JP2010251464A - Vacuum treatment device - Google Patents

Vacuum treatment device Download PDF

Info

Publication number
JP2010251464A
JP2010251464A JP2009098186A JP2009098186A JP2010251464A JP 2010251464 A JP2010251464 A JP 2010251464A JP 2009098186 A JP2009098186 A JP 2009098186A JP 2009098186 A JP2009098186 A JP 2009098186A JP 2010251464 A JP2010251464 A JP 2010251464A
Authority
JP
Japan
Prior art keywords
pressure
vacuum processing
pressure gauge
processing chamber
gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009098186A
Other languages
Japanese (ja)
Inventor
Tetsuo Imaoka
哲夫 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009098186A priority Critical patent/JP2010251464A/en
Publication of JP2010251464A publication Critical patent/JP2010251464A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To arrange a calibrating second pressure gage in the same environment in a vacuum treatment chamber in order to keep a pressure zone in a normal condition in film formation treatment, and to calibrate a controlling first pressure gage with a pressure value in an actual process. <P>SOLUTION: In the vacuum treatment chamber 100, the calibrating second pressure gage 200 is installed at a position where the distance to the controlling first pressure gage 107 is set equal to that to an exhaust port 103; a cutoff valve 201 is installed between the second pressure gage 200 and the vacuum treatment chamber 100; and the second pressure gage 200 is prevented from being exposed to an atmosphere of a process gas. The process gas is exhausted from the inside of the vacuum processing chamber 100 at optional timing after an actual process, and replaced by an inert gas; thereafter the cutoff valve 201 between the second pressure gage 200 and the vacuum treatment chamber 100 is opened, and controlled at process pressure by the second pressure gage 200 using the inert gas; and thereafter the first pressure gage 107 is calibrated to be set at the same value as that of the second pressure gage 200. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体製品製造の、特にキャパシタンスマノメータにより圧力制御を行う真空処理装置に関するものである。特に、圧力計の校正に関わるものである。   The present invention relates to a vacuum processing apparatus for manufacturing semiconductor products, in particular, pressure control using a capacitance manometer. In particular, it relates to calibration of pressure gauges.

半導体製品の製造工程で、反応ガスを供給し基板を真空処理室内で処理する真空処理装置には、真空処理室内の圧力を制御するため圧力計が用いられる。このような圧力計は、真空処理室内に配置されており、プロセスガスを真空処理室内に供給しながら、真空処理室内をプロセス圧力に制御するのに用いられる。圧力計としては、一般的にキャパシタンスマノメータが使用される。   In a semiconductor product manufacturing process, a pressure gauge is used to control a pressure in a vacuum processing chamber in a vacuum processing apparatus that supplies a reaction gas and processes a substrate in the vacuum processing chamber. Such a pressure gauge is disposed in the vacuum processing chamber, and is used to control the vacuum processing chamber to the process pressure while supplying the process gas into the vacuum processing chamber. A capacitance manometer is generally used as the pressure gauge.

プラズマCVD装置においては、プロセスガスを使用して、真空処理室内で、プラズマ放電により半導体ウェハなどの処理対象物の表面に窒化膜を生成する。   In the plasma CVD apparatus, a process gas is used to generate a nitride film on the surface of a processing object such as a semiconductor wafer by plasma discharge in a vacuum processing chamber.

プラズマCVD装置では、成膜処理時に発生する反応生成物が真空処理室内に堆積し、圧力計内にも付着する。付着した堆積物により、圧力計の測定値にズレが生じてくるが、圧力計の表示自体は設定した値と同じ値を示しており、真の圧力が把握できない状態で成膜処理が行われる。   In the plasma CVD apparatus, a reaction product generated during the film forming process is deposited in the vacuum processing chamber and is also adhered to the pressure gauge. The measured value of the pressure gauge is displaced due to the deposited deposit, but the pressure gauge display itself shows the same value as the set value, and the film formation process is performed in a state where the true pressure cannot be grasped .

成膜処理後に実施する製品基板の特性評価の際に、異常が発見され、圧力計の異常が確認される。   An abnormality is discovered during the characteristic evaluation of the product substrate performed after the film formation process, and the abnormality of the pressure gauge is confirmed.

異常が確認された場合、以降の製品の成膜処理を中断し、圧力計は真空処理室とは別の真空室に設置された比較用の圧力計を用いて校正された後、製品の成膜処理が再開される。   If any abnormality is confirmed, the subsequent film formation process is interrupted, the pressure gauge is calibrated using a comparative pressure gauge installed in a vacuum chamber different from the vacuum processing chamber, and then product formation is completed. Membrane processing is resumed.

特開2004−273682号公報JP 2004-273682 A

ここで説明するプラズマCVD装置は、平行平板型の枚葉式プラズマCVD装置のことである。上部電極よりプロセスガスである、SiH、NH、Nを供給し、真空処理室内は設定した圧力に制御された状態で、RFプラズマ放電により、下部電極上に設置された製品基板上に窒化膜を形成する。成膜処理時に真空処理室内を制御する圧力計(ここでは、キャパシタンスマノメータを示す)の測定値が異常であるが、表示上は正常な値を示している場合、製品処理後に実施する特性検査での膜応力が変化しており、設備状態の確認により、圧力計の異常と特定される。 The plasma CVD apparatus described here is a parallel plate type single wafer plasma CVD apparatus. Process gases, SiH 4 , NH 3 , and N 2, are supplied from the upper electrode, and the vacuum processing chamber is controlled to the set pressure, and RF plasma discharge is performed on the product substrate installed on the lower electrode. A nitride film is formed. When the measured value of the pressure gauge (in this case, the capacitance manometer) that controls the inside of the vacuum processing chamber during film formation is abnormal, but shows a normal value on the display, it is a characteristic inspection that is performed after product processing. The film stress is changed, and the pressure gauge is identified as abnormal by checking the equipment condition.

図2は、プラズマ窒化膜の成膜圧力と膜応力の関係を示すグラフである。窒化膜が、窒化膜が形成される下地との膜応力により、製品の製造工程中に剥れる不良が発生するため、製品の品質を維持するための膜応力は、引っ張り応力である必要があり、図2で示すグラフでは10MPa以上必要となる。上記膜応力を維持するための圧力帯は、図2で示すグラフでは、設定中心値の400Paに対し±10%の範囲である。   FIG. 2 is a graph showing the relationship between the deposition pressure of the plasma nitride film and the film stress. The film stress to maintain the quality of the product needs to be tensile stress, because the nitride film has a defect that peels off during the manufacturing process of the product due to the film stress with the base on which the nitride film is formed In the graph shown in FIG. 2, 10 MPa or more is required. In the graph shown in FIG. 2, the pressure band for maintaining the film stress is in the range of ± 10% with respect to the set center value of 400 Pa.

