JP2010249790A - Laser-type water gauge - Google Patents

Laser-type water gauge Download PDF

Info

Publication number
JP2010249790A
JP2010249790A JP2009119240A JP2009119240A JP2010249790A JP 2010249790 A JP2010249790 A JP 2010249790A JP 2009119240 A JP2009119240 A JP 2009119240A JP 2009119240 A JP2009119240 A JP 2009119240A JP 2010249790 A JP2010249790 A JP 2010249790A
Authority
JP
Japan
Prior art keywords
laser
float
wave
water level
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009119240A
Other languages
Japanese (ja)
Inventor
Satoru Kitazawa
哲 北澤
So Hanefuji
創 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009119240A priority Critical patent/JP2010249790A/en
Publication of JP2010249790A publication Critical patent/JP2010249790A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser-type water gauge, capable of measuring a dam water level having a measuring span of several tens of meters or longer, or a water level of a deep well with high accuracy in a non-contact system. <P>SOLUTION: In the laser-type water gauge, laser light is projected to a float floating on the water surface in a wave dissipating tube, and a laser by reflection is measured by a laser range finder. The laser-type water gauge can be utilized also for water level measurement in the wave dissipating tube installed on an oblique retaining wall or for water level measurement of a water passage having a small measurement span. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

産業上の利用分野Industrial application fields

本発明は測定水面にセンサー部を接触させないで、センサー部と水面間の障害物の影響をうけることなく水面の高さを高精度で測定するレーザー式水位計を提供するものである。直進性の良いレーザー光を利用するために、ダム貯水池等の深い水位までの測定が高精度で可能である。水位計取付上の制約が小さく、ため池などの斜め擁壁にも取付可能である。The present invention provides a laser-type water level meter that measures the height of a water surface with high accuracy without bringing the sensor portion into contact with the measurement water surface and without being affected by an obstacle between the sensor portion and the water surface. Measurements up to deep water levels in dam reservoirs, etc. are possible with high accuracy in order to use laser light with good straightness. There are few restrictions on the installation of the water level gauge, and it can be installed on slant retaining walls such as ponds.

レーザーを用いた距離計またはレーザー測長システムとして、下記の方法等が実用化されている。
(1)光レーダーレーザーレベル計
この方法には光パルス法と位相差検出法がある。
光パルス法は狭いパルス状のレーザー光を測定対象物に投射して、発射時と反射波到達 時の時間を測定することによって測定対象物までの距離を求めるものである。この方法 はTOF(Time of Flight)法とも呼ばれている。
位相差検出法は周波数変調したレーザー光の送受信波の位相差が伝搬時間に比例するこ とを利用して距離を測定する。
送信器から変調周波数により振幅変調したレーザー光を発射して、測定対象物から乱反 射して戻ってきた波と送信波の位相差を測定する。
(2)三角測量レーザーレベル計
三角測量の原理を応用したもので、測定対象物に送信波を垂直に照射して測定対象物ま での距離によって、乱反射して戻ってくる受信波の角度が変化することを利用したもの である。受信波の角度はラインセンサー型のCCDなどで検出する。
これら(1)光レーダーレーザーレベル計、(2)三角測量レーザーレベル計は、測定 対象物が水面のためレーザーが反射しないなどの理由で河川、ダム、貯水地などの水位 計としてほとんど応用されていない。
本発明では、これら既知のレーザー距離計、レーザー測長システムを消波管、フロート および磁力を用いたフロート引上げ装置と組合せてレーザー式水位計を構成するもので ある。
As a distance meter using a laser or a laser length measurement system, the following methods and the like have been put into practical use.
(1) Optical radar laser level meter This method includes an optical pulse method and a phase difference detection method.
In the optical pulse method, a narrow pulsed laser beam is projected onto a measurement object, and the distance to the measurement object is obtained by measuring the time when it is launched and when the reflected wave arrives. This method is also called a TOF (Time of Flight) method.
The phase difference detection method measures the distance using the fact that the phase difference between the transmission and reception waves of the frequency-modulated laser light is proportional to the propagation time.
A laser beam amplitude-modulated by the modulation frequency is emitted from the transmitter, and the phase difference between the wave returned from the object to be measured and the transmitted wave is measured.
(2) Triangulation laser level meter This is an application of the principle of triangulation, and the angle of the received wave that is diffusely reflected and returned depends on the distance to the measurement object by irradiating the measurement object vertically with the transmission wave. It uses change. The angle of the received wave is detected by a line sensor type CCD or the like.
These (1) optical radar laser level meters and (2) triangulation laser level meters are mostly applied as water level meters for rivers, dams, reservoirs, etc. because the measurement object is water and the laser does not reflect. Absent.
In the present invention, these known laser distance meters and laser length measuring systems are combined with a wave lifting tube, a float and a float pulling device using a magnetic force to constitute a laser water level meter.

