JP2010251078A - Organic/inorganic composite porus film and nonaqueous electrolyte secondary battery separator using the same - Google Patents

Organic/inorganic composite porus film and nonaqueous electrolyte secondary battery separator using the same Download PDF

Info

Publication number
JP2010251078A
JP2010251078A JP2009098508A JP2009098508A JP2010251078A JP 2010251078 A JP2010251078 A JP 2010251078A JP 2009098508 A JP2009098508 A JP 2009098508A JP 2009098508 A JP2009098508 A JP 2009098508A JP 2010251078 A JP2010251078 A JP 2010251078A
Authority
JP
Japan
Prior art keywords
organic
inorganic
inorganic composite
heat
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009098508A
Other languages
Japanese (ja)
Inventor
Hisakazu Ino
寿一 猪野
Akimitsu Hishinuma
晶光 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2009098508A priority Critical patent/JP2010251078A/en
Publication of JP2010251078A publication Critical patent/JP2010251078A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic/inorganic composite porus film which does not dissolve in fluorine ions, or the like, even at high temperatures at which a battery itself is dissolved and broken down, includes a structure in which a separator frame is not molten down, is highly safe, and can be used for a separator for a nonaqueous electrolyte secondary battery. <P>SOLUTION: The organic/inorganic composite porus film is formed by coating heat resistant resin material on inorganic porus material as a frame. The inorganic porus material is formed of glass fiber and/or ceramic fiber, and the heat-resistant resin preferably contains either of polyamide, polyamide acid, polyimide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機無機複合多孔質フィルムに関し、詳しくは、非水電解質二次電池に有用な、繊維状無機材料に樹脂材料を混合あるいはコーティングした有機無機複合多孔質フィルムに関する。また本発明は、前記有機無機複合多孔質フィルムからなる非水電解質二次電池用のセパレータに関する。   The present invention relates to an organic / inorganic composite porous film, and more particularly to an organic / inorganic composite porous film obtained by mixing or coating a fibrous inorganic material with a resin material, which is useful for a non-aqueous electrolyte secondary battery. The present invention also relates to a separator for a non-aqueous electrolyte secondary battery comprising the organic-inorganic composite porous film.

近年、非水電解質二次電池、特にリチウム二次電池は、従来からある携帯電話用の用途のみならず、たとえば電動工具、電動自転車、スクーター、また自動車用用途(電気自動車用電池やハイブリッドカー用電池)等での使用が開始されており、大型化される傾向にある。携帯電話用の非水電解質二次電池には、セパレータとして微多孔質を有するポリオレフィン系材質のものが一般に使われており、この場合、正極/負極間の短絡等の原因により電解質内に過大な電流が流れさらに反応が加速して爆発事故を生じることを防止するために、通常の使用温度を超えた場合にセパレータの微多孔質をできるだけ低温で閉塞し、過剰電流が電解質の中で流れることを防止するシャットダウン機能を有するようにして安全対策を施している。   In recent years, non-aqueous electrolyte secondary batteries, particularly lithium secondary batteries, have been used not only for conventional mobile phone applications, but also for electric tools, electric bicycles, scooters, and automobile applications (for electric vehicle batteries and hybrid cars). Battery) and the like has been started and tends to be enlarged. Non-aqueous electrolyte secondary batteries for mobile phones generally use a polyolefin-based material having a microporous material as a separator. In this case, the electrolyte is excessively large due to a short circuit between the positive electrode and the negative electrode. In order to prevent the flow of electric current and further acceleration of the reaction, causing an explosion accident, when the normal operating temperature is exceeded, the separator's microporous material is blocked as low as possible, and excess current flows in the electrolyte. Safety measures are taken so as to have a shutdown function to prevent this.

しかしながら、携帯電話用と異なり、非水電解質二次電池特にリチウム二次電池が大型化した場合やまたハイブリッドカー用途のように二次電池を内燃機関近くに配置するなど高温環境で使用される場合には、電解質温度が高温になってもセパレータが機能することが求められる。大型リチウム二次電池においては、安全性を確保するためにたとえば過充電時の正極負極電極ショートを防ぐ目的で正極材料を従来のコバルト酸リチウムからマンガン酸リチウムに置き換えたり、また電極材料に燐酸鉄を添加するなど電極材料を改善して安全性の確保を図っている。また、セパレータについても、大容量化された二次電池において正極および負極の短絡により暴発化学反応が生じることを防ぐ目的で、多孔質なアラミド繊維やポリイミド層とポリオレフィン多孔質フィルムを積層した積層多孔質フィルム等のより高温での耐熱性を有するセパレータが提案されている。   However, unlike mobile phones, when non-aqueous electrolyte secondary batteries, especially lithium secondary batteries, are used in high-temperature environments, such as when a secondary battery is placed near an internal combustion engine, such as in a hybrid car application. Therefore, it is required that the separator functions even when the electrolyte temperature becomes high. In large lithium secondary batteries, the positive electrode material is replaced from conventional lithium cobalt oxide to lithium manganate to prevent safety, for example, to prevent short-circuiting of the positive electrode and the negative electrode during overcharging. To improve safety by improving the electrode material. In addition, the separator is a laminated porous film in which porous aramid fibers or polyimide layers and polyolefin porous films are laminated for the purpose of preventing an accidental chemical reaction due to a short circuit between the positive and negative electrodes in a secondary battery with a large capacity. A separator having heat resistance at a higher temperature such as a quality film has been proposed.