制御用の第1の圧力計の異常時に、圧力計の校正を行う場合、従来技術では、校正用の第2の圧力計が真空処理室とは異なる予備室側に設置されており、反応室と予備室との間のゲートバルブを開放した状態で、プロセス圧力ではなくガスを供給しない排気状態での圧力計の測定値比較を行い、圧力計のゼロ点調整を実施する。   When the pressure gauge is calibrated when the first pressure gauge for control is abnormal, in the prior art, the second pressure gauge for calibration is installed on the spare chamber side different from the vacuum processing chamber, and the reaction chamber With the gate valve open between the pressure chamber and the spare chamber, the measured value of the pressure gauge is compared in the exhaust state in which gas is not supplied instead of the process pressure, and the zero point of the pressure gauge is adjusted.

そのため、高真空時のゼロ点校正は可能であるが、この校正方法では、実プロセス時の設定圧力の圧力値を校正したことにはならず、製品処理時の圧力制御を安定して実施することは不可能である。   Therefore, zero point calibration at high vacuum is possible, but with this calibration method, the pressure value of the set pressure at the actual process is not calibrated, and pressure control during product processing is stably performed. It is impossible.

そこで、本発明は、成膜処理時の圧力帯を正常な状態で維持するために、真空処理室内の同じ環境下に校正用の第2の圧力計を配置し、制御用の第1の圧力計を実プロセス時の圧力値で校正することができる真空処理装置を提供することを目的とする。   Therefore, in the present invention, a second pressure gauge for calibration is arranged in the same environment in the vacuum processing chamber in order to maintain the pressure zone during the film forming process in a normal state, and the first pressure for control is provided. An object of the present invention is to provide a vacuum processing apparatus capable of calibrating a meter with a pressure value in an actual process.

上記課題を解決するために、本発明の真空処理装置は、真空処理室と、真空処理室を排気する排気装置と、真空処理室にガスを導入するガス導入機構と、真空処理室内の圧力を測定する第1の圧力計と、真空処理室において圧力測定値に関し第1の圧力計の取付位置と同一条件となる位置に取り付けられて真空処理室内の圧力を測定する少なくとも1台の第2の圧力計と、真空処理室と第2の圧力計との間の雰囲気を遮蔽する第1の遮蔽機構と、真空処理装置内の圧力を制御する圧力制御装置とを備えている。   In order to solve the above problems, a vacuum processing apparatus of the present invention includes a vacuum processing chamber, an exhaust device that exhausts the vacuum processing chamber, a gas introduction mechanism that introduces gas into the vacuum processing chamber, and a pressure in the vacuum processing chamber. A first pressure gauge to be measured, and at least one second pressure gauge that is mounted at a position that is the same as the mounting position of the first pressure gauge with respect to the pressure measurement value in the vacuum processing chamber and that measures the pressure in the vacuum processing chamber. A pressure gauge, a first shielding mechanism that shields the atmosphere between the vacuum processing chamber and the second pressure gauge, and a pressure control device that controls the pressure in the vacuum processing apparatus are provided.

この構成によれば、校正用の第2の圧力計を真空処理室に取り付けているので、真空処理室に対して第1の圧力計と同じ環境下に第2の圧力計を配置することができ、第1の圧力計を実プロセス時の圧力値に基づいて校正することができる。また、真空処理室において圧力測定値に関し圧力制御用の第1の圧力計の取付位置と同一条件となる位置に校正用の第2の圧力計を取り付けているので、第1および第2の圧力計の取り付け位置の違いによる圧力測定値の誤差をなくすことができ、第1の圧力計を実プロセス時の圧力値に基づいて精度よく校正することができる。また、第2の圧力計と真空処理室との間に、第1の遮蔽機構を設けているので、実プロセス時に第2の圧力計と真空処理室との間の雰囲気を第1の遮蔽機構により遮蔽することにより、実プロセスによる膜の堆積などによる第2の圧力計の狂いを防止することができ、第1の圧力計の校正を精度よく行うことができる。   According to this configuration, since the second pressure gauge for calibration is attached to the vacuum processing chamber, the second pressure gauge can be arranged in the same environment as the first pressure gauge with respect to the vacuum processing chamber. The first pressure gauge can be calibrated based on the pressure value in the actual process. In addition, since the second pressure gauge for calibration is attached at a position where the same conditions as the position of the first pressure gauge for pressure control are attached with respect to the pressure measurement value in the vacuum processing chamber, the first and second pressures The error of the pressure measurement value due to the difference in the gauge mounting position can be eliminated, and the first pressure gauge can be accurately calibrated based on the pressure value in the actual process. In addition, since the first shielding mechanism is provided between the second pressure gauge and the vacuum processing chamber, the atmosphere between the second pressure gauge and the vacuum processing chamber is changed to the first shielding mechanism during the actual process. By shielding by the above, it is possible to prevent the second pressure gauge from being misaligned due to film deposition by an actual process, and the first pressure gauge can be accurately calibrated.

上記構成の真空処理装置においては、真空処理室と第1の圧力計との間の雰囲気を遮蔽する第2の遮蔽機構を設けることが好ましい。   In the vacuum processing apparatus having the above configuration, it is preferable to provide a second shielding mechanism that shields the atmosphere between the vacuum processing chamber and the first pressure gauge.

この構成によれば、真空処理室と第1の圧力計との間の雰囲気を遮蔽する第2の遮蔽機構を設けているので、第1の圧力計の校正が不可能となって交換をするときに第2の遮蔽機構を閉じることで、真空処理室を真空状態に保ったまま、第1の圧力計の交換を行うことができ、第1の圧力計の交換後直ちに実プロセスに入ることができる。   According to this configuration, since the second shielding mechanism that shields the atmosphere between the vacuum processing chamber and the first pressure gauge is provided, the first pressure gauge cannot be calibrated and replaced. Sometimes the second shielding mechanism is closed, so that the first pressure gauge can be replaced while the vacuum processing chamber is kept in a vacuum state, and the actual process starts immediately after the first pressure gauge is replaced. Can do.

また、上記構成の真空処理装置においては、第2の圧力計は、真空処理室内を排気装置によって排気するための排気口からの距離が、排気口から第1の圧力計までの距離と同じとなる任意の位置に設けられていることが好ましい。   In the vacuum processing apparatus having the above-described configuration, the second pressure gauge has the same distance from the exhaust port for exhausting the vacuum processing chamber by the exhaust device as the distance from the exhaust port to the first pressure gauge. It is preferable to be provided at any position.

この構成によれば、第2の圧力計を、真空処理室内を排気装置によって排気するための排気口からの距離が、排気口から第1の圧力計までの距離と同じとなる任意の位置に設けたので、排気中において真空処理室内に圧力勾配が生じることに起因して生じる、第1および第2の圧力計の取り付け位置の違いによる圧力測定値の誤差をなくすことができ、高精度に校正を行うことができる。   According to this configuration, the second pressure gauge is placed at an arbitrary position where the distance from the exhaust port for exhausting the vacuum processing chamber by the exhaust device is the same as the distance from the exhaust port to the first pressure gauge. Since it is provided, it is possible to eliminate errors in pressure measurement values due to differences in the mounting positions of the first and second pressure gauges caused by the pressure gradient generated in the vacuum processing chamber during exhaust, and with high accuracy. Calibration can be performed.