従来、河川、ダム、貯水地などの水位計には、機械的な方法としてフロート式が使用されている。この方式は水面の上昇下降にしたがつて上下するフロートに取付けたワイヤを巻き込むリールの回転角度から水位を換算するもので水位計測精度として±1cm程度が得られるが、土木構造物として大きな測水筒を必要とする。このために最近ではダム、大河川などの他はあまり使用されていない。
測定水面に接触して測定する接触式水位計として水圧式水位計が多く使用されている。
この方式は水深に比例した水圧を感圧素子で測定するもので、大気圧と比較して測定するために大気開放チューブを必要とし、このチューブから感圧部に湿気が入ったり、感圧部が河川等の土砂に埋もれると測定誤差の原因となる。このため、経年的な安定性が課題となっている。
非接触水位計としては超音波式水位計と電波式水位計が用いられている。
これらは、水面にセンサー部が接触しないために、経年的に安定な測定ができる。
しかし、超音波式、電波式ともセンサーからの距離によって、放射角度が広がり、放射角度内に超音波または電波を遮蔽する障害物が存在すれば使用できない等の理由により、実用的に測定できる水位は20m程度である。
なお、電波式は超音波式に比較して測定精度が良く、測定スパンに関係なく±1cmの精度が得られる。
本発明のレーザー式水位計はフロート式のように規模の大きい測水筒を必要とせず、水圧式水位計のように経年的な測定精度劣化の問題がなく、超音波式または電波式のように測定水深の制限がない水位計である。
また、測定精度はレーザーを用いた距離計またはレーザー測長システムと同等とすることが期待できる。
Conventionally, a float method is used as a mechanical method for water level gauges such as rivers, dams, and reservoirs. This method converts the water level from the rotation angle of the reel that winds up the wire attached to the float that rises and falls as the water level rises and falls. It can obtain a water level measurement accuracy of about ± 1 cm, but it is a large water measuring tube as a civil engineering structure. Need. For this reason, dams, large rivers, etc. have not been used much recently.
A water pressure type water level gauge is often used as a contact type water level gauge for measuring in contact with the measurement water surface.
This method measures the water pressure proportional to the water depth with a pressure-sensitive element, and requires an air release tube to measure compared to atmospheric pressure, and moisture enters the pressure-sensitive part from this tube, or the pressure-sensitive part. If it is buried in sediments such as rivers, it will cause measurement errors. For this reason, stability over time has become an issue.
As the non-contact water level gauge, an ultrasonic water level gauge and a radio wave level gauge are used.
Since the sensor part does not contact the water surface, these can be measured stably over time.
However, the water level that can be measured practically for both ultrasonic and radio wave types due to the fact that the radiation angle increases depending on the distance from the sensor, and there is an obstacle that shields the ultrasonic wave or radio wave within the radiation angle. Is about 20 m.
The radio wave type has better measurement accuracy than the ultrasonic type, and an accuracy of ± 1 cm can be obtained regardless of the measurement span.
The laser-type water level meter of the present invention does not require a large-scale water measuring tube like the float type, and there is no problem of deterioration of measurement accuracy over time like the water-pressure type water level meter, like the ultrasonic type or the radio wave type. This is a water level gauge with no limit on the measurement water depth.
In addition, the measurement accuracy can be expected to be equivalent to a distance meter using a laser or a laser length measurement system.