特開2001−342282JP 2001-342282 A 特開2008−307893JP2008-307893

前記の通り、大型の非水電解質二次電池特にリチウム二次電池のセパレータには、安全性の観点から高い耐熱性が求められる。すなわち、電池に含まれる添加材例えばPVDF材料やケーシング材料が300度以下の耐熱性しか有さないため、正負極間で短絡が生じると、電池が高温となり、異常電流の発生やさらに電池構成そのものが溶解崩壊するような状況が生じうる。それに対して、高温でもセパレータとしての骨格を維持し続け、また電解質の異常電流を遮断するいわゆる高温でのシャットダウン機能を有することが安全性の観点で必須である。   As described above, a separator for a large nonaqueous electrolyte secondary battery, particularly a lithium secondary battery, is required to have high heat resistance from the viewpoint of safety. That is, the additive material contained in the battery, such as PVDF material or casing material, has only heat resistance of 300 degrees or less, so if a short circuit occurs between the positive and negative electrodes, the battery becomes high temperature, generation of abnormal current, and further the battery configuration itself A situation may occur where the material dissolves and disintegrates. On the other hand, from the viewpoint of safety, it is essential to have a so-called shutdown function at a high temperature that keeps the skeleton as a separator even at a high temperature and also shuts off an abnormal current of the electrolyte.

これについて、耐熱性を有するセパレータとして無機多孔質材料とオレフィン系の微多孔質材料を積層した構造のものが考えられる。しかし、300℃近い温度においてオレフィン系材材料は溶解分解するためシャットダウン機能を発揮できず、すなわち無機多孔質材料が高温でその骨格構造を保ちメルトダウンを防止しても、安全性を確保できないことが考えられる。さらに、非水電解質は充放電の過程で微量のフッ素イオンを不純物として生じるおそれがあり、ほとんどの無機材料はフッ素イオンに対して溶解する可能性があることからメルトダウン防止の観点からも問題がありうる。   Regarding this, a separator having a structure in which an inorganic porous material and an olefinic microporous material are laminated is considered as a heat-resistant separator. However, since the olefin-based material dissolves and decomposes at a temperature close to 300 ° C., the shutdown function cannot be exhibited. That is, even if the inorganic porous material maintains its skeleton structure at a high temperature and prevents meltdown, safety cannot be ensured. Can be considered. In addition, non-aqueous electrolytes may generate a small amount of fluorine ions as impurities during the charge / discharge process, and most inorganic materials may dissolve in fluorine ions, so there is a problem from the viewpoint of preventing meltdown. It is possible.

本発明の目的は、無機多孔質材料を骨格として電気化学的に安定な耐熱樹脂材料をその無機多孔質材料に被覆してなる有機無機複合多孔質フィルム材料を提供することである。また、表面が電気化学的に安定な耐熱樹脂に覆われ、高温においてもシャットダウン効果を有し、電池そのものが溶解崩壊する温度においてもフッ素イオン等に溶解することなくセパレータ骨格がメルトダウンしない構造を有している非水電解質二次電池セパレータを提供することである。   An object of the present invention is to provide an organic-inorganic composite porous film material obtained by coating an inorganic porous material with an electrochemically stable heat-resistant resin material using the inorganic porous material as a skeleton. In addition, the surface is covered with an electrochemically stable heat-resistant resin, has a shutdown effect even at high temperatures, and has a structure in which the separator skeleton does not melt down without dissolving in fluorine ions etc. even at the temperature at which the battery itself dissolves and collapses. The nonaqueous electrolyte secondary battery separator is provided.

本発明は、非水電解質二次電池のセパレータとして好ましく用いられる材料であって、無機多孔質材料を骨格として電気化学的に安定な耐熱樹脂材料をその無機多孔質材料に被覆してなる有機無機複合多孔質フィルム材料を要旨とする。   The present invention is a material that is preferably used as a separator for a non-aqueous electrolyte secondary battery, and is an organic-inorganic material obtained by coating an inorganic porous material with an electrochemically stable heat-resistant resin material using an inorganic porous material as a skeleton. The gist is a composite porous film material.

すなわち、本発明は、無機多孔質材料を骨格としてその上に耐熱性樹脂材料を被覆した有機無機複合多孔質フィルムである。   That is, the present invention is an organic-inorganic composite porous film in which an inorganic porous material is used as a skeleton and a heat-resistant resin material is coated thereon.

また本発明は、 前記無機多孔質材料がガラス繊維および/またはセラミックス繊維で構成される前記有機無機複合多孔質フィルムである。   Moreover, this invention is the said organic inorganic composite porous film with which the said inorganic porous material is comprised with glass fiber and / or ceramic fiber.

また本発明は、 前記無機多孔質材料がガラス繊維からなることを特徴とする前記有機無機複合多孔質フィルムである。   Moreover, this invention is the said organic inorganic composite porous film characterized by the said inorganic porous material consisting of glass fiber.

また本発明は、前記無機多孔質材料がガラス繊維からなる不織布であることを特徴とする前記有機無機複合多孔質フィルムである。   The present invention also provides the organic-inorganic composite porous film, wherein the inorganic porous material is a nonwoven fabric made of glass fiber.

また本発明は、前記無機多孔質材料がガラス繊維からなる織布であることを特徴とする前記有機無機複合多孔質フィルムである。   The present invention also provides the organic-inorganic composite porous film, wherein the inorganic porous material is a woven fabric made of glass fibers.

また本発明は、前記耐熱性樹脂がポリアミド、ポリアミド酸、ポリイミドのいずれかを含有する前記有機無機複合多孔質フィルムである。   Moreover, this invention is the said organic inorganic composite porous film in which the said heat resistant resin contains either polyamide, polyamic acid, or a polyimide.

また本発明は、前記被覆された耐熱性樹脂が、前記無機多孔質材料に対して、10〜500質量%の比率であることを特徴とする前記有機無機複合多孔質フィルムである。   Further, the present invention is the organic-inorganic composite porous film, wherein the coated heat-resistant resin is a ratio of 10 to 500% by mass with respect to the inorganic porous material.