また、上記構成の真空処理装置においては、第1の遮蔽機構は、実プロセス時に真空処理室と第2の圧力計との間の雰囲気を遮蔽し、校正時に真空処理室と第2の圧力計との間の雰囲気を連通させ、ガス導入機構は実プロセス時にプロセスガスを導入し、校正時に不活性ガスを導入することが好ましい。   In the vacuum processing apparatus configured as described above, the first shielding mechanism shields the atmosphere between the vacuum processing chamber and the second pressure gauge during an actual process, and the vacuum processing chamber and the second pressure gauge during calibration. The gas introduction mechanism preferably introduces a process gas during an actual process and introduces an inert gas during calibration.

この構成によれば、第2の圧力計と真空処理室との間に、第1の遮蔽機構を設けているので、実プロセス時に第2の圧力計と真空処理室との間の雰囲気を第1の遮蔽機構により遮蔽することにより、第2の圧力計がプロセスガスの雰囲気に曝されることを防止でき、実プロセスによる膜の堆積などによる第2の圧力計の狂いを防止することができ、第1の圧力計の校正を精度よく行うことができる。しかも、校正時において膜の堆積などがなく、第2の圧力計の狂いを防止することができ、第1の圧力計の校正を精度よく行うことができる。   According to this configuration, since the first shielding mechanism is provided between the second pressure gauge and the vacuum processing chamber, the atmosphere between the second pressure gauge and the vacuum processing chamber is reduced during the actual process. By shielding with the first shielding mechanism, it is possible to prevent the second pressure gauge from being exposed to the atmosphere of the process gas, and to prevent the second pressure gauge from being misaligned due to film deposition by an actual process. The first pressure gauge can be calibrated with high accuracy. In addition, there is no film deposition at the time of calibration, the second pressure gauge can be prevented from being misaligned, and the first pressure gauge can be accurately calibrated.

また、上記構成の真空処理装置においては、圧力制御装置は、実プロセス時に第1の圧力計による圧力測定結果をもとに真空処理室内の圧力を制御し、校正時に第2の圧力計による圧力測定結果をもとに真空処理装置内の圧力を制御し、第1の圧力計の測定値を第2の圧力計の測定値をもとに校正することが好ましい。   In the vacuum processing apparatus configured as described above, the pressure control device controls the pressure in the vacuum processing chamber based on the pressure measurement result by the first pressure gauge during the actual process, and the pressure by the second pressure gauge during calibration. It is preferable to control the pressure in the vacuum processing apparatus based on the measurement result and calibrate the measured value of the first pressure gauge based on the measured value of the second pressure gauge.

この構成によれば、校正時において、狂いのない第2の圧力計を用いて圧力制御するので、真空処理室内の圧力を実プロセス時の圧力値に精度よく制御することができ、第2の圧力計による正確な圧力測定値により、実プロセス時の圧力のもとで第1の圧力計を精度よく校正することができる。   According to this configuration, since the pressure is controlled using the second pressure gauge without any error at the time of calibration, the pressure in the vacuum processing chamber can be accurately controlled to the pressure value in the actual process. The first pressure gauge can be accurately calibrated under the pressure in the actual process by the accurate pressure measurement value by the pressure gauge.

また、上記構成の真空処理装置においては、真空処理室内に不活性ガスを導入し、実プロセス圧力を中心に少なくとも2点以上の異なった圧力帯での圧力制御を、製品を処理しない任意のタイミングで実施し、第1の圧力計の測定値と第2の圧力計の測定値とが異なっていた場合、第1の圧力計を実プロセス域で校正する機能を有することが好ましい。   Moreover, in the vacuum processing apparatus having the above-described configuration, an inert gas is introduced into the vacuum processing chamber, and pressure control in at least two different pressure zones centering on the actual process pressure is performed at any timing when the product is not processed. When the measurement value of the first pressure gauge is different from the measurement value of the second pressure gauge, it is preferable to have a function of calibrating the first pressure gauge in the actual process area.

この構成によれば、第1の圧力計を実プロセス域の圧力下で直接的に校正するので、高真空時のゼロ点校正による間接的な校正とは異なり、製品処理時の圧力制御を安定して実施することができる。   According to this configuration, the first pressure gauge is calibrated directly under the pressure in the actual process area, so that pressure control during product processing is stable, unlike indirect calibration by zero point calibration during high vacuum. Can be implemented.

また、上記構成の真空処理装置においては、第2の圧力計は、プロセスガス導入時の実プロセス時には第1の遮蔽機構により、真空処理室内とは隔離されて動作することなく、常に不活性ガスにて校正された状態を維持していることが好ましい。   In the vacuum processing apparatus having the above-described configuration, the second pressure gauge is always inactive gas without being separated from the vacuum processing chamber by the first shielding mechanism during the actual process when the process gas is introduced. It is preferable that the calibrated state is maintained.

この構成によれば、実プロセス時に第2の圧力計と真空処理室との間の雰囲気を第1の遮蔽機構により遮蔽することにより、第2の圧力計がプロセスガスの雰囲気に曝されることを防止でき、実プロセスによる膜の堆積などによる第2の圧力計の狂いを防止することができ、第1の圧力計の校正を精度よく行うことができる。   According to this configuration, the second pressure gauge is exposed to the atmosphere of the process gas by shielding the atmosphere between the second pressure gauge and the vacuum processing chamber by the first shielding mechanism during the actual process. The second pressure gauge can be prevented from being misaligned due to film deposition by an actual process, and the first pressure gauge can be accurately calibrated.

本発明の真空処理装置、例えばプラズマ窒化膜処理に使用する枚葉式プラズマCVD装置において、実プロセス時に制御する圧力値で制御用の圧力計の校正を精度よく行うことが可能となり、その結果成膜処理時の圧力制御を常に実プロセス時に制御する圧力値で校正された圧力計によって制御することが可能となり、圧力計の異常により、成膜圧力が変動することが要因で発生する膜応力が規格外の値へシフトした際の、下地との膜剥がれを防止することが可能となり、半導体製品の不良発生を未然に防止することができる。   In the vacuum processing apparatus of the present invention, for example, a single wafer plasma CVD apparatus used for plasma nitride film processing, it is possible to accurately calibrate a control pressure gauge with a pressure value controlled during an actual process. It is possible to control the pressure control during film processing with a pressure gauge calibrated with the pressure value that is always controlled during the actual process, and the film stress generated due to fluctuations in film formation pressure due to abnormal pressure gauges It is possible to prevent film peeling from the base when shifting to a value outside the standard, and it is possible to prevent occurrence of defects in the semiconductor product.

本発明の実施例のプラズマ処理装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the plasma processing apparatus of the Example of this invention. 窒化膜の成膜圧力と膜応力との関係を示すグラフである。It is a graph which shows the relationship between the film-forming pressure of a nitride film, and film | membrane stress.