測定水面下に内部が空胴の消波管を設置する。レーザー距離計を消波管の上部に設置し、消波管の中にレーザー距離計より送波レーザー光を送出する。
消波管内部の水面にフロートを浮力で浮かべておく、フロートは水面の上下によって水面と同じ距離を上下する。送波レーザー光はフロートにあたり、その反射をレーザー距離計で受信してフロートまで距離を求める。
フロート上端と水面との距離はフロートの浮力によって、常に一定に保たれているため、フロート上端と水面との距離をレーザー距離計で測定した距離に加えることにより、レーザー距離計と水面の距離を正確に求めることができる。
消波管は水面の波浪によりフロートの上下を押さえる機能とレーザー距離計とフロート間に障害物が入り込まないようにする機能を有するものとする。
また、消波管には水の浸入、排出および砂塵の排出用の複数の小孔またはメッシュ状の孔を設けるものとする。
フロートは部分的に磁性体によって構成し、保護管上部から保護管内にワイヤ付き磁石を垂らしてフロートを吸引して外部に引きあげて保守できるものとする。
A wave-dissipating tube with a cavity inside is installed under the surface of the measurement water. A laser distance meter is installed at the top of the quenching tube, and the laser beam is transmitted from the laser rangefinder into the quenching tube.
Float floats on the water surface inside the wave-dissipating tube. The float moves up and down by the same distance as the water surface. The transmitted laser beam floats, and the reflection is received by a laser rangefinder to determine the distance to the float.
The distance between the top of the float and the water surface is always kept constant by the buoyancy of the float, so the distance between the top of the float and the water surface is added to the distance measured by the laser rangefinder. It can be determined accurately.
The silencer tube has a function of holding the float up and down by waves on the water surface and a function of preventing an obstacle from entering between the laser distance meter and the float.
Also, the wave-dissipating tube is provided with a plurality of small holes or mesh-shaped holes for ingress and discharge of water and discharge of dust.
It is assumed that the float is partially made of a magnetic material, and can be maintained by attracting the float by pulling the float with the magnet with a wire from the upper portion of the protective tube into the protective tube.

ダム、河川、調整池において水位測定個所の擁壁が垂直でなく、傾斜のある擁壁の場合には消波管を垂直に対して斜めに設置する必要がある。この場合、消波管内フロートの上面が常に消波管中心軸に対して直角とし、消波管が垂直の場合と同様にレーザー光を反射するようにする必要がある。
本発明では、消波管の垂直から傾き角度に応じてフロートの内部の質量分布を調整することによりフロートの浮力により、常にフロート上面が消波管中心軸に対して直角になるようにしている。
In the case of dams, rivers, and regulating ponds, the retaining wall of the water level measurement location is not vertical, but if the retaining wall has an inclination, it is necessary to install a wave-dissipating tube obliquely with respect to the vertical. In this case, it is necessary that the upper surface of the float in the quenching tube is always perpendicular to the central axis of the quenching tube and that the laser beam is reflected as in the case where the quenching tube is vertical.
In the present invention, the mass distribution inside the float is adjusted according to the inclination angle from the vertical of the wave-dissipating tube so that the float upper surface is always perpendicular to the central axis of the wave-dissipating tube due to the buoyancy of the float. .

