividing line 62b in the short direction of the mounting substrate 20 is not cut, and the compression molding of the sealing member 30 corresponding to each mounting substrate 20 is performed in a bar shape in which the plurality of mounting substrates 20 are continuous in the longitudinal direction. May be performed simultaneously. Then, by cutting along the planned dividing line 62b in the short longitudinal direction of the mounting substrate 20, it is possible to obtain the mounting substrate 20, that is, the light emitting device 1, in which the individual sealing members 30 are formed.

(封止部材成形工程)
封止部材成形工程は、発光素子10が実装された実装基板20上に封止部材30を圧縮成形する工程であって、封止部材のポッティング工程と、封止部材の1次硬化工程と、封止部材の2次硬化工程とを含む。
(Sealing member molding process)
The sealing member molding step is a step of compression molding the sealing member 30 on the mounting substrate 20 on which the light emitting element 10 is mounted, and includes a potting step of the sealing member, a primary curing step of the sealing member, Secondary curing step of the sealing member.

(封止部材(封止樹脂)のポッティング工程) (Potting process of sealing member (sealing resin))

次に、図5B及び図5Cに示すように、所定の温度に加温された下側金型51上に、発光素子10が実装された実装基板20を設置し、更に、実装基板20の側面20bを両側から挟み込むように金型治具(治具)52を設置する。このとき、金型治具52の上面52aの高さは、実装基板20の上面20aに対して所定の高さ(HOFF)だけ低くなっている。また、封止部材30の底面30aを形成する金型治具52の上面52aは平滑面となっている。
ここで、封止部材30の平坦な底面30aを形成するとともに、金型から取り出しやすくするために、金型治具52の上面52aには離型剤を塗布しておく。また、実装基板20の外部接続用電極端子22a(図1B参照)上には、封止部材30を成形後に、封止部材30の材料として用いた封止樹脂31による被膜を除去できるように、熱剥離シートを貼付してマスキングしておいてもよい。
Next, as shown in FIGS. 5B and 5C, the mounting substrate 20 on which the light emitting element 10 is mounted is placed on the lower mold 51 heated to a predetermined temperature. A mold jig (jig) 52 is installed so as to sandwich 20b from both sides. At this time, the height of the upper surface 52a of the mold jig 52 is lower than the upper surface 20a of the mounting substrate 20 by a predetermined height (H OFF ). The upper surface 52a of the mold jig 52 that forms the bottom surface 30a of the sealing member 30 is a smooth surface.
Here, a mold release agent is applied to the upper surface 52a of the mold jig 52 in order to form a flat bottom surface 30a of the sealing member 30 and to facilitate removal from the mold. Further, on the external connection electrode terminal 22a (see FIG. 1B) of the mounting substrate 20, after the sealing member 30 is molded, the coating with the sealing resin 31 used as the material of the sealing member 30 can be removed. You may mask by sticking a heat release sheet.

その後、封止部材30となる封止樹脂31である熱硬化性樹脂の1次硬化温度に加温して、図5Dに示すように、液状の封止樹脂31をディスペンサ54などによって実装基板20及び金型治具52の上に適量ポッティング(滴下)する。
なお、実装基板20の側面20bと金型治具52との間に隙間に侵入した封止樹脂31が下垂部30bとなる。
Thereafter, the temperature is heated to the primary curing temperature of the thermosetting resin that is the sealing resin 31 that becomes the sealing member 30, and the liquid sealing resin 31 is mounted on the mounting substrate 20 by a dispenser 54 or the like as shown in FIG. 5D. And an appropriate amount of potting (dropping) is performed on the mold jig 52.
The sealing resin 31 that has entered the gap between the side surface 20b of the mounting substrate 20 and the mold jig 52 becomes the hanging portion 30b.

(封止部材の1次硬化工程)
次に、図5E及び図5Fに示すように、ポッティングした封止樹脂31の上から上側金型53を閉じ、所定の圧力を加えて封止樹脂31を圧縮する。上側金型53には、半球状のレンズ型が形成されている。そして、上側金型53によって圧縮した状態で所定時間保持し、封止樹脂31を1次硬化させる。
(Primary curing process of sealing member)
Next, as shown in FIGS. 5E and 5F, the upper mold 53 is closed from above the potted sealing resin 31, and a predetermined pressure is applied to compress the sealing resin 31. The upper mold 53 is formed with a hemispherical lens mold. And it hold | maintains for the predetermined time in the state compressed with the upper side metal mold | die 53, and hardens the sealing resin 31 primarily.