以下、本発明の実施例を、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に本発明の実施例のプラズマ処理装置の概要図を示す。図1において、符号100は真空処理室を示す。符号101は真空処理室100内に設けられて下側電極を兼ねる基板ステージを示す。符号102は真空処理室100に設けられたガス導入口を示す。符号103は真空処理室100に設けられた排気口を示す。符号104は真空処理装置100の排気口に結合された圧力制御装置を示す。符号105は基板ステージ101に載置された製品基板を示す。符号106は真空処理室100に設けられたピラニー真空計を示す。符号107は真空処理室100に設けられた圧力制御用の第1の圧力計を示す。符号108は真空処理室100と第1の圧力計107との間に設けられた遮蔽機構としての遮蔽バルブを示す。符号109は真空処理室100内に設けられた上側電極を示す。なお、圧力制御装置104には、排気口103から排気するための排気装置(図示せず)が連結されている。   FIG. 1 shows a schematic diagram of a plasma processing apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 100 denotes a vacuum processing chamber. Reference numeral 101 denotes a substrate stage that is provided in the vacuum processing chamber 100 and also serves as a lower electrode. Reference numeral 102 denotes a gas inlet provided in the vacuum processing chamber 100. Reference numeral 103 denotes an exhaust port provided in the vacuum processing chamber 100. Reference numeral 104 denotes a pressure control device coupled to the exhaust port of the vacuum processing apparatus 100. Reference numeral 105 denotes a product substrate placed on the substrate stage 101. Reference numeral 106 denotes a Pirani vacuum gauge provided in the vacuum processing chamber 100. Reference numeral 107 denotes a first pressure gauge for pressure control provided in the vacuum processing chamber 100. Reference numeral 108 denotes a shielding valve as a shielding mechanism provided between the vacuum processing chamber 100 and the first pressure gauge 107. Reference numeral 109 denotes an upper electrode provided in the vacuum processing chamber 100. The pressure control device 104 is connected to an exhaust device (not shown) for exhausting air from the exhaust port 103.

符号200は真空処理室100に設けられた圧力校正用の第2の圧力計を示す。符号201は真空処理室100と第2の圧力計201との間に設けられた遮蔽機構としての遮蔽バルブを示す。符号202は第1および第2の圧力計107、200の圧力測定値の差を演算するデータ演算部を示す。符号203はデータ演算部202からの出力信号に基づいて構成あるいは交換の指示を出す装置指示部を示す。   Reference numeral 200 denotes a second pressure gauge for pressure calibration provided in the vacuum processing chamber 100. Reference numeral 201 denotes a shielding valve as a shielding mechanism provided between the vacuum processing chamber 100 and the second pressure gauge 201. Reference numeral 202 denotes a data calculation unit that calculates a difference between pressure measurement values of the first and second pressure gauges 107 and 200. Reference numeral 203 denotes an apparatus instruction unit that issues a configuration or replacement instruction based on an output signal from the data calculation unit 202.

符号300は制御用の第1の圧力計の圧力測定データをデータ演算部202へ伝送する制御用の第1の圧力計データ送信部を示す。符号301は校正用の第2の圧力計の圧力測定データをデータ演算部202へ伝送する校正用の第2の圧力計データ送信部を示す。符号302はデータ演算部202から装置指示部203へ圧力計校正および交換指示のための信号を伝送する圧力計校正および交換指示送信部を示す。   Reference numeral 300 denotes a first pressure gauge data transmission unit for control that transmits pressure measurement data of the first pressure gauge for control to the data calculation unit 202. Reference numeral 301 denotes a second pressure gauge data transmission unit for calibration that transmits the pressure measurement data of the second pressure gauge for calibration to the data calculation unit 202. Reference numeral 302 denotes a pressure gauge calibration and replacement instruction transmission unit that transmits a pressure gauge calibration and replacement instruction signal from the data calculation unit 202 to the apparatus instruction unit 203.

つぎに、この真空処理装置における圧力計校正手順について説明する。   Next, a pressure gauge calibration procedure in this vacuum processing apparatus will be described.

真空処理室100内での製品処理が終了し、基板ステージ101上の製品基板105が真空処理室100から取り出された後に、真空処理室100内の雰囲気をガス導入口102より供給した不活性ガスで置換し、その後、いったん不活性ガスの供給を止め、真空処理室100内を排気口103より排気する。   After the product processing in the vacuum processing chamber 100 is completed and the product substrate 105 on the substrate stage 101 is taken out from the vacuum processing chamber 100, the inert gas supplied with the atmosphere in the vacuum processing chamber 100 from the gas inlet 102 Then, the supply of the inert gas is stopped once, and the inside of the vacuum processing chamber 100 is exhausted from the exhaust port 103.

真空処理室100内が、到達真空度に排気されたことをピラニー真空計106で確認した後、校正用の第2の圧力計200と真空処理室100の間に設けられた遮蔽バルブ201を開放し、ガス導入口102より不活性ガスを導入しながら、圧力制御装置104にて第1の成膜時の圧力設定の指示を行う。その際、圧力コントロールは、校正用の第2の圧力計200に基づいて圧力制御装置104が実施し、校正用の第2の圧力計200が示す圧力値と制御用の第1の圧力計107が示す圧力値とを制御用の第1の圧力計データ送信部300および、校正用の第2の圧力計データ送信部301を介し、データ演算部202に送信する。そして、データ演算部202では、送信された校正用の第2の圧力計200が示す圧力値と制御用の第1の圧力計107が示す圧力値との差を演算により求める。具体的には、校正用の第2の圧力計200が示す圧力値を基準にして、制御用の第1の圧力計が示す圧力値が何パーセントずれているかを算出する。   After confirming that the inside of the vacuum processing chamber 100 has been evacuated to the ultimate vacuum level, the Pirani vacuum gauge 106 opens, and then the shielding valve 201 provided between the second pressure gauge 200 for calibration and the vacuum processing chamber 100 is opened. Then, while introducing an inert gas from the gas inlet 102, the pressure controller 104 instructs the pressure setting during the first film formation. At this time, the pressure control is performed by the pressure control device 104 based on the second pressure gauge 200 for calibration, the pressure value indicated by the second pressure gauge 200 for calibration, and the first pressure gauge 107 for control. Is transmitted to the data calculation unit 202 via the first pressure gauge data transmission unit 300 for control and the second pressure gauge data transmission unit 301 for calibration. Then, the data calculation unit 202 calculates the difference between the transmitted pressure value indicated by the second pressure gauge for calibration 200 and the pressure value indicated by the first pressure gauge for control 107 by calculation. Specifically, based on the pressure value indicated by the second pressure gauge 200 for calibration, the percentage of the pressure value indicated by the first pressure gauge for control is calculated.