従来の水位計の課題を解決することにより得られる効果は以下による。
第1に、従来の機械式のフロート式水位計のように浮力とバランスしてワイヤを巻き込むリール機構などが不要のために、フロート式水位計設置のために必要な口径の大きい測水筒が不要である。
第2に、水圧式水位計のように感圧部を水中に沈めて使用する接触式でないために、長期に亘って安定な測定ができる。
第3に、レーザー式水位計の送信レーザービームは超音波式または電波式水位計のように送信超音波、送信電波ビームに比べて放射角度が小さく直進性に優れているために、大きな測定スパンが確保できる。
第4に、測定精度は送受信器としてレーザー距離計と同様の精度が期待でき、従来方式で最も高精度である電波式水位計の精度と同等の精度が期待できる。
The effects obtained by solving the problems of the conventional water level gauge are as follows.
First, there is no need for a measuring tube with a large diameter required for the installation of a float type water level meter because there is no need for a reel mechanism that winds the wire in balance with buoyancy, unlike the conventional mechanical float type water level meter. It is.
Second, since the pressure sensitive part is not a contact type that is used by being submerged in water like a hydraulic pressure gauge, stable measurement can be performed over a long period of time.
Third, the transmission laser beam of the laser water level gauge has a smaller radiation angle and superior straightness compared to the transmission ultrasonic wave and transmission radio wave beam, as in the ultrasonic or radio wave type water level gauge. Can be secured.
Fourth, the measurement accuracy can be expected to be the same as that of a laser distance meter as a transmitter / receiver, and the same accuracy as that of the radio wave type water level meter, which is the highest accuracy of the conventional method.

本発明の基本構成を図1および図2に示す。図1は測定時の構成を示す。図2は保守時においてフロートを引き上げる状態の構成を示す。
図3は13消波管中心軸を測定水面に対して垂直ではなく、垂直に対して角度θで設置した場合に14フロート上面が13消波管中心軸に対して、常に直角になるように構成した場合の構成を示す。
測定時の構成は6送信器、7受信器、8保護ケース、10処理回路 等により構成するレーザー距離計、3消波管、2フロートにより構成する。
保守時の構成は3消波管、2フロート、11磁石、12フロート引き上げ用ワイヤにより構成する。
The basic configuration of the present invention is shown in FIGS. FIG. 1 shows a configuration at the time of measurement. FIG. 2 shows a configuration in which the float is lifted during maintenance.
FIG. 3 shows that the 13 float tube center axis is not perpendicular to the measured water surface, but the 14 float top surface is always perpendicular to the 13 quench tube center axis when installed at an angle θ with respect to the vertical. A configuration when configured is shown.
The configuration at the time of measurement is composed of a laser rangefinder, 3 quenching tube, and 2 float composed of 6 transmitters, 7 receivers, 8 protective cases, 10 processing circuits, etc.
The structure at the time of maintenance is composed of 3 breaker tubes, 2 floats, 11 magnets, and 12 float lifting wires.

測定時はレーザー距離計の6送信器より、狭いビームの4送波レーザー光を2フロートに向けて放射する。フロートの上面で反射した5反射レーザー光をレーザー距離計の7受信器で受信する。レーザー距離計の10処理回路によって4送波レーザー光、5反射レーザー光は処理されて、処理回路より9水位出力信号を出力する。At the time of measurement, a narrow-band four-wave laser beam is emitted from two transmitters of a laser distance meter toward two floats. Five reflected laser beams reflected from the upper surface of the float are received by the seven receivers of the laser distance meter. The four transmission laser beams and the five reflected laser beams are processed by the 10 processing circuits of the laser rangefinder, and a 9 water level output signal is output from the processing circuit.