また本発明は、前記ガラス繊維がシランカップリング剤で表面処理された前記有機無機複合多孔質フィルムである。   Moreover, this invention is the said organic inorganic composite porous film by which the said glass fiber was surface-treated with the silane coupling agent.

また本発明は、前記有機無機複合多孔質フィルムからなるセパレータである。   Moreover, this invention is a separator which consists of said organic-inorganic composite porous film.

また本発明は、前記セパレータを有する電池である。   Moreover, this invention is a battery which has the said separator.

また本発明は、前記セパレータを有するキャパシタである。   Moreover, this invention is a capacitor which has the said separator.

本発明の有機無機複合多孔質フィルムは、無機孔質材料を骨格として電気化学的に安定な耐熱樹脂材料をその無機多孔質材料に被覆することで、表面が電気化学的に安定な耐熱樹脂に覆われ、かつ高温でシャットダウン効果を有し、電池そのものが溶解崩壊する温度にてもフッ素イオン等に溶解することなくセパレータ骨格がメルトダウンしない構造を有しているため、安全性の高い非水電解質二次電池用セパレータを提供することができる。   The organic-inorganic composite porous film of the present invention is formed by coating an inorganic porous material with an electrochemically stable heat-resistant resin material using an inorganic porous material as a skeleton, thereby making the surface an electrochemically stable heat-resistant resin. It has a structure that is covered and has a shutdown effect at high temperatures, and does not dissolve in fluorine ions etc. even at a temperature at which the battery itself dissolves and collapses. An electrolyte secondary battery separator can be provided.

耐ショート性測定装置Short resistance measuring device

以下、本発明の実施の形態について、詳細に説明する。本発明は、無機多孔質材料を骨格としてその上に耐熱性樹脂材料を被覆した有機無機多孔質フィルムである。無機多孔質材料としては、ガラス繊維および/またはセラミックス繊維からなる多孔質材料が好ましく、特にガラス繊維が好ましい。さらに、織布または不織布の形態を有するものであれば取扱いが容易であるためさらに好ましい。   Hereinafter, embodiments of the present invention will be described in detail. The present invention is an organic-inorganic porous film in which an inorganic porous material is used as a skeleton and a heat-resistant resin material is coated thereon. As the inorganic porous material, a porous material made of glass fiber and / or ceramic fiber is preferable, and glass fiber is particularly preferable. Furthermore, since it is easy to handle if it has the form of a woven fabric or a nonwoven fabric, it is more preferable.

本発明における耐熱性樹脂としては、全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリスルホンおよびポリエーテルスルホンなどが挙げられる。なかでも電気化学的に安定であるポリアミド、ポリアミド酸、ポリイミドであることが好ましい。   Examples of the heat resistant resin in the present invention include wholly aromatic polyamide, polyimide, polyamideimide, polysulfone, and polyethersulfone. Among these, polyamide, polyamic acid, and polyimide that are electrochemically stable are preferable.

本発明におけるガラス繊維の組成は特に限定されず、一般的にガラス繊維用組成として知られるCガラス組成およびEガラス組成が利用できる。表1にその組成例を示す。   The composition of the glass fiber in this invention is not specifically limited, The C glass composition and E glass composition which are generally known as a composition for glass fibers can be utilized. Table 1 shows an example of the composition.

Figure 2010251078
Figure 2010251078

本発明の有機無機複合多孔質フィルムに用いられるガラス繊維の使用量は、目付量として2〜50g/mであることが好ましく、3〜25g/mであることがより好ましい。ガラス繊維の目付量が2g/m以下であると、セパレータの骨格材料としたときの強度が小さくなり、一方50g/mを超えると、セパレータの厚みが大きくなって不都合なためである。ここで、目付量とは単位面積当たりの質量をいう。 The amount of the glass fiber used in the organic-inorganic composite porous film of the present invention is preferably 2 to 50 g / m 2 , more preferably 3 to 25 g / m 2 as a basis weight. When the basis weight of the glass fiber is 2 g / m 2 or less, the strength when used as a skeleton material of the separator is reduced. On the other hand, when it exceeds 50 g / m 2 , the thickness of the separator is increased, which is inconvenient. Here, the basis weight is the mass per unit area.

また、被覆する耐熱性樹脂の量は、ガラス繊維の量に対して、10〜500質量%の比率であることが好ましい。この比率が10質量%以下であるとセパレータの空隙が大きくなり、貫通強度が低くなって短絡等の問題が生じる。一方300%以上であると、空隙率が低くなりイオン伝導率が低下する。より好ましい耐熱性樹脂の被覆量は、ガラス繊維質量に対して10〜300質量%であり、さらに好ましくは50〜200質量%である。   Moreover, it is preferable that the quantity of the heat resistant resin to coat | cover is a ratio of 10-500 mass% with respect to the quantity of glass fiber. When this ratio is 10% by mass or less, the gap of the separator becomes large, the penetrating strength is lowered, and problems such as a short circuit occur. On the other hand, when it is 300% or more, the porosity is lowered and the ionic conductivity is lowered. A more preferable coating amount of the heat resistant resin is 10 to 300% by mass, more preferably 50 to 200% by mass with respect to the glass fiber mass.