下側金型51及び上側金型53による加熱温度及び加熱時間は、封止樹脂31が所定の形状を保持するのに十分な硬度に達するような条件に設定することが好ましい。例えば、硬質シリコーン樹脂やエポキシ樹脂を用いた場合は、1次硬化温度を、好ましくは100〜170℃、より好ましくは120〜150℃とする。また、1次硬化時間は、好ましくは180〜900秒、より好ましくは250〜600秒とする。   It is preferable that the heating temperature and the heating time by the lower mold 51 and the upper mold 53 are set so as to reach a hardness sufficient for the sealing resin 31 to maintain a predetermined shape. For example, when a hard silicone resin or an epoxy resin is used, the primary curing temperature is preferably 100 to 170 ° C, more preferably 120 to 150 ° C. The primary curing time is preferably 180 to 900 seconds, more preferably 250 to 600 seconds.

このような金型治具52を用いることにより、一回の封止樹脂31の成形により、封止部材30に所望の底面形状及び接合部形状を得ることができる。また、上側金型53によって、封止部材30に所望の径や曲率半径を持った光取り出し面、レンズ面を形成することができる。   By using such a mold jig 52, a desired bottom shape and joint shape can be obtained on the sealing member 30 by molding the sealing resin 31 once. Further, the upper die 53 can form a light extraction surface and a lens surface having a desired diameter and a radius of curvature on the sealing member 30.

(封止部材の2次硬化工程)
次に、所望の形状となった封止樹脂31が成形された実装基板20を、下側金型51及び上側金型53から取り出し、所定の条件で加熱して封止樹脂31を2次硬化させる。2次硬化の条件は、封止樹脂31が十分に硬化するように、例えば、2次硬化温度を1次硬化温度と同等以上とし、2次硬化時間を1次硬化時間よりも長時間に設定することが好ましい。硬質シリコーン樹脂、エポキシ樹脂の場合、2次硬化時間は3〜5時間程度とすることができる。2次硬化をこのように十分に行うことにより、封止樹脂31内に未反応の樹脂成分が残り、発光素子10の信頼性に悪影響を与えることを防止することができる。また、下側金型51及び上側金型53内での短時間の1次硬化の後に、下側金型51及び上側金型53から発光装置1を取り出して、封止樹脂31の長時間の2次硬化を行うことにより、工程のスループットを高めることができる。
以上の工程により、発光素子10、実装基板20及び封止部材30からなる発光装置1が完成する。
(Secondary curing process of sealing member)
Next, the mounting substrate 20 formed with the sealing resin 31 having a desired shape is taken out from the lower mold 51 and the upper mold 53 and heated under predetermined conditions to secondary cure the sealing resin 31. Let The secondary curing conditions are set such that the secondary curing temperature is equal to or higher than the primary curing temperature, for example, and the secondary curing time is set longer than the primary curing time so that the sealing resin 31 is sufficiently cured. It is preferable to do. In the case of a hard silicone resin or an epoxy resin, the secondary curing time can be about 3 to 5 hours. By sufficiently performing the secondary curing in this way, it is possible to prevent an unreacted resin component from remaining in the sealing resin 31 and adversely affecting the reliability of the light emitting element 10. Further, after a short time primary curing in the lower mold 51 and the upper mold 53, the light emitting device 1 is taken out from the lower mold 51 and the upper mold 53, and the sealing resin 31 is removed for a long time. By performing secondary curing, the throughput of the process can be increased.
Through the above steps, the light emitting device 1 including the light emitting element 10, the mounting substrate 20, and the sealing member 30 is completed.