保守時において。フロートを引き上げて点検を行う必要がある場合のフロートの引き上げ方法を図2に示す。2フロートの一部分または全体を磁性体により構成する。まず、図1の3消波管の上部に固定設置しているレーザー距離計をとりはずす。つぎに、図2に示す11磁石を取りつれた12フロート引き上げ用ワイヤを11磁石の重力によって2消波管内に2フロートに密着するまで降ろす。密着状態で11磁石と2フロートが磁力で吸着した状態で12フロート引き上げ用ワイヤを引き上げて、3消波管の上部で2フロートを回収する。点検保守が終了したフロートを水面に戻す方法は2種類の方法がある。第1は3消波管の上部より消波管内に自然落下させる方法である。第2は図2において11磁石を電磁石とし、引き上げ時と同様に2フロートを11磁石に吸着した状態で12フロート引き上げ用ワイヤを徐々に伸ばし、3消波管の中に2フロートを降ろし、フロートが水面近くに達した時に11磁石の磁力の電源を断にすることにより開放して11磁石を2フロートと引き離す方法である。During maintenance. FIG. 2 shows a method for lifting the float when it is necessary to raise the float for inspection. A part or the whole of the two floats is made of a magnetic material. First, remove the laser rangefinder that is fixedly installed at the top of the three silencers in FIG. Next, the 12 float pulling wire with 11 magnets shown in FIG. 2 is lowered by the gravity of the 11 magnets until the 2 floats are in close contact with the 2 floats. With the 11 magnets and 2 floats adsorbed by magnetic force in the close contact state, the 12 float lifting wire is pulled up, and 2 floats are collected at the upper part of the 3 quenching tubes. There are two methods for returning the float after inspection and maintenance to the water surface. The first is a method of allowing natural fall from the upper part of the three silencers into the silencer. Secondly, in FIG. 2, 11 magnets are electromagnets, and the 12 float pulling wires are gradually stretched while the 2 floats are attracted to the 11 magnets in the same manner as when pulling, and the 2 floats are lowered into the 3 quenching tubes. This is a method in which the 11 magnets are separated from the 2 float by opening the 11 magnets by turning off the power supply of the 11 magnets when it reaches near the water surface.

図3は13消波管中心軸を垂直ではなく、垂直に対してθの角度に傾けて設置した場合である。レーザー距離計より発射した送波レーザー光を効率良く受信器に向けて反射させるためには、14フロート上面と13消波管中心軸がなす角度は常に、直角になるようにフロート内の質量分布を調整する。
すなわち、13消波管中心軸を垂直に対して角度θとした場合、フロート内の質量分布を調整することで、フロートが垂直軸に対して角度θだけ回転して浮力のバランスを保ち、図3において、13消波管中心軸と14フロート上面の角度を直角に保つことができる。
FIG. 3 shows a case where the 13 wave-dissipating tube center axis is not vertical but is inclined at an angle θ with respect to the vertical. In order to efficiently reflect the transmitted laser light emitted from the laser rangefinder toward the receiver, the mass distribution in the float is such that the angle formed by the 14 float upper surface and the 13 quencher tube central axis is always perpendicular. Adjust.
That is, when the angle axis θ of the 13 wave-dissipating tube is set to the angle θ with respect to the vertical, the float is rotated by the angle θ with respect to the vertical axis by adjusting the mass distribution in the float, and the balance of buoyancy is maintained. 3, the angle between the center axis of the 13 wave-dissipating tube and the upper surface of the 14 float can be kept at a right angle.

図4はフロート上部に方向性の反射材料を配置した場合の実施例である。一般にフロートの上部は4送波レーザー光を効率良く反射するために、反射部分は白色等として反射率の良い処理を行うが図4はフロート上部に15方向性反射材料を配置して、5反射レーザー光を4送波レーザー光の方向に反射させるようにした例である。15方向性反射材料から反射した5反射レーザー光は4送波レーザー光と同一方向に対して狭い16反射角で反射し7受信器で効率良く受信できる。15方向性反射材料は小さなプリズムを多数並べてシート状としたものが実用化されている。
また、3消波管は鋼管、塩化ビニル管などが用いられるが管の内面が光学的な反射率が大きい場合、反射を小さくするために黒色塗装処理を行い、反射率を小さくする。
FIG. 4 shows an embodiment in which a directional reflective material is disposed on the upper part of the float. In general, the upper part of the float reflects the four-wave laser light efficiently, so the reflective part is white and the like is processed with good reflectivity. However, in FIG. This is an example in which laser light is reflected in the direction of four-wave laser light. The 5-reflected laser light reflected from the 15-directional reflective material is reflected at a narrow 16-reflecting angle with respect to the same direction as the 4-transmit laser light, and can be efficiently received by the 7 receivers. As the 15-directional reflective material, a sheet in which a large number of small prisms are arranged has been put into practical use.
In addition, a steel pipe, a vinyl chloride pipe, or the like is used as the three silencer tubes. When the inner surface of the pipe has a high optical reflectance, a black coating process is performed to reduce the reflection, thereby reducing the reflectance.