有機無機多孔質フィルムの空隙率は45〜95体積%であることが好ましい。空隙率が95体積%を超えると、貫通強度が低くなり短絡等の問題が生じやすくなる。一方、空隙率が40体積%未満であるとイオン伝導率が低下する。より好ましい空隙率は65〜95体積%であり、さらに好ましい空隙率は75〜90体積%である。なお、空隙率Vの値は、不織布等の無機多孔質材料を20kPaで加圧してその厚みtをダイヤルゲージで測定し、無機多孔質材料の単位面積当たりの質量W、ガラス等の繊維の密度ρG(ガラス繊維の場合は、約2.5×10kg/m(=2.5g/cm))およびポリイミド等の耐熱樹脂材料の真密度ρI(空隙を含まない、物質自身が占める体積だけを密度算定用の体積とする密度)、耐熱性樹脂の固形分の質量比率cIの値から、次式により求めることができる。 The porosity of the organic / inorganic porous film is preferably 45 to 95% by volume. When the porosity exceeds 95% by volume, the penetrating strength is lowered and problems such as short circuit are likely to occur. On the other hand, if the porosity is less than 40% by volume, the ionic conductivity decreases. A more preferable porosity is 65 to 95% by volume, and a more preferable porosity is 75 to 90% by volume. The value of the porosity V is determined by pressing an inorganic porous material such as a nonwoven fabric at 20 kPa and measuring the thickness t with a dial gauge, the mass W per unit area of the inorganic porous material, and the density of fibers such as glass. ρG (in the case of glass fiber, about 2.5 × 10 3 kg / m 3 (= 2.5 g / cm 3 )) and true density ρI of a heat-resistant resin material such as polyimide (not including voids, occupied by the substance itself) From the value of the mass ratio cI of the solid content of the heat resistant resin, it can be obtained by the following formula.

[数1]
V(%)=[1−W/t×{(1−cI)/ρG+cI/ρI}]×100
[Equation 1]
V (%) = [1-W / t × {(1-cI) / ρG + cI / ρI}] × 100

さらに、本発明における耐熱性樹脂とガラス繊維の接着性を良くするために、適切な表面処理が施されるとよい。具体的には、シランカップリング剤処理が有効である。シランカップリング剤の一例としては、たとえば、アミノシラン、メタクリルシラン、エポキシシランが挙げられる。   Furthermore, in order to improve the adhesiveness between the heat resistant resin and the glass fiber in the present invention, an appropriate surface treatment may be performed. Specifically, silane coupling agent treatment is effective. Examples of the silane coupling agent include amino silane, methacryl silane, and epoxy silane.

なお、シランカップリング剤の付着量は、ガラス繊維表面積に対して、0.5〜200mg/mであることが好ましい。付着量が0.5mg/m未満であれば、シランカップリング剤がガラス繊維表面を充分覆うことができず、ガラス繊維と耐熱性樹脂との接着力向上効果が低くなる。また、付着量が200mg/mを超えれば、ガラス繊維と耐熱性樹脂の間にシランのみからなる低強度の層が形成され、その層内での破壊が起きやすくなり、見かけ上ガラス繊維と耐熱性樹脂との接着力向上効果が低くなる。 In addition, it is preferable that the adhesion amount of a silane coupling agent is 0.5-200 mg / m < 2 > with respect to a glass fiber surface area. If the adhesion amount is less than 0.5 mg / m 2 , the silane coupling agent cannot sufficiently cover the glass fiber surface, and the effect of improving the adhesion between the glass fiber and the heat-resistant resin is lowered. Further, if the adhesion amount exceeds 200 mg / m 2 , a low-strength layer consisting only of silane is formed between the glass fiber and the heat-resistant resin, and breakage within the layer is likely to occur. The effect of improving the adhesive strength with the heat resistant resin is reduced.

また、ガラス繊維にシリカ等の被膜を形成するなどの表面処理を施してもよい。この表面処理の方法は、ガラス繊維の耐熱性を損なわないものであれば、特に限定されるものではない。   Moreover, you may perform surface treatments, such as forming a film, such as a silica, in glass fiber. The surface treatment method is not particularly limited as long as the heat resistance of the glass fiber is not impaired.

リチウムイオン電池のセパレータとして求められる機能を確保するためには、セパレータの厚さは100μm以下であることが好ましく、より好ましくは20μm以下である。このような厚みにするためには、使用されるガラス繊維の平均直径は、0.1〜10μmであることが好ましい。平均直径が、0.1μm未満では、製造コストが極端に高くなり現実的でなく、一方、10μmを超えると、100μm以下の厚みで均一な不織布の形成が難しくなる。   In order to ensure the functions required as a separator of a lithium ion battery, the thickness of the separator is preferably 100 μm or less, more preferably 20 μm or less. In order to obtain such a thickness, the average diameter of the glass fibers used is preferably 0.1 to 10 μm. If the average diameter is less than 0.1 μm, the manufacturing cost becomes extremely high and it is not practical. On the other hand, if it exceeds 10 μm, it is difficult to form a uniform nonwoven fabric with a thickness of 100 μm or less.

さらに、ガラス繊維不織布を構成するガラス繊維の平均繊維長が0.1〜20mmの範囲にあることが好ましい。ガラス繊維の平均繊維長が0.1mm未満では、セパレータに必要な高温時または燃焼時の電極隔離が難しくなり、また不織布とした場合、その機械的強度が著しく低下し高温時または燃焼時の電極隔離が難しくなるためである。一方ガラス繊維の平均繊維長が20mm以上であると耐熱性樹脂との混合が難しくなり、不織布とした場合も分散が難しくなり均一な不織布を形成することができなくなる。   Furthermore, it is preferable that the average fiber length of the glass fiber which comprises a glass fiber nonwoven fabric exists in the range of 0.1-20 mm. When the average fiber length of the glass fiber is less than 0.1 mm, it becomes difficult to isolate the electrode at the high temperature or burning required for the separator, and when it is made of a non-woven fabric, its mechanical strength is remarkably lowered, and the electrode at the high temperature or burning. This is because isolation becomes difficult. On the other hand, when the average fiber length of the glass fibers is 20 mm or more, mixing with the heat-resistant resin becomes difficult, and even when a nonwoven fabric is used, it becomes difficult to disperse and a uniform nonwoven fabric cannot be formed.