また、図5B及び図5Cに示した金型治具52は、前記したように複数の金型治具52で実装基板20の側面20bを両側から挟み込む構成に限定されない。例えば、厚さが、実装基板20の厚さより所定の高さ(HOFF)だけ薄く、平面視で実装基板20の形状の貫通穴が設けられた1つの板状の金型治具52を用いることもできる。この場合、下側金型51の上に貫通穴が設けられた金型治具52を設置し、当該貫通穴に実装基板20を嵌め込むように設置する。このとき、実装基板20の側面は金型治具52の貫通穴の側面で挟まれる。また、実装基板20の底面は下側金型51の上面と接しており、実装基板20の上面20aは治具金型52の貫通穴から突出する。このため、金型治具52の上面52aの高さは、実装基板20の上面20aに対して所定の高さ(HOFF)だけ低くなっている。また、封止部材30の底面30aを形成する金型治具52の上面52aは平滑面となっている。 The mold jig 52 shown in FIGS. 5B and 5C is not limited to the configuration in which the side surface 20b of the mounting substrate 20 is sandwiched from both sides by the plurality of mold jigs 52 as described above. For example, one plate-shaped mold jig 52 having a thickness that is thinner than the thickness of the mounting substrate 20 by a predetermined height (H OFF ) and provided with a through hole in the shape of the mounting substrate 20 in plan view is used. You can also. In this case, a mold jig 52 provided with a through hole is installed on the lower mold 51, and the mounting substrate 20 is installed in the through hole. At this time, the side surface of the mounting substrate 20 is sandwiched between the side surfaces of the through holes of the mold jig 52. Further, the bottom surface of the mounting substrate 20 is in contact with the upper surface of the lower mold 51, and the upper surface 20 a of the mounting substrate 20 protrudes from the through hole of the jig mold 52. For this reason, the height of the upper surface 52 a of the mold jig 52 is lower than the upper surface 20 a of the mounting substrate 20 by a predetermined height (H OFF ). The upper surface 52a of the mold jig 52 that forms the bottom surface 30a of the sealing member 30 is a smooth surface.

更にまた、治具金型52は、貫通穴ではなく、深さが、実装基板20の厚さより所定の高さ(HOFF)だけ浅く、平面視で実装基板20の形状の凹部が設けられた1つの板状の金型治具52を用いることもできる。この場合、下側金型51の上に凹部が設けられた金型治具52を設置し、当該凹部に実装基板20を嵌め込むように設置する。このとき、実装基板20の側面は金型治具52の凹部の側面で挟まれる。また、実装基板20の底面は治具金型52の凹部の底面と接しており、実装基板20の上面20aは治具金型52の凹部から突出する。このため、金型治具52の上面52aの高さは、実装基板20の上面20aに対して所定の高さ(HOFF)だけ低くなっている。また、封止部材30の底面30aを形成する金型治具52の上面52aは平滑面となっている。 Furthermore, the jig mold 52 is not a through-hole, but has a depth shallower than the thickness of the mounting substrate 20 by a predetermined height (H OFF ), and is provided with a recess in the shape of the mounting substrate 20 in plan view. One plate-shaped mold jig 52 can also be used. In this case, a mold jig 52 having a recess is provided on the lower mold 51, and the mounting substrate 20 is installed in the recess. At this time, the side surface of the mounting substrate 20 is sandwiched between the side surfaces of the recesses of the mold jig 52. Further, the bottom surface of the mounting substrate 20 is in contact with the bottom surface of the concave portion of the jig die 52, and the upper surface 20 a of the mounting substrate 20 protrudes from the concave portion of the jig die 52. For this reason, the height of the upper surface 52 a of the mold jig 52 is lower than the upper surface 20 a of the mounting substrate 20 by a predetermined height (H OFF ). The upper surface 52a of the mold jig 52 that forms the bottom surface 30a of the sealing member 30 is a smooth surface.

また、このような貫通穴又は凹部を設けた治具金型52と下側金型51とを一体化するようにしてもよい。すなわち、下側金型51に、深さが、実装基板20の厚さより所定の高さ(HOFF)だけ浅く、平面視で実装基板20の形状の凹部を設けるようにしてもよい。この場合、封止部材30の底面30aは、下側金型51の上面で形成されるため、下側金型51の上面を平滑面とすればよい。なお、このような貫通穴又は凹部が複数設けられた治具金型52又は下側金型51を用いて、各貫通穴又は凹部に実装基板20を各々設置し、各実装基板20に対応する封止部材30の圧縮成形を同時に行うようにしてもよい。
以上説明したような貫通穴又は凹部を設けた金型治具52又は下側金型51を用いて、前記した製造方法によって発光装置1を製造することができる。
Further, the jig mold 52 provided with such a through hole or recess and the lower mold 51 may be integrated. In other words, the lower mold 51 may be provided with a recess that is shallower than the thickness of the mounting substrate 20 by a predetermined height (H OFF ) and has the shape of the mounting substrate 20 in plan view. In this case, since the bottom surface 30a of the sealing member 30 is formed on the upper surface of the lower mold 51, the upper surface of the lower mold 51 may be a smooth surface. The mounting substrate 20 is installed in each through-hole or recess using the jig mold 52 or the lower mold 51 provided with a plurality of such through-holes or recesses, and corresponds to each mounting substrate 20. You may make it perform the compression molding of the sealing member 30 simultaneously.
The light emitting device 1 can be manufactured by the above-described manufacturing method using the mold jig 52 or the lower mold 51 provided with the through holes or the recesses as described above.