図5は水深が浅く、1測定水面が水路底面に近い場合の実施例である。3消波管の周辺の19水路底面に20水路底面落ち込み部を作り、3消波管下部を20水路底面落ち込み部まで下げて設置する。これによって2フロートの上面は1測定水面より既定の高さまで浮力で浮き上がり18水路底面までの1測定水面の測定が可能となる。FIG. 5 shows an embodiment in which the water depth is shallow and one measurement water surface is close to the bottom of the water channel. Make a 20 water channel bottom depression at the bottom of 19 water canals around 3 silencers, and lower the 3 wave sink bottom to 20 water channel bottom depressions. As a result, the upper surface of the two floats is lifted by buoyancy from one measurement water surface to a predetermined height, and one measurement water surface up to the bottom surface of the 18 water channel can be measured.

発明の効果The invention's effect

本発明によるレーザー式水位計は従来使用されている水位計と比較して以下の効果が期待できる。The laser-type water level meter according to the present invention can be expected to have the following effects as compared with a conventionally used water level meter.

フロート式水位計と比較して、機械的な機構が無く、大きな測水筒が必要としない測定が可能である。Compared to a float-type water level gauge, there is no mechanical mechanism, and measurements that do not require a large water meter are possible.

水晶式水位計、半導体等の圧力式水位計と比較して、水にセンサー部分が接触しない非接触式のために、経年変化する要素が小さく、大気解放チューブを必要としないために安定な測定ができる。Compared with pressure-type water level gauges such as quartz-type water level gauges and semiconductors, the non-contact type where the sensor part does not come into contact with water is small, so the elements that change over time are small, and there is no need for an air release tube. Can do.

非接触式の超音波式水位計、電波式水位計と比較して第1にレーザーは伝搬上で広がりが小さく、管内にレーザー光を閉じ込めて測定するために伝搬路上の障害物の影響が無く、ダム水位などのように数10m以上の長い測定スパンの測定が可能となる。第2に傾斜断面を有する擁壁に消波管を沿わして水位の測定ができる。
第3に消波管を用いているために水面浮遊物の影響のない測定ができる。
第4に測定精度はレーザー距離計と同程度の高精度測定ができる。
First, the laser is less spread in propagation than non-contact ultrasonic water level gauges and radio wave level gauges, and there is no influence of obstacles on the propagation path because the laser light is confined in the tube for measurement. Measurement of a long measurement span of several tens of meters or more, such as a dam water level, becomes possible. Secondly, the water level can be measured along a wave-dissipating tube along a retaining wall having an inclined cross section.
Third, since a wave-dissipating tube is used, measurement can be performed without the influence of water surface suspended matter.
Fourth, measurement accuracy can be as high as laser distance meters.

測定時の基本構成Basic configuration during measurement 保守時の基本構成Basic configuration during maintenance 消波管中心軸が垂直でない場合の構成Configuration when the center axis of the filter tube is not vertical 実施例1の説明図Explanatory drawing of Example 1 実施例2の説明図Explanatory drawing of Example 2.