本発明の有機無機複合多孔質フィルムは、公知の手段を用いて、非水電解質二次電池やキャパシタのセパレータとして使用することができる。また、本発明の非水電解質二次電池やキャパシタは、セパレータを用いる電池やキャパシタであればどのような構成でもよい。   The organic-inorganic composite porous film of the present invention can be used as a separator for non-aqueous electrolyte secondary batteries and capacitors using known means. The nonaqueous electrolyte secondary battery and capacitor of the present invention may have any configuration as long as it is a battery or capacitor using a separator.

以下、実施例および比較例により、本発明をさらに具体的に説明する。なお、本発明の要旨を越えない限り、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, unless it exceeds the gist of the present invention, it is not limited to the following examples.

表2に示すCガラスの組成を有し、平均直径0.7μmで平均長さ約3mmのガラス短繊維を、繊維を解きほぐすためのパルパーに投入し、硫酸を添加してpH2.5に調製した水溶液中で充分に解離、分散させ、抄紙用のスラリー(ガラス繊維分散液)を作製した。このスラリーを原料として、湿式抄紙装置を用いて、ガラス繊維不織布を得た。得られたガラス繊維不織布は、厚みが20μmであり、目付量は5g/mであった。 Glass short fibers having the composition of C glass shown in Table 2 and having an average diameter of 0.7 μm and an average length of about 3 mm were introduced into a pulper for unraveling the fibers, and sulfuric acid was added to adjust the pH to 2.5. It was sufficiently dissociated and dispersed in an aqueous solution to prepare a papermaking slurry (glass fiber dispersion). Using this slurry as a raw material, a glass fiber nonwoven fabric was obtained using a wet papermaking machine. The obtained glass fiber nonwoven fabric had a thickness of 20 μm and a basis weight of 5 g / m 2 .

Figure 2010251078
Figure 2010251078

新日本理化株式会社製ポリイミド樹脂ワニス「リカコート PN−20」(固形分20wt%)を2.5重量%、脱水したN−メチル−2−ピロリドンを97重量%、ポリエチレングリコールを0.5重量%となるように量り取り、60℃でポリイミド樹脂ワニスをN−メチル−2−ピロリドンに溶解させた後、ポリエチレングリコール加え、均一に完全相溶した耐熱樹脂溶液を得た。   2.5% by weight of polyimide resin varnish “Rika Coat PN-20” (solid content: 20% by weight) manufactured by Shin Nippon Rika Co., Ltd., 97% by weight of dehydrated N-methyl-2-pyrrolidone, and 0.5% by weight of polyethylene glycol After the polyimide resin varnish was dissolved in N-methyl-2-pyrrolidone at 60 ° C., polyethylene glycol was added to obtain a heat-resistant resin solution that was completely and completely compatible.

前記ガラス繊維不織布を10cm×10cmの寸法に切り出し、PET(ポリエチレンテレフタレート)フィルム上に乗せ、その上から前記耐熱樹脂溶液10gを均一になるよう含浸させた。耐熱樹脂溶液を含浸したガラス不織布は調湿空気中(相対湿度75%RH、温度30℃)で10分間処理した後、PETフィルムから剥離し、続いて60℃の水浴にて2分間、溶媒や不純物の抽出を行い、さらに280℃にて2分間の熱処理を行った。得られた耐熱樹脂を含浸したガラス繊維不織布、すなわち有機無機複合多孔質フィルムの厚みは約20μm、空隙率は約85体積%であった。   The glass fiber nonwoven fabric was cut into a size of 10 cm × 10 cm, placed on a PET (polyethylene terephthalate) film, and impregnated with 10 g of the heat resistant resin solution from above. The glass nonwoven fabric impregnated with the heat-resistant resin solution is treated for 10 minutes in humidity-conditioned air (relative humidity 75% RH, temperature 30 ° C.), then peeled off from the PET film, and then in a 60 ° C. water bath for 2 minutes. Impurities were extracted and heat treatment was further performed at 280 ° C. for 2 minutes. The obtained glass fiber nonwoven fabric impregnated with the heat resistant resin, that is, the organic-inorganic composite porous film, had a thickness of about 20 μm and a porosity of about 85% by volume.

実施例1で使用した平均直径0.7μm、平均長さ約3mmのガラス短繊維を0.5g準備した。実施例1と同様に、新日本理化株式会社製ポリイミド樹脂ワニス「リカコート PN−20」(固形分20wt%)を10重量%、脱水したN−メチル−2−ピロリドンを88重量%、ポリエチレングリコールを2重量%となるように量り取り、60℃でポリイミド樹脂ワニスをN−メチル−2−ピロリドンに溶解させた後、ポリエチレングリコールを加え、均一に完全相溶した耐熱樹脂溶液を得た。この耐熱樹脂溶液25gに準備したガラス短繊維0.5gを加え、均一になるよう良く撹拌し、PET(ポリエチレンテレフタレート)フィルム上に厚み約200μmの膜状に流延し、調湿空気中(相対湿度75%RH、温度30℃)で10分間処理した。その後PETフィルムから剥離し、続いて60℃の水浴にて2分間、溶媒や不純物の抽出を行い、さらに280℃にて2分間の熱処理を行った。得られた耐熱樹脂を含浸したガラス繊維不織布、すなわち有機無機複合多孔質フィルムの厚みは約20μm、空隙率は約85体積%であった。   0.5 g of short glass fibers having an average diameter of 0.7 μm and an average length of about 3 mm used in Example 1 were prepared. As in Example 1, 10% by weight of polyimide resin varnish “Rika Coat PN-20” (solid content: 20 wt%) manufactured by Shin Nippon Chemical Co., Ltd., 88% by weight of dehydrated N-methyl-2-pyrrolidone, and polyethylene glycol After weighing out to 2% by weight and dissolving the polyimide resin varnish in N-methyl-2-pyrrolidone at 60 ° C., polyethylene glycol was added to obtain a heat-resistant resin solution that was completely and completely compatible. Add 0.5 g of the short glass fiber prepared to 25 g of this heat-resistant resin solution, stir well to make it uniform, cast it into a film with a thickness of about 200 μm on a PET (polyethylene terephthalate) film, (Humidity 75% RH, temperature 30 ° C.) for 10 minutes. Thereafter, the film was peeled off from the PET film, followed by extraction of solvent and impurities in a 60 ° C. water bath for 2 minutes, and further heat treatment at 280 ° C. for 2 minutes. The obtained glass fiber nonwoven fabric impregnated with the heat resistant resin, that is, the organic-inorganic composite porous film, had a thickness of about 20 μm and a porosity of about 85% by volume.