ここで、データ演算部202で演算された、校正用の第2の圧力計200が示す圧力値と制御用の第1の圧力計107が示す圧力値との差が、±5%以上の場合に、圧力計校正および交換指示送信部302を介し、装置指示部203より制御用の第1の圧力計107の校正の指示があった後、制御用の第1の圧力計107の調整を実施し、校正用の第2の圧力計200の値に合わせ込む。上記の差が±5%未満の場合には、校正動作を行わない。   Here, when the difference between the pressure value indicated by the second pressure gauge for calibration 200 and the pressure value indicated by the first pressure gauge for control 107 calculated by the data calculation unit 202 is ± 5% or more Then, after receiving an instruction to calibrate the first pressure gauge 107 for control from the apparatus instruction section 203 via the pressure gauge calibration and replacement instruction transmission section 302, the first pressure gauge 107 for control is adjusted. Then, it is adjusted to the value of the second pressure gauge 200 for calibration. If the above difference is less than ± 5%, the calibration operation is not performed.

調整終了後、一旦不活性ガスの供給を中止し、真空処理室101内が到達真空度になるまで排気口103より排気する。真空処理室100内がピラニー真空計106で到達真空度となった後、再度真空処理室100内にガス導入口102より不活性ガスを供給し、第2の成膜時の圧力に設定の指示を行う。同様に、圧力コントロールは、校正用の第2の圧力計200に基づいて圧力制御装置104が実施し、校正用の第2の圧力計200が示す圧力値と制御用の第1の圧力計107が示す圧力値とを、制御用の第1の圧力計データ送信部300および校正用の第2の圧力計データ送信部301を介し、データ演算部202に送信する。そして、データ演算部202では、送信された校正用の第2の圧力計200が示す圧力値と制御用の第1の圧力計107が示す圧力値との差を演算により求める。具体的には、校正用の第2の圧力計200が示す圧力値を基準にして、制御用の第1の圧力計が示す圧力値が何パーセントずれているかを算出する。   After the adjustment is completed, the supply of the inert gas is temporarily stopped, and the vacuum processing chamber 101 is exhausted from the exhaust port 103 until the degree of vacuum is reached. After the inside of the vacuum processing chamber 100 reaches the ultimate vacuum with the Pirani vacuum gauge 106, an inert gas is supplied again into the vacuum processing chamber 100 from the gas inlet 102, and an instruction to set the pressure during the second film formation is given. I do. Similarly, the pressure control is performed by the pressure control device 104 based on the second pressure gauge 200 for calibration, the pressure value indicated by the second pressure gauge 200 for calibration, and the first pressure gauge 107 for control. Is transmitted to the data calculation unit 202 via the first pressure gauge data transmission unit 300 for control and the second pressure gauge data transmission unit 301 for calibration. Then, the data calculation unit 202 calculates the difference between the transmitted pressure value indicated by the second pressure gauge 200 for calibration and the pressure value indicated by the first pressure gauge 107 for control. Specifically, based on the pressure value indicated by the second pressure gauge 200 for calibration, the percentage of the pressure value indicated by the first pressure gauge for control is calculated.

ここで、データ演算部202で演算された、校正用の第2の圧力計200が示す圧力値と制御用の第1の圧力計107が示す圧力値との差が、±5%以上の場合に、圧力計校正および交換指示送信部302を介し、装置指示部203より制御用の第1の圧力計107の校正の指示があった後、制御用の第1の圧力計107の調整を実施し、校正用の第2の圧力計200の値に合わせ込む。上記の差が±5%未満の場合には、校正動作を行わない。その後、校正用の第2の圧力計200と真空処理室100との間に設けられた、遮蔽バルブ201を遮蔽する。   Here, when the difference between the pressure value indicated by the second pressure gauge for calibration 200 and the pressure value indicated by the first pressure gauge for control 107 calculated by the data calculation unit 202 is ± 5% or more Then, after receiving an instruction to calibrate the first pressure gauge 107 for control from the apparatus instruction section 203 via the pressure gauge calibration and replacement instruction transmission section 302, the first pressure gauge 107 for control is adjusted. Then, it is adjusted to the value of the second pressure gauge 200 for calibration. If the above difference is less than ± 5%, the calibration operation is not performed. Thereafter, the shielding valve 201 provided between the second pressure gauge 200 for calibration and the vacuum processing chamber 100 is shielded.

その後、不活性ガスの供給を停止し、不活性ガスの排気を行うために真空処理室100内の真空引きを実施する。真空処理室100内がピラニー真空計106で到達真空度に到達した後、次の製品の処理を開始する。   Thereafter, the supply of the inert gas is stopped, and the vacuum processing chamber 100 is evacuated in order to exhaust the inert gas. After the vacuum processing chamber 100 reaches the ultimate vacuum level with the Pirani vacuum gauge 106, processing of the next product is started.

上記校正動作の中で、校正用の第2の圧力計200が示す圧力値と、制御用の第1の圧力計107が示す圧力値との差が、±5%以上の場合に制御用の第1の圧力計107の調整を実施するが、校正用の第2の圧力計200の値に合わせ込むことができなかった場合は、制御用の第1の圧力計107の使用続行は不可能と判断し、圧力計校正および交換指示送信部302を介し、装置指示部203より制御用の第1の圧力計107交換の指示が出される。その後、校正用の第2の圧力計200と真空処理室100の間に設けられた遮蔽バルブ201を遮蔽し真空処理室100内への不活性ガスの供給を停止し、真空処理室100内がピラニー真空計106で到達真空度となるように排気口103より排気を行う。   In the calibration operation, when the difference between the pressure value indicated by the second pressure gauge 200 for calibration and the pressure value indicated by the first pressure gauge 107 for control is ± 5% or more, Adjustment of the first pressure gauge 107 is performed, but if the value of the second pressure gauge 200 for calibration cannot be adjusted, the use of the first pressure gauge 107 for control cannot be continued. The apparatus instruction unit 203 issues an instruction to replace the first pressure gauge 107 for control via the pressure gauge calibration and replacement instruction transmission unit 302. Thereafter, the shielding valve 201 provided between the second pressure gauge 200 for calibration and the vacuum processing chamber 100 is shielded to stop the supply of the inert gas into the vacuum processing chamber 100, and the inside of the vacuum processing chamber 100 is The Pirani vacuum gauge 106 exhausts air from the exhaust port 103 so that the ultimate vacuum is achieved.

次に、制御用の第1の圧力計107と真空処理室100の間に設けられた遮蔽バルブ108を遮蔽し、制御用の第1の圧力計107を取り外し、校正された新しい制御用の第1の圧力計107を取り付けた後、制御用の第1の圧力計107と真空処理室100の間に設けられた遮蔽バルブ108を開放し、真空処理室100内と同じ雰囲気とする。   Next, the shielding valve 108 provided between the first pressure gauge 107 for control and the vacuum processing chamber 100 is shielded, the first pressure gauge 107 for control is removed, and a new calibrated first control pressure gauge is removed. After the first pressure gauge 107 is attached, the shielding valve 108 provided between the first pressure gauge 107 for control and the vacuum processing chamber 100 is opened, and the atmosphere is the same as in the vacuum processing chamber 100.