Claims (2)

(イ)測定水面下に内部が空胴の消波管を設けレーザー距離計を消波管の上部に配置して、消波管の中にレーザー距離計より送波レーザー光を送出する。
(ロ)消波管の内部の水面にフロートを浮力で浮かべておく、フロートは水面の上下によって水面と同じ距離を上下する。
(ハ)送波レーザー光はフロートに投射され、その反射をレーザー距離計で受信してフロートまで距離を求める。
(ニ)フロートは磁性を有する構成とし、フロートの保守時において、消波管上部からワイヤ付き磁石を管内に降下させフロートを磁力で吸引してワイヤを引き上げてフロートを消波管の上部から取り出しができるものとする。
以上の方法と構成よりなるレーザー式水位計
(B) A quenching tube with a cavity inside is provided below the surface of the measurement water, and a laser distance meter is placed at the top of the quenching tube, and a laser beam is transmitted from the laser rangefinder into the quenching tube.
(B) The float floats on the water surface inside the wave-dissipating tube with buoyancy. The float moves up and down the same distance as the water surface by the top and bottom of the water surface.
(C) The transmitted laser beam is projected onto the float, and the reflection is received by a laser rangefinder to determine the distance to the float.
(D) The float has a magnetic structure. During maintenance of the float, the magnet with the wire is lowered from the upper part of the wave-dissipating tube, the float is attracted by magnetic force, the wire is pulled up, and the float is taken out from the upper part of the wave-dissipating tube Shall be able to.
Laser type water level meter comprising the above method and configuration
請求項1によるレーザー式水位計において、消波管を垂直に対して斜めに設置した時に消波管内のフロートの上面が常に消波管中心軸に対して、浮力により直角になるように、フロート内部の質量分布を調整したレーザー式水位計2. The laser-type water level gauge according to claim 1, wherein when the wave-dissipating tube is installed obliquely with respect to the vertical, the float upper surface is always perpendicular to the central axis of the wave-dissipating tube by buoyancy. Laser water level gauge with internal mass distribution adjusted
JP2009119240A 2009-04-20 2009-04-20 Laser-type water gauge Pending JP2010249790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009119240A JP2010249790A (en) 2009-04-20 2009-04-20 Laser-type water gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009119240A JP2010249790A (en) 2009-04-20 2009-04-20 Laser-type water gauge

Publications (1)

Publication Number Publication Date
JP2010249790A true JP2010249790A (en) 2010-11-04

Family

ID=43312279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009119240A Pending JP2010249790A (en) 2009-04-20 2009-04-20 Laser-type water gauge

Country Status (1)

Country Link
JP (1) JP2010249790A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101272293B1 (en) 2012-11-19 2013-06-07 (주)유에스티21 Water level observation buoy having reflector
KR101283363B1 (en) 2013-02-18 2013-07-08 (주)해양정보기술 Water level observation unit
JP2013142688A (en) * 2012-01-06 2013-07-22 Kitazawa Gijutsu Jimusho Kk Laser type liquid level meter
CN103398758A (en) * 2013-08-08 2013-11-20 中冶北方(大连)工程技术有限公司 Device for measuring liquid level of flotation pulp
JP2013253955A (en) * 2012-05-11 2013-12-19 Kitazawa Gijutsu Jimusho Kk Laser type liquid level gauge
WO2014023061A1 (en) * 2012-08-07 2014-02-13 付建国 Laser automatic tide gauge
JP2014145756A (en) * 2013-01-07 2014-08-14 Kitazawa Gijutsu Jimusho Kk Laser type level meter
JP2014190710A (en) * 2013-03-26 2014-10-06 Tokyo Electric Power Co Inc:The Liquid level measuring system and liquid level measuring method
CN106768193A (en) * 2016-12-05 2017-05-31 南京航空航天大学 A kind of water-level measuring post
RU178306U1 (en) * 2016-10-12 2018-03-29 Альберт Галиуллович Абдуллин LASER LIQUID LEVEL METER

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193329U (en) * 1985-05-27 1986-12-02
JPH01123115A (en) * 1987-11-07 1989-05-16 Power Reactor & Nuclear Fuel Dev Corp Float type laser level gage
JPH10281854A (en) * 1997-03-31 1998-10-23 Ikeda Keiki Seisakusho:Kk Apparatus for measuring change amount of water level or the like