(比較例1)
実施例2で使用した新日本理化株式会社製ポリイミド樹脂ワニス「リカコート PN−20」(固形分20wt%)10重量%、N−メチル−2−ピロリドン88重量%、ポリエチレングリコール2重量%の完全相溶した耐熱樹脂溶液をPET(ポリエチレンテレフタレート)フィルム上に厚み約400μmの膜状に流延し、調湿空気中(相対湿度75%RH、温度30℃)で10分間処理した。その後PETフィルムから剥離し、続いて60℃の水浴にて2分間、溶媒や不純物の抽出を行い、さらに280℃にて2分間の熱処理を行った。得られた耐熱樹脂多孔質フィルムの厚みは約20μm、空隙率は約50体積%であった。
(Comparative Example 1)
Complete phase of polyimide resin varnish “Rika Coat PN-20” (solid content 20 wt%) 10% by weight, N-methyl-2-pyrrolidone 88% by weight, polyethylene glycol 2% by weight manufactured by Shin Nippon Rika Co., Ltd. used in Example 2 The dissolved heat-resistant resin solution was cast into a film having a thickness of about 400 μm on a PET (polyethylene terephthalate) film and treated for 10 minutes in humidity-conditioned air (relative humidity 75% RH, temperature 30 ° C.). Thereafter, the film was peeled off from the PET film, followed by extraction of solvent and impurities in a 60 ° C. water bath for 2 minutes, and further heat treatment at 280 ° C. for 2 minutes. The resulting heat resistant resin porous film had a thickness of about 20 μm and a porosity of about 50% by volume.

(比較例2)
無機微粒子として平均粒子径0.8μmのα−アルミナ(岩谷化学工業社製;SA−1)を準備した。また実施例2で使用した新日本理化株式会社製ポリイミド樹脂ワニス「リカコート PN−20」(固形分20wt%)10重量%、N−メチル−2−ピロリドン88重量%、ポリエチレングリコール2重量%の完全相溶した耐熱樹脂溶液を準備した。この耐熱樹脂溶液25gに前記無機微粒子0.5gを加え、均一になるよう良く撹拌し、PET(ポリエチレンテレフタレート)フィルム上に厚み約400μmの膜状に流延し、調湿空気中(相対湿度75%RH、温度30℃)で10分間処理した。その後PETフィルムから剥離し、続いて60℃の水浴にて2分間、溶媒や不純物の抽出を行い、さらに280℃にて2分間の熱処理を行った。得られたシリカ粒子複合化多孔質樹脂多孔質フィルムの厚みは約20μm、空隙率は約45体積%であった。
(Comparative Example 2)
Α-alumina (Iwatani Chemical Industries, Ltd .; SA-1) having an average particle diameter of 0.8 μm was prepared as inorganic fine particles. In addition, the polyimide resin varnish “Rika Coat PN-20” (solid content 20 wt%) manufactured by Shin Nippon Rika Co., Ltd. used in Example 2 was 10% by weight, N-methyl-2-pyrrolidone 88% by weight, and polyethylene glycol 2% by weight. A compatible heat-resistant resin solution was prepared. Add 0.5 g of the inorganic fine particles to 25 g of this heat-resistant resin solution, stir well to make it uniform, cast it into a film having a thickness of about 400 μm on a PET (polyethylene terephthalate) film, and in humidity-conditioned air (relative humidity 75 % RH, temperature 30 ° C.) for 10 minutes. Thereafter, the film was peeled off from the PET film, followed by extraction of solvent and impurities in a 60 ° C. water bath for 2 minutes, and further heat treatment at 280 ° C. for 2 minutes. The resulting silica particle composite porous resin porous film had a thickness of about 20 μm and a porosity of about 45% by volume.

実施例1〜2および比較例1〜2で作製したフィルム試料について、下記の試験を行った。試験の結果を表3に示す。     The following test was done about the film sample produced in Examples 1-2 and Comparative Examples 1-2. The results of the test are shown in Table 3.

(引張強度測定)
各フィルム試料を、幅20mm×長さ80mmに切断して試験片を作製し、チャック間隔30mmで、10mm/分の速度で引っ張って、破断時の荷重(N)を測定した。これを試料の厚みと幅の実測値から計算される断面積で除算して、引張強度(MPa)を算出した。フィルム試料の厚みはマイクロメータを用いて測定した。
(Tensile strength measurement)
Each film sample was cut into a width of 20 mm and a length of 80 mm to prepare a test piece, and pulled at a rate of 10 mm / min with a chuck interval of 30 mm, and a load (N) at break was measured. The tensile strength (MPa) was calculated by dividing this by the cross-sectional area calculated from the measured values of the thickness and width of the sample. The thickness of the film sample was measured using a micrometer.