次に、本発明の効果を確認するための実施例及び比較例について説明する。
(実施例)
本実施例では、図1A乃至図1C及び図2Aに示した構造の発光装置を以下の方法で作製する。
Next, examples and comparative examples for confirming the effects of the present invention will be described.
(Example)
In this embodiment, the light-emitting device having the structure shown in FIGS. 1A to 1C and 2A is manufactured by the following method.

まず、窒化アルミニウムセラミックスからなる厚さ約1.0mmのシート状の実装基板61(実装基板20)上にTi/Pt/Auからなる正電極及び負電極のパターン(金属膜22)を複数組形成する。そして、更にLEDチップ(半導体発光素子構造11)の実装部22b以外の領域にはTi/Alからなる金属反射層と、SiO/Nbからなる誘電体多層膜の反射層(絶縁保護膜23)とを順次設ける。 First, a plurality of positive electrode and negative electrode patterns (metal film 22) made of Ti / Pt / Au are formed on a sheet-like mounting substrate 61 (mounting substrate 20) made of aluminum nitride ceramics and having a thickness of about 1.0 mm. To do. Further, in a region other than the mounting portion 22b of the LED chip (semiconductor light emitting element structure 11), a metal reflective layer made of Ti / Al and a reflective layer of a dielectric multilayer film made of SiO 2 / Nb 2 O 5 (insulation protection) A film 23) is sequentially provided.

次に、実装部22bである電極パターン上に、発光波長450nmのInGaN系青色LEDチップ(半導体発光素子構造11)をフリップチップ実装する。LEDチップと電極パターンとの接合は、ペースト状のAu−Snを用いた共晶接合によって行い、窒素雰囲気のリフロー装置によって最高到達温度320℃にて接合させる。   Next, an InGaN-based blue LED chip (semiconductor light emitting element structure 11) having an emission wavelength of 450 nm is flip-chip mounted on the electrode pattern which is the mounting portion 22b. The LED chip and the electrode pattern are bonded by eutectic bonding using paste-like Au—Sn, and bonded at a maximum temperature of 320 ° C. by a reflow apparatus in a nitrogen atmosphere.

次に、シート状の実装基板61上に並んだLEDチップ(半導体発光素子構造11)の側面及び上面に熱硬化性のシリコーン樹脂を適量塗布し、所定のサイズに切り出したYAG蛍光体含有セラミックス板(蛍光体層12)を貼付して、150℃で600秒加熱してシリコーン樹脂を硬化させる。これによって、蛍光体層12付きのLEDチップ(発光素子10)ができる。   Next, an appropriate amount of thermosetting silicone resin is applied to the side surface and upper surface of the LED chips (semiconductor light emitting element structure 11) arranged on the sheet-like mounting substrate 61, and the YAG phosphor-containing ceramic plate cut out to a predetermined size. (Phosphor layer 12) is affixed and heated at 150 ° C. for 600 seconds to cure the silicone resin. Thereby, an LED chip (light emitting element 10) with the phosphor layer 12 is formed.

その後、蛍光体層付きのLEDチップ(発光素子10)が並んだシート状の実装基板61をダイシングして約14.0mm×2.0mmの大きさの実装基板20を切り出す。   Thereafter, the sheet-like mounting substrate 61 on which LED chips (light emitting elements 10) with phosphor layers are arranged is diced to cut out the mounting substrate 20 having a size of about 14.0 mm × 2.0 mm.