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193329U (en) * 1985-05-27 1986-12-02
JPH01123115A (en) * 1987-11-07 1989-05-16 Power Reactor & Nuclear Fuel Dev Corp Float type laser level gage
JPH10281854A (en) * 1997-03-31 1998-10-23 Ikeda Keiki Seisakusho:Kk Apparatus for measuring change amount of water level or the like

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142688A (en) * 2012-01-06 2013-07-22 Kitazawa Gijutsu Jimusho Kk Laser type liquid level meter
JP2013253955A (en) * 2012-05-11 2013-12-19 Kitazawa Gijutsu Jimusho Kk Laser type liquid level gauge
WO2014023061A1 (en) * 2012-08-07 2014-02-13 付建国 Laser automatic tide gauge
KR101272293B1 (en) 2012-11-19 2013-06-07 (주)유에스티21 Water level observation buoy having reflector
JP2014145756A (en) * 2013-01-07 2014-08-14 Kitazawa Gijutsu Jimusho Kk Laser type level meter
KR101283363B1 (en) 2013-02-18 2013-07-08 (주)해양정보기술 Water level observation unit
JP2014190710A (en) * 2013-03-26 2014-10-06 Tokyo Electric Power Co Inc:The Liquid level measuring system and liquid level measuring method
CN103398758A (en) * 2013-08-08 2013-11-20 中冶北方(大连)工程技术有限公司 Device for measuring liquid level of flotation pulp
RU178306U1 (en) * 2016-10-12 2018-03-29 Альберт Галиуллович Абдуллин LASER LIQUID LEVEL METER
CN106768193A (en) * 2016-12-05 2017-05-31 南京航空航天大学 A kind of water-level measuring post

Similar Documents

Publication Publication Date Title
JP2010249790A (en) Laser-type water gauge
JP6460118B2 (en) Water volume measuring device and water volume monitoring system
JP4415192B2 (en) Riverbed measuring device
JP2009513988A (en) Liquid level determination device using radar antenna and radar antenna
JP5589248B2 (en) Laser level gauge
US11029190B2 (en) Velocity sensor with parabolic reflector
JP2011169880A (en) Laser type liquid level detecting level meter
KR101658197B1 (en) Method of real-time warning for coastal anomalies
HRP20161584T1 (en) System and method for detecting and measuring phenomena relating to altimetric variations in the seafloor
KR101819496B1 (en) Sludge height measuring apparatus of sewer pipe with floating body and monitoring system using the same
JP4534200B2 (en) Tsunami detector
JP5707627B2 (en) Laser level gauge
JP2004245806A (en) Vertical displacement meter
KR101304751B1 (en) Inclined laser level meter
RU2529626C2 (en) Apparatus for determining corrections to depth measured by echo sounder when mapping bottom topography of water area
JP2011141256A (en) Light spot recognition liquid level gage
JP3200347U (en) Psoriasis measuring device
KR20170109506A (en) Sewage flow measurment device for partially filled pipe coinciding low carbon
RU2694084C1 (en) Device for determining corrections to depths, measured by echo sounder when recording topography of bottom of water area
KR101640793B1 (en) Method of real-time monitoring for coastal anomalies
KR102026339B1 (en) Buoy type laser water gauge
JPH0552622A (en) Flow rate measuring device
RU53454U1 (en) UNDERWATER MEASUREMENT OF DEPTH OF A RESERVOIR AND AVERAGE VERTICAL VELOCITY OF SPEED OF SOUND IN WATER
CN109444860A (en) Multibeam echosounder analog calibration device
RU107371U1 (en) DEVICE FOR DETERMINING THE CHARACTERISTICS OF DANGEROUS ICE HYDROLOGICAL PHENOMENA

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120418

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A02 Decision of refusal

Effective date: 20140311

Free format text: JAPANESE INTERMEDIATE CODE: A02