この一連の動作により、真空処理室100内の制御用の第1の圧力計107は実プロセス時に設定された圧力値を、±5%以内で制御することが可能となる。   By this series of operations, the first pressure gauge 107 for control in the vacuum processing chamber 100 can control the pressure value set during the actual process within ± 5%.

これは、図2で示した膜剥がれを発生させない成膜圧力帯の±10%以内を維持できることとなり、製品特性を安定に保つことが可能となる。   This can maintain within ± 10% of the film forming pressure zone in which film peeling does not occur as shown in FIG. 2, and the product characteristics can be kept stable.

上記圧力計の校正は、枚葉処理の真空処理装置においては製品1枚の処理終了時に毎回実施することが望ましいが、ロット単位での製品処理終了後や、製品処理終了後の任意のタイミングで実施しても同様の効果が得られることは、いうまでもない。   The pressure gauge is preferably calibrated every time at the end of processing of one product in a single wafer processing vacuum processing apparatus, but at the end of product processing in lot units or at any timing after the end of product processing. It goes without saying that the same effect can be obtained even if it is carried out.

また、実施例1でプラズマ窒化膜の処理を用いて説明したが、他のプラズマ成膜処理装置や、プラズマエッチング装置に用いても、同様の効果が得られることはいうまでもない。   In addition, although the plasma nitride film processing has been described in the first embodiment, it goes without saying that the same effect can be obtained even if it is used in another plasma film forming apparatus or a plasma etching apparatus.

以上のように、この実施例の真空処理装置によれば、校正用の第2の圧力計200を真空処理室100に取り付けているので、真空処理室100に対して第1の圧力計107と同じ環境下に第2の圧力計200を配置することができ、第1の圧力計107を実プロセス時の圧力値に基づいて校正することができる。また、真空処理室100において圧力測定値に関し圧力制御用の第1の圧力計107の取付位置と同一条件となる位置に校正用の第2の圧力計200を取り付けているので、第1および第2の圧力計107、200の取り付け位置の違いによる圧力測定値の誤差をなくすことができ、第1の圧力計107を実プロセス時の圧力値に基づいて精度よく校正することができる。また、第2の圧力計200と真空処理室100との間に、遮蔽バルブ201を設けているので、実プロセス時に第2の圧力計200と真空処理室100との間の雰囲気を遮蔽バルブ201により遮蔽することにより、第2の圧力計がプロセスガスの雰囲気に曝されることを防止でき、実プロセスによる膜の堆積などによる第2の圧力計200の狂いを防止することができ、第1の圧力計107の校正を精度よく行うことができる。   As described above, according to the vacuum processing apparatus of this embodiment, since the second pressure gauge 200 for calibration is attached to the vacuum processing chamber 100, the first pressure gauge 107 and the vacuum processing chamber 100 are The second pressure gauge 200 can be arranged under the same environment, and the first pressure gauge 107 can be calibrated based on the pressure value in the actual process. In addition, since the second pressure gauge 200 for calibration is attached at a position that satisfies the same conditions as the attachment position of the first pressure gauge 107 for pressure control in the vacuum processing chamber 100 with respect to the pressure measurement value, The error of the pressure measurement value due to the difference in the mounting positions of the two pressure gauges 107 and 200 can be eliminated, and the first pressure gauge 107 can be accurately calibrated based on the pressure value in the actual process. Further, since the shielding valve 201 is provided between the second pressure gauge 200 and the vacuum processing chamber 100, the atmosphere between the second pressure gauge 200 and the vacuum processing chamber 100 is shielded during the actual process. The second pressure gauge can be prevented from being exposed to the atmosphere of the process gas, and the second pressure gauge 200 can be prevented from being misaligned due to film deposition by an actual process. The pressure gauge 107 can be calibrated with high accuracy.

また、真空処理室100と制御用の第1の圧力計107との間の雰囲気を遮蔽する遮蔽バルブ108を設けているので、第1の圧力計107の校正が不可能となって交換をするときに遮蔽バルブ107を閉じることで、真空処理室100を真空状態に保ったまま、第1の圧力計107の交換を行うことができ、第1の圧力計107の交換後直ちに実プロセスに入ることができる。   In addition, since the shielding valve 108 for shielding the atmosphere between the vacuum processing chamber 100 and the control first pressure gauge 107 is provided, the first pressure gauge 107 cannot be calibrated and replaced. Sometimes, by closing the shielding valve 107, the first pressure gauge 107 can be replaced while the vacuum processing chamber 100 is kept in a vacuum state, and the actual process is started immediately after the replacement of the first pressure gauge 107. be able to.

さらに、第2の圧力計200を、真空処理室100内を排気装置によって排気するための排気口103からの距離が、排気口103から第1の圧力計107までの距離と同じとなる任意の位置に設けたので、排気中において真空処理室内100に圧力勾配が生じることに起因して生じる、第1および第2の圧力計107、200の取り付け位置の違いによる圧力測定値の誤差をなくすことができ、高精度に校正を行うことができる。   Furthermore, the distance from the exhaust port 103 for exhausting the inside of the vacuum processing chamber 100 by the exhaust device from the second pressure gauge 200 is the same as the distance from the exhaust port 103 to the first pressure gauge 107. Since it is provided at the position, the error of the pressure measurement value due to the difference in the mounting position of the first and second pressure gauges 107 and 200 caused by the pressure gradient generated in the vacuum processing chamber 100 during exhaust is eliminated. Can be calibrated with high accuracy.

また、この構成によれば、第2の圧力計200と真空処理室100との間に、遮蔽バルブ201を設けているので、実プロセス時に第2の圧力計200と真空処理室100との間の雰囲気を遮蔽バルブ201により遮蔽することにより、第2の圧力計200がプロセスガスの雰囲気に曝されることを防止でき、実プロセスによる膜の堆積などによる第2の圧力計200の狂いを防止することができ、第1の圧力計107の校正を精度よく行うことができる。   Further, according to this configuration, since the shielding valve 201 is provided between the second pressure gauge 200 and the vacuum processing chamber 100, the second pressure gauge 200 and the vacuum processing chamber 100 are disposed between the second pressure gauge 200 and the vacuum processing chamber 100 during an actual process. The second pressure gauge 200 can be prevented from being exposed to the atmosphere of the process gas by shielding the atmosphere of the second pressure gauge by the shielding valve 201, and the second pressure gauge 200 can be prevented from being distorted due to film deposition by an actual process. The first pressure gauge 107 can be calibrated with high accuracy.

また、校正時において膜の堆積などがなく、第2の圧力計200の狂いを防止することができ、第1の圧力計107の校正を精度よく行うことができる。   Further, there is no film deposition at the time of calibration, the second pressure gauge 200 can be prevented from being distorted, and the first pressure gauge 107 can be calibrated with high accuracy.