(耐ショート性測定)
耐ショート性の測定に用いた装置の概略図を図1に示す。フィルム試料1を上下から直径50mmのステンレス円柱2で挟み込み、さらにバネ3を用いて0.14kg/cmの加重がかかるようにした。ここで、上下のステンレス円柱2は耐熱絶縁板4で電気的に絶縁されている。また上部のステンレス円柱2の下端は加圧時にセパレータを排斥できるよう曲率を有する形状とした。上下のステンレス円柱の間に3.0Vの電圧を印加した状態でプログラム型高温槽に入れ、室温から400℃まで10時間で昇温した。フィルム試料が溶解または燃焼するような高温に達すると、上下のステンレス円柱間に荷重がかかっているため、フィルム試料を構成する耐熱樹脂材料が流動または排斥されて両極が短絡する。短絡したか否かは抵抗測定器5の示す値から判断し、表3に示すように短絡が発生した温度をショート温度として耐ショート性の指標とした。
(Short resistance measurement)
A schematic diagram of the apparatus used for measuring the short-circuit resistance is shown in FIG. The film sample 1 was sandwiched from above and below by a stainless steel cylinder 2 having a diameter of 50 mm, and a load of 0.14 kg / cm 2 was applied using a spring 3. Here, the upper and lower stainless steel cylinders 2 are electrically insulated by a heat-resistant insulating plate 4. Further, the lower end of the upper stainless steel cylinder 2 has a curvature so that the separator can be removed when pressurized. In a state where a voltage of 3.0 V was applied between the upper and lower stainless steel cylinders, it was placed in a programmed high temperature bath and heated from room temperature to 400 ° C. over 10 hours. When the film sample reaches a high temperature at which it melts or burns, a load is applied between the upper and lower stainless steel cylinders, so that the heat-resistant resin material constituting the film sample flows or is discharged, and both electrodes are short-circuited. Whether or not a short circuit occurred was judged from the value indicated by the resistance measuring instrument 5, and as shown in Table 3, the temperature at which the short circuit occurred was defined as a short circuit temperature and used as a short circuit resistance index.

Figure 2010251078
Figure 2010251078

上記の実施例および比較例の結果から明らかなように、本発明の実施例1〜2の試料は比較例1〜2の試料と比較して強度は同等であるがショート温度が向上していることが分かる。特に、比較例2の試料は無機微粒子を含有しているにも関わらずそうでない比較例1と同等のショート温度を示し、すなわち樹脂の熱変形温度付近で無機微粒子が移動してセパレータが排斥されてショートが起きており、本発明の有機無機複合多孔質フィルムの耐ショート性が優れることがわかる。   As is clear from the results of the above examples and comparative examples, the samples of Examples 1 and 2 of the present invention have the same strength but the short-circuit temperature is improved as compared with the samples of Comparative Examples 1 and 2. I understand that. In particular, although the sample of Comparative Example 2 contains inorganic fine particles, it exhibits a short temperature equivalent to that of Comparative Example 1 that is not so, that is, the inorganic fine particles move near the heat deformation temperature of the resin and the separator is rejected. Thus, it can be seen that the short-circuit occurred, and the organic-inorganic composite porous film of the present invention has excellent short-circuit resistance.

1 フィルム試料
2 ステンレス円柱
3 バネ
4 耐熱絶縁板
5 抵抗測定器
DESCRIPTION OF SYMBOLS 1 Film sample 2 Stainless steel cylinder 3 Spring 4 Heat-resistant insulating board 5 Resistance measuring device

Claims (11)

無機多孔質材料に耐熱性樹脂材料を被覆してなる有機無機複合多孔質フィルム。   An organic-inorganic composite porous film obtained by coating an inorganic porous material with a heat-resistant resin material. 前記無機多孔質材料が、ガラス繊維、セラミックス繊維またはそれらの混合物で構成されていることを特徴とする請求項1に記載の有機無機複合多孔質フィルム。   The organic-inorganic composite porous film according to claim 1, wherein the inorganic porous material is composed of glass fiber, ceramic fiber, or a mixture thereof. 前記無機多孔質材料がガラス繊維からなることを特徴とする、請求項2に記載の有機無機複合多孔質フィルム。   The organic-inorganic composite porous film according to claim 2, wherein the inorganic porous material is made of glass fiber. 前記無機多孔質材料がガラス繊維からなる不織布であることを特徴とする、請求項2に記載の有機無機複合多孔質フィルム。   The organic-inorganic composite porous film according to claim 2, wherein the inorganic porous material is a nonwoven fabric made of glass fiber. 前記無機多孔質材料がガラス繊維からなる織布であることを特徴とする、請求項2に記載の有機無機複合多孔質フィルム。   The organic-inorganic composite porous film according to claim 2, wherein the inorganic porous material is a woven fabric made of glass fiber. 前記耐熱性樹脂がポリアミド、ポリアミド酸、ポリイミドのいずれかを含有することを特徴とする、請求項1ないし5に記載の有機無機複合多孔質フィルム。   6. The organic-inorganic composite porous film according to claim 1, wherein the heat-resistant resin contains any one of polyamide, polyamic acid, and polyimide. 前記耐熱性樹脂が、前記無機多孔質材料に対して、10〜500質量%の比率で被覆されていることを特徴とする、請求項1ないし6に記載の有機無機複合多孔質フィルム。   The organic-inorganic composite porous film according to claim 1, wherein the heat-resistant resin is coated at a ratio of 10 to 500 mass% with respect to the inorganic porous material. 前記ガラス繊維がシランカップリング剤で表面処理されていることを特徴とする、請求項2ないし7に記載の有機無機複合多孔質フィルム。   The organic-inorganic composite porous film according to claim 2, wherein the glass fiber is surface-treated with a silane coupling agent. 請求項1〜8のいずれかに記載の有機無機複合多孔質フィルムからなるセパレータ。   The separator which consists of an organic inorganic composite porous film in any one of Claims 1-8. 請求項9記載のセパレータを有する電池。   A battery comprising the separator according to claim 9. 請求項9記載のセパレータを有するキャパシタ。   A capacitor comprising the separator according to claim 9.
JP2009098508A 2009-04-15 2009-04-15 Organic/inorganic composite porus film and nonaqueous electrolyte secondary battery separator using the same Pending JP2010251078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098508A JP2010251078A (en) 2009-04-15 2009-04-15 Organic/inorganic composite porus film and nonaqueous electrolyte secondary battery separator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098508A JP2010251078A (en) 2009-04-15 2009-04-15 Organic/inorganic composite porus film and nonaqueous electrolyte secondary battery separator using the same