ダイシングして個片化した実装基板20を下側金型51に載置し、更に底面形成用の金型治具52を、実装基板20の側面20bを挟み込むように設置する。このとき、金型治具52の上面52bは、実装基板20の上面20aから約0.2mm下側に位置する。そして、液状のシリコーン樹脂を実装基板20及び金型治具52の上に滴下し、圧縮成形機の金型(下側金型51及び上側金型53)内でシリコーン樹脂を150℃で180秒硬化させる。金型(下側金型51及び上側金型53)から実装基板20を取り出して、更に150℃でシリコーン樹脂を4時間硬化させる。
このようにして、図1A乃至図1C及び図2Aに示したような直径約8mmの半球状の封止部材30を有する発光装置1が得られる。
The mounting substrate 20 that has been diced into individual pieces is placed on the lower mold 51, and a mold jig 52 for forming the bottom surface is installed so as to sandwich the side surface 20b of the mounting substrate 20. At this time, the upper surface 52 b of the mold jig 52 is positioned about 0.2 mm below the upper surface 20 a of the mounting substrate 20. Then, a liquid silicone resin is dropped on the mounting substrate 20 and the mold jig 52, and the silicone resin is placed in the mold (lower mold 51 and upper mold 53) of the compression molding machine at 150 ° C. for 180 seconds. Harden. The mounting substrate 20 is taken out from the mold (the lower mold 51 and the upper mold 53), and the silicone resin is further cured at 150 ° C. for 4 hours.
Thus, the light emitting device 1 having the hemispherical sealing member 30 having a diameter of about 8 mm as shown in FIGS. 1A to 1C and 2A is obtained.

(比較例)
発光装置1の比較例として、実施例における実装基板の短手方向(短辺側)の長さを約10mmとして、図6A及び図6Bに示すような、短手方向においても基板(実装基板120)の幅が封止部材(レンズ)130の径よりも大きくした形態の発光装置101を作製する。なお、図6Aは、図6Bの線D−Dにおける断面図である。
図6A及び図6Bに示すように、比較例における発光装置101は、封止部材130が、すべて実装基板120の上面120a上に設けられる。
比較例の製造方法は、個片化した実装基板120を挟み込む金型治具52を用いない点を除いては、前記した実施例の製造方法と同様である。
(Comparative example)
As a comparative example of the light emitting device 1, the length in the short direction (short side) of the mounting substrate in the example is about 10 mm, and the substrate (mounting substrate 120) is also in the short direction as shown in FIGS. 6A and 6B. ) Is made larger than the diameter of the sealing member (lens) 130. 6A is a cross-sectional view taken along line DD in FIG. 6B.
As shown in FIGS. 6A and 6B, in the light emitting device 101 in the comparative example, the sealing member 130 is all provided on the upper surface 120 a of the mounting substrate 120.
The manufacturing method of the comparative example is the same as the manufacturing method of the above-described embodiment, except that the mold jig 52 that sandwiches the separated mounting substrate 120 is not used.

(光出力の比較)
実施例の発光装置は、順電流350mAにおいて光出力504mW、順電流700mAにおいて光出力941mW、順電流1000mAにおいて光出力1273mWで発光する。
また、比較例の発光装置は、順電流350mAにおいて光出力498mW、順電流700mAにおいて光出力918mW、順電流1000mAにおいて光出力1228mWで発光する。
(Comparison of light output)
The light emitting device of the example emits light with an optical output of 504 mW at a forward current of 350 mA, an optical output of 941 mW at a forward current of 700 mA, and an optical output of 1273 mW at a forward current of 1000 mA.
The light emitting device of the comparative example emits light with an optical output of 498 mW at a forward current of 350 mA, an optical output of 918 mW at a forward current of 700 mA, and an optical output of 1228 mW at a forward current of 1000 mA.

本発明による実施例の発光装置の方が、比較例の発光装置よりも高い光出力となることが分かる。比較例の発光装置では、LEDチップ(発光素子)から下方に出射される光成分は、すべて実装基板へ入射し、実装基板によって反射されるとともに、その一部は実装基板による吸収を受けることとなる。これに対して、実施例の発光装置では、LEDチップから下方へ出射される光成分の内で、実装基板に入射する光成分は比較例と同様に、その一部は実装基板に吸収されるが、実装基板の幅よりも遠くへ出射される光成分は、すべて封止部材の底面に全反射の臨界角以上で入射して全反射される。これによって、実装基板での反射に伴う吸収を最小限に抑えながら、LEDチップから下方へ出射される他の光成分は封止部材の底面で全反射し、底面から下方へ透過して漏出することがない。このため、発光装置から効率よく光取り出しをすることができる。   It can be seen that the light emitting device of the example according to the present invention has a higher light output than the light emitting device of the comparative example. In the light emitting device of the comparative example, all light components emitted downward from the LED chip (light emitting element) are incident on the mounting substrate, reflected by the mounting substrate, and part of the light component is absorbed by the mounting substrate. Become. On the other hand, in the light emitting device of the example, among the light components emitted downward from the LED chip, a part of the light component incident on the mounting substrate is absorbed by the mounting substrate, as in the comparative example. However, all the light components emitted farther than the width of the mounting substrate are incident on the bottom surface of the sealing member at a critical angle of total reflection or more and are totally reflected. As a result, other light components emitted downward from the LED chip are totally reflected on the bottom surface of the sealing member while minimizing absorption due to reflection on the mounting substrate, and are transmitted downward from the bottom surface and leak out. There is nothing. For this reason, light can be efficiently extracted from the light emitting device.