また、校正時において、狂いのない第2の圧力計200を用いて圧力制御するので、真空処理室100内の圧力を実プロセス時の圧力値に精度よく制御することができ、第2の圧力計200による正確な圧力測定値により、実プロセス時の圧力のもとで第1の圧力計107を精度よく校正することができる。   Further, since the pressure is controlled using the second pressure gauge 200 without any error during calibration, the pressure in the vacuum processing chamber 100 can be accurately controlled to the pressure value in the actual process, and the second pressure The first pressure gauge 107 can be accurately calibrated under the pressure in the actual process by the accurate pressure measurement value obtained by the gauge 200.

また、第1の圧力計107を実プロセス域の圧力下で直接的に校正するので、高真空時のゼロ点校正による間接的な校正とは異なり、製品処理時の圧力制御を安定して実施することができる。   In addition, since the first pressure gauge 107 is directly calibrated under the pressure in the actual process range, unlike indirect calibration by zero point calibration at high vacuum, stable pressure control during product processing is performed. can do.

本発明の圧力制御方法は半導体製品製造、特にキャパシタンスマノメータを用いてプロセス圧力を制御する真空処理装置に用いることにより、品質を安定させる方法として特に有用である。   The pressure control method of the present invention is particularly useful as a method for stabilizing quality by being used in semiconductor product manufacturing, particularly in a vacuum processing apparatus that controls a process pressure using a capacitance manometer.

100 真空処理室
101 基板ステージ
102 ガス導入口
103 排気口
104 圧力制御装置
105 製品基板
106 ピラニー真空計
107 制御用の第1の圧力計
108 遮蔽バルブ
200 校正用の第2の圧力計
201 遮蔽バルブ
202 データ演算部
203 装置指示部
300 制御用の第1の圧力計データ送信部
301 校正用の第2の圧力計データ送信部
302 圧力計校正および交換指示送信部
DESCRIPTION OF SYMBOLS 100 Vacuum processing chamber 101 Substrate stage 102 Gas introduction port 103 Exhaust port 104 Pressure control apparatus 105 Product substrate 106 Pirani vacuum gauge 107 Control first pressure gauge 108 Shielding valve 200 Calibration second pressure gauge 201 Shielding valve 202 Data calculation unit 203 Device instruction unit 300 First pressure gauge data transmission unit for control 301 Second pressure gauge data transmission unit for calibration 302 Pressure gauge calibration and exchange instruction transmission unit

Claims (7)

真空処理室と、前記真空処理室を排気する排気装置と、前記真空処理室にガスを導入するガス導入機構と、前記真空処理室内の圧力を測定する第1の圧力計と、前記真空処理室において圧力測定値に関し前記第1の圧力計の取付位置と同一条件となる位置に取り付けられて前記真空処理室内の圧力を測定する少なくとも1台の第2の圧力計と、前記真空処理室と前記第2の圧力計との間の雰囲気を遮蔽する第1の遮蔽機構と、前記真空処理装置内の圧力を制御する圧力制御装置とを備えた真空処理装置。   A vacuum processing chamber; an exhaust device that exhausts the vacuum processing chamber; a gas introduction mechanism that introduces gas into the vacuum processing chamber; a first pressure gauge that measures pressure in the vacuum processing chamber; and the vacuum processing chamber At least one second pressure gauge that is attached to a position that is the same condition as the position where the first pressure gauge is attached with respect to the pressure measurement value, measures the pressure in the vacuum processing chamber, the vacuum processing chamber, and the The vacuum processing apparatus provided with the 1st shielding mechanism which shields the atmosphere between 2nd pressure gauges, and the pressure control apparatus which controls the pressure in the said vacuum processing apparatus. 前記真空処理室と前記第1の圧力計との間の雰囲気を遮蔽する第2の遮蔽機構を設けた請求項1記載の真空処理装置。   The vacuum processing apparatus according to claim 1, further comprising a second shielding mechanism that shields an atmosphere between the vacuum processing chamber and the first pressure gauge. 前記第2の圧力計は、真空処理室内を前記排気装置によって排気するための排気口からの距離が、前記排気口から前記第1の圧力計までの距離と同じとなる任意の位置に設けられている請求項1または2記載の真空処理装置。 The second pressure gauge is provided at any position where the distance from the exhaust port for exhausting the vacuum processing chamber by the exhaust device is the same as the distance from the exhaust port to the first pressure gauge. The vacuum processing apparatus according to claim 1 or 2. 前記第1の遮蔽機構は、実プロセス時に前記真空処理室と前記第2の圧力計との間の雰囲気を遮蔽し、校正時に前記真空処理室と前記第2の圧力計との間の雰囲気を連通させ、前記ガス導入機構は実プロセス時にプロセスガスを導入し、校正時に不活性ガスを導入する請求項1、2または3記載の真空処理装置。   The first shielding mechanism shields the atmosphere between the vacuum processing chamber and the second pressure gauge during an actual process, and the atmosphere between the vacuum processing chamber and the second pressure gauge during calibration. 4. The vacuum processing apparatus according to claim 1, wherein the gas introduction mechanism introduces a process gas during an actual process and introduces an inert gas during calibration. 前記圧力制御装置は、実プロセス時に前記第1の圧力計による圧力測定結果をもとに前記真空処理室内の圧力を制御し、校正時に前記第2の圧力計による圧力測定結果をもとに前記真空処理装置内の圧力を制御し、前記第1の圧力計の測定値を前記第2の圧力計の測定値をもとに校正する請求項4記載の真空処理装置。   The pressure control device controls the pressure in the vacuum processing chamber based on the pressure measurement result of the first pressure gauge during an actual process, and the pressure control device based on the pressure measurement result of the second pressure gauge during calibration. The vacuum processing apparatus according to claim 4, wherein the pressure in the vacuum processing apparatus is controlled to calibrate the measurement value of the first pressure gauge based on the measurement value of the second pressure gauge. 前記真空処理室内に不活性ガスを導入し、実プロセス圧力を中心に少なくとも2点以上の異なった圧力帯での圧力制御を、製品を処理しない任意のタイミングで実施し、前記第1の圧力計の測定値と前記第2の圧力計の測定値とが異なっていた場合、前記第1の圧力計を実プロセス域で校正する機能を有する請求項1記載の真空処理装置。   An inert gas is introduced into the vacuum processing chamber, pressure control in at least two different pressure zones centered on the actual process pressure is performed at an arbitrary timing when the product is not processed, and the first pressure gauge The vacuum processing apparatus according to claim 1, wherein when the measured value of the second pressure gauge is different from the measured value of the second pressure gauge, the first pressure gauge is calibrated in an actual process area. 前記第2の圧力計は、プロセスガス導入時の実プロセス時には前記遮蔽機構により、前記真空処理室内とは隔離されて動作することなく、常に不活性ガスにて校正された状態を維持している請求項6記載の真空処理装置。   The second pressure gauge is always kept in a calibrated state with an inert gas without being operated by being isolated from the vacuum processing chamber by the shielding mechanism during the actual process when the process gas is introduced. The vacuum processing apparatus according to claim 6.
JP2009098186A 2009-04-14 2009-04-14 Vacuum treatment device Pending JP2010251464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098186A JP2010251464A (en) 2009-04-14 2009-04-14 Vacuum treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098186A JP2010251464A (en) 2009-04-14 2009-04-14 Vacuum treatment device