Publications (1)

Publication Number Publication Date
JP2010251078A true JP2010251078A (en) 2010-11-04

Family

ID=43313191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098508A Pending JP2010251078A (en) 2009-04-15 2009-04-15 Organic/inorganic composite porus film and nonaqueous electrolyte secondary battery separator using the same

Country Status (1)

Country Link
JP (1) JP2010251078A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507053A (en) * 2011-02-24 2014-03-20 ショット アクチエンゲゼルシャフト Rechargeable lithium-ion battery containing glass-based material for target elution of getter substances
JP2015502627A (en) * 2011-09-29 2015-01-22 ショット アクチエンゲゼルシャフトSchott AG Rechargeable lithium ion batteries and the use of glass-based materials in rechargeable lithium ion batteries
JP2015072951A (en) * 2013-10-01 2015-04-16 日本板硝子株式会社 Separator for electric double-layer capacitor and electric double-layer capacitor
JP2016213210A (en) * 2016-09-23 2016-12-15 日本電気株式会社 Battery separator, manufacturing method of the same, and lithium ion secondary battery
JP2016213205A (en) * 2011-07-13 2016-12-15 エルジー・ケム・リミテッド High-energy lithium secondary battery improved in energy density characteristic
JP2017027947A (en) * 2011-05-23 2017-02-02 エルジー ケム. エルティーディ. High output lithium secondary battery with enhanced output density characteristics
JP2021504916A (en) * 2018-02-09 2021-02-15 エルジー・ケム・リミテッド Solid polymer electrolyte and lithium secondary battery containing it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507053A (en) * 2011-02-24 2014-03-20 ショット アクチエンゲゼルシャフト Rechargeable lithium-ion battery containing glass-based material for target elution of getter substances
JP2017027947A (en) * 2011-05-23 2017-02-02 エルジー ケム. エルティーディ. High output lithium secondary battery with enhanced output density characteristics
JP2016213205A (en) * 2011-07-13 2016-12-15 エルジー・ケム・リミテッド High-energy lithium secondary battery improved in energy density characteristic
JP2015502627A (en) * 2011-09-29 2015-01-22 ショット アクチエンゲゼルシャフトSchott AG Rechargeable lithium ion batteries and the use of glass-based materials in rechargeable lithium ion batteries
JP2015072951A (en) * 2013-10-01 2015-04-16 日本板硝子株式会社 Separator for electric double-layer capacitor and electric double-layer capacitor
JP2016213210A (en) * 2016-09-23 2016-12-15 日本電気株式会社 Battery separator, manufacturing method of the same, and lithium ion secondary battery
JP2021504916A (en) * 2018-02-09 2021-02-15 エルジー・ケム・リミテッド Solid polymer electrolyte and lithium secondary battery containing it
JP7048839B2 (en) 2018-02-09 2022-04-06 エルジー エナジー ソリューション リミテッド Solid polyelectrolyte and lithium secondary battery containing it
US11710852B2 (en) 2018-02-09 2023-07-25 Lg Energy Solution, Ltd. Separator for secondary battery and lithium secondary battery including same

Similar Documents

Publication Publication Date Title
JP5778378B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery
JP4685974B2 (en) Non-aqueous secondary battery porous membrane, non-aqueous secondary battery separator, non-aqueous secondary battery adsorbent and non-aqueous secondary battery
TWI437749B (en) Non-aqueous battery separator, manufacturing method thereof, and nonaqueous battery
JP4653849B2 (en) Non-aqueous secondary battery separator
JP5717723B2 (en) Production and use of ceramic composites based on polymer carrier films
JP2010251078A (en) Organic/inorganic composite porus film and nonaqueous electrolyte secondary battery separator using the same
WO2006123811A1 (en) Separator for lithium ion secondary battery and lithium ion secondary battery
WO2019072144A1 (en) Separators, electrochemical devices comprising the separator, and methods for making the separator
JP2011108444A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2009205959A (en) Manufacturing method of nonaqueous electrolyte battery separator
WO2020235508A1 (en) Separator for non-aqueous secondary battery, method for producing same, and non-aqueous secondary battery
JP2011216318A (en) Separator for nonaqueous secondary battery
JP2011210435A (en) Separator for nonaqueous secondary battery
JP2009205956A (en) Nonaqueous electrolyte battery separator, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the separator
JP2013196839A (en) Nonaqueous secondary battery separator
JP2010067359A (en) Separator of nonaqueous electrolyte battery and nonaqueous electrolyte secondary battery using the same
JP2011086407A (en) Separator for nonaqueous secondary battery
JP2014063703A (en) Separator
KR102414898B1 (en) Porous composite separator and electrochemical device including the same
CN116826312B (en) High-adhesion heat-resistant diaphragm and preparation method and application thereof
JP2011258463A (en) Separator for nonaqueous electric/electronic component
KR101469050B1 (en) Battery Separator with Excellent Shut-down Function and Heat Resistance and Secondary Cell Battery
KR20130073194A (en) Menufacturing method of meta-aramid based porous membrane for secondary battery and porous membrane thereby
JP7041426B2 (en) Separator for non-water-based secondary battery and non-water-based secondary battery
JP2002100338A (en) Separator for nonaqueous electrolytic solution battery and its manufacturing method