なお、実装基板より外側にある封止部材の底面が平坦部と下垂部とを有し、平坦部を本実施例よりも実装基板の上面側に位置させて、LEDチップから下垂部に直接に光が入射し実装基板の側面で光吸収を生じるような発光装置とすると、比較例の発光装置よりは光出力は高くなるが、実施例の発光装置に比べて光出力は低下する。   In addition, the bottom surface of the sealing member outside the mounting substrate has a flat portion and a hanging portion, and the flat portion is positioned closer to the upper surface side of the mounting substrate than in this embodiment, and directly from the LED chip to the hanging portion. If the light emitting device is such that light is incident and light is absorbed on the side surface of the mounting substrate, the light output is higher than that of the light emitting device of the comparative example, but the light output is lower than that of the light emitting device of the example.

実装基板の幅の一部を封止部材の径よりも小さくすると、実装基板の狭幅部の側面には、封止部材の底面に下垂部が形成される。実施例の発光装置では、このような下垂部に光が入射しない構造となっており、実装基板の側面などでの意図しない光の吸収を避けることができ、発光装置の光取り出し効率の向上に寄与するものである。   When a part of the width of the mounting substrate is made smaller than the diameter of the sealing member, a hanging portion is formed on the bottom surface of the sealing member on the side surface of the narrow width portion of the mounting substrate. The light emitting device of the embodiment has a structure in which light does not enter such a hanging portion, can avoid unintentional absorption of light on the side surface of the mounting substrate, etc., and improves the light extraction efficiency of the light emitting device. It contributes.

本発明の発光装置は、照明用光源、LEDディスプレイ、液晶表示装置などのバックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できる。   The light emitting device of the present invention can be suitably used for backlight light sources such as illumination light sources, LED displays, liquid crystal display devices, traffic lights, illumination switches, various sensors, various indicators, and the like.

1 発光装置
10 発光素子
10a 上面
11 半導体発光素子構造
12 蛍光体層
20 実装基板
20a 上面
20b、20b、20b 側面
20c 露出部
22 金属膜
22a 外部接続用電極端子
22b 実装部
23 絶縁保護膜
30 封止部材
30a 底面
30b 下垂部
30c 平坦部
30d 端部
30e 光取り出し面
31 封止樹脂
51 下側金型
52 金型治具(治具)
52a 上面
53 上側金型
54 ディスペンサ
60 集積基板
61 シート状の実装基板
62a、62b 分割予定線
DESCRIPTION OF SYMBOLS 1 Light emitting device 10 Light emitting element 10a Upper surface 11 Semiconductor light emitting element structure 12 Phosphor layer 20 Mounting board 20a Upper surface 20b, 20b 1 , 20b 2 Side surface 20c Exposed part 22 Metal film 22a External connection electrode terminal 22b Mounting part 23 Insulating protective film 30 Sealing member 30a Bottom surface 30b Hanging part 30c Flat part 30d End part 30e Light extraction surface 31 Sealing resin 51 Lower mold 52 Mold jig (jig)
52a Upper surface 53 Upper mold 54 Dispenser 60 Integrated substrate 61 Sheet-like mounting substrate 62a, 62b Scheduled dividing line

Claims (8)