Publications (1)

Publication Number Publication Date
JP2010251464A true JP2010251464A (en) 2010-11-04

Family

ID=43313494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098186A Pending JP2010251464A (en) 2009-04-14 2009-04-14 Vacuum treatment device

Country Status (1)

Country Link
JP (1) JP2010251464A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150072350A (en) 2013-12-19 2015-06-29 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus
JP2017167102A (en) * 2016-03-18 2017-09-21 東京エレクトロン株式会社 Pressure measuring device, exhaust system using the same, and substrate processing device
JP2018056442A (en) * 2016-09-30 2018-04-05 東京エレクトロン株式会社 Substrate processing apparatus
JP2020148473A (en) * 2019-03-11 2020-09-17 東京エレクトロン株式会社 Method for calibrating multiple chamber pressure sensors and substrate processing system
CN112680718A (en) * 2019-10-18 2021-04-20 东京毅力科创株式会社 Film forming apparatus, control apparatus, and method for adjusting pressure gauge
JP6910560B1 (en) * 2020-01-23 2021-07-28 株式会社日立ハイテク How to operate the plasma processing device and the plasma processing device
KR20210122079A (en) 2020-03-31 2021-10-08 도쿄엘렉트론가부시키가이샤 Method of calibrating multiple chamber pressure sensors

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10249478B2 (en) 2013-12-19 2019-04-02 Tokyo Electron Limited Substrate processing apparatus
KR20150072350A (en) 2013-12-19 2015-06-29 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus
JP2017167102A (en) * 2016-03-18 2017-09-21 東京エレクトロン株式会社 Pressure measuring device, exhaust system using the same, and substrate processing device
CN107202665A (en) * 2016-03-18 2017-09-26 东京毅力科创株式会社 Pressure measuring unit, gas extraction system and substrate board treatment
KR20170108858A (en) * 2016-03-18 2017-09-27 도쿄엘렉트론가부시키가이샤 Pressure measuring device and exhaust system using the same, and substrate processing apparatus
CN107202665B (en) * 2016-03-18 2020-11-10 东京毅力科创株式会社 Pressure measuring device, exhaust system, and substrate processing apparatus
KR102203557B1 (en) * 2016-03-18 2021-01-14 도쿄엘렉트론가부시키가이샤 Exhaust system, and substrate processing apparatus using the same
JP2018056442A (en) * 2016-09-30 2018-04-05 東京エレクトロン株式会社 Substrate processing apparatus
US11585717B2 (en) 2019-03-11 2023-02-21 Tokyo Electron Limited Method for calibrating plurality of chamber pressure sensors and substrate processing system
JP2020148473A (en) * 2019-03-11 2020-09-17 東京エレクトロン株式会社 Method for calibrating multiple chamber pressure sensors and substrate processing system
CN111678640A (en) * 2019-03-11 2020-09-18 东京毅力科创株式会社 Method for calibrating a plurality of chamber pressure sensors and substrate processing system
CN112680718A (en) * 2019-10-18 2021-04-20 东京毅力科创株式会社 Film forming apparatus, control apparatus, and method for adjusting pressure gauge
WO2021149212A1 (en) * 2020-01-23 2021-07-29 株式会社日立ハイテク Plasma processing apparatus and method of operating plasma processing apparatus
KR20210095995A (en) 2020-01-23 2021-08-04 주식회사 히타치하이테크 Plasma processing device and operating method of plasma processing device
CN113439327A (en) * 2020-01-23 2021-09-24 株式会社日立高新技术 Plasma processing apparatus and method for operating plasma processing apparatus
US11244803B2 (en) * 2020-01-23 2022-02-08 Hitachi High-Tech Corporation Plasma processing apparatus and operating method of plasma processing apparatus
KR102421985B1 (en) * 2020-01-23 2022-07-18 주식회사 히타치하이테크 Plasma processing apparatus and operating method of plasma processing apparatus
JP6910560B1 (en) * 2020-01-23 2021-07-28 株式会社日立ハイテク How to operate the plasma processing device and the plasma processing device
CN113439327B (en) * 2020-01-23 2023-07-25 株式会社日立高新技术 Plasma processing apparatus and method of operating the same
KR20210122079A (en) 2020-03-31 2021-10-08 도쿄엘렉트론가부시키가이샤 Method of calibrating multiple chamber pressure sensors
US11555755B2 (en) 2020-03-31 2023-01-17 Tokyo Electron Limited Method of calibrating multiple chamber pressure sensors
JP7411479B2 (en) 2020-03-31 2024-01-11 東京エレクトロン株式会社 How to calibrate multiple chamber pressure sensors

Similar Documents

Publication Publication Date Title
KR101860614B1 (en) Leakage determining method, substrate processing apparatus and non-transitory storage medium
CN109545701B (en) Method for manufacturing semiconductor device, recording medium, and substrate processing apparatus
JP2010251464A (en) Vacuum treatment device
KR102203557B1 (en) Exhaust system, and substrate processing apparatus using the same
KR20050028943A (en) System for controling pressure of low pressure-chemical vapor deposition equipment
JP6837274B2 (en) Semiconductor manufacturing equipment and substrate transfer method
US20230144886A1 (en) Method of manufacturing semiconductor device, method of managing parts, and recording medium
JP2005038058A (en) Equipment and method for manufacturing semiconductor
JP2011171337A (en) Substrate processing apparatus
US5808176A (en) Solving production downtime with parallel low pressure sensors
US8112183B2 (en) Substrate processing apparatus and substrate processing method
KR20060094326A (en) Apparatus for measuring pressure and method of inspecting operation state of the same
JP2009123946A (en) Substrate processing apparatus and method of manufacturing semiconductor device
US11535931B2 (en) Method of manufacturing semiconductor device, method of managing parts, and recording medium
JP2003257878A (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device using the same
JP2002280362A (en) Manufacturing method and apparatus of semiconductor
JP2008251969A (en) Plasma processor
JP2004119448A (en) Apparatus and method for plasma etching
KR20230026469A (en) Rapid Chamber Vacuum Leak Testing Hardware and Maintenance Routines
KR20060010320A (en) Apparatus for exausting of chemical vapor deposition equipment
JP2010283211A (en) Plasma treatment apparatus
KR20050033124A (en) System for exausting of chemical vapor deposition equipment
JP2009242891A (en) Vacuum device, method for determining leakage of the same, and computer readable memory medium
KR20050089215A (en) Apparatus for manufacturing semiconductor device
JP2010024487A (en) Substrate treatment apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20110124

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20110228

Free format text: JAPANESE INTERMEDIATE CODE: A7424