上面と、当該上面から連続する側面とを有する実装基板と、
前記実装基板の上面の一部に設けられた発光素子と、
前記発光素子を内包し、前記実装基板の外側に延在する底面を有する封止部材と、を備え、
前記封止部材の底面は、前記実装基板の上面より下側に位置し、かつ、前記発光素子から出射される光を反射させる平坦部と、前記平坦部から連続して前記実装基板の側面に沿って前記平坦部よりも下側に垂れる下垂部と、
を有することを特徴とする発光装置。
A mounting substrate having an upper surface and a side surface continuous from the upper surface;
A light emitting element provided on a part of the upper surface of the mounting substrate;
A sealing member enclosing the light emitting element and having a bottom surface extending outside the mounting substrate;
The bottom surface of the sealing member is located below the top surface of the mounting substrate, and a flat portion that reflects light emitted from the light emitting element, and a side surface of the mounting substrate that is continuous from the flat portion. A drooping portion that hangs downward from the flat portion along the
A light emitting device comprising:
前記発光素子は、上面と、当該上面から連続する側面とを有し、
前記実装基板の上面からの前記封止部材の底面の平坦部の深さをHOFF
前記実装基板の上面からの前記発光素子の上面の最大高さをHEM
前記実装基板の側面から前記発光素子の側面までの最小水平距離をa、
前記実装基板の側面から前記封止部材の底面の平坦部までの水平距離をbとしたとき、
OFF≧(b/a)×HEM
を満たすことを特徴とする請求項1に記載の発光装置。
The light emitting element has an upper surface and a side surface continuous from the upper surface,
The depth of the flat portion of the bottom surface of the sealing member from the top surface of the mounting substrate is H OFF ,
H EM is the maximum height of the upper surface of the light emitting element from the upper surface of the mounting substrate.
The minimum horizontal distance from the side surface of the mounting substrate to the side surface of the light emitting element is a,
When the horizontal distance from the side surface of the mounting substrate to the flat portion of the bottom surface of the sealing member is b,
H OFF ≧ (b / a) × H EM
The light emitting device according to claim 1, wherein:
前記封止部材の屈折率をnとしたとき、
a≧HEM×tan{(sin−1(1/n))}
を満たすことを特徴とする請求項2に記載の発光装置。
When the refractive index of the sealing member is n,
a ≧ H EM × tan {(sin −1 (1 / n))}
The light emitting device according to claim 2, wherein:
前記封止部材の底面に対向する面は半球面であることを特徴とする請求項1乃至請求項3の何れか一項に記載の発光装置。   4. The light emitting device according to claim 1, wherein a surface facing the bottom surface of the sealing member is a hemispherical surface. 5. 前記実装基板の上面は、一方向に長い矩形状であって、
前記実装基板は、長手方向の少なくとも一方の端部の前記上面が、前記封止部材から露出する露出部を有することを特徴とする請求項1乃至請求項4の何れか一項に記載の発光装置。
The upper surface of the mounting substrate is a rectangular shape that is long in one direction,
5. The light emitting device according to claim 1, wherein the mounting substrate has an exposed portion where the upper surface of at least one end portion in the longitudinal direction is exposed from the sealing member. apparatus.
前記実装基板の上面に、前記発光素子と電気的に接続された金属膜を備え、
前記金属膜は、前記実装基板の上面の前記露出部に、一対の外部接続用電極端子を有することを特徴とする請求項5に記載の発光装置。
Provided on the upper surface of the mounting substrate, a metal film electrically connected to the light emitting element,
The light emitting device according to claim 5, wherein the metal film has a pair of external connection electrode terminals on the exposed portion of the upper surface of the mounting substrate.
前記露出部は、前記実装基板の長手方向の両方の端部に設けられ、
前記両方の端部の前記露出部で一対の外部接続用電極端子を有することを特徴とする請求項6に記載の発光装置。
The exposed portion is provided at both ends in the longitudinal direction of the mounting substrate,
The light emitting device according to claim 6, further comprising a pair of electrode terminals for external connection at the exposed portions at both ends.
上面と、当該上面から連続する側面とを有する実装基板の前記上面に、発光素子を実装する発光素子実装工程と、
前記発光素子実装工程の後、前記発光素子を内包する封止部材を圧縮成形する封止部材成形工程と、を含み、
前記封止部材成形工程において、前記実装基板の側面が平滑な上面を有する治具で挟まれ、かつ前記治具の前記上面が前記実装基板の前記上面より下側に位置するように前記実装基板と前記治具とを配置して、前記封止部材を圧縮成形することにより、前記封止部材の底面を前記治具の前記上面で成形することを特徴とする発光装置の製造方法。
A light emitting element mounting step of mounting a light emitting element on the upper surface of the mounting substrate having an upper surface and a side surface continuous from the upper surface;
After the light emitting element mounting step, including a sealing member molding step of compression molding a sealing member containing the light emitting element,
In the sealing member molding step, the mounting substrate is arranged such that a side surface of the mounting substrate is sandwiched between jigs having a smooth upper surface, and the upper surface of the jig is positioned below the upper surface of the mounting substrate. And the jig, and the sealing member is compression-molded to form the bottom surface of the sealing member on the upper surface of the jig.
JP2009102328A 2009-04-20 2009-04-20 Light emitting device Active JP5347681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102328A JP5347681B2 (en) 2009-04-20 2009-04-20 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102328A JP5347681B2 (en) 2009-04-20 2009-04-20 Light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013122108A Division JP5747947B2 (en) 2013-06-10 2013-06-10 Light emitting device and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2010251666A true JP2010251666A (en) 2010-11-04
JP2010251666A5 JP2010251666A5 (en) 2012-05-24
JP5347681B2 JP5347681B2 (en) 2013-11-20

Family

ID=43313645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102328A Active JP5347681B2 (en) 2009-04-20 2009-04-20 Light emitting device

Country Status (1)

Country Link
JP (1) JP5347681B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134253A (en) * 2010-12-20 2012-07-12 Toyoda Gosei Co Ltd Led module for illumination
JP2015035438A (en) * 2013-08-07 2015-02-19 日亜化学工業株式会社 Light emitting device
USD747817S1 (en) 2014-03-27 2016-01-19 Nichia Corporation Light emitting diode
JP2017201731A (en) * 2017-08-22 2017-11-09 日亜化学工業株式会社 Light-emitting device
US9831402B2 (en) 2013-10-17 2017-11-28 Nichia Corporation Light emitting device
US9865781B2 (en) 2014-03-28 2018-01-09 Nichia Corporation Method for manufacturing light emitting device comprising lens with tapered profile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504711A (en) * 2004-06-29 2008-02-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting diode module
JP2008205462A (en) * 2007-02-12 2008-09-04 Cree Inc Method of forming packaged semiconductor light-emitting device having front contact by compression molding
JP2008207450A (en) * 2007-02-27 2008-09-11 Towa Corp Compression molding method of light-emitting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504711A (en) * 2004-06-29 2008-02-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting diode module
JP2008205462A (en) * 2007-02-12 2008-09-04 Cree Inc Method of forming packaged semiconductor light-emitting device having front contact by compression molding
JP2008207450A (en) * 2007-02-27 2008-09-11 Towa Corp Compression molding method of light-emitting element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134253A (en) * 2010-12-20 2012-07-12 Toyoda Gosei Co Ltd Led module for illumination
US8827493B2 (en) 2010-12-20 2014-09-09 Toyoda Gosei Co., Ltd. LED module for lighting
JP2015035438A (en) * 2013-08-07 2015-02-19 日亜化学工業株式会社 Light emitting device
US10096753B2 (en) 2013-08-07 2018-10-09 Nichia Corporation Light emitting device
US9831402B2 (en) 2013-10-17 2017-11-28 Nichia Corporation Light emitting device
USD747817S1 (en) 2014-03-27 2016-01-19 Nichia Corporation Light emitting diode
US9865781B2 (en) 2014-03-28 2018-01-09 Nichia Corporation Method for manufacturing light emitting device comprising lens with tapered profile
JP2017201731A (en) * 2017-08-22 2017-11-09 日亜化学工業株式会社 Light-emitting device

Also Published As

Publication number Publication date
JP5347681B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP6274271B2 (en) Light emitting device and manufacturing method thereof
CN104716247B (en) Light emitting device
TWI593074B (en) Mounting structure for semiconductor device, backlight device and mounting substrate
US8525213B2 (en) Light emitting device having multiple cavities and light unit having the same
JP5038623B2 (en) Optical semiconductor device and manufacturing method thereof
JP6299176B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE EQUIPPED WITH THE LIGHT EMITTING DEVICE
US9728685B2 (en) Light emitting device and lighting device including same
TW201929266A (en) Light emitting device
JP2006108640A (en) Light emitting device
US9806239B2 (en) Light emitting device
JP2012114311A (en) Led module
JP2007324417A (en) Semiconductor light-emitting device and manufacturing method therefor
JP6523597B2 (en) Light emitting device
JP2012114284A (en) Led module and illuminating device
JP5347681B2 (en) Light emitting device
JP2016019000A (en) Light emitting element package
US11329203B2 (en) Light emitting device including covering member and optical member
JP2013110273A (en) Semiconductor light-emitting device
TWI649899B (en) Light emitting device and method of manufacturing the same
JP2013062416A (en) Semiconductor light-emitting device and manufacturing method of the same
JP2017098509A (en) Substrate for placing element and light-emitting device
JP6521032B2 (en) Optical semiconductor device and method of manufacturing the same
JP5233478B2 (en) Light emitting device
JP5747947B2 (en) Light emitting device and manufacturing method thereof
JP2010225755A (en) Semiconductor light emitting device, and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5347